1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
4 *
5 * Interrupt architecture for the GIC:
6 *
7 * o There is one Interrupt Distributor, which receives interrupts
8 * from system devices and sends them to the Interrupt Controllers.
9 *
10 * o There is one CPU Interface per CPU, which sends interrupts sent
11 * by the Distributor, and interrupts generated locally, to the
12 * associated CPU. The base address of the CPU interface is usually
13 * aliased so that the same address points to different chips depending
14 * on the CPU it is accessed from.
15 *
16 * Note that IRQs 0-31 are special - they are local to each CPU.
17 * As such, the enable set/clear, pending set/clear and active bit
18 * registers are banked per-cpu for these sources.
19 */
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/err.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/smp.h>
26 #include <linux/cpu.h>
27 #include <linux/cpu_pm.h>
28 #include <linux/cpumask.h>
29 #include <linux/io.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/acpi.h>
34 #include <linux/irqdomain.h>
35 #include <linux/interrupt.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/irqchip.h>
39 #include <linux/irqchip/chained_irq.h>
40 #include <linux/irqchip/arm-gic.h>
41
42 #include <asm/cputype.h>
43 #include <asm/irq.h>
44 #include <asm/exception.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47
48 #include "irq-gic-common.h"
49
50 #ifdef CONFIG_ARM64
51 #include <asm/cpufeature.h>
52
gic_check_cpu_features(void)53 static void gic_check_cpu_features(void)
54 {
55 WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_SYSREG_GIC_CPUIF),
56 TAINT_CPU_OUT_OF_SPEC,
57 "GICv3 system registers enabled, broken firmware!\n");
58 }
59 #else
60 #define gic_check_cpu_features() do { } while(0)
61 #endif
62
63 union gic_base {
64 void __iomem *common_base;
65 void __percpu * __iomem *percpu_base;
66 };
67
68 struct gic_chip_data {
69 struct irq_chip chip;
70 union gic_base dist_base;
71 union gic_base cpu_base;
72 void __iomem *raw_dist_base;
73 void __iomem *raw_cpu_base;
74 u32 percpu_offset;
75 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
76 u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
77 u32 saved_spi_active[DIV_ROUND_UP(1020, 32)];
78 u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
79 u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
80 u32 __percpu *saved_ppi_enable;
81 u32 __percpu *saved_ppi_active;
82 u32 __percpu *saved_ppi_conf;
83 #endif
84 struct irq_domain *domain;
85 unsigned int gic_irqs;
86 };
87
88 #ifdef CONFIG_BL_SWITCHER
89
90 static DEFINE_RAW_SPINLOCK(cpu_map_lock);
91
92 #define gic_lock_irqsave(f) \
93 raw_spin_lock_irqsave(&cpu_map_lock, (f))
94 #define gic_unlock_irqrestore(f) \
95 raw_spin_unlock_irqrestore(&cpu_map_lock, (f))
96
97 #define gic_lock() raw_spin_lock(&cpu_map_lock)
98 #define gic_unlock() raw_spin_unlock(&cpu_map_lock)
99
100 #else
101
102 #define gic_lock_irqsave(f) do { (void)(f); } while(0)
103 #define gic_unlock_irqrestore(f) do { (void)(f); } while(0)
104
105 #define gic_lock() do { } while(0)
106 #define gic_unlock() do { } while(0)
107
108 #endif
109
110 static DEFINE_STATIC_KEY_FALSE(needs_rmw_access);
111
112 /*
113 * The GIC mapping of CPU interfaces does not necessarily match
114 * the logical CPU numbering. Let's use a mapping as returned
115 * by the GIC itself.
116 */
117 #define NR_GIC_CPU_IF 8
118 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
119
120 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
121
122 static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly;
123
124 static struct gic_kvm_info gic_v2_kvm_info __initdata;
125
126 static DEFINE_PER_CPU(u32, sgi_intid);
127
128 #ifdef CONFIG_GIC_NON_BANKED
129 static DEFINE_STATIC_KEY_FALSE(frankengic_key);
130
enable_frankengic(void)131 static void enable_frankengic(void)
132 {
133 static_branch_enable(&frankengic_key);
134 }
135
__get_base(union gic_base * base)136 static inline void __iomem *__get_base(union gic_base *base)
137 {
138 if (static_branch_unlikely(&frankengic_key))
139 return raw_cpu_read(*base->percpu_base);
140
141 return base->common_base;
142 }
143
144 #define gic_data_dist_base(d) __get_base(&(d)->dist_base)
145 #define gic_data_cpu_base(d) __get_base(&(d)->cpu_base)
146 #else
147 #define gic_data_dist_base(d) ((d)->dist_base.common_base)
148 #define gic_data_cpu_base(d) ((d)->cpu_base.common_base)
149 #define enable_frankengic() do { } while(0)
150 #endif
151
gic_dist_base(struct irq_data * d)152 static inline void __iomem *gic_dist_base(struct irq_data *d)
153 {
154 struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
155 return gic_data_dist_base(gic_data);
156 }
157
gic_cpu_base(struct irq_data * d)158 static inline void __iomem *gic_cpu_base(struct irq_data *d)
159 {
160 struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
161 return gic_data_cpu_base(gic_data);
162 }
163
gic_irq(struct irq_data * d)164 static inline unsigned int gic_irq(struct irq_data *d)
165 {
166 return d->hwirq;
167 }
168
cascading_gic_irq(struct irq_data * d)169 static inline bool cascading_gic_irq(struct irq_data *d)
170 {
171 void *data = irq_data_get_irq_handler_data(d);
172
173 /*
174 * If handler_data is set, this is a cascading interrupt, and
175 * it cannot possibly be forwarded.
176 */
177 return data != NULL;
178 }
179
180 /*
181 * Routines to acknowledge, disable and enable interrupts
182 */
gic_poke_irq(struct irq_data * d,u32 offset)183 static void gic_poke_irq(struct irq_data *d, u32 offset)
184 {
185 u32 mask = 1 << (gic_irq(d) % 32);
186 writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
187 }
188
gic_peek_irq(struct irq_data * d,u32 offset)189 static int gic_peek_irq(struct irq_data *d, u32 offset)
190 {
191 u32 mask = 1 << (gic_irq(d) % 32);
192 return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
193 }
194
gic_mask_irq(struct irq_data * d)195 static void gic_mask_irq(struct irq_data *d)
196 {
197 gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
198 }
199
gic_eoimode1_mask_irq(struct irq_data * d)200 static void gic_eoimode1_mask_irq(struct irq_data *d)
201 {
202 gic_mask_irq(d);
203 /*
204 * When masking a forwarded interrupt, make sure it is
205 * deactivated as well.
206 *
207 * This ensures that an interrupt that is getting
208 * disabled/masked will not get "stuck", because there is
209 * noone to deactivate it (guest is being terminated).
210 */
211 if (irqd_is_forwarded_to_vcpu(d))
212 gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
213 }
214
gic_unmask_irq(struct irq_data * d)215 static void gic_unmask_irq(struct irq_data *d)
216 {
217 gic_poke_irq(d, GIC_DIST_ENABLE_SET);
218 }
219
gic_eoi_irq(struct irq_data * d)220 static void gic_eoi_irq(struct irq_data *d)
221 {
222 u32 hwirq = gic_irq(d);
223
224 if (hwirq < 16)
225 hwirq = this_cpu_read(sgi_intid);
226
227 writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_EOI);
228 }
229
gic_eoimode1_eoi_irq(struct irq_data * d)230 static void gic_eoimode1_eoi_irq(struct irq_data *d)
231 {
232 u32 hwirq = gic_irq(d);
233
234 /* Do not deactivate an IRQ forwarded to a vcpu. */
235 if (irqd_is_forwarded_to_vcpu(d))
236 return;
237
238 if (hwirq < 16)
239 hwirq = this_cpu_read(sgi_intid);
240
241 writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
242 }
243
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)244 static int gic_irq_set_irqchip_state(struct irq_data *d,
245 enum irqchip_irq_state which, bool val)
246 {
247 u32 reg;
248
249 switch (which) {
250 case IRQCHIP_STATE_PENDING:
251 reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
252 break;
253
254 case IRQCHIP_STATE_ACTIVE:
255 reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
256 break;
257
258 case IRQCHIP_STATE_MASKED:
259 reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
260 break;
261
262 default:
263 return -EINVAL;
264 }
265
266 gic_poke_irq(d, reg);
267 return 0;
268 }
269
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)270 static int gic_irq_get_irqchip_state(struct irq_data *d,
271 enum irqchip_irq_state which, bool *val)
272 {
273 switch (which) {
274 case IRQCHIP_STATE_PENDING:
275 *val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
276 break;
277
278 case IRQCHIP_STATE_ACTIVE:
279 *val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
280 break;
281
282 case IRQCHIP_STATE_MASKED:
283 *val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
284 break;
285
286 default:
287 return -EINVAL;
288 }
289
290 return 0;
291 }
292
gic_set_type(struct irq_data * d,unsigned int type)293 static int gic_set_type(struct irq_data *d, unsigned int type)
294 {
295 void __iomem *base = gic_dist_base(d);
296 unsigned int gicirq = gic_irq(d);
297 int ret;
298
299 /* Interrupt configuration for SGIs can't be changed */
300 if (gicirq < 16)
301 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
302
303 /* SPIs have restrictions on the supported types */
304 if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
305 type != IRQ_TYPE_EDGE_RISING)
306 return -EINVAL;
307
308 ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG, NULL);
309 if (ret && gicirq < 32) {
310 /* Misconfigured PPIs are usually not fatal */
311 pr_warn("GIC: PPI%d is secure or misconfigured\n", gicirq - 16);
312 ret = 0;
313 }
314
315 return ret;
316 }
317
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)318 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
319 {
320 /* Only interrupts on the primary GIC can be forwarded to a vcpu. */
321 if (cascading_gic_irq(d) || gic_irq(d) < 16)
322 return -EINVAL;
323
324 if (vcpu)
325 irqd_set_forwarded_to_vcpu(d);
326 else
327 irqd_clr_forwarded_to_vcpu(d);
328 return 0;
329 }
330
gic_retrigger(struct irq_data * data)331 static int gic_retrigger(struct irq_data *data)
332 {
333 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
334 }
335
gic_handle_irq(struct pt_regs * regs)336 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
337 {
338 u32 irqstat, irqnr;
339 struct gic_chip_data *gic = &gic_data[0];
340 void __iomem *cpu_base = gic_data_cpu_base(gic);
341
342 do {
343 irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
344 irqnr = irqstat & GICC_IAR_INT_ID_MASK;
345
346 if (unlikely(irqnr >= 1020))
347 break;
348
349 if (static_branch_likely(&supports_deactivate_key))
350 writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
351 isb();
352
353 /*
354 * Ensure any shared data written by the CPU sending the IPI
355 * is read after we've read the ACK register on the GIC.
356 *
357 * Pairs with the write barrier in gic_ipi_send_mask
358 */
359 if (irqnr <= 15) {
360 smp_rmb();
361
362 /*
363 * The GIC encodes the source CPU in GICC_IAR,
364 * leading to the deactivation to fail if not
365 * written back as is to GICC_EOI. Stash the INTID
366 * away for gic_eoi_irq() to write back. This only
367 * works because we don't nest SGIs...
368 */
369 this_cpu_write(sgi_intid, irqstat);
370 }
371
372 handle_domain_irq(gic->domain, irqnr, regs);
373 } while (1);
374 }
375
gic_handle_cascade_irq(struct irq_desc * desc)376 static void gic_handle_cascade_irq(struct irq_desc *desc)
377 {
378 struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
379 struct irq_chip *chip = irq_desc_get_chip(desc);
380 unsigned int gic_irq;
381 unsigned long status;
382 int ret;
383
384 chained_irq_enter(chip, desc);
385
386 status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
387
388 gic_irq = (status & GICC_IAR_INT_ID_MASK);
389 if (gic_irq == GICC_INT_SPURIOUS)
390 goto out;
391
392 isb();
393 ret = generic_handle_domain_irq(chip_data->domain, gic_irq);
394 if (unlikely(ret))
395 handle_bad_irq(desc);
396 out:
397 chained_irq_exit(chip, desc);
398 }
399
400 static const struct irq_chip gic_chip = {
401 .irq_mask = gic_mask_irq,
402 .irq_unmask = gic_unmask_irq,
403 .irq_eoi = gic_eoi_irq,
404 .irq_set_type = gic_set_type,
405 .irq_retrigger = gic_retrigger,
406 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
407 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
408 .flags = IRQCHIP_SET_TYPE_MASKED |
409 IRQCHIP_SKIP_SET_WAKE |
410 IRQCHIP_MASK_ON_SUSPEND,
411 };
412
gic_cascade_irq(unsigned int gic_nr,unsigned int irq)413 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
414 {
415 BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
416 irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
417 &gic_data[gic_nr]);
418 }
419
gic_get_cpumask(struct gic_chip_data * gic)420 static u8 gic_get_cpumask(struct gic_chip_data *gic)
421 {
422 void __iomem *base = gic_data_dist_base(gic);
423 u32 mask, i;
424
425 for (i = mask = 0; i < 32; i += 4) {
426 mask = readl_relaxed(base + GIC_DIST_TARGET + i);
427 mask |= mask >> 16;
428 mask |= mask >> 8;
429 if (mask)
430 break;
431 }
432
433 if (!mask && num_possible_cpus() > 1)
434 pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
435
436 return mask;
437 }
438
gic_check_gicv2(void __iomem * base)439 static bool gic_check_gicv2(void __iomem *base)
440 {
441 u32 val = readl_relaxed(base + GIC_CPU_IDENT);
442 return (val & 0xff0fff) == 0x02043B;
443 }
444
gic_cpu_if_up(struct gic_chip_data * gic)445 static void gic_cpu_if_up(struct gic_chip_data *gic)
446 {
447 void __iomem *cpu_base = gic_data_cpu_base(gic);
448 u32 bypass = 0;
449 u32 mode = 0;
450 int i;
451
452 if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key))
453 mode = GIC_CPU_CTRL_EOImodeNS;
454
455 if (gic_check_gicv2(cpu_base))
456 for (i = 0; i < 4; i++)
457 writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4);
458
459 /*
460 * Preserve bypass disable bits to be written back later
461 */
462 bypass = readl(cpu_base + GIC_CPU_CTRL);
463 bypass &= GICC_DIS_BYPASS_MASK;
464
465 writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
466 }
467
468
gic_dist_init(struct gic_chip_data * gic)469 static void gic_dist_init(struct gic_chip_data *gic)
470 {
471 unsigned int i;
472 u32 cpumask;
473 unsigned int gic_irqs = gic->gic_irqs;
474 void __iomem *base = gic_data_dist_base(gic);
475
476 writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
477
478 /*
479 * Set all global interrupts to this CPU only.
480 */
481 cpumask = gic_get_cpumask(gic);
482 cpumask |= cpumask << 8;
483 cpumask |= cpumask << 16;
484 for (i = 32; i < gic_irqs; i += 4)
485 writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
486
487 gic_dist_config(base, gic_irqs, NULL);
488
489 writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
490 }
491
gic_cpu_init(struct gic_chip_data * gic)492 static int gic_cpu_init(struct gic_chip_data *gic)
493 {
494 void __iomem *dist_base = gic_data_dist_base(gic);
495 void __iomem *base = gic_data_cpu_base(gic);
496 unsigned int cpu_mask, cpu = smp_processor_id();
497 int i;
498
499 /*
500 * Setting up the CPU map is only relevant for the primary GIC
501 * because any nested/secondary GICs do not directly interface
502 * with the CPU(s).
503 */
504 if (gic == &gic_data[0]) {
505 /*
506 * Get what the GIC says our CPU mask is.
507 */
508 if (WARN_ON(cpu >= NR_GIC_CPU_IF))
509 return -EINVAL;
510
511 gic_check_cpu_features();
512 cpu_mask = gic_get_cpumask(gic);
513 gic_cpu_map[cpu] = cpu_mask;
514
515 /*
516 * Clear our mask from the other map entries in case they're
517 * still undefined.
518 */
519 for (i = 0; i < NR_GIC_CPU_IF; i++)
520 if (i != cpu)
521 gic_cpu_map[i] &= ~cpu_mask;
522 }
523
524 gic_cpu_config(dist_base, 32, NULL);
525
526 writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
527 gic_cpu_if_up(gic);
528
529 return 0;
530 }
531
gic_cpu_if_down(unsigned int gic_nr)532 int gic_cpu_if_down(unsigned int gic_nr)
533 {
534 void __iomem *cpu_base;
535 u32 val = 0;
536
537 if (gic_nr >= CONFIG_ARM_GIC_MAX_NR)
538 return -EINVAL;
539
540 cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
541 val = readl(cpu_base + GIC_CPU_CTRL);
542 val &= ~GICC_ENABLE;
543 writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
544
545 return 0;
546 }
547
548 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
549 /*
550 * Saves the GIC distributor registers during suspend or idle. Must be called
551 * with interrupts disabled but before powering down the GIC. After calling
552 * this function, no interrupts will be delivered by the GIC, and another
553 * platform-specific wakeup source must be enabled.
554 */
gic_dist_save(struct gic_chip_data * gic)555 void gic_dist_save(struct gic_chip_data *gic)
556 {
557 unsigned int gic_irqs;
558 void __iomem *dist_base;
559 int i;
560
561 if (WARN_ON(!gic))
562 return;
563
564 gic_irqs = gic->gic_irqs;
565 dist_base = gic_data_dist_base(gic);
566
567 if (!dist_base)
568 return;
569
570 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
571 gic->saved_spi_conf[i] =
572 readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
573
574 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
575 gic->saved_spi_target[i] =
576 readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
577
578 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
579 gic->saved_spi_enable[i] =
580 readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
581
582 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
583 gic->saved_spi_active[i] =
584 readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
585 }
586
587 /*
588 * Restores the GIC distributor registers during resume or when coming out of
589 * idle. Must be called before enabling interrupts. If a level interrupt
590 * that occurred while the GIC was suspended is still present, it will be
591 * handled normally, but any edge interrupts that occurred will not be seen by
592 * the GIC and need to be handled by the platform-specific wakeup source.
593 */
gic_dist_restore(struct gic_chip_data * gic)594 void gic_dist_restore(struct gic_chip_data *gic)
595 {
596 unsigned int gic_irqs;
597 unsigned int i;
598 void __iomem *dist_base;
599
600 if (WARN_ON(!gic))
601 return;
602
603 gic_irqs = gic->gic_irqs;
604 dist_base = gic_data_dist_base(gic);
605
606 if (!dist_base)
607 return;
608
609 writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
610
611 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
612 writel_relaxed(gic->saved_spi_conf[i],
613 dist_base + GIC_DIST_CONFIG + i * 4);
614
615 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
616 writel_relaxed(GICD_INT_DEF_PRI_X4,
617 dist_base + GIC_DIST_PRI + i * 4);
618
619 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
620 writel_relaxed(gic->saved_spi_target[i],
621 dist_base + GIC_DIST_TARGET + i * 4);
622
623 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
624 writel_relaxed(GICD_INT_EN_CLR_X32,
625 dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
626 writel_relaxed(gic->saved_spi_enable[i],
627 dist_base + GIC_DIST_ENABLE_SET + i * 4);
628 }
629
630 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
631 writel_relaxed(GICD_INT_EN_CLR_X32,
632 dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
633 writel_relaxed(gic->saved_spi_active[i],
634 dist_base + GIC_DIST_ACTIVE_SET + i * 4);
635 }
636
637 writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
638 }
639
gic_cpu_save(struct gic_chip_data * gic)640 void gic_cpu_save(struct gic_chip_data *gic)
641 {
642 int i;
643 u32 *ptr;
644 void __iomem *dist_base;
645 void __iomem *cpu_base;
646
647 if (WARN_ON(!gic))
648 return;
649
650 dist_base = gic_data_dist_base(gic);
651 cpu_base = gic_data_cpu_base(gic);
652
653 if (!dist_base || !cpu_base)
654 return;
655
656 ptr = raw_cpu_ptr(gic->saved_ppi_enable);
657 for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
658 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
659
660 ptr = raw_cpu_ptr(gic->saved_ppi_active);
661 for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
662 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
663
664 ptr = raw_cpu_ptr(gic->saved_ppi_conf);
665 for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
666 ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
667
668 }
669
gic_cpu_restore(struct gic_chip_data * gic)670 void gic_cpu_restore(struct gic_chip_data *gic)
671 {
672 int i;
673 u32 *ptr;
674 void __iomem *dist_base;
675 void __iomem *cpu_base;
676
677 if (WARN_ON(!gic))
678 return;
679
680 dist_base = gic_data_dist_base(gic);
681 cpu_base = gic_data_cpu_base(gic);
682
683 if (!dist_base || !cpu_base)
684 return;
685
686 ptr = raw_cpu_ptr(gic->saved_ppi_enable);
687 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
688 writel_relaxed(GICD_INT_EN_CLR_X32,
689 dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
690 writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
691 }
692
693 ptr = raw_cpu_ptr(gic->saved_ppi_active);
694 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
695 writel_relaxed(GICD_INT_EN_CLR_X32,
696 dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
697 writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4);
698 }
699
700 ptr = raw_cpu_ptr(gic->saved_ppi_conf);
701 for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
702 writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
703
704 for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
705 writel_relaxed(GICD_INT_DEF_PRI_X4,
706 dist_base + GIC_DIST_PRI + i * 4);
707
708 writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
709 gic_cpu_if_up(gic);
710 }
711
gic_notifier(struct notifier_block * self,unsigned long cmd,void * v)712 static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v)
713 {
714 int i;
715
716 for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) {
717 switch (cmd) {
718 case CPU_PM_ENTER:
719 gic_cpu_save(&gic_data[i]);
720 break;
721 case CPU_PM_ENTER_FAILED:
722 case CPU_PM_EXIT:
723 gic_cpu_restore(&gic_data[i]);
724 break;
725 case CPU_CLUSTER_PM_ENTER:
726 gic_dist_save(&gic_data[i]);
727 break;
728 case CPU_CLUSTER_PM_ENTER_FAILED:
729 case CPU_CLUSTER_PM_EXIT:
730 gic_dist_restore(&gic_data[i]);
731 break;
732 }
733 }
734
735 return NOTIFY_OK;
736 }
737
738 static struct notifier_block gic_notifier_block = {
739 .notifier_call = gic_notifier,
740 };
741
gic_pm_init(struct gic_chip_data * gic)742 static int gic_pm_init(struct gic_chip_data *gic)
743 {
744 gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
745 sizeof(u32));
746 if (WARN_ON(!gic->saved_ppi_enable))
747 return -ENOMEM;
748
749 gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
750 sizeof(u32));
751 if (WARN_ON(!gic->saved_ppi_active))
752 goto free_ppi_enable;
753
754 gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
755 sizeof(u32));
756 if (WARN_ON(!gic->saved_ppi_conf))
757 goto free_ppi_active;
758
759 if (gic == &gic_data[0])
760 cpu_pm_register_notifier(&gic_notifier_block);
761
762 return 0;
763
764 free_ppi_active:
765 free_percpu(gic->saved_ppi_active);
766 free_ppi_enable:
767 free_percpu(gic->saved_ppi_enable);
768
769 return -ENOMEM;
770 }
771 #else
gic_pm_init(struct gic_chip_data * gic)772 static int gic_pm_init(struct gic_chip_data *gic)
773 {
774 return 0;
775 }
776 #endif
777
778 #ifdef CONFIG_SMP
rmw_writeb(u8 bval,void __iomem * addr)779 static void rmw_writeb(u8 bval, void __iomem *addr)
780 {
781 static DEFINE_RAW_SPINLOCK(rmw_lock);
782 unsigned long offset = (unsigned long)addr & 3UL;
783 unsigned long shift = offset * 8;
784 unsigned long flags;
785 u32 val;
786
787 raw_spin_lock_irqsave(&rmw_lock, flags);
788
789 addr -= offset;
790 val = readl_relaxed(addr);
791 val &= ~GENMASK(shift + 7, shift);
792 val |= bval << shift;
793 writel_relaxed(val, addr);
794
795 raw_spin_unlock_irqrestore(&rmw_lock, flags);
796 }
797
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)798 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
799 bool force)
800 {
801 void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + gic_irq(d);
802 unsigned int cpu;
803
804 if (!force)
805 cpu = cpumask_any_and(mask_val, cpu_online_mask);
806 else
807 cpu = cpumask_first(mask_val);
808
809 if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
810 return -EINVAL;
811
812 if (static_branch_unlikely(&needs_rmw_access))
813 rmw_writeb(gic_cpu_map[cpu], reg);
814 else
815 writeb_relaxed(gic_cpu_map[cpu], reg);
816 irq_data_update_effective_affinity(d, cpumask_of(cpu));
817
818 return IRQ_SET_MASK_OK_DONE;
819 }
820
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)821 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
822 {
823 int cpu;
824 unsigned long flags, map = 0;
825
826 if (unlikely(nr_cpu_ids == 1)) {
827 /* Only one CPU? let's do a self-IPI... */
828 writel_relaxed(2 << 24 | d->hwirq,
829 gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
830 return;
831 }
832
833 gic_lock_irqsave(flags);
834
835 /* Convert our logical CPU mask into a physical one. */
836 for_each_cpu(cpu, mask)
837 map |= gic_cpu_map[cpu];
838
839 /*
840 * Ensure that stores to Normal memory are visible to the
841 * other CPUs before they observe us issuing the IPI.
842 */
843 dmb(ishst);
844
845 /* this always happens on GIC0 */
846 writel_relaxed(map << 16 | d->hwirq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
847
848 gic_unlock_irqrestore(flags);
849 }
850
gic_starting_cpu(unsigned int cpu)851 static int gic_starting_cpu(unsigned int cpu)
852 {
853 gic_cpu_init(&gic_data[0]);
854 return 0;
855 }
856
gic_smp_init(void)857 static __init void gic_smp_init(void)
858 {
859 struct irq_fwspec sgi_fwspec = {
860 .fwnode = gic_data[0].domain->fwnode,
861 .param_count = 1,
862 };
863 int base_sgi;
864
865 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
866 "irqchip/arm/gic:starting",
867 gic_starting_cpu, NULL);
868
869 base_sgi = __irq_domain_alloc_irqs(gic_data[0].domain, -1, 8,
870 NUMA_NO_NODE, &sgi_fwspec,
871 false, NULL);
872 if (WARN_ON(base_sgi <= 0))
873 return;
874
875 set_smp_ipi_range(base_sgi, 8);
876 }
877 #else
878 #define gic_smp_init() do { } while(0)
879 #define gic_set_affinity NULL
880 #define gic_ipi_send_mask NULL
881 #endif
882
883 #ifdef CONFIG_BL_SWITCHER
884 /*
885 * gic_send_sgi - send a SGI directly to given CPU interface number
886 *
887 * cpu_id: the ID for the destination CPU interface
888 * irq: the IPI number to send a SGI for
889 */
gic_send_sgi(unsigned int cpu_id,unsigned int irq)890 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
891 {
892 BUG_ON(cpu_id >= NR_GIC_CPU_IF);
893 cpu_id = 1 << cpu_id;
894 /* this always happens on GIC0 */
895 writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
896 }
897
898 /*
899 * gic_get_cpu_id - get the CPU interface ID for the specified CPU
900 *
901 * @cpu: the logical CPU number to get the GIC ID for.
902 *
903 * Return the CPU interface ID for the given logical CPU number,
904 * or -1 if the CPU number is too large or the interface ID is
905 * unknown (more than one bit set).
906 */
gic_get_cpu_id(unsigned int cpu)907 int gic_get_cpu_id(unsigned int cpu)
908 {
909 unsigned int cpu_bit;
910
911 if (cpu >= NR_GIC_CPU_IF)
912 return -1;
913 cpu_bit = gic_cpu_map[cpu];
914 if (cpu_bit & (cpu_bit - 1))
915 return -1;
916 return __ffs(cpu_bit);
917 }
918
919 /*
920 * gic_migrate_target - migrate IRQs to another CPU interface
921 *
922 * @new_cpu_id: the CPU target ID to migrate IRQs to
923 *
924 * Migrate all peripheral interrupts with a target matching the current CPU
925 * to the interface corresponding to @new_cpu_id. The CPU interface mapping
926 * is also updated. Targets to other CPU interfaces are unchanged.
927 * This must be called with IRQs locally disabled.
928 */
gic_migrate_target(unsigned int new_cpu_id)929 void gic_migrate_target(unsigned int new_cpu_id)
930 {
931 unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
932 void __iomem *dist_base;
933 int i, ror_val, cpu = smp_processor_id();
934 u32 val, cur_target_mask, active_mask;
935
936 BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
937
938 dist_base = gic_data_dist_base(&gic_data[gic_nr]);
939 if (!dist_base)
940 return;
941 gic_irqs = gic_data[gic_nr].gic_irqs;
942
943 cur_cpu_id = __ffs(gic_cpu_map[cpu]);
944 cur_target_mask = 0x01010101 << cur_cpu_id;
945 ror_val = (cur_cpu_id - new_cpu_id) & 31;
946
947 gic_lock();
948
949 /* Update the target interface for this logical CPU */
950 gic_cpu_map[cpu] = 1 << new_cpu_id;
951
952 /*
953 * Find all the peripheral interrupts targeting the current
954 * CPU interface and migrate them to the new CPU interface.
955 * We skip DIST_TARGET 0 to 7 as they are read-only.
956 */
957 for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
958 val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
959 active_mask = val & cur_target_mask;
960 if (active_mask) {
961 val &= ~active_mask;
962 val |= ror32(active_mask, ror_val);
963 writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
964 }
965 }
966
967 gic_unlock();
968
969 /*
970 * Now let's migrate and clear any potential SGIs that might be
971 * pending for us (cur_cpu_id). Since GIC_DIST_SGI_PENDING_SET
972 * is a banked register, we can only forward the SGI using
973 * GIC_DIST_SOFTINT. The original SGI source is lost but Linux
974 * doesn't use that information anyway.
975 *
976 * For the same reason we do not adjust SGI source information
977 * for previously sent SGIs by us to other CPUs either.
978 */
979 for (i = 0; i < 16; i += 4) {
980 int j;
981 val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
982 if (!val)
983 continue;
984 writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
985 for (j = i; j < i + 4; j++) {
986 if (val & 0xff)
987 writel_relaxed((1 << (new_cpu_id + 16)) | j,
988 dist_base + GIC_DIST_SOFTINT);
989 val >>= 8;
990 }
991 }
992 }
993
994 /*
995 * gic_get_sgir_physaddr - get the physical address for the SGI register
996 *
997 * Return the physical address of the SGI register to be used
998 * by some early assembly code when the kernel is not yet available.
999 */
1000 static unsigned long gic_dist_physaddr;
1001
gic_get_sgir_physaddr(void)1002 unsigned long gic_get_sgir_physaddr(void)
1003 {
1004 if (!gic_dist_physaddr)
1005 return 0;
1006 return gic_dist_physaddr + GIC_DIST_SOFTINT;
1007 }
1008
gic_init_physaddr(struct device_node * node)1009 static void __init gic_init_physaddr(struct device_node *node)
1010 {
1011 struct resource res;
1012 if (of_address_to_resource(node, 0, &res) == 0) {
1013 gic_dist_physaddr = res.start;
1014 pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
1015 }
1016 }
1017
1018 #else
1019 #define gic_init_physaddr(node) do { } while (0)
1020 #endif
1021
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1022 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1023 irq_hw_number_t hw)
1024 {
1025 struct gic_chip_data *gic = d->host_data;
1026 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1027
1028 switch (hw) {
1029 case 0 ... 31:
1030 irq_set_percpu_devid(irq);
1031 irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1032 handle_percpu_devid_irq, NULL, NULL);
1033 break;
1034 default:
1035 irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1036 handle_fasteoi_irq, NULL, NULL);
1037 irq_set_probe(irq);
1038 irqd_set_single_target(irqd);
1039 break;
1040 }
1041
1042 /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1043 irqd_set_handle_enforce_irqctx(irqd);
1044 return 0;
1045 }
1046
gic_irq_domain_unmap(struct irq_domain * d,unsigned int irq)1047 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
1048 {
1049 }
1050
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1051 static int gic_irq_domain_translate(struct irq_domain *d,
1052 struct irq_fwspec *fwspec,
1053 unsigned long *hwirq,
1054 unsigned int *type)
1055 {
1056 if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1057 *hwirq = fwspec->param[0];
1058 *type = IRQ_TYPE_EDGE_RISING;
1059 return 0;
1060 }
1061
1062 if (is_of_node(fwspec->fwnode)) {
1063 if (fwspec->param_count < 3)
1064 return -EINVAL;
1065
1066 switch (fwspec->param[0]) {
1067 case 0: /* SPI */
1068 *hwirq = fwspec->param[1] + 32;
1069 break;
1070 case 1: /* PPI */
1071 *hwirq = fwspec->param[1] + 16;
1072 break;
1073 default:
1074 return -EINVAL;
1075 }
1076
1077 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1078
1079 /* Make it clear that broken DTs are... broken */
1080 WARN_ON(*type == IRQ_TYPE_NONE);
1081 return 0;
1082 }
1083
1084 if (is_fwnode_irqchip(fwspec->fwnode)) {
1085 if(fwspec->param_count != 2)
1086 return -EINVAL;
1087
1088 *hwirq = fwspec->param[0];
1089 *type = fwspec->param[1];
1090
1091 WARN_ON(*type == IRQ_TYPE_NONE);
1092 return 0;
1093 }
1094
1095 return -EINVAL;
1096 }
1097
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1098 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1099 unsigned int nr_irqs, void *arg)
1100 {
1101 int i, ret;
1102 irq_hw_number_t hwirq;
1103 unsigned int type = IRQ_TYPE_NONE;
1104 struct irq_fwspec *fwspec = arg;
1105
1106 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1107 if (ret)
1108 return ret;
1109
1110 for (i = 0; i < nr_irqs; i++) {
1111 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1112 if (ret)
1113 return ret;
1114 }
1115
1116 return 0;
1117 }
1118
1119 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
1120 .translate = gic_irq_domain_translate,
1121 .alloc = gic_irq_domain_alloc,
1122 .free = irq_domain_free_irqs_top,
1123 };
1124
1125 static const struct irq_domain_ops gic_irq_domain_ops = {
1126 .map = gic_irq_domain_map,
1127 .unmap = gic_irq_domain_unmap,
1128 };
1129
gic_init_chip(struct gic_chip_data * gic,struct device * dev,const char * name,bool use_eoimode1)1130 static void gic_init_chip(struct gic_chip_data *gic, struct device *dev,
1131 const char *name, bool use_eoimode1)
1132 {
1133 /* Initialize irq_chip */
1134 gic->chip = gic_chip;
1135 gic->chip.name = name;
1136 gic->chip.parent_device = dev;
1137
1138 if (use_eoimode1) {
1139 gic->chip.irq_mask = gic_eoimode1_mask_irq;
1140 gic->chip.irq_eoi = gic_eoimode1_eoi_irq;
1141 gic->chip.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity;
1142 }
1143
1144 if (gic == &gic_data[0]) {
1145 gic->chip.irq_set_affinity = gic_set_affinity;
1146 gic->chip.ipi_send_mask = gic_ipi_send_mask;
1147 }
1148 }
1149
gic_init_bases(struct gic_chip_data * gic,struct fwnode_handle * handle)1150 static int gic_init_bases(struct gic_chip_data *gic,
1151 struct fwnode_handle *handle)
1152 {
1153 int gic_irqs, ret;
1154
1155 if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1156 /* Frankein-GIC without banked registers... */
1157 unsigned int cpu;
1158
1159 gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
1160 gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
1161 if (WARN_ON(!gic->dist_base.percpu_base ||
1162 !gic->cpu_base.percpu_base)) {
1163 ret = -ENOMEM;
1164 goto error;
1165 }
1166
1167 for_each_possible_cpu(cpu) {
1168 u32 mpidr = cpu_logical_map(cpu);
1169 u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1170 unsigned long offset = gic->percpu_offset * core_id;
1171 *per_cpu_ptr(gic->dist_base.percpu_base, cpu) =
1172 gic->raw_dist_base + offset;
1173 *per_cpu_ptr(gic->cpu_base.percpu_base, cpu) =
1174 gic->raw_cpu_base + offset;
1175 }
1176
1177 enable_frankengic();
1178 } else {
1179 /* Normal, sane GIC... */
1180 WARN(gic->percpu_offset,
1181 "GIC_NON_BANKED not enabled, ignoring %08x offset!",
1182 gic->percpu_offset);
1183 gic->dist_base.common_base = gic->raw_dist_base;
1184 gic->cpu_base.common_base = gic->raw_cpu_base;
1185 }
1186
1187 /*
1188 * Find out how many interrupts are supported.
1189 * The GIC only supports up to 1020 interrupt sources.
1190 */
1191 gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
1192 gic_irqs = (gic_irqs + 1) * 32;
1193 if (gic_irqs > 1020)
1194 gic_irqs = 1020;
1195 gic->gic_irqs = gic_irqs;
1196
1197 if (handle) { /* DT/ACPI */
1198 gic->domain = irq_domain_create_linear(handle, gic_irqs,
1199 &gic_irq_domain_hierarchy_ops,
1200 gic);
1201 } else { /* Legacy support */
1202 /*
1203 * For primary GICs, skip over SGIs.
1204 * No secondary GIC support whatsoever.
1205 */
1206 int irq_base;
1207
1208 gic_irqs -= 16; /* calculate # of irqs to allocate */
1209
1210 irq_base = irq_alloc_descs(16, 16, gic_irqs,
1211 numa_node_id());
1212 if (irq_base < 0) {
1213 WARN(1, "Cannot allocate irq_descs @ IRQ16, assuming pre-allocated\n");
1214 irq_base = 16;
1215 }
1216
1217 gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base,
1218 16, &gic_irq_domain_ops, gic);
1219 }
1220
1221 if (WARN_ON(!gic->domain)) {
1222 ret = -ENODEV;
1223 goto error;
1224 }
1225
1226 gic_dist_init(gic);
1227 ret = gic_cpu_init(gic);
1228 if (ret)
1229 goto error;
1230
1231 ret = gic_pm_init(gic);
1232 if (ret)
1233 goto error;
1234
1235 return 0;
1236
1237 error:
1238 if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1239 free_percpu(gic->dist_base.percpu_base);
1240 free_percpu(gic->cpu_base.percpu_base);
1241 }
1242
1243 return ret;
1244 }
1245
__gic_init_bases(struct gic_chip_data * gic,struct fwnode_handle * handle)1246 static int __init __gic_init_bases(struct gic_chip_data *gic,
1247 struct fwnode_handle *handle)
1248 {
1249 char *name;
1250 int i, ret;
1251
1252 if (WARN_ON(!gic || gic->domain))
1253 return -EINVAL;
1254
1255 if (gic == &gic_data[0]) {
1256 /*
1257 * Initialize the CPU interface map to all CPUs.
1258 * It will be refined as each CPU probes its ID.
1259 * This is only necessary for the primary GIC.
1260 */
1261 for (i = 0; i < NR_GIC_CPU_IF; i++)
1262 gic_cpu_map[i] = 0xff;
1263
1264 set_handle_irq(gic_handle_irq);
1265 if (static_branch_likely(&supports_deactivate_key))
1266 pr_info("GIC: Using split EOI/Deactivate mode\n");
1267 }
1268
1269 if (static_branch_likely(&supports_deactivate_key) && gic == &gic_data[0]) {
1270 name = kasprintf(GFP_KERNEL, "GICv2");
1271 gic_init_chip(gic, NULL, name, true);
1272 } else {
1273 name = kasprintf(GFP_KERNEL, "GIC-%d", (int)(gic-&gic_data[0]));
1274 gic_init_chip(gic, NULL, name, false);
1275 }
1276
1277 ret = gic_init_bases(gic, handle);
1278 if (ret)
1279 kfree(name);
1280 else if (gic == &gic_data[0])
1281 gic_smp_init();
1282
1283 return ret;
1284 }
1285
gic_init(void __iomem * dist_base,void __iomem * cpu_base)1286 void __init gic_init(void __iomem *dist_base, void __iomem *cpu_base)
1287 {
1288 struct gic_chip_data *gic;
1289
1290 /*
1291 * Non-DT/ACPI systems won't run a hypervisor, so let's not
1292 * bother with these...
1293 */
1294 static_branch_disable(&supports_deactivate_key);
1295
1296 gic = &gic_data[0];
1297 gic->raw_dist_base = dist_base;
1298 gic->raw_cpu_base = cpu_base;
1299
1300 __gic_init_bases(gic, NULL);
1301 }
1302
gic_teardown(struct gic_chip_data * gic)1303 static void gic_teardown(struct gic_chip_data *gic)
1304 {
1305 if (WARN_ON(!gic))
1306 return;
1307
1308 if (gic->raw_dist_base)
1309 iounmap(gic->raw_dist_base);
1310 if (gic->raw_cpu_base)
1311 iounmap(gic->raw_cpu_base);
1312 }
1313
1314 #ifdef CONFIG_OF
1315 static int gic_cnt __initdata;
1316 static bool gicv2_force_probe;
1317
gicv2_force_probe_cfg(char * buf)1318 static int __init gicv2_force_probe_cfg(char *buf)
1319 {
1320 return strtobool(buf, &gicv2_force_probe);
1321 }
1322 early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg);
1323
gic_check_eoimode(struct device_node * node,void __iomem ** base)1324 static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
1325 {
1326 struct resource cpuif_res;
1327
1328 of_address_to_resource(node, 1, &cpuif_res);
1329
1330 if (!is_hyp_mode_available())
1331 return false;
1332 if (resource_size(&cpuif_res) < SZ_8K) {
1333 void __iomem *alt;
1334 /*
1335 * Check for a stupid firmware that only exposes the
1336 * first page of a GICv2.
1337 */
1338 if (!gic_check_gicv2(*base))
1339 return false;
1340
1341 if (!gicv2_force_probe) {
1342 pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n");
1343 return false;
1344 }
1345
1346 alt = ioremap(cpuif_res.start, SZ_8K);
1347 if (!alt)
1348 return false;
1349 if (!gic_check_gicv2(alt + SZ_4K)) {
1350 /*
1351 * The first page was that of a GICv2, and
1352 * the second was *something*. Let's trust it
1353 * to be a GICv2, and update the mapping.
1354 */
1355 pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n",
1356 &cpuif_res.start);
1357 iounmap(*base);
1358 *base = alt;
1359 return true;
1360 }
1361
1362 /*
1363 * We detected *two* initial GICv2 pages in a
1364 * row. Could be a GICv2 aliased over two 64kB
1365 * pages. Update the resource, map the iospace, and
1366 * pray.
1367 */
1368 iounmap(alt);
1369 alt = ioremap(cpuif_res.start, SZ_128K);
1370 if (!alt)
1371 return false;
1372 pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n",
1373 &cpuif_res.start);
1374 cpuif_res.end = cpuif_res.start + SZ_128K -1;
1375 iounmap(*base);
1376 *base = alt;
1377 }
1378 if (resource_size(&cpuif_res) == SZ_128K) {
1379 /*
1380 * Verify that we have the first 4kB of a GICv2
1381 * aliased over the first 64kB by checking the
1382 * GICC_IIDR register on both ends.
1383 */
1384 if (!gic_check_gicv2(*base) ||
1385 !gic_check_gicv2(*base + 0xf000))
1386 return false;
1387
1388 /*
1389 * Move the base up by 60kB, so that we have a 8kB
1390 * contiguous region, which allows us to use GICC_DIR
1391 * at its normal offset. Please pass me that bucket.
1392 */
1393 *base += 0xf000;
1394 cpuif_res.start += 0xf000;
1395 pr_warn("GIC: Adjusting CPU interface base to %pa\n",
1396 &cpuif_res.start);
1397 }
1398
1399 return true;
1400 }
1401
gic_enable_rmw_access(void * data)1402 static bool gic_enable_rmw_access(void *data)
1403 {
1404 /*
1405 * The EMEV2 class of machines has a broken interconnect, and
1406 * locks up on accesses that are less than 32bit. So far, only
1407 * the affinity setting requires it.
1408 */
1409 if (of_machine_is_compatible("renesas,emev2")) {
1410 static_branch_enable(&needs_rmw_access);
1411 return true;
1412 }
1413
1414 return false;
1415 }
1416
1417 static const struct gic_quirk gic_quirks[] = {
1418 {
1419 .desc = "broken byte access",
1420 .compatible = "arm,pl390",
1421 .init = gic_enable_rmw_access,
1422 },
1423 { },
1424 };
1425
gic_of_setup(struct gic_chip_data * gic,struct device_node * node)1426 static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node)
1427 {
1428 if (!gic || !node)
1429 return -EINVAL;
1430
1431 gic->raw_dist_base = of_iomap(node, 0);
1432 if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n"))
1433 goto error;
1434
1435 gic->raw_cpu_base = of_iomap(node, 1);
1436 if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n"))
1437 goto error;
1438
1439 if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset))
1440 gic->percpu_offset = 0;
1441
1442 gic_enable_of_quirks(node, gic_quirks, gic);
1443
1444 return 0;
1445
1446 error:
1447 gic_teardown(gic);
1448
1449 return -ENOMEM;
1450 }
1451
gic_of_init_child(struct device * dev,struct gic_chip_data ** gic,int irq)1452 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1453 {
1454 int ret;
1455
1456 if (!dev || !dev->of_node || !gic || !irq)
1457 return -EINVAL;
1458
1459 *gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL);
1460 if (!*gic)
1461 return -ENOMEM;
1462
1463 gic_init_chip(*gic, dev, dev->of_node->name, false);
1464
1465 ret = gic_of_setup(*gic, dev->of_node);
1466 if (ret)
1467 return ret;
1468
1469 ret = gic_init_bases(*gic, &dev->of_node->fwnode);
1470 if (ret) {
1471 gic_teardown(*gic);
1472 return ret;
1473 }
1474
1475 irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic);
1476
1477 return 0;
1478 }
1479
gic_of_setup_kvm_info(struct device_node * node)1480 static void __init gic_of_setup_kvm_info(struct device_node *node)
1481 {
1482 int ret;
1483 struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1484 struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1485
1486 gic_v2_kvm_info.type = GIC_V2;
1487
1488 gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1489 if (!gic_v2_kvm_info.maint_irq)
1490 return;
1491
1492 ret = of_address_to_resource(node, 2, vctrl_res);
1493 if (ret)
1494 return;
1495
1496 ret = of_address_to_resource(node, 3, vcpu_res);
1497 if (ret)
1498 return;
1499
1500 if (static_branch_likely(&supports_deactivate_key))
1501 vgic_set_kvm_info(&gic_v2_kvm_info);
1502 }
1503
1504 int __init
gic_of_init(struct device_node * node,struct device_node * parent)1505 gic_of_init(struct device_node *node, struct device_node *parent)
1506 {
1507 struct gic_chip_data *gic;
1508 int irq, ret;
1509
1510 if (WARN_ON(!node))
1511 return -ENODEV;
1512
1513 if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
1514 return -EINVAL;
1515
1516 gic = &gic_data[gic_cnt];
1517
1518 ret = gic_of_setup(gic, node);
1519 if (ret)
1520 return ret;
1521
1522 /*
1523 * Disable split EOI/Deactivate if either HYP is not available
1524 * or the CPU interface is too small.
1525 */
1526 if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
1527 static_branch_disable(&supports_deactivate_key);
1528
1529 ret = __gic_init_bases(gic, &node->fwnode);
1530 if (ret) {
1531 gic_teardown(gic);
1532 return ret;
1533 }
1534
1535 if (!gic_cnt) {
1536 gic_init_physaddr(node);
1537 gic_of_setup_kvm_info(node);
1538 }
1539
1540 if (parent) {
1541 irq = irq_of_parse_and_map(node, 0);
1542 gic_cascade_irq(gic_cnt, irq);
1543 }
1544
1545 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1546 gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
1547
1548 gic_cnt++;
1549 return 0;
1550 }
1551 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1552 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1553 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1554 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1555 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1556 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1557 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1558 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1559 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
1560 #else
gic_of_init_child(struct device * dev,struct gic_chip_data ** gic,int irq)1561 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1562 {
1563 return -ENOTSUPP;
1564 }
1565 #endif
1566
1567 #ifdef CONFIG_ACPI
1568 static struct
1569 {
1570 phys_addr_t cpu_phys_base;
1571 u32 maint_irq;
1572 int maint_irq_mode;
1573 phys_addr_t vctrl_base;
1574 phys_addr_t vcpu_base;
1575 } acpi_data __initdata;
1576
1577 static int __init
gic_acpi_parse_madt_cpu(union acpi_subtable_headers * header,const unsigned long end)1578 gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header,
1579 const unsigned long end)
1580 {
1581 struct acpi_madt_generic_interrupt *processor;
1582 phys_addr_t gic_cpu_base;
1583 static int cpu_base_assigned;
1584
1585 processor = (struct acpi_madt_generic_interrupt *)header;
1586
1587 if (BAD_MADT_GICC_ENTRY(processor, end))
1588 return -EINVAL;
1589
1590 /*
1591 * There is no support for non-banked GICv1/2 register in ACPI spec.
1592 * All CPU interface addresses have to be the same.
1593 */
1594 gic_cpu_base = processor->base_address;
1595 if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base)
1596 return -EINVAL;
1597
1598 acpi_data.cpu_phys_base = gic_cpu_base;
1599 acpi_data.maint_irq = processor->vgic_interrupt;
1600 acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
1601 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
1602 acpi_data.vctrl_base = processor->gich_base_address;
1603 acpi_data.vcpu_base = processor->gicv_base_address;
1604
1605 cpu_base_assigned = 1;
1606 return 0;
1607 }
1608
1609 /* The things you have to do to just *count* something... */
acpi_dummy_func(union acpi_subtable_headers * header,const unsigned long end)1610 static int __init acpi_dummy_func(union acpi_subtable_headers *header,
1611 const unsigned long end)
1612 {
1613 return 0;
1614 }
1615
acpi_gic_redist_is_present(void)1616 static bool __init acpi_gic_redist_is_present(void)
1617 {
1618 return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1619 acpi_dummy_func, 0) > 0;
1620 }
1621
gic_validate_dist(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)1622 static bool __init gic_validate_dist(struct acpi_subtable_header *header,
1623 struct acpi_probe_entry *ape)
1624 {
1625 struct acpi_madt_generic_distributor *dist;
1626 dist = (struct acpi_madt_generic_distributor *)header;
1627
1628 return (dist->version == ape->driver_data &&
1629 (dist->version != ACPI_MADT_GIC_VERSION_NONE ||
1630 !acpi_gic_redist_is_present()));
1631 }
1632
1633 #define ACPI_GICV2_DIST_MEM_SIZE (SZ_4K)
1634 #define ACPI_GIC_CPU_IF_MEM_SIZE (SZ_8K)
1635 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
1636 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
1637
gic_acpi_setup_kvm_info(void)1638 static void __init gic_acpi_setup_kvm_info(void)
1639 {
1640 int irq;
1641 struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1642 struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1643
1644 gic_v2_kvm_info.type = GIC_V2;
1645
1646 if (!acpi_data.vctrl_base)
1647 return;
1648
1649 vctrl_res->flags = IORESOURCE_MEM;
1650 vctrl_res->start = acpi_data.vctrl_base;
1651 vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1;
1652
1653 if (!acpi_data.vcpu_base)
1654 return;
1655
1656 vcpu_res->flags = IORESOURCE_MEM;
1657 vcpu_res->start = acpi_data.vcpu_base;
1658 vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
1659
1660 irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
1661 acpi_data.maint_irq_mode,
1662 ACPI_ACTIVE_HIGH);
1663 if (irq <= 0)
1664 return;
1665
1666 gic_v2_kvm_info.maint_irq = irq;
1667
1668 vgic_set_kvm_info(&gic_v2_kvm_info);
1669 }
1670
gic_v2_acpi_init(union acpi_subtable_headers * header,const unsigned long end)1671 static int __init gic_v2_acpi_init(union acpi_subtable_headers *header,
1672 const unsigned long end)
1673 {
1674 struct acpi_madt_generic_distributor *dist;
1675 struct fwnode_handle *domain_handle;
1676 struct gic_chip_data *gic = &gic_data[0];
1677 int count, ret;
1678
1679 /* Collect CPU base addresses */
1680 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1681 gic_acpi_parse_madt_cpu, 0);
1682 if (count <= 0) {
1683 pr_err("No valid GICC entries exist\n");
1684 return -EINVAL;
1685 }
1686
1687 gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1688 if (!gic->raw_cpu_base) {
1689 pr_err("Unable to map GICC registers\n");
1690 return -ENOMEM;
1691 }
1692
1693 dist = (struct acpi_madt_generic_distributor *)header;
1694 gic->raw_dist_base = ioremap(dist->base_address,
1695 ACPI_GICV2_DIST_MEM_SIZE);
1696 if (!gic->raw_dist_base) {
1697 pr_err("Unable to map GICD registers\n");
1698 gic_teardown(gic);
1699 return -ENOMEM;
1700 }
1701
1702 /*
1703 * Disable split EOI/Deactivate if HYP is not available. ACPI
1704 * guarantees that we'll always have a GICv2, so the CPU
1705 * interface will always be the right size.
1706 */
1707 if (!is_hyp_mode_available())
1708 static_branch_disable(&supports_deactivate_key);
1709
1710 /*
1711 * Initialize GIC instance zero (no multi-GIC support).
1712 */
1713 domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
1714 if (!domain_handle) {
1715 pr_err("Unable to allocate domain handle\n");
1716 gic_teardown(gic);
1717 return -ENOMEM;
1718 }
1719
1720 ret = __gic_init_bases(gic, domain_handle);
1721 if (ret) {
1722 pr_err("Failed to initialise GIC\n");
1723 irq_domain_free_fwnode(domain_handle);
1724 gic_teardown(gic);
1725 return ret;
1726 }
1727
1728 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
1729
1730 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1731 gicv2m_init(NULL, gic_data[0].domain);
1732
1733 if (static_branch_likely(&supports_deactivate_key))
1734 gic_acpi_setup_kvm_info();
1735
1736 return 0;
1737 }
1738 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1739 gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
1740 gic_v2_acpi_init);
1741 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1742 gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
1743 gic_v2_acpi_init);
1744 #endif
1745