1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #define pr_fmt(fmt) "GICv3: " fmt
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31
32 #include "irq-gic-common.h"
33
34 #define GICD_INT_NMI_PRI (GICD_INT_DEF_PRI & ~0x80)
35
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1)
38
39 #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1)
40
41 struct redist_region {
42 void __iomem *redist_base;
43 phys_addr_t phys_base;
44 bool single_redist;
45 };
46
47 struct gic_chip_data {
48 struct fwnode_handle *fwnode;
49 void __iomem *dist_base;
50 struct redist_region *redist_regions;
51 struct rdists rdists;
52 struct irq_domain *domain;
53 u64 redist_stride;
54 u32 nr_redist_regions;
55 u64 flags;
56 bool has_rss;
57 unsigned int ppi_nr;
58 struct partition_desc **ppi_descs;
59 };
60
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
63
64 #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
67
68 /*
69 * The behaviours of RPR and PMR registers differ depending on the value of
70 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71 * distributor and redistributors depends on whether security is enabled in the
72 * GIC.
73 *
74 * When security is enabled, non-secure priority values from the (re)distributor
75 * are presented to the GIC CPUIF as follow:
76 * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
77 *
78 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
79 * EL1 are subject to a similar operation thus matching the priorities presented
80 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81 * these values are unchanged by the GIC.
82 *
83 * see GICv3/GICv4 Architecture Specification (IHI0069D):
84 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
85 * priorities.
86 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
87 * interrupt.
88 */
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
90
91 /*
92 * Global static key controlling whether an update to PMR allowing more
93 * interrupts requires to be propagated to the redistributor (DSB SY).
94 * And this needs to be exported for modules to be able to enable
95 * interrupts...
96 */
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
99
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
102
103 /*
104 * When the Non-secure world has access to group 0 interrupts (as a
105 * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
106 * return the Distributor's view of the interrupt priority.
107 *
108 * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
109 * written by software is moved to the Non-secure range by the Distributor.
110 *
111 * If both are true (which is when gic_nonsecure_priorities gets enabled),
112 * we need to shift down the priority programmed by software to match it
113 * against the value returned by ICC_RPR_EL1.
114 */
115 #define GICD_INT_RPR_PRI(priority) \
116 ({ \
117 u32 __priority = (priority); \
118 if (static_branch_unlikely(&gic_nonsecure_priorities)) \
119 __priority = 0x80 | (__priority >> 1); \
120 \
121 __priority; \
122 })
123
124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
125 static refcount_t *ppi_nmi_refs;
126
127 static struct gic_kvm_info gic_v3_kvm_info __initdata;
128 static DEFINE_PER_CPU(bool, has_rss);
129
130 #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4)
131 #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist))
132 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
133 #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K)
134
135 /* Our default, arbitrary priority value. Linux only uses one anyway. */
136 #define DEFAULT_PMR_VALUE 0xf0
137
138 enum gic_intid_range {
139 SGI_RANGE,
140 PPI_RANGE,
141 SPI_RANGE,
142 EPPI_RANGE,
143 ESPI_RANGE,
144 LPI_RANGE,
145 __INVALID_RANGE__
146 };
147
__get_intid_range(irq_hw_number_t hwirq)148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
149 {
150 switch (hwirq) {
151 case 0 ... 15:
152 return SGI_RANGE;
153 case 16 ... 31:
154 return PPI_RANGE;
155 case 32 ... 1019:
156 return SPI_RANGE;
157 case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
158 return EPPI_RANGE;
159 case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
160 return ESPI_RANGE;
161 case 8192 ... GENMASK(23, 0):
162 return LPI_RANGE;
163 default:
164 return __INVALID_RANGE__;
165 }
166 }
167
get_intid_range(struct irq_data * d)168 static enum gic_intid_range get_intid_range(struct irq_data *d)
169 {
170 return __get_intid_range(d->hwirq);
171 }
172
gic_irq(struct irq_data * d)173 static inline unsigned int gic_irq(struct irq_data *d)
174 {
175 return d->hwirq;
176 }
177
gic_irq_in_rdist(struct irq_data * d)178 static inline bool gic_irq_in_rdist(struct irq_data *d)
179 {
180 switch (get_intid_range(d)) {
181 case SGI_RANGE:
182 case PPI_RANGE:
183 case EPPI_RANGE:
184 return true;
185 default:
186 return false;
187 }
188 }
189
gic_dist_base(struct irq_data * d)190 static inline void __iomem *gic_dist_base(struct irq_data *d)
191 {
192 switch (get_intid_range(d)) {
193 case SGI_RANGE:
194 case PPI_RANGE:
195 case EPPI_RANGE:
196 /* SGI+PPI -> SGI_base for this CPU */
197 return gic_data_rdist_sgi_base();
198
199 case SPI_RANGE:
200 case ESPI_RANGE:
201 /* SPI -> dist_base */
202 return gic_data.dist_base;
203
204 default:
205 return NULL;
206 }
207 }
208
gic_do_wait_for_rwp(void __iomem * base)209 static void gic_do_wait_for_rwp(void __iomem *base)
210 {
211 u32 count = 1000000; /* 1s! */
212
213 while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
214 count--;
215 if (!count) {
216 pr_err_ratelimited("RWP timeout, gone fishing\n");
217 return;
218 }
219 cpu_relax();
220 udelay(1);
221 }
222 }
223
224 /* Wait for completion of a distributor change */
gic_dist_wait_for_rwp(void)225 static void gic_dist_wait_for_rwp(void)
226 {
227 gic_do_wait_for_rwp(gic_data.dist_base);
228 }
229
230 /* Wait for completion of a redistributor change */
gic_redist_wait_for_rwp(void)231 static void gic_redist_wait_for_rwp(void)
232 {
233 gic_do_wait_for_rwp(gic_data_rdist_rd_base());
234 }
235
236 #ifdef CONFIG_ARM64
237
gic_read_iar(void)238 static u64 __maybe_unused gic_read_iar(void)
239 {
240 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
241 return gic_read_iar_cavium_thunderx();
242 else
243 return gic_read_iar_common();
244 }
245 #endif
246
gic_enable_redist(bool enable)247 static void gic_enable_redist(bool enable)
248 {
249 void __iomem *rbase;
250 u32 count = 1000000; /* 1s! */
251 u32 val;
252
253 if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
254 return;
255
256 rbase = gic_data_rdist_rd_base();
257
258 val = readl_relaxed(rbase + GICR_WAKER);
259 if (enable)
260 /* Wake up this CPU redistributor */
261 val &= ~GICR_WAKER_ProcessorSleep;
262 else
263 val |= GICR_WAKER_ProcessorSleep;
264 writel_relaxed(val, rbase + GICR_WAKER);
265
266 if (!enable) { /* Check that GICR_WAKER is writeable */
267 val = readl_relaxed(rbase + GICR_WAKER);
268 if (!(val & GICR_WAKER_ProcessorSleep))
269 return; /* No PM support in this redistributor */
270 }
271
272 while (--count) {
273 val = readl_relaxed(rbase + GICR_WAKER);
274 if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
275 break;
276 cpu_relax();
277 udelay(1);
278 }
279 if (!count)
280 pr_err_ratelimited("redistributor failed to %s...\n",
281 enable ? "wakeup" : "sleep");
282 }
283
284 /*
285 * Routines to disable, enable, EOI and route interrupts
286 */
convert_offset_index(struct irq_data * d,u32 offset,u32 * index)287 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
288 {
289 switch (get_intid_range(d)) {
290 case SGI_RANGE:
291 case PPI_RANGE:
292 case SPI_RANGE:
293 *index = d->hwirq;
294 return offset;
295 case EPPI_RANGE:
296 /*
297 * Contrary to the ESPI range, the EPPI range is contiguous
298 * to the PPI range in the registers, so let's adjust the
299 * displacement accordingly. Consistency is overrated.
300 */
301 *index = d->hwirq - EPPI_BASE_INTID + 32;
302 return offset;
303 case ESPI_RANGE:
304 *index = d->hwirq - ESPI_BASE_INTID;
305 switch (offset) {
306 case GICD_ISENABLER:
307 return GICD_ISENABLERnE;
308 case GICD_ICENABLER:
309 return GICD_ICENABLERnE;
310 case GICD_ISPENDR:
311 return GICD_ISPENDRnE;
312 case GICD_ICPENDR:
313 return GICD_ICPENDRnE;
314 case GICD_ISACTIVER:
315 return GICD_ISACTIVERnE;
316 case GICD_ICACTIVER:
317 return GICD_ICACTIVERnE;
318 case GICD_IPRIORITYR:
319 return GICD_IPRIORITYRnE;
320 case GICD_ICFGR:
321 return GICD_ICFGRnE;
322 case GICD_IROUTER:
323 return GICD_IROUTERnE;
324 default:
325 break;
326 }
327 break;
328 default:
329 break;
330 }
331
332 WARN_ON(1);
333 *index = d->hwirq;
334 return offset;
335 }
336
gic_peek_irq(struct irq_data * d,u32 offset)337 static int gic_peek_irq(struct irq_data *d, u32 offset)
338 {
339 void __iomem *base;
340 u32 index, mask;
341
342 offset = convert_offset_index(d, offset, &index);
343 mask = 1 << (index % 32);
344
345 if (gic_irq_in_rdist(d))
346 base = gic_data_rdist_sgi_base();
347 else
348 base = gic_data.dist_base;
349
350 return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
351 }
352
gic_poke_irq(struct irq_data * d,u32 offset)353 static void gic_poke_irq(struct irq_data *d, u32 offset)
354 {
355 void (*rwp_wait)(void);
356 void __iomem *base;
357 u32 index, mask;
358
359 offset = convert_offset_index(d, offset, &index);
360 mask = 1 << (index % 32);
361
362 if (gic_irq_in_rdist(d)) {
363 base = gic_data_rdist_sgi_base();
364 rwp_wait = gic_redist_wait_for_rwp;
365 } else {
366 base = gic_data.dist_base;
367 rwp_wait = gic_dist_wait_for_rwp;
368 }
369
370 writel_relaxed(mask, base + offset + (index / 32) * 4);
371 rwp_wait();
372 }
373
gic_mask_irq(struct irq_data * d)374 static void gic_mask_irq(struct irq_data *d)
375 {
376 gic_poke_irq(d, GICD_ICENABLER);
377 }
378
gic_eoimode1_mask_irq(struct irq_data * d)379 static void gic_eoimode1_mask_irq(struct irq_data *d)
380 {
381 gic_mask_irq(d);
382 /*
383 * When masking a forwarded interrupt, make sure it is
384 * deactivated as well.
385 *
386 * This ensures that an interrupt that is getting
387 * disabled/masked will not get "stuck", because there is
388 * noone to deactivate it (guest is being terminated).
389 */
390 if (irqd_is_forwarded_to_vcpu(d))
391 gic_poke_irq(d, GICD_ICACTIVER);
392 }
393
gic_unmask_irq(struct irq_data * d)394 static void gic_unmask_irq(struct irq_data *d)
395 {
396 gic_poke_irq(d, GICD_ISENABLER);
397 }
398
gic_supports_nmi(void)399 static inline bool gic_supports_nmi(void)
400 {
401 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
402 static_branch_likely(&supports_pseudo_nmis);
403 }
404
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)405 static int gic_irq_set_irqchip_state(struct irq_data *d,
406 enum irqchip_irq_state which, bool val)
407 {
408 u32 reg;
409
410 if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
411 return -EINVAL;
412
413 switch (which) {
414 case IRQCHIP_STATE_PENDING:
415 reg = val ? GICD_ISPENDR : GICD_ICPENDR;
416 break;
417
418 case IRQCHIP_STATE_ACTIVE:
419 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
420 break;
421
422 case IRQCHIP_STATE_MASKED:
423 reg = val ? GICD_ICENABLER : GICD_ISENABLER;
424 break;
425
426 default:
427 return -EINVAL;
428 }
429
430 gic_poke_irq(d, reg);
431 return 0;
432 }
433
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)434 static int gic_irq_get_irqchip_state(struct irq_data *d,
435 enum irqchip_irq_state which, bool *val)
436 {
437 if (d->hwirq >= 8192) /* PPI/SPI only */
438 return -EINVAL;
439
440 switch (which) {
441 case IRQCHIP_STATE_PENDING:
442 *val = gic_peek_irq(d, GICD_ISPENDR);
443 break;
444
445 case IRQCHIP_STATE_ACTIVE:
446 *val = gic_peek_irq(d, GICD_ISACTIVER);
447 break;
448
449 case IRQCHIP_STATE_MASKED:
450 *val = !gic_peek_irq(d, GICD_ISENABLER);
451 break;
452
453 default:
454 return -EINVAL;
455 }
456
457 return 0;
458 }
459
gic_irq_set_prio(struct irq_data * d,u8 prio)460 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
461 {
462 void __iomem *base = gic_dist_base(d);
463 u32 offset, index;
464
465 offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
466
467 writeb_relaxed(prio, base + offset + index);
468 }
469
__gic_get_ppi_index(irq_hw_number_t hwirq)470 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
471 {
472 switch (__get_intid_range(hwirq)) {
473 case PPI_RANGE:
474 return hwirq - 16;
475 case EPPI_RANGE:
476 return hwirq - EPPI_BASE_INTID + 16;
477 default:
478 unreachable();
479 }
480 }
481
gic_get_ppi_index(struct irq_data * d)482 static u32 gic_get_ppi_index(struct irq_data *d)
483 {
484 return __gic_get_ppi_index(d->hwirq);
485 }
486
gic_irq_nmi_setup(struct irq_data * d)487 static int gic_irq_nmi_setup(struct irq_data *d)
488 {
489 struct irq_desc *desc = irq_to_desc(d->irq);
490
491 if (!gic_supports_nmi())
492 return -EINVAL;
493
494 if (gic_peek_irq(d, GICD_ISENABLER)) {
495 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
496 return -EINVAL;
497 }
498
499 /*
500 * A secondary irq_chip should be in charge of LPI request,
501 * it should not be possible to get there
502 */
503 if (WARN_ON(gic_irq(d) >= 8192))
504 return -EINVAL;
505
506 /* desc lock should already be held */
507 if (gic_irq_in_rdist(d)) {
508 u32 idx = gic_get_ppi_index(d);
509
510 /* Setting up PPI as NMI, only switch handler for first NMI */
511 if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
512 refcount_set(&ppi_nmi_refs[idx], 1);
513 desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
514 }
515 } else {
516 desc->handle_irq = handle_fasteoi_nmi;
517 }
518
519 gic_irq_set_prio(d, GICD_INT_NMI_PRI);
520
521 return 0;
522 }
523
gic_irq_nmi_teardown(struct irq_data * d)524 static void gic_irq_nmi_teardown(struct irq_data *d)
525 {
526 struct irq_desc *desc = irq_to_desc(d->irq);
527
528 if (WARN_ON(!gic_supports_nmi()))
529 return;
530
531 if (gic_peek_irq(d, GICD_ISENABLER)) {
532 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
533 return;
534 }
535
536 /*
537 * A secondary irq_chip should be in charge of LPI request,
538 * it should not be possible to get there
539 */
540 if (WARN_ON(gic_irq(d) >= 8192))
541 return;
542
543 /* desc lock should already be held */
544 if (gic_irq_in_rdist(d)) {
545 u32 idx = gic_get_ppi_index(d);
546
547 /* Tearing down NMI, only switch handler for last NMI */
548 if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
549 desc->handle_irq = handle_percpu_devid_irq;
550 } else {
551 desc->handle_irq = handle_fasteoi_irq;
552 }
553
554 gic_irq_set_prio(d, GICD_INT_DEF_PRI);
555 }
556
gic_eoi_irq(struct irq_data * d)557 static void gic_eoi_irq(struct irq_data *d)
558 {
559 gic_write_eoir(gic_irq(d));
560 }
561
gic_eoimode1_eoi_irq(struct irq_data * d)562 static void gic_eoimode1_eoi_irq(struct irq_data *d)
563 {
564 /*
565 * No need to deactivate an LPI, or an interrupt that
566 * is is getting forwarded to a vcpu.
567 */
568 if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
569 return;
570 gic_write_dir(gic_irq(d));
571 }
572
gic_set_type(struct irq_data * d,unsigned int type)573 static int gic_set_type(struct irq_data *d, unsigned int type)
574 {
575 enum gic_intid_range range;
576 unsigned int irq = gic_irq(d);
577 void (*rwp_wait)(void);
578 void __iomem *base;
579 u32 offset, index;
580 int ret;
581
582 range = get_intid_range(d);
583
584 /* Interrupt configuration for SGIs can't be changed */
585 if (range == SGI_RANGE)
586 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
587
588 /* SPIs have restrictions on the supported types */
589 if ((range == SPI_RANGE || range == ESPI_RANGE) &&
590 type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
591 return -EINVAL;
592
593 if (gic_irq_in_rdist(d)) {
594 base = gic_data_rdist_sgi_base();
595 rwp_wait = gic_redist_wait_for_rwp;
596 } else {
597 base = gic_data.dist_base;
598 rwp_wait = gic_dist_wait_for_rwp;
599 }
600
601 offset = convert_offset_index(d, GICD_ICFGR, &index);
602
603 ret = gic_configure_irq(index, type, base + offset, rwp_wait);
604 if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
605 /* Misconfigured PPIs are usually not fatal */
606 pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
607 ret = 0;
608 }
609
610 return ret;
611 }
612
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)613 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
614 {
615 if (get_intid_range(d) == SGI_RANGE)
616 return -EINVAL;
617
618 if (vcpu)
619 irqd_set_forwarded_to_vcpu(d);
620 else
621 irqd_clr_forwarded_to_vcpu(d);
622 return 0;
623 }
624
gic_mpidr_to_affinity(unsigned long mpidr)625 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
626 {
627 u64 aff;
628
629 aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
630 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
631 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
632 MPIDR_AFFINITY_LEVEL(mpidr, 0));
633
634 return aff;
635 }
636
gic_deactivate_unhandled(u32 irqnr)637 static void gic_deactivate_unhandled(u32 irqnr)
638 {
639 if (static_branch_likely(&supports_deactivate_key)) {
640 if (irqnr < 8192)
641 gic_write_dir(irqnr);
642 } else {
643 gic_write_eoir(irqnr);
644 }
645 }
646
gic_handle_nmi(u32 irqnr,struct pt_regs * regs)647 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
648 {
649 bool irqs_enabled = interrupts_enabled(regs);
650 int err;
651
652 if (irqs_enabled)
653 nmi_enter();
654
655 if (static_branch_likely(&supports_deactivate_key))
656 gic_write_eoir(irqnr);
657 /*
658 * Leave the PSR.I bit set to prevent other NMIs to be
659 * received while handling this one.
660 * PSR.I will be restored when we ERET to the
661 * interrupted context.
662 */
663 err = handle_domain_nmi(gic_data.domain, irqnr, regs);
664 if (err)
665 gic_deactivate_unhandled(irqnr);
666
667 if (irqs_enabled)
668 nmi_exit();
669 }
670
do_read_iar(struct pt_regs * regs)671 static u32 do_read_iar(struct pt_regs *regs)
672 {
673 u32 iar;
674
675 if (gic_supports_nmi() && unlikely(!interrupts_enabled(regs))) {
676 u64 pmr;
677
678 /*
679 * We were in a context with IRQs disabled. However, the
680 * entry code has set PMR to a value that allows any
681 * interrupt to be acknowledged, and not just NMIs. This can
682 * lead to surprising effects if the NMI has been retired in
683 * the meantime, and that there is an IRQ pending. The IRQ
684 * would then be taken in NMI context, something that nobody
685 * wants to debug twice.
686 *
687 * Until we sort this, drop PMR again to a level that will
688 * actually only allow NMIs before reading IAR, and then
689 * restore it to what it was.
690 */
691 pmr = gic_read_pmr();
692 gic_pmr_mask_irqs();
693 isb();
694
695 iar = gic_read_iar();
696
697 gic_write_pmr(pmr);
698 } else {
699 iar = gic_read_iar();
700 }
701
702 return iar;
703 }
704
gic_handle_irq(struct pt_regs * regs)705 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
706 {
707 u32 irqnr;
708
709 irqnr = do_read_iar(regs);
710
711 /* Check for special IDs first */
712 if ((irqnr >= 1020 && irqnr <= 1023))
713 return;
714
715 if (gic_supports_nmi() &&
716 unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI))) {
717 gic_handle_nmi(irqnr, regs);
718 return;
719 }
720
721 if (gic_prio_masking_enabled()) {
722 gic_pmr_mask_irqs();
723 gic_arch_enable_irqs();
724 }
725
726 if (static_branch_likely(&supports_deactivate_key))
727 gic_write_eoir(irqnr);
728 else
729 isb();
730
731 if (handle_domain_irq(gic_data.domain, irqnr, regs)) {
732 WARN_ONCE(true, "Unexpected interrupt received!\n");
733 gic_deactivate_unhandled(irqnr);
734 }
735 }
736
gic_get_pribits(void)737 static u32 gic_get_pribits(void)
738 {
739 u32 pribits;
740
741 pribits = gic_read_ctlr();
742 pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
743 pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
744 pribits++;
745
746 return pribits;
747 }
748
gic_has_group0(void)749 static bool gic_has_group0(void)
750 {
751 u32 val;
752 u32 old_pmr;
753
754 old_pmr = gic_read_pmr();
755
756 /*
757 * Let's find out if Group0 is under control of EL3 or not by
758 * setting the highest possible, non-zero priority in PMR.
759 *
760 * If SCR_EL3.FIQ is set, the priority gets shifted down in
761 * order for the CPU interface to set bit 7, and keep the
762 * actual priority in the non-secure range. In the process, it
763 * looses the least significant bit and the actual priority
764 * becomes 0x80. Reading it back returns 0, indicating that
765 * we're don't have access to Group0.
766 */
767 gic_write_pmr(BIT(8 - gic_get_pribits()));
768 val = gic_read_pmr();
769
770 gic_write_pmr(old_pmr);
771
772 return val != 0;
773 }
774
gic_dist_init(void)775 static void __init gic_dist_init(void)
776 {
777 unsigned int i;
778 u64 affinity;
779 void __iomem *base = gic_data.dist_base;
780 u32 val;
781
782 /* Disable the distributor */
783 writel_relaxed(0, base + GICD_CTLR);
784 gic_dist_wait_for_rwp();
785
786 /*
787 * Configure SPIs as non-secure Group-1. This will only matter
788 * if the GIC only has a single security state. This will not
789 * do the right thing if the kernel is running in secure mode,
790 * but that's not the intended use case anyway.
791 */
792 for (i = 32; i < GIC_LINE_NR; i += 32)
793 writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
794
795 /* Extended SPI range, not handled by the GICv2/GICv3 common code */
796 for (i = 0; i < GIC_ESPI_NR; i += 32) {
797 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
798 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
799 }
800
801 for (i = 0; i < GIC_ESPI_NR; i += 32)
802 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
803
804 for (i = 0; i < GIC_ESPI_NR; i += 16)
805 writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
806
807 for (i = 0; i < GIC_ESPI_NR; i += 4)
808 writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
809
810 /* Now do the common stuff, and wait for the distributor to drain */
811 gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
812
813 val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
814 if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
815 pr_info("Enabling SGIs without active state\n");
816 val |= GICD_CTLR_nASSGIreq;
817 }
818
819 /* Enable distributor with ARE, Group1 */
820 writel_relaxed(val, base + GICD_CTLR);
821
822 /*
823 * Set all global interrupts to the boot CPU only. ARE must be
824 * enabled.
825 */
826 affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
827 for (i = 32; i < GIC_LINE_NR; i++)
828 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
829
830 for (i = 0; i < GIC_ESPI_NR; i++)
831 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
832 }
833
gic_iterate_rdists(int (* fn)(struct redist_region *,void __iomem *))834 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
835 {
836 int ret = -ENODEV;
837 int i;
838
839 for (i = 0; i < gic_data.nr_redist_regions; i++) {
840 void __iomem *ptr = gic_data.redist_regions[i].redist_base;
841 u64 typer;
842 u32 reg;
843
844 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
845 if (reg != GIC_PIDR2_ARCH_GICv3 &&
846 reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
847 pr_warn("No redistributor present @%p\n", ptr);
848 break;
849 }
850
851 do {
852 typer = gic_read_typer(ptr + GICR_TYPER);
853 ret = fn(gic_data.redist_regions + i, ptr);
854 if (!ret)
855 return 0;
856
857 if (gic_data.redist_regions[i].single_redist)
858 break;
859
860 if (gic_data.redist_stride) {
861 ptr += gic_data.redist_stride;
862 } else {
863 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
864 if (typer & GICR_TYPER_VLPIS)
865 ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
866 }
867 } while (!(typer & GICR_TYPER_LAST));
868 }
869
870 return ret ? -ENODEV : 0;
871 }
872
__gic_populate_rdist(struct redist_region * region,void __iomem * ptr)873 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
874 {
875 unsigned long mpidr = cpu_logical_map(smp_processor_id());
876 u64 typer;
877 u32 aff;
878
879 /*
880 * Convert affinity to a 32bit value that can be matched to
881 * GICR_TYPER bits [63:32].
882 */
883 aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
884 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
885 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
886 MPIDR_AFFINITY_LEVEL(mpidr, 0));
887
888 typer = gic_read_typer(ptr + GICR_TYPER);
889 if ((typer >> 32) == aff) {
890 u64 offset = ptr - region->redist_base;
891 raw_spin_lock_init(&gic_data_rdist()->rd_lock);
892 gic_data_rdist_rd_base() = ptr;
893 gic_data_rdist()->phys_base = region->phys_base + offset;
894
895 pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
896 smp_processor_id(), mpidr,
897 (int)(region - gic_data.redist_regions),
898 &gic_data_rdist()->phys_base);
899 return 0;
900 }
901
902 /* Try next one */
903 return 1;
904 }
905
gic_populate_rdist(void)906 static int gic_populate_rdist(void)
907 {
908 if (gic_iterate_rdists(__gic_populate_rdist) == 0)
909 return 0;
910
911 /* We couldn't even deal with ourselves... */
912 WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
913 smp_processor_id(),
914 (unsigned long)cpu_logical_map(smp_processor_id()));
915 return -ENODEV;
916 }
917
__gic_update_rdist_properties(struct redist_region * region,void __iomem * ptr)918 static int __gic_update_rdist_properties(struct redist_region *region,
919 void __iomem *ptr)
920 {
921 u64 typer = gic_read_typer(ptr + GICR_TYPER);
922
923 gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
924
925 /* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
926 gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
927 gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
928 gic_data.rdists.has_rvpeid);
929 gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
930
931 /* Detect non-sensical configurations */
932 if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
933 gic_data.rdists.has_direct_lpi = false;
934 gic_data.rdists.has_vlpis = false;
935 gic_data.rdists.has_rvpeid = false;
936 }
937
938 gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
939
940 return 1;
941 }
942
gic_update_rdist_properties(void)943 static void gic_update_rdist_properties(void)
944 {
945 gic_data.ppi_nr = UINT_MAX;
946 gic_iterate_rdists(__gic_update_rdist_properties);
947 if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
948 gic_data.ppi_nr = 0;
949 pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
950 if (gic_data.rdists.has_vlpis)
951 pr_info("GICv4 features: %s%s%s\n",
952 gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
953 gic_data.rdists.has_rvpeid ? "RVPEID " : "",
954 gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
955 }
956
957 /* Check whether it's single security state view */
gic_dist_security_disabled(void)958 static inline bool gic_dist_security_disabled(void)
959 {
960 return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
961 }
962
gic_cpu_sys_reg_init(void)963 static void gic_cpu_sys_reg_init(void)
964 {
965 int i, cpu = smp_processor_id();
966 u64 mpidr = cpu_logical_map(cpu);
967 u64 need_rss = MPIDR_RS(mpidr);
968 bool group0;
969 u32 pribits;
970
971 /*
972 * Need to check that the SRE bit has actually been set. If
973 * not, it means that SRE is disabled at EL2. We're going to
974 * die painfully, and there is nothing we can do about it.
975 *
976 * Kindly inform the luser.
977 */
978 if (!gic_enable_sre())
979 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
980
981 pribits = gic_get_pribits();
982
983 group0 = gic_has_group0();
984
985 /* Set priority mask register */
986 if (!gic_prio_masking_enabled()) {
987 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
988 } else if (gic_supports_nmi()) {
989 /*
990 * Mismatch configuration with boot CPU, the system is likely
991 * to die as interrupt masking will not work properly on all
992 * CPUs
993 *
994 * The boot CPU calls this function before enabling NMI support,
995 * and as a result we'll never see this warning in the boot path
996 * for that CPU.
997 */
998 if (static_branch_unlikely(&gic_nonsecure_priorities))
999 WARN_ON(!group0 || gic_dist_security_disabled());
1000 else
1001 WARN_ON(group0 && !gic_dist_security_disabled());
1002 }
1003
1004 /*
1005 * Some firmwares hand over to the kernel with the BPR changed from
1006 * its reset value (and with a value large enough to prevent
1007 * any pre-emptive interrupts from working at all). Writing a zero
1008 * to BPR restores is reset value.
1009 */
1010 gic_write_bpr1(0);
1011
1012 if (static_branch_likely(&supports_deactivate_key)) {
1013 /* EOI drops priority only (mode 1) */
1014 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1015 } else {
1016 /* EOI deactivates interrupt too (mode 0) */
1017 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1018 }
1019
1020 /* Always whack Group0 before Group1 */
1021 if (group0) {
1022 switch(pribits) {
1023 case 8:
1024 case 7:
1025 write_gicreg(0, ICC_AP0R3_EL1);
1026 write_gicreg(0, ICC_AP0R2_EL1);
1027 fallthrough;
1028 case 6:
1029 write_gicreg(0, ICC_AP0R1_EL1);
1030 fallthrough;
1031 case 5:
1032 case 4:
1033 write_gicreg(0, ICC_AP0R0_EL1);
1034 }
1035
1036 isb();
1037 }
1038
1039 switch(pribits) {
1040 case 8:
1041 case 7:
1042 write_gicreg(0, ICC_AP1R3_EL1);
1043 write_gicreg(0, ICC_AP1R2_EL1);
1044 fallthrough;
1045 case 6:
1046 write_gicreg(0, ICC_AP1R1_EL1);
1047 fallthrough;
1048 case 5:
1049 case 4:
1050 write_gicreg(0, ICC_AP1R0_EL1);
1051 }
1052
1053 isb();
1054
1055 /* ... and let's hit the road... */
1056 gic_write_grpen1(1);
1057
1058 /* Keep the RSS capability status in per_cpu variable */
1059 per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1060
1061 /* Check all the CPUs have capable of sending SGIs to other CPUs */
1062 for_each_online_cpu(i) {
1063 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1064
1065 need_rss |= MPIDR_RS(cpu_logical_map(i));
1066 if (need_rss && (!have_rss))
1067 pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1068 cpu, (unsigned long)mpidr,
1069 i, (unsigned long)cpu_logical_map(i));
1070 }
1071
1072 /**
1073 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1074 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1075 * UNPREDICTABLE choice of :
1076 * - The write is ignored.
1077 * - The RS field is treated as 0.
1078 */
1079 if (need_rss && (!gic_data.has_rss))
1080 pr_crit_once("RSS is required but GICD doesn't support it\n");
1081 }
1082
1083 static bool gicv3_nolpi;
1084
gicv3_nolpi_cfg(char * buf)1085 static int __init gicv3_nolpi_cfg(char *buf)
1086 {
1087 return strtobool(buf, &gicv3_nolpi);
1088 }
1089 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1090
gic_dist_supports_lpis(void)1091 static int gic_dist_supports_lpis(void)
1092 {
1093 return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1094 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1095 !gicv3_nolpi);
1096 }
1097
gic_cpu_init(void)1098 static void gic_cpu_init(void)
1099 {
1100 void __iomem *rbase;
1101 int i;
1102
1103 /* Register ourselves with the rest of the world */
1104 if (gic_populate_rdist())
1105 return;
1106
1107 gic_enable_redist(true);
1108
1109 WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1110 !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1111 "Distributor has extended ranges, but CPU%d doesn't\n",
1112 smp_processor_id());
1113
1114 rbase = gic_data_rdist_sgi_base();
1115
1116 /* Configure SGIs/PPIs as non-secure Group-1 */
1117 for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1118 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1119
1120 gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1121
1122 /* initialise system registers */
1123 gic_cpu_sys_reg_init();
1124 }
1125
1126 #ifdef CONFIG_SMP
1127
1128 #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1129 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL)
1130
gic_starting_cpu(unsigned int cpu)1131 static int gic_starting_cpu(unsigned int cpu)
1132 {
1133 gic_cpu_init();
1134
1135 if (gic_dist_supports_lpis())
1136 its_cpu_init();
1137
1138 return 0;
1139 }
1140
gic_compute_target_list(int * base_cpu,const struct cpumask * mask,unsigned long cluster_id)1141 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1142 unsigned long cluster_id)
1143 {
1144 int next_cpu, cpu = *base_cpu;
1145 unsigned long mpidr = cpu_logical_map(cpu);
1146 u16 tlist = 0;
1147
1148 while (cpu < nr_cpu_ids) {
1149 tlist |= 1 << (mpidr & 0xf);
1150
1151 next_cpu = cpumask_next(cpu, mask);
1152 if (next_cpu >= nr_cpu_ids)
1153 goto out;
1154 cpu = next_cpu;
1155
1156 mpidr = cpu_logical_map(cpu);
1157
1158 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1159 cpu--;
1160 goto out;
1161 }
1162 }
1163 out:
1164 *base_cpu = cpu;
1165 return tlist;
1166 }
1167
1168 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1169 (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1170 << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1171
gic_send_sgi(u64 cluster_id,u16 tlist,unsigned int irq)1172 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1173 {
1174 u64 val;
1175
1176 val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) |
1177 MPIDR_TO_SGI_AFFINITY(cluster_id, 2) |
1178 irq << ICC_SGI1R_SGI_ID_SHIFT |
1179 MPIDR_TO_SGI_AFFINITY(cluster_id, 1) |
1180 MPIDR_TO_SGI_RS(cluster_id) |
1181 tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1182
1183 pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1184 gic_write_sgi1r(val);
1185 }
1186
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)1187 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1188 {
1189 int cpu;
1190
1191 if (WARN_ON(d->hwirq >= 16))
1192 return;
1193
1194 /*
1195 * Ensure that stores to Normal memory are visible to the
1196 * other CPUs before issuing the IPI.
1197 */
1198 wmb();
1199
1200 for_each_cpu(cpu, mask) {
1201 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1202 u16 tlist;
1203
1204 tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1205 gic_send_sgi(cluster_id, tlist, d->hwirq);
1206 }
1207
1208 /* Force the above writes to ICC_SGI1R_EL1 to be executed */
1209 isb();
1210 }
1211
gic_smp_init(void)1212 static void __init gic_smp_init(void)
1213 {
1214 struct irq_fwspec sgi_fwspec = {
1215 .fwnode = gic_data.fwnode,
1216 .param_count = 1,
1217 };
1218 int base_sgi;
1219
1220 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1221 "irqchip/arm/gicv3:starting",
1222 gic_starting_cpu, NULL);
1223
1224 /* Register all 8 non-secure SGIs */
1225 base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1226 NUMA_NO_NODE, &sgi_fwspec,
1227 false, NULL);
1228 if (WARN_ON(base_sgi <= 0))
1229 return;
1230
1231 set_smp_ipi_range(base_sgi, 8);
1232 }
1233
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1234 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1235 bool force)
1236 {
1237 unsigned int cpu;
1238 u32 offset, index;
1239 void __iomem *reg;
1240 int enabled;
1241 u64 val;
1242
1243 if (force)
1244 cpu = cpumask_first(mask_val);
1245 else
1246 cpu = cpumask_any_and(mask_val, cpu_online_mask);
1247
1248 if (cpu >= nr_cpu_ids)
1249 return -EINVAL;
1250
1251 if (gic_irq_in_rdist(d))
1252 return -EINVAL;
1253
1254 /* If interrupt was enabled, disable it first */
1255 enabled = gic_peek_irq(d, GICD_ISENABLER);
1256 if (enabled)
1257 gic_mask_irq(d);
1258
1259 offset = convert_offset_index(d, GICD_IROUTER, &index);
1260 reg = gic_dist_base(d) + offset + (index * 8);
1261 val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1262
1263 gic_write_irouter(val, reg);
1264
1265 /*
1266 * If the interrupt was enabled, enabled it again. Otherwise,
1267 * just wait for the distributor to have digested our changes.
1268 */
1269 if (enabled)
1270 gic_unmask_irq(d);
1271 else
1272 gic_dist_wait_for_rwp();
1273
1274 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1275
1276 return IRQ_SET_MASK_OK_DONE;
1277 }
1278 #else
1279 #define gic_set_affinity NULL
1280 #define gic_ipi_send_mask NULL
1281 #define gic_smp_init() do { } while(0)
1282 #endif
1283
gic_retrigger(struct irq_data * data)1284 static int gic_retrigger(struct irq_data *data)
1285 {
1286 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1287 }
1288
1289 #ifdef CONFIG_CPU_PM
gic_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1290 static int gic_cpu_pm_notifier(struct notifier_block *self,
1291 unsigned long cmd, void *v)
1292 {
1293 if (cmd == CPU_PM_EXIT) {
1294 if (gic_dist_security_disabled())
1295 gic_enable_redist(true);
1296 gic_cpu_sys_reg_init();
1297 } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1298 gic_write_grpen1(0);
1299 gic_enable_redist(false);
1300 }
1301 return NOTIFY_OK;
1302 }
1303
1304 static struct notifier_block gic_cpu_pm_notifier_block = {
1305 .notifier_call = gic_cpu_pm_notifier,
1306 };
1307
gic_cpu_pm_init(void)1308 static void gic_cpu_pm_init(void)
1309 {
1310 cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1311 }
1312
1313 #else
gic_cpu_pm_init(void)1314 static inline void gic_cpu_pm_init(void) { }
1315 #endif /* CONFIG_CPU_PM */
1316
1317 static struct irq_chip gic_chip = {
1318 .name = "GICv3",
1319 .irq_mask = gic_mask_irq,
1320 .irq_unmask = gic_unmask_irq,
1321 .irq_eoi = gic_eoi_irq,
1322 .irq_set_type = gic_set_type,
1323 .irq_set_affinity = gic_set_affinity,
1324 .irq_retrigger = gic_retrigger,
1325 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1326 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1327 .irq_nmi_setup = gic_irq_nmi_setup,
1328 .irq_nmi_teardown = gic_irq_nmi_teardown,
1329 .ipi_send_mask = gic_ipi_send_mask,
1330 .flags = IRQCHIP_SET_TYPE_MASKED |
1331 IRQCHIP_SKIP_SET_WAKE |
1332 IRQCHIP_MASK_ON_SUSPEND,
1333 };
1334
1335 static struct irq_chip gic_eoimode1_chip = {
1336 .name = "GICv3",
1337 .irq_mask = gic_eoimode1_mask_irq,
1338 .irq_unmask = gic_unmask_irq,
1339 .irq_eoi = gic_eoimode1_eoi_irq,
1340 .irq_set_type = gic_set_type,
1341 .irq_set_affinity = gic_set_affinity,
1342 .irq_retrigger = gic_retrigger,
1343 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1344 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1345 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity,
1346 .irq_nmi_setup = gic_irq_nmi_setup,
1347 .irq_nmi_teardown = gic_irq_nmi_teardown,
1348 .ipi_send_mask = gic_ipi_send_mask,
1349 .flags = IRQCHIP_SET_TYPE_MASKED |
1350 IRQCHIP_SKIP_SET_WAKE |
1351 IRQCHIP_MASK_ON_SUSPEND,
1352 };
1353
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1354 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1355 irq_hw_number_t hw)
1356 {
1357 struct irq_chip *chip = &gic_chip;
1358 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1359
1360 if (static_branch_likely(&supports_deactivate_key))
1361 chip = &gic_eoimode1_chip;
1362
1363 switch (__get_intid_range(hw)) {
1364 case SGI_RANGE:
1365 case PPI_RANGE:
1366 case EPPI_RANGE:
1367 irq_set_percpu_devid(irq);
1368 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1369 handle_percpu_devid_irq, NULL, NULL);
1370 break;
1371
1372 case SPI_RANGE:
1373 case ESPI_RANGE:
1374 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1375 handle_fasteoi_irq, NULL, NULL);
1376 irq_set_probe(irq);
1377 irqd_set_single_target(irqd);
1378 break;
1379
1380 case LPI_RANGE:
1381 if (!gic_dist_supports_lpis())
1382 return -EPERM;
1383 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1384 handle_fasteoi_irq, NULL, NULL);
1385 break;
1386
1387 default:
1388 return -EPERM;
1389 }
1390
1391 /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1392 irqd_set_handle_enforce_irqctx(irqd);
1393 return 0;
1394 }
1395
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1396 static int gic_irq_domain_translate(struct irq_domain *d,
1397 struct irq_fwspec *fwspec,
1398 unsigned long *hwirq,
1399 unsigned int *type)
1400 {
1401 if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1402 *hwirq = fwspec->param[0];
1403 *type = IRQ_TYPE_EDGE_RISING;
1404 return 0;
1405 }
1406
1407 if (is_of_node(fwspec->fwnode)) {
1408 if (fwspec->param_count < 3)
1409 return -EINVAL;
1410
1411 switch (fwspec->param[0]) {
1412 case 0: /* SPI */
1413 *hwirq = fwspec->param[1] + 32;
1414 break;
1415 case 1: /* PPI */
1416 *hwirq = fwspec->param[1] + 16;
1417 break;
1418 case 2: /* ESPI */
1419 *hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1420 break;
1421 case 3: /* EPPI */
1422 *hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1423 break;
1424 case GIC_IRQ_TYPE_LPI: /* LPI */
1425 *hwirq = fwspec->param[1];
1426 break;
1427 case GIC_IRQ_TYPE_PARTITION:
1428 *hwirq = fwspec->param[1];
1429 if (fwspec->param[1] >= 16)
1430 *hwirq += EPPI_BASE_INTID - 16;
1431 else
1432 *hwirq += 16;
1433 break;
1434 default:
1435 return -EINVAL;
1436 }
1437
1438 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1439
1440 /*
1441 * Make it clear that broken DTs are... broken.
1442 * Partitioned PPIs are an unfortunate exception.
1443 */
1444 WARN_ON(*type == IRQ_TYPE_NONE &&
1445 fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1446 return 0;
1447 }
1448
1449 if (is_fwnode_irqchip(fwspec->fwnode)) {
1450 if(fwspec->param_count != 2)
1451 return -EINVAL;
1452
1453 *hwirq = fwspec->param[0];
1454 *type = fwspec->param[1];
1455
1456 WARN_ON(*type == IRQ_TYPE_NONE);
1457 return 0;
1458 }
1459
1460 return -EINVAL;
1461 }
1462
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1463 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1464 unsigned int nr_irqs, void *arg)
1465 {
1466 int i, ret;
1467 irq_hw_number_t hwirq;
1468 unsigned int type = IRQ_TYPE_NONE;
1469 struct irq_fwspec *fwspec = arg;
1470
1471 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1472 if (ret)
1473 return ret;
1474
1475 for (i = 0; i < nr_irqs; i++) {
1476 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1477 if (ret)
1478 return ret;
1479 }
1480
1481 return 0;
1482 }
1483
gic_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1484 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1485 unsigned int nr_irqs)
1486 {
1487 int i;
1488
1489 for (i = 0; i < nr_irqs; i++) {
1490 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1491 irq_set_handler(virq + i, NULL);
1492 irq_domain_reset_irq_data(d);
1493 }
1494 }
1495
fwspec_is_partitioned_ppi(struct irq_fwspec * fwspec,irq_hw_number_t hwirq)1496 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1497 irq_hw_number_t hwirq)
1498 {
1499 enum gic_intid_range range;
1500
1501 if (!gic_data.ppi_descs)
1502 return false;
1503
1504 if (!is_of_node(fwspec->fwnode))
1505 return false;
1506
1507 if (fwspec->param_count < 4 || !fwspec->param[3])
1508 return false;
1509
1510 range = __get_intid_range(hwirq);
1511 if (range != PPI_RANGE && range != EPPI_RANGE)
1512 return false;
1513
1514 return true;
1515 }
1516
gic_irq_domain_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1517 static int gic_irq_domain_select(struct irq_domain *d,
1518 struct irq_fwspec *fwspec,
1519 enum irq_domain_bus_token bus_token)
1520 {
1521 unsigned int type, ret, ppi_idx;
1522 irq_hw_number_t hwirq;
1523
1524 /* Not for us */
1525 if (fwspec->fwnode != d->fwnode)
1526 return 0;
1527
1528 /* If this is not DT, then we have a single domain */
1529 if (!is_of_node(fwspec->fwnode))
1530 return 1;
1531
1532 ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1533 if (WARN_ON_ONCE(ret))
1534 return 0;
1535
1536 if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1537 return d == gic_data.domain;
1538
1539 /*
1540 * If this is a PPI and we have a 4th (non-null) parameter,
1541 * then we need to match the partition domain.
1542 */
1543 ppi_idx = __gic_get_ppi_index(hwirq);
1544 return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1545 }
1546
1547 static const struct irq_domain_ops gic_irq_domain_ops = {
1548 .translate = gic_irq_domain_translate,
1549 .alloc = gic_irq_domain_alloc,
1550 .free = gic_irq_domain_free,
1551 .select = gic_irq_domain_select,
1552 };
1553
partition_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1554 static int partition_domain_translate(struct irq_domain *d,
1555 struct irq_fwspec *fwspec,
1556 unsigned long *hwirq,
1557 unsigned int *type)
1558 {
1559 unsigned long ppi_intid;
1560 struct device_node *np;
1561 unsigned int ppi_idx;
1562 int ret;
1563
1564 if (!gic_data.ppi_descs)
1565 return -ENOMEM;
1566
1567 np = of_find_node_by_phandle(fwspec->param[3]);
1568 if (WARN_ON(!np))
1569 return -EINVAL;
1570
1571 ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1572 if (WARN_ON_ONCE(ret))
1573 return 0;
1574
1575 ppi_idx = __gic_get_ppi_index(ppi_intid);
1576 ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1577 of_node_to_fwnode(np));
1578 if (ret < 0)
1579 return ret;
1580
1581 *hwirq = ret;
1582 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1583
1584 return 0;
1585 }
1586
1587 static const struct irq_domain_ops partition_domain_ops = {
1588 .translate = partition_domain_translate,
1589 .select = gic_irq_domain_select,
1590 };
1591
gic_enable_quirk_msm8996(void * data)1592 static bool gic_enable_quirk_msm8996(void *data)
1593 {
1594 struct gic_chip_data *d = data;
1595
1596 d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1597
1598 return true;
1599 }
1600
gic_enable_quirk_cavium_38539(void * data)1601 static bool gic_enable_quirk_cavium_38539(void *data)
1602 {
1603 struct gic_chip_data *d = data;
1604
1605 d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1606
1607 return true;
1608 }
1609
gic_enable_quirk_hip06_07(void * data)1610 static bool gic_enable_quirk_hip06_07(void *data)
1611 {
1612 struct gic_chip_data *d = data;
1613
1614 /*
1615 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1616 * not being an actual ARM implementation). The saving grace is
1617 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1618 * HIP07 doesn't even have a proper IIDR, and still pretends to
1619 * have ESPI. In both cases, put them right.
1620 */
1621 if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1622 /* Zero both ESPI and the RES0 field next to it... */
1623 d->rdists.gicd_typer &= ~GENMASK(9, 8);
1624 return true;
1625 }
1626
1627 return false;
1628 }
1629
1630 static const struct gic_quirk gic_quirks[] = {
1631 {
1632 .desc = "GICv3: Qualcomm MSM8996 broken firmware",
1633 .compatible = "qcom,msm8996-gic-v3",
1634 .init = gic_enable_quirk_msm8996,
1635 },
1636 {
1637 .desc = "GICv3: HIP06 erratum 161010803",
1638 .iidr = 0x0204043b,
1639 .mask = 0xffffffff,
1640 .init = gic_enable_quirk_hip06_07,
1641 },
1642 {
1643 .desc = "GICv3: HIP07 erratum 161010803",
1644 .iidr = 0x00000000,
1645 .mask = 0xffffffff,
1646 .init = gic_enable_quirk_hip06_07,
1647 },
1648 {
1649 /*
1650 * Reserved register accesses generate a Synchronous
1651 * External Abort. This erratum applies to:
1652 * - ThunderX: CN88xx
1653 * - OCTEON TX: CN83xx, CN81xx
1654 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1655 */
1656 .desc = "GICv3: Cavium erratum 38539",
1657 .iidr = 0xa000034c,
1658 .mask = 0xe8f00fff,
1659 .init = gic_enable_quirk_cavium_38539,
1660 },
1661 {
1662 }
1663 };
1664
gic_enable_nmi_support(void)1665 static void gic_enable_nmi_support(void)
1666 {
1667 int i;
1668
1669 if (!gic_prio_masking_enabled())
1670 return;
1671
1672 ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1673 if (!ppi_nmi_refs)
1674 return;
1675
1676 for (i = 0; i < gic_data.ppi_nr; i++)
1677 refcount_set(&ppi_nmi_refs[i], 0);
1678
1679 /*
1680 * Linux itself doesn't use 1:N distribution, so has no need to
1681 * set PMHE. The only reason to have it set is if EL3 requires it
1682 * (and we can't change it).
1683 */
1684 if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1685 static_branch_enable(&gic_pmr_sync);
1686
1687 pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1688 static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1689
1690 /*
1691 * How priority values are used by the GIC depends on two things:
1692 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1693 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1694 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1695 * the ICC_PMR_EL1 register and the priority that software assigns to
1696 * interrupts:
1697 *
1698 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1699 * -----------------------------------------------------------
1700 * 1 | - | unchanged | unchanged
1701 * -----------------------------------------------------------
1702 * 0 | 1 | non-secure | non-secure
1703 * -----------------------------------------------------------
1704 * 0 | 0 | unchanged | non-secure
1705 *
1706 * where non-secure means that the value is right-shifted by one and the
1707 * MSB bit set, to make it fit in the non-secure priority range.
1708 *
1709 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1710 * are both either modified or unchanged, we can use the same set of
1711 * priorities.
1712 *
1713 * In the last case, where only the interrupt priorities are modified to
1714 * be in the non-secure range, we use a different PMR value to mask IRQs
1715 * and the rest of the values that we use remain unchanged.
1716 */
1717 if (gic_has_group0() && !gic_dist_security_disabled())
1718 static_branch_enable(&gic_nonsecure_priorities);
1719
1720 static_branch_enable(&supports_pseudo_nmis);
1721
1722 if (static_branch_likely(&supports_deactivate_key))
1723 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1724 else
1725 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1726 }
1727
gic_init_bases(void __iomem * dist_base,struct redist_region * rdist_regs,u32 nr_redist_regions,u64 redist_stride,struct fwnode_handle * handle)1728 static int __init gic_init_bases(void __iomem *dist_base,
1729 struct redist_region *rdist_regs,
1730 u32 nr_redist_regions,
1731 u64 redist_stride,
1732 struct fwnode_handle *handle)
1733 {
1734 u32 typer;
1735 int err;
1736
1737 if (!is_hyp_mode_available())
1738 static_branch_disable(&supports_deactivate_key);
1739
1740 if (static_branch_likely(&supports_deactivate_key))
1741 pr_info("GIC: Using split EOI/Deactivate mode\n");
1742
1743 gic_data.fwnode = handle;
1744 gic_data.dist_base = dist_base;
1745 gic_data.redist_regions = rdist_regs;
1746 gic_data.nr_redist_regions = nr_redist_regions;
1747 gic_data.redist_stride = redist_stride;
1748
1749 /*
1750 * Find out how many interrupts are supported.
1751 */
1752 typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1753 gic_data.rdists.gicd_typer = typer;
1754
1755 gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1756 gic_quirks, &gic_data);
1757
1758 pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1759 pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1760
1761 /*
1762 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1763 * architecture spec (which says that reserved registers are RES0).
1764 */
1765 if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1766 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1767
1768 gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1769 &gic_data);
1770 gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1771 gic_data.rdists.has_rvpeid = true;
1772 gic_data.rdists.has_vlpis = true;
1773 gic_data.rdists.has_direct_lpi = true;
1774 gic_data.rdists.has_vpend_valid_dirty = true;
1775
1776 if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1777 err = -ENOMEM;
1778 goto out_free;
1779 }
1780
1781 irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1782
1783 gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1784 pr_info("Distributor has %sRange Selector support\n",
1785 gic_data.has_rss ? "" : "no ");
1786
1787 if (typer & GICD_TYPER_MBIS) {
1788 err = mbi_init(handle, gic_data.domain);
1789 if (err)
1790 pr_err("Failed to initialize MBIs\n");
1791 }
1792
1793 set_handle_irq(gic_handle_irq);
1794
1795 gic_update_rdist_properties();
1796
1797 gic_dist_init();
1798 gic_cpu_init();
1799 gic_smp_init();
1800 gic_cpu_pm_init();
1801
1802 if (gic_dist_supports_lpis()) {
1803 its_init(handle, &gic_data.rdists, gic_data.domain);
1804 its_cpu_init();
1805 } else {
1806 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1807 gicv2m_init(handle, gic_data.domain);
1808 }
1809
1810 gic_enable_nmi_support();
1811
1812 return 0;
1813
1814 out_free:
1815 if (gic_data.domain)
1816 irq_domain_remove(gic_data.domain);
1817 free_percpu(gic_data.rdists.rdist);
1818 return err;
1819 }
1820
gic_validate_dist_version(void __iomem * dist_base)1821 static int __init gic_validate_dist_version(void __iomem *dist_base)
1822 {
1823 u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1824
1825 if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1826 return -ENODEV;
1827
1828 return 0;
1829 }
1830
1831 /* Create all possible partitions at boot time */
gic_populate_ppi_partitions(struct device_node * gic_node)1832 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1833 {
1834 struct device_node *parts_node, *child_part;
1835 int part_idx = 0, i;
1836 int nr_parts;
1837 struct partition_affinity *parts;
1838
1839 parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1840 if (!parts_node)
1841 return;
1842
1843 gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1844 if (!gic_data.ppi_descs)
1845 return;
1846
1847 nr_parts = of_get_child_count(parts_node);
1848
1849 if (!nr_parts)
1850 goto out_put_node;
1851
1852 parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1853 if (WARN_ON(!parts))
1854 goto out_put_node;
1855
1856 for_each_child_of_node(parts_node, child_part) {
1857 struct partition_affinity *part;
1858 int n;
1859
1860 part = &parts[part_idx];
1861
1862 part->partition_id = of_node_to_fwnode(child_part);
1863
1864 pr_info("GIC: PPI partition %pOFn[%d] { ",
1865 child_part, part_idx);
1866
1867 n = of_property_count_elems_of_size(child_part, "affinity",
1868 sizeof(u32));
1869 WARN_ON(n <= 0);
1870
1871 for (i = 0; i < n; i++) {
1872 int err, cpu;
1873 u32 cpu_phandle;
1874 struct device_node *cpu_node;
1875
1876 err = of_property_read_u32_index(child_part, "affinity",
1877 i, &cpu_phandle);
1878 if (WARN_ON(err))
1879 continue;
1880
1881 cpu_node = of_find_node_by_phandle(cpu_phandle);
1882 if (WARN_ON(!cpu_node))
1883 continue;
1884
1885 cpu = of_cpu_node_to_id(cpu_node);
1886 if (WARN_ON(cpu < 0))
1887 continue;
1888
1889 pr_cont("%pOF[%d] ", cpu_node, cpu);
1890
1891 cpumask_set_cpu(cpu, &part->mask);
1892 }
1893
1894 pr_cont("}\n");
1895 part_idx++;
1896 }
1897
1898 for (i = 0; i < gic_data.ppi_nr; i++) {
1899 unsigned int irq;
1900 struct partition_desc *desc;
1901 struct irq_fwspec ppi_fwspec = {
1902 .fwnode = gic_data.fwnode,
1903 .param_count = 3,
1904 .param = {
1905 [0] = GIC_IRQ_TYPE_PARTITION,
1906 [1] = i,
1907 [2] = IRQ_TYPE_NONE,
1908 },
1909 };
1910
1911 irq = irq_create_fwspec_mapping(&ppi_fwspec);
1912 if (WARN_ON(!irq))
1913 continue;
1914 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1915 irq, &partition_domain_ops);
1916 if (WARN_ON(!desc))
1917 continue;
1918
1919 gic_data.ppi_descs[i] = desc;
1920 }
1921
1922 out_put_node:
1923 of_node_put(parts_node);
1924 }
1925
gic_of_setup_kvm_info(struct device_node * node)1926 static void __init gic_of_setup_kvm_info(struct device_node *node)
1927 {
1928 int ret;
1929 struct resource r;
1930 u32 gicv_idx;
1931
1932 gic_v3_kvm_info.type = GIC_V3;
1933
1934 gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1935 if (!gic_v3_kvm_info.maint_irq)
1936 return;
1937
1938 if (of_property_read_u32(node, "#redistributor-regions",
1939 &gicv_idx))
1940 gicv_idx = 1;
1941
1942 gicv_idx += 3; /* Also skip GICD, GICC, GICH */
1943 ret = of_address_to_resource(node, gicv_idx, &r);
1944 if (!ret)
1945 gic_v3_kvm_info.vcpu = r;
1946
1947 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1948 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1949 vgic_set_kvm_info(&gic_v3_kvm_info);
1950 }
1951
gic_of_init(struct device_node * node,struct device_node * parent)1952 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1953 {
1954 void __iomem *dist_base;
1955 struct redist_region *rdist_regs;
1956 u64 redist_stride;
1957 u32 nr_redist_regions;
1958 int err, i;
1959
1960 dist_base = of_iomap(node, 0);
1961 if (!dist_base) {
1962 pr_err("%pOF: unable to map gic dist registers\n", node);
1963 return -ENXIO;
1964 }
1965
1966 err = gic_validate_dist_version(dist_base);
1967 if (err) {
1968 pr_err("%pOF: no distributor detected, giving up\n", node);
1969 goto out_unmap_dist;
1970 }
1971
1972 if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1973 nr_redist_regions = 1;
1974
1975 rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1976 GFP_KERNEL);
1977 if (!rdist_regs) {
1978 err = -ENOMEM;
1979 goto out_unmap_dist;
1980 }
1981
1982 for (i = 0; i < nr_redist_regions; i++) {
1983 struct resource res;
1984 int ret;
1985
1986 ret = of_address_to_resource(node, 1 + i, &res);
1987 rdist_regs[i].redist_base = of_iomap(node, 1 + i);
1988 if (ret || !rdist_regs[i].redist_base) {
1989 pr_err("%pOF: couldn't map region %d\n", node, i);
1990 err = -ENODEV;
1991 goto out_unmap_rdist;
1992 }
1993 rdist_regs[i].phys_base = res.start;
1994 }
1995
1996 if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
1997 redist_stride = 0;
1998
1999 gic_enable_of_quirks(node, gic_quirks, &gic_data);
2000
2001 err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
2002 redist_stride, &node->fwnode);
2003 if (err)
2004 goto out_unmap_rdist;
2005
2006 gic_populate_ppi_partitions(node);
2007
2008 if (static_branch_likely(&supports_deactivate_key))
2009 gic_of_setup_kvm_info(node);
2010 return 0;
2011
2012 out_unmap_rdist:
2013 for (i = 0; i < nr_redist_regions; i++)
2014 if (rdist_regs[i].redist_base)
2015 iounmap(rdist_regs[i].redist_base);
2016 kfree(rdist_regs);
2017 out_unmap_dist:
2018 iounmap(dist_base);
2019 return err;
2020 }
2021
2022 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2023
2024 #ifdef CONFIG_ACPI
2025 static struct
2026 {
2027 void __iomem *dist_base;
2028 struct redist_region *redist_regs;
2029 u32 nr_redist_regions;
2030 bool single_redist;
2031 int enabled_rdists;
2032 u32 maint_irq;
2033 int maint_irq_mode;
2034 phys_addr_t vcpu_base;
2035 } acpi_data __initdata;
2036
2037 static void __init
gic_acpi_register_redist(phys_addr_t phys_base,void __iomem * redist_base)2038 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2039 {
2040 static int count = 0;
2041
2042 acpi_data.redist_regs[count].phys_base = phys_base;
2043 acpi_data.redist_regs[count].redist_base = redist_base;
2044 acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2045 count++;
2046 }
2047
2048 static int __init
gic_acpi_parse_madt_redist(union acpi_subtable_headers * header,const unsigned long end)2049 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2050 const unsigned long end)
2051 {
2052 struct acpi_madt_generic_redistributor *redist =
2053 (struct acpi_madt_generic_redistributor *)header;
2054 void __iomem *redist_base;
2055
2056 redist_base = ioremap(redist->base_address, redist->length);
2057 if (!redist_base) {
2058 pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2059 return -ENOMEM;
2060 }
2061
2062 gic_acpi_register_redist(redist->base_address, redist_base);
2063 return 0;
2064 }
2065
2066 static int __init
gic_acpi_parse_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2067 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2068 const unsigned long end)
2069 {
2070 struct acpi_madt_generic_interrupt *gicc =
2071 (struct acpi_madt_generic_interrupt *)header;
2072 u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2073 u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2074 void __iomem *redist_base;
2075
2076 /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2077 if (!(gicc->flags & ACPI_MADT_ENABLED))
2078 return 0;
2079
2080 redist_base = ioremap(gicc->gicr_base_address, size);
2081 if (!redist_base)
2082 return -ENOMEM;
2083
2084 gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2085 return 0;
2086 }
2087
gic_acpi_collect_gicr_base(void)2088 static int __init gic_acpi_collect_gicr_base(void)
2089 {
2090 acpi_tbl_entry_handler redist_parser;
2091 enum acpi_madt_type type;
2092
2093 if (acpi_data.single_redist) {
2094 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2095 redist_parser = gic_acpi_parse_madt_gicc;
2096 } else {
2097 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2098 redist_parser = gic_acpi_parse_madt_redist;
2099 }
2100
2101 /* Collect redistributor base addresses in GICR entries */
2102 if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2103 return 0;
2104
2105 pr_info("No valid GICR entries exist\n");
2106 return -ENODEV;
2107 }
2108
gic_acpi_match_gicr(union acpi_subtable_headers * header,const unsigned long end)2109 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2110 const unsigned long end)
2111 {
2112 /* Subtable presence means that redist exists, that's it */
2113 return 0;
2114 }
2115
gic_acpi_match_gicc(union acpi_subtable_headers * header,const unsigned long end)2116 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2117 const unsigned long end)
2118 {
2119 struct acpi_madt_generic_interrupt *gicc =
2120 (struct acpi_madt_generic_interrupt *)header;
2121
2122 /*
2123 * If GICC is enabled and has valid gicr base address, then it means
2124 * GICR base is presented via GICC
2125 */
2126 if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2127 acpi_data.enabled_rdists++;
2128 return 0;
2129 }
2130
2131 /*
2132 * It's perfectly valid firmware can pass disabled GICC entry, driver
2133 * should not treat as errors, skip the entry instead of probe fail.
2134 */
2135 if (!(gicc->flags & ACPI_MADT_ENABLED))
2136 return 0;
2137
2138 return -ENODEV;
2139 }
2140
gic_acpi_count_gicr_regions(void)2141 static int __init gic_acpi_count_gicr_regions(void)
2142 {
2143 int count;
2144
2145 /*
2146 * Count how many redistributor regions we have. It is not allowed
2147 * to mix redistributor description, GICR and GICC subtables have to be
2148 * mutually exclusive.
2149 */
2150 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2151 gic_acpi_match_gicr, 0);
2152 if (count > 0) {
2153 acpi_data.single_redist = false;
2154 return count;
2155 }
2156
2157 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2158 gic_acpi_match_gicc, 0);
2159 if (count > 0) {
2160 acpi_data.single_redist = true;
2161 count = acpi_data.enabled_rdists;
2162 }
2163
2164 return count;
2165 }
2166
acpi_validate_gic_table(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)2167 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2168 struct acpi_probe_entry *ape)
2169 {
2170 struct acpi_madt_generic_distributor *dist;
2171 int count;
2172
2173 dist = (struct acpi_madt_generic_distributor *)header;
2174 if (dist->version != ape->driver_data)
2175 return false;
2176
2177 /* We need to do that exercise anyway, the sooner the better */
2178 count = gic_acpi_count_gicr_regions();
2179 if (count <= 0)
2180 return false;
2181
2182 acpi_data.nr_redist_regions = count;
2183 return true;
2184 }
2185
gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2186 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2187 const unsigned long end)
2188 {
2189 struct acpi_madt_generic_interrupt *gicc =
2190 (struct acpi_madt_generic_interrupt *)header;
2191 int maint_irq_mode;
2192 static int first_madt = true;
2193
2194 /* Skip unusable CPUs */
2195 if (!(gicc->flags & ACPI_MADT_ENABLED))
2196 return 0;
2197
2198 maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2199 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2200
2201 if (first_madt) {
2202 first_madt = false;
2203
2204 acpi_data.maint_irq = gicc->vgic_interrupt;
2205 acpi_data.maint_irq_mode = maint_irq_mode;
2206 acpi_data.vcpu_base = gicc->gicv_base_address;
2207
2208 return 0;
2209 }
2210
2211 /*
2212 * The maintenance interrupt and GICV should be the same for every CPU
2213 */
2214 if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2215 (acpi_data.maint_irq_mode != maint_irq_mode) ||
2216 (acpi_data.vcpu_base != gicc->gicv_base_address))
2217 return -EINVAL;
2218
2219 return 0;
2220 }
2221
gic_acpi_collect_virt_info(void)2222 static bool __init gic_acpi_collect_virt_info(void)
2223 {
2224 int count;
2225
2226 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2227 gic_acpi_parse_virt_madt_gicc, 0);
2228
2229 return (count > 0);
2230 }
2231
2232 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2233 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
2234 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
2235
gic_acpi_setup_kvm_info(void)2236 static void __init gic_acpi_setup_kvm_info(void)
2237 {
2238 int irq;
2239
2240 if (!gic_acpi_collect_virt_info()) {
2241 pr_warn("Unable to get hardware information used for virtualization\n");
2242 return;
2243 }
2244
2245 gic_v3_kvm_info.type = GIC_V3;
2246
2247 irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2248 acpi_data.maint_irq_mode,
2249 ACPI_ACTIVE_HIGH);
2250 if (irq <= 0)
2251 return;
2252
2253 gic_v3_kvm_info.maint_irq = irq;
2254
2255 if (acpi_data.vcpu_base) {
2256 struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2257
2258 vcpu->flags = IORESOURCE_MEM;
2259 vcpu->start = acpi_data.vcpu_base;
2260 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2261 }
2262
2263 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2264 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2265 vgic_set_kvm_info(&gic_v3_kvm_info);
2266 }
2267
2268 static int __init
gic_acpi_init(union acpi_subtable_headers * header,const unsigned long end)2269 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2270 {
2271 struct acpi_madt_generic_distributor *dist;
2272 struct fwnode_handle *domain_handle;
2273 size_t size;
2274 int i, err;
2275
2276 /* Get distributor base address */
2277 dist = (struct acpi_madt_generic_distributor *)header;
2278 acpi_data.dist_base = ioremap(dist->base_address,
2279 ACPI_GICV3_DIST_MEM_SIZE);
2280 if (!acpi_data.dist_base) {
2281 pr_err("Unable to map GICD registers\n");
2282 return -ENOMEM;
2283 }
2284
2285 err = gic_validate_dist_version(acpi_data.dist_base);
2286 if (err) {
2287 pr_err("No distributor detected at @%p, giving up\n",
2288 acpi_data.dist_base);
2289 goto out_dist_unmap;
2290 }
2291
2292 size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2293 acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2294 if (!acpi_data.redist_regs) {
2295 err = -ENOMEM;
2296 goto out_dist_unmap;
2297 }
2298
2299 err = gic_acpi_collect_gicr_base();
2300 if (err)
2301 goto out_redist_unmap;
2302
2303 domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2304 if (!domain_handle) {
2305 err = -ENOMEM;
2306 goto out_redist_unmap;
2307 }
2308
2309 err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2310 acpi_data.nr_redist_regions, 0, domain_handle);
2311 if (err)
2312 goto out_fwhandle_free;
2313
2314 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2315
2316 if (static_branch_likely(&supports_deactivate_key))
2317 gic_acpi_setup_kvm_info();
2318
2319 return 0;
2320
2321 out_fwhandle_free:
2322 irq_domain_free_fwnode(domain_handle);
2323 out_redist_unmap:
2324 for (i = 0; i < acpi_data.nr_redist_regions; i++)
2325 if (acpi_data.redist_regs[i].redist_base)
2326 iounmap(acpi_data.redist_regs[i].redist_base);
2327 kfree(acpi_data.redist_regs);
2328 out_dist_unmap:
2329 iounmap(acpi_data.dist_base);
2330 return err;
2331 }
2332 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2333 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2334 gic_acpi_init);
2335 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2336 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2337 gic_acpi_init);
2338 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2339 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2340 gic_acpi_init);
2341 #endif
2342