1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
48
49 static u32 lpi_id_bits;
50
51 /*
52 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53 * deal with (one configuration byte per interrupt). PENDBASE has to
54 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55 */
56 #define LPI_NRBITS lpi_id_bits
57 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59
60 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
61
62 /*
63 * Collection structure - just an ID, and a redistributor address to
64 * ping. We use one per CPU as a bag of interrupts assigned to this
65 * CPU.
66 */
67 struct its_collection {
68 u64 target_address;
69 u16 col_id;
70 };
71
72 /*
73 * The ITS_BASER structure - contains memory information, cached
74 * value of BASER register configuration and ITS page size.
75 */
76 struct its_baser {
77 void *base;
78 u64 val;
79 u32 order;
80 u32 psz;
81 };
82
83 struct its_device;
84
85 /*
86 * The ITS structure - contains most of the infrastructure, with the
87 * top-level MSI domain, the command queue, the collections, and the
88 * list of devices writing to it.
89 *
90 * dev_alloc_lock has to be taken for device allocations, while the
91 * spinlock must be taken to parse data structures such as the device
92 * list.
93 */
94 struct its_node {
95 raw_spinlock_t lock;
96 struct mutex dev_alloc_lock;
97 struct list_head entry;
98 void __iomem *base;
99 void __iomem *sgir_base;
100 phys_addr_t phys_base;
101 struct its_cmd_block *cmd_base;
102 struct its_cmd_block *cmd_write;
103 struct its_baser tables[GITS_BASER_NR_REGS];
104 struct its_collection *collections;
105 struct fwnode_handle *fwnode_handle;
106 u64 (*get_msi_base)(struct its_device *its_dev);
107 u64 typer;
108 u64 cbaser_save;
109 u32 ctlr_save;
110 u32 mpidr;
111 struct list_head its_device_list;
112 u64 flags;
113 unsigned long list_nr;
114 int numa_node;
115 unsigned int msi_domain_flags;
116 u32 pre_its_base; /* for Socionext Synquacer */
117 int vlpi_redist_offset;
118 };
119
120 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
121 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
122 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
123
124 #define ITS_ITT_ALIGN SZ_256
125
126 /* The maximum number of VPEID bits supported by VLPI commands */
127 #define ITS_MAX_VPEID_BITS \
128 ({ \
129 int nvpeid = 16; \
130 if (gic_rdists->has_rvpeid && \
131 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
132 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
133 GICD_TYPER2_VID); \
134 \
135 nvpeid; \
136 })
137 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
138
139 /* Convert page order to size in bytes */
140 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
141
142 struct event_lpi_map {
143 unsigned long *lpi_map;
144 u16 *col_map;
145 irq_hw_number_t lpi_base;
146 int nr_lpis;
147 raw_spinlock_t vlpi_lock;
148 struct its_vm *vm;
149 struct its_vlpi_map *vlpi_maps;
150 int nr_vlpis;
151 };
152
153 /*
154 * The ITS view of a device - belongs to an ITS, owns an interrupt
155 * translation table, and a list of interrupts. If it some of its
156 * LPIs are injected into a guest (GICv4), the event_map.vm field
157 * indicates which one.
158 */
159 struct its_device {
160 struct list_head entry;
161 struct its_node *its;
162 struct event_lpi_map event_map;
163 void *itt;
164 u32 nr_ites;
165 u32 device_id;
166 bool shared;
167 };
168
169 static struct {
170 raw_spinlock_t lock;
171 struct its_device *dev;
172 struct its_vpe **vpes;
173 int next_victim;
174 } vpe_proxy;
175
176 struct cpu_lpi_count {
177 atomic_t managed;
178 atomic_t unmanaged;
179 };
180
181 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
182
183 static LIST_HEAD(its_nodes);
184 static DEFINE_RAW_SPINLOCK(its_lock);
185 static struct rdists *gic_rdists;
186 static struct irq_domain *its_parent;
187
188 static unsigned long its_list_map;
189 static u16 vmovp_seq_num;
190 static DEFINE_RAW_SPINLOCK(vmovp_lock);
191
192 static DEFINE_IDA(its_vpeid_ida);
193
194 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
195 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
196 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
197 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
198
199 /*
200 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
201 * always have vSGIs mapped.
202 */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)203 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
204 {
205 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
206 }
207
get_its_list(struct its_vm * vm)208 static u16 get_its_list(struct its_vm *vm)
209 {
210 struct its_node *its;
211 unsigned long its_list = 0;
212
213 list_for_each_entry(its, &its_nodes, entry) {
214 if (!is_v4(its))
215 continue;
216
217 if (require_its_list_vmovp(vm, its))
218 __set_bit(its->list_nr, &its_list);
219 }
220
221 return (u16)its_list;
222 }
223
its_get_event_id(struct irq_data * d)224 static inline u32 its_get_event_id(struct irq_data *d)
225 {
226 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
227 return d->hwirq - its_dev->event_map.lpi_base;
228 }
229
dev_event_to_col(struct its_device * its_dev,u32 event)230 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
231 u32 event)
232 {
233 struct its_node *its = its_dev->its;
234
235 return its->collections + its_dev->event_map.col_map[event];
236 }
237
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)238 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
239 u32 event)
240 {
241 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
242 return NULL;
243
244 return &its_dev->event_map.vlpi_maps[event];
245 }
246
get_vlpi_map(struct irq_data * d)247 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
248 {
249 if (irqd_is_forwarded_to_vcpu(d)) {
250 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
251 u32 event = its_get_event_id(d);
252
253 return dev_event_to_vlpi_map(its_dev, event);
254 }
255
256 return NULL;
257 }
258
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)259 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
260 {
261 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
262 return vpe->col_idx;
263 }
264
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)265 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
266 {
267 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
268 }
269
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)270 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
271 {
272 struct its_vlpi_map *map = get_vlpi_map(d);
273 int cpu;
274
275 if (map) {
276 cpu = vpe_to_cpuid_lock(map->vpe, flags);
277 } else {
278 /* Physical LPIs are already locked via the irq_desc lock */
279 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
280 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
281 /* Keep GCC quiet... */
282 *flags = 0;
283 }
284
285 return cpu;
286 }
287
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)288 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
289 {
290 struct its_vlpi_map *map = get_vlpi_map(d);
291
292 if (map)
293 vpe_to_cpuid_unlock(map->vpe, flags);
294 }
295
valid_col(struct its_collection * col)296 static struct its_collection *valid_col(struct its_collection *col)
297 {
298 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
299 return NULL;
300
301 return col;
302 }
303
valid_vpe(struct its_node * its,struct its_vpe * vpe)304 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
305 {
306 if (valid_col(its->collections + vpe->col_idx))
307 return vpe;
308
309 return NULL;
310 }
311
312 /*
313 * ITS command descriptors - parameters to be encoded in a command
314 * block.
315 */
316 struct its_cmd_desc {
317 union {
318 struct {
319 struct its_device *dev;
320 u32 event_id;
321 } its_inv_cmd;
322
323 struct {
324 struct its_device *dev;
325 u32 event_id;
326 } its_clear_cmd;
327
328 struct {
329 struct its_device *dev;
330 u32 event_id;
331 } its_int_cmd;
332
333 struct {
334 struct its_device *dev;
335 int valid;
336 } its_mapd_cmd;
337
338 struct {
339 struct its_collection *col;
340 int valid;
341 } its_mapc_cmd;
342
343 struct {
344 struct its_device *dev;
345 u32 phys_id;
346 u32 event_id;
347 } its_mapti_cmd;
348
349 struct {
350 struct its_device *dev;
351 struct its_collection *col;
352 u32 event_id;
353 } its_movi_cmd;
354
355 struct {
356 struct its_device *dev;
357 u32 event_id;
358 } its_discard_cmd;
359
360 struct {
361 struct its_collection *col;
362 } its_invall_cmd;
363
364 struct {
365 struct its_vpe *vpe;
366 } its_vinvall_cmd;
367
368 struct {
369 struct its_vpe *vpe;
370 struct its_collection *col;
371 bool valid;
372 } its_vmapp_cmd;
373
374 struct {
375 struct its_vpe *vpe;
376 struct its_device *dev;
377 u32 virt_id;
378 u32 event_id;
379 bool db_enabled;
380 } its_vmapti_cmd;
381
382 struct {
383 struct its_vpe *vpe;
384 struct its_device *dev;
385 u32 event_id;
386 bool db_enabled;
387 } its_vmovi_cmd;
388
389 struct {
390 struct its_vpe *vpe;
391 struct its_collection *col;
392 u16 seq_num;
393 u16 its_list;
394 } its_vmovp_cmd;
395
396 struct {
397 struct its_vpe *vpe;
398 } its_invdb_cmd;
399
400 struct {
401 struct its_vpe *vpe;
402 u8 sgi;
403 u8 priority;
404 bool enable;
405 bool group;
406 bool clear;
407 } its_vsgi_cmd;
408 };
409 };
410
411 /*
412 * The ITS command block, which is what the ITS actually parses.
413 */
414 struct its_cmd_block {
415 union {
416 u64 raw_cmd[4];
417 __le64 raw_cmd_le[4];
418 };
419 };
420
421 #define ITS_CMD_QUEUE_SZ SZ_64K
422 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
423
424 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
425 struct its_cmd_block *,
426 struct its_cmd_desc *);
427
428 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
429 struct its_cmd_block *,
430 struct its_cmd_desc *);
431
432 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
433 {
434 u64 mask = GENMASK_ULL(h, l);
435 *raw_cmd &= ~mask;
436 *raw_cmd |= (val << l) & mask;
437 }
438
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)439 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
440 {
441 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
442 }
443
its_encode_devid(struct its_cmd_block * cmd,u32 devid)444 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
445 {
446 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
447 }
448
its_encode_event_id(struct its_cmd_block * cmd,u32 id)449 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
450 {
451 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
452 }
453
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)454 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
455 {
456 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
457 }
458
its_encode_size(struct its_cmd_block * cmd,u8 size)459 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
460 {
461 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
462 }
463
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)464 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
465 {
466 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
467 }
468
its_encode_valid(struct its_cmd_block * cmd,int valid)469 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
470 {
471 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
472 }
473
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)474 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
475 {
476 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
477 }
478
its_encode_collection(struct its_cmd_block * cmd,u16 col)479 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
480 {
481 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
482 }
483
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)484 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
485 {
486 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
487 }
488
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)489 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
490 {
491 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
492 }
493
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)494 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
495 {
496 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
497 }
498
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)499 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
500 {
501 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
502 }
503
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)504 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
505 {
506 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
507 }
508
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)509 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
510 {
511 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
512 }
513
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)514 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
515 {
516 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
517 }
518
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)519 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
520 {
521 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
522 }
523
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)524 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
525 {
526 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
527 }
528
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)529 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
530 {
531 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
532 }
533
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)534 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
535 {
536 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
537 }
538
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)539 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
540 u32 vpe_db_lpi)
541 {
542 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
543 }
544
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)545 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
546 u32 vpe_db_lpi)
547 {
548 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
549 }
550
its_encode_db(struct its_cmd_block * cmd,bool db)551 static void its_encode_db(struct its_cmd_block *cmd, bool db)
552 {
553 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
554 }
555
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)556 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
557 {
558 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
559 }
560
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)561 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
562 {
563 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
564 }
565
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)566 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
567 {
568 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
569 }
570
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)571 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
572 {
573 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
574 }
575
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)576 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
577 {
578 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
579 }
580
its_fixup_cmd(struct its_cmd_block * cmd)581 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
582 {
583 /* Let's fixup BE commands */
584 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
585 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
586 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
587 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
588 }
589
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)590 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
591 struct its_cmd_block *cmd,
592 struct its_cmd_desc *desc)
593 {
594 unsigned long itt_addr;
595 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
596
597 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
598 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
599
600 its_encode_cmd(cmd, GITS_CMD_MAPD);
601 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
602 its_encode_size(cmd, size - 1);
603 its_encode_itt(cmd, itt_addr);
604 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
605
606 its_fixup_cmd(cmd);
607
608 return NULL;
609 }
610
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)611 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
612 struct its_cmd_block *cmd,
613 struct its_cmd_desc *desc)
614 {
615 its_encode_cmd(cmd, GITS_CMD_MAPC);
616 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
617 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
618 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
619
620 its_fixup_cmd(cmd);
621
622 return desc->its_mapc_cmd.col;
623 }
624
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)625 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
626 struct its_cmd_block *cmd,
627 struct its_cmd_desc *desc)
628 {
629 struct its_collection *col;
630
631 col = dev_event_to_col(desc->its_mapti_cmd.dev,
632 desc->its_mapti_cmd.event_id);
633
634 its_encode_cmd(cmd, GITS_CMD_MAPTI);
635 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
636 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
637 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
638 its_encode_collection(cmd, col->col_id);
639
640 its_fixup_cmd(cmd);
641
642 return valid_col(col);
643 }
644
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)645 static struct its_collection *its_build_movi_cmd(struct its_node *its,
646 struct its_cmd_block *cmd,
647 struct its_cmd_desc *desc)
648 {
649 struct its_collection *col;
650
651 col = dev_event_to_col(desc->its_movi_cmd.dev,
652 desc->its_movi_cmd.event_id);
653
654 its_encode_cmd(cmd, GITS_CMD_MOVI);
655 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
656 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
657 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
658
659 its_fixup_cmd(cmd);
660
661 return valid_col(col);
662 }
663
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)664 static struct its_collection *its_build_discard_cmd(struct its_node *its,
665 struct its_cmd_block *cmd,
666 struct its_cmd_desc *desc)
667 {
668 struct its_collection *col;
669
670 col = dev_event_to_col(desc->its_discard_cmd.dev,
671 desc->its_discard_cmd.event_id);
672
673 its_encode_cmd(cmd, GITS_CMD_DISCARD);
674 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
675 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
676
677 its_fixup_cmd(cmd);
678
679 return valid_col(col);
680 }
681
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)682 static struct its_collection *its_build_inv_cmd(struct its_node *its,
683 struct its_cmd_block *cmd,
684 struct its_cmd_desc *desc)
685 {
686 struct its_collection *col;
687
688 col = dev_event_to_col(desc->its_inv_cmd.dev,
689 desc->its_inv_cmd.event_id);
690
691 its_encode_cmd(cmd, GITS_CMD_INV);
692 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
693 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
694
695 its_fixup_cmd(cmd);
696
697 return valid_col(col);
698 }
699
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)700 static struct its_collection *its_build_int_cmd(struct its_node *its,
701 struct its_cmd_block *cmd,
702 struct its_cmd_desc *desc)
703 {
704 struct its_collection *col;
705
706 col = dev_event_to_col(desc->its_int_cmd.dev,
707 desc->its_int_cmd.event_id);
708
709 its_encode_cmd(cmd, GITS_CMD_INT);
710 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
711 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
712
713 its_fixup_cmd(cmd);
714
715 return valid_col(col);
716 }
717
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)718 static struct its_collection *its_build_clear_cmd(struct its_node *its,
719 struct its_cmd_block *cmd,
720 struct its_cmd_desc *desc)
721 {
722 struct its_collection *col;
723
724 col = dev_event_to_col(desc->its_clear_cmd.dev,
725 desc->its_clear_cmd.event_id);
726
727 its_encode_cmd(cmd, GITS_CMD_CLEAR);
728 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
729 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
730
731 its_fixup_cmd(cmd);
732
733 return valid_col(col);
734 }
735
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)736 static struct its_collection *its_build_invall_cmd(struct its_node *its,
737 struct its_cmd_block *cmd,
738 struct its_cmd_desc *desc)
739 {
740 its_encode_cmd(cmd, GITS_CMD_INVALL);
741 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
742
743 its_fixup_cmd(cmd);
744
745 return NULL;
746 }
747
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)748 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
749 struct its_cmd_block *cmd,
750 struct its_cmd_desc *desc)
751 {
752 its_encode_cmd(cmd, GITS_CMD_VINVALL);
753 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
754
755 its_fixup_cmd(cmd);
756
757 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
758 }
759
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)760 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
761 struct its_cmd_block *cmd,
762 struct its_cmd_desc *desc)
763 {
764 unsigned long vpt_addr, vconf_addr;
765 u64 target;
766 bool alloc;
767
768 its_encode_cmd(cmd, GITS_CMD_VMAPP);
769 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
770 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
771
772 if (!desc->its_vmapp_cmd.valid) {
773 if (is_v4_1(its)) {
774 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
775 its_encode_alloc(cmd, alloc);
776 }
777
778 goto out;
779 }
780
781 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
782 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
783
784 its_encode_target(cmd, target);
785 its_encode_vpt_addr(cmd, vpt_addr);
786 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
787
788 if (!is_v4_1(its))
789 goto out;
790
791 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
792
793 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
794
795 its_encode_alloc(cmd, alloc);
796
797 /*
798 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
799 * to be unmapped first, and in this case, we may remap the vPE
800 * back while the VPT is not empty. So we can't assume that the
801 * VPT is empty on map. This is why we never advertise PTZ.
802 */
803 its_encode_ptz(cmd, false);
804 its_encode_vconf_addr(cmd, vconf_addr);
805 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
806
807 out:
808 its_fixup_cmd(cmd);
809
810 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
811 }
812
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)813 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
814 struct its_cmd_block *cmd,
815 struct its_cmd_desc *desc)
816 {
817 u32 db;
818
819 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
820 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
821 else
822 db = 1023;
823
824 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
825 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
826 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
827 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
828 its_encode_db_phys_id(cmd, db);
829 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
830
831 its_fixup_cmd(cmd);
832
833 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
834 }
835
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)836 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
837 struct its_cmd_block *cmd,
838 struct its_cmd_desc *desc)
839 {
840 u32 db;
841
842 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
843 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
844 else
845 db = 1023;
846
847 its_encode_cmd(cmd, GITS_CMD_VMOVI);
848 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
849 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
850 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
851 its_encode_db_phys_id(cmd, db);
852 its_encode_db_valid(cmd, true);
853
854 its_fixup_cmd(cmd);
855
856 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
857 }
858
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)859 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
860 struct its_cmd_block *cmd,
861 struct its_cmd_desc *desc)
862 {
863 u64 target;
864
865 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
866 its_encode_cmd(cmd, GITS_CMD_VMOVP);
867 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
868 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
869 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
870 its_encode_target(cmd, target);
871
872 if (is_v4_1(its)) {
873 its_encode_db(cmd, true);
874 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
875 }
876
877 its_fixup_cmd(cmd);
878
879 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
880 }
881
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)882 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
883 struct its_cmd_block *cmd,
884 struct its_cmd_desc *desc)
885 {
886 struct its_vlpi_map *map;
887
888 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
889 desc->its_inv_cmd.event_id);
890
891 its_encode_cmd(cmd, GITS_CMD_INV);
892 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
893 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
894
895 its_fixup_cmd(cmd);
896
897 return valid_vpe(its, map->vpe);
898 }
899
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)900 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
901 struct its_cmd_block *cmd,
902 struct its_cmd_desc *desc)
903 {
904 struct its_vlpi_map *map;
905
906 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
907 desc->its_int_cmd.event_id);
908
909 its_encode_cmd(cmd, GITS_CMD_INT);
910 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
911 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
912
913 its_fixup_cmd(cmd);
914
915 return valid_vpe(its, map->vpe);
916 }
917
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)918 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
919 struct its_cmd_block *cmd,
920 struct its_cmd_desc *desc)
921 {
922 struct its_vlpi_map *map;
923
924 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
925 desc->its_clear_cmd.event_id);
926
927 its_encode_cmd(cmd, GITS_CMD_CLEAR);
928 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
929 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
930
931 its_fixup_cmd(cmd);
932
933 return valid_vpe(its, map->vpe);
934 }
935
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)936 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
937 struct its_cmd_block *cmd,
938 struct its_cmd_desc *desc)
939 {
940 if (WARN_ON(!is_v4_1(its)))
941 return NULL;
942
943 its_encode_cmd(cmd, GITS_CMD_INVDB);
944 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
945
946 its_fixup_cmd(cmd);
947
948 return valid_vpe(its, desc->its_invdb_cmd.vpe);
949 }
950
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)951 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
952 struct its_cmd_block *cmd,
953 struct its_cmd_desc *desc)
954 {
955 if (WARN_ON(!is_v4_1(its)))
956 return NULL;
957
958 its_encode_cmd(cmd, GITS_CMD_VSGI);
959 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
960 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
961 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
962 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
963 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
964 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
965
966 its_fixup_cmd(cmd);
967
968 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
969 }
970
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)971 static u64 its_cmd_ptr_to_offset(struct its_node *its,
972 struct its_cmd_block *ptr)
973 {
974 return (ptr - its->cmd_base) * sizeof(*ptr);
975 }
976
its_queue_full(struct its_node * its)977 static int its_queue_full(struct its_node *its)
978 {
979 int widx;
980 int ridx;
981
982 widx = its->cmd_write - its->cmd_base;
983 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
984
985 /* This is incredibly unlikely to happen, unless the ITS locks up. */
986 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
987 return 1;
988
989 return 0;
990 }
991
its_allocate_entry(struct its_node * its)992 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
993 {
994 struct its_cmd_block *cmd;
995 u32 count = 1000000; /* 1s! */
996
997 while (its_queue_full(its)) {
998 count--;
999 if (!count) {
1000 pr_err_ratelimited("ITS queue not draining\n");
1001 return NULL;
1002 }
1003 cpu_relax();
1004 udelay(1);
1005 }
1006
1007 cmd = its->cmd_write++;
1008
1009 /* Handle queue wrapping */
1010 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1011 its->cmd_write = its->cmd_base;
1012
1013 /* Clear command */
1014 cmd->raw_cmd[0] = 0;
1015 cmd->raw_cmd[1] = 0;
1016 cmd->raw_cmd[2] = 0;
1017 cmd->raw_cmd[3] = 0;
1018
1019 return cmd;
1020 }
1021
its_post_commands(struct its_node * its)1022 static struct its_cmd_block *its_post_commands(struct its_node *its)
1023 {
1024 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1025
1026 writel_relaxed(wr, its->base + GITS_CWRITER);
1027
1028 return its->cmd_write;
1029 }
1030
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1031 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1032 {
1033 /*
1034 * Make sure the commands written to memory are observable by
1035 * the ITS.
1036 */
1037 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1038 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1039 else
1040 dsb(ishst);
1041 }
1042
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1043 static int its_wait_for_range_completion(struct its_node *its,
1044 u64 prev_idx,
1045 struct its_cmd_block *to)
1046 {
1047 u64 rd_idx, to_idx, linear_idx;
1048 u32 count = 1000000; /* 1s! */
1049
1050 /* Linearize to_idx if the command set has wrapped around */
1051 to_idx = its_cmd_ptr_to_offset(its, to);
1052 if (to_idx < prev_idx)
1053 to_idx += ITS_CMD_QUEUE_SZ;
1054
1055 linear_idx = prev_idx;
1056
1057 while (1) {
1058 s64 delta;
1059
1060 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1061
1062 /*
1063 * Compute the read pointer progress, taking the
1064 * potential wrap-around into account.
1065 */
1066 delta = rd_idx - prev_idx;
1067 if (rd_idx < prev_idx)
1068 delta += ITS_CMD_QUEUE_SZ;
1069
1070 linear_idx += delta;
1071 if (linear_idx >= to_idx)
1072 break;
1073
1074 count--;
1075 if (!count) {
1076 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1077 to_idx, linear_idx);
1078 return -1;
1079 }
1080 prev_idx = rd_idx;
1081 cpu_relax();
1082 udelay(1);
1083 }
1084
1085 return 0;
1086 }
1087
1088 /* Warning, macro hell follows */
1089 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1090 void name(struct its_node *its, \
1091 buildtype builder, \
1092 struct its_cmd_desc *desc) \
1093 { \
1094 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1095 synctype *sync_obj; \
1096 unsigned long flags; \
1097 u64 rd_idx; \
1098 \
1099 raw_spin_lock_irqsave(&its->lock, flags); \
1100 \
1101 cmd = its_allocate_entry(its); \
1102 if (!cmd) { /* We're soooooo screewed... */ \
1103 raw_spin_unlock_irqrestore(&its->lock, flags); \
1104 return; \
1105 } \
1106 sync_obj = builder(its, cmd, desc); \
1107 its_flush_cmd(its, cmd); \
1108 \
1109 if (sync_obj) { \
1110 sync_cmd = its_allocate_entry(its); \
1111 if (!sync_cmd) \
1112 goto post; \
1113 \
1114 buildfn(its, sync_cmd, sync_obj); \
1115 its_flush_cmd(its, sync_cmd); \
1116 } \
1117 \
1118 post: \
1119 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1120 next_cmd = its_post_commands(its); \
1121 raw_spin_unlock_irqrestore(&its->lock, flags); \
1122 \
1123 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1124 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1125 }
1126
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1127 static void its_build_sync_cmd(struct its_node *its,
1128 struct its_cmd_block *sync_cmd,
1129 struct its_collection *sync_col)
1130 {
1131 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1132 its_encode_target(sync_cmd, sync_col->target_address);
1133
1134 its_fixup_cmd(sync_cmd);
1135 }
1136
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1137 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1138 struct its_collection, its_build_sync_cmd)
1139
1140 static void its_build_vsync_cmd(struct its_node *its,
1141 struct its_cmd_block *sync_cmd,
1142 struct its_vpe *sync_vpe)
1143 {
1144 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1145 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1146
1147 its_fixup_cmd(sync_cmd);
1148 }
1149
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1150 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1151 struct its_vpe, its_build_vsync_cmd)
1152
1153 static void its_send_int(struct its_device *dev, u32 event_id)
1154 {
1155 struct its_cmd_desc desc;
1156
1157 desc.its_int_cmd.dev = dev;
1158 desc.its_int_cmd.event_id = event_id;
1159
1160 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1161 }
1162
its_send_clear(struct its_device * dev,u32 event_id)1163 static void its_send_clear(struct its_device *dev, u32 event_id)
1164 {
1165 struct its_cmd_desc desc;
1166
1167 desc.its_clear_cmd.dev = dev;
1168 desc.its_clear_cmd.event_id = event_id;
1169
1170 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1171 }
1172
its_send_inv(struct its_device * dev,u32 event_id)1173 static void its_send_inv(struct its_device *dev, u32 event_id)
1174 {
1175 struct its_cmd_desc desc;
1176
1177 desc.its_inv_cmd.dev = dev;
1178 desc.its_inv_cmd.event_id = event_id;
1179
1180 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1181 }
1182
its_send_mapd(struct its_device * dev,int valid)1183 static void its_send_mapd(struct its_device *dev, int valid)
1184 {
1185 struct its_cmd_desc desc;
1186
1187 desc.its_mapd_cmd.dev = dev;
1188 desc.its_mapd_cmd.valid = !!valid;
1189
1190 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1191 }
1192
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1193 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1194 int valid)
1195 {
1196 struct its_cmd_desc desc;
1197
1198 desc.its_mapc_cmd.col = col;
1199 desc.its_mapc_cmd.valid = !!valid;
1200
1201 its_send_single_command(its, its_build_mapc_cmd, &desc);
1202 }
1203
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1204 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1205 {
1206 struct its_cmd_desc desc;
1207
1208 desc.its_mapti_cmd.dev = dev;
1209 desc.its_mapti_cmd.phys_id = irq_id;
1210 desc.its_mapti_cmd.event_id = id;
1211
1212 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1213 }
1214
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1215 static void its_send_movi(struct its_device *dev,
1216 struct its_collection *col, u32 id)
1217 {
1218 struct its_cmd_desc desc;
1219
1220 desc.its_movi_cmd.dev = dev;
1221 desc.its_movi_cmd.col = col;
1222 desc.its_movi_cmd.event_id = id;
1223
1224 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1225 }
1226
its_send_discard(struct its_device * dev,u32 id)1227 static void its_send_discard(struct its_device *dev, u32 id)
1228 {
1229 struct its_cmd_desc desc;
1230
1231 desc.its_discard_cmd.dev = dev;
1232 desc.its_discard_cmd.event_id = id;
1233
1234 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1235 }
1236
its_send_invall(struct its_node * its,struct its_collection * col)1237 static void its_send_invall(struct its_node *its, struct its_collection *col)
1238 {
1239 struct its_cmd_desc desc;
1240
1241 desc.its_invall_cmd.col = col;
1242
1243 its_send_single_command(its, its_build_invall_cmd, &desc);
1244 }
1245
its_send_vmapti(struct its_device * dev,u32 id)1246 static void its_send_vmapti(struct its_device *dev, u32 id)
1247 {
1248 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1249 struct its_cmd_desc desc;
1250
1251 desc.its_vmapti_cmd.vpe = map->vpe;
1252 desc.its_vmapti_cmd.dev = dev;
1253 desc.its_vmapti_cmd.virt_id = map->vintid;
1254 desc.its_vmapti_cmd.event_id = id;
1255 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1256
1257 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1258 }
1259
its_send_vmovi(struct its_device * dev,u32 id)1260 static void its_send_vmovi(struct its_device *dev, u32 id)
1261 {
1262 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1263 struct its_cmd_desc desc;
1264
1265 desc.its_vmovi_cmd.vpe = map->vpe;
1266 desc.its_vmovi_cmd.dev = dev;
1267 desc.its_vmovi_cmd.event_id = id;
1268 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1269
1270 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1271 }
1272
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1273 static void its_send_vmapp(struct its_node *its,
1274 struct its_vpe *vpe, bool valid)
1275 {
1276 struct its_cmd_desc desc;
1277
1278 desc.its_vmapp_cmd.vpe = vpe;
1279 desc.its_vmapp_cmd.valid = valid;
1280 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1281
1282 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1283 }
1284
its_send_vmovp(struct its_vpe * vpe)1285 static void its_send_vmovp(struct its_vpe *vpe)
1286 {
1287 struct its_cmd_desc desc = {};
1288 struct its_node *its;
1289 unsigned long flags;
1290 int col_id = vpe->col_idx;
1291
1292 desc.its_vmovp_cmd.vpe = vpe;
1293
1294 if (!its_list_map) {
1295 its = list_first_entry(&its_nodes, struct its_node, entry);
1296 desc.its_vmovp_cmd.col = &its->collections[col_id];
1297 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1298 return;
1299 }
1300
1301 /*
1302 * Yet another marvel of the architecture. If using the
1303 * its_list "feature", we need to make sure that all ITSs
1304 * receive all VMOVP commands in the same order. The only way
1305 * to guarantee this is to make vmovp a serialization point.
1306 *
1307 * Wall <-- Head.
1308 */
1309 raw_spin_lock_irqsave(&vmovp_lock, flags);
1310
1311 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1312 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1313
1314 /* Emit VMOVPs */
1315 list_for_each_entry(its, &its_nodes, entry) {
1316 if (!is_v4(its))
1317 continue;
1318
1319 if (!require_its_list_vmovp(vpe->its_vm, its))
1320 continue;
1321
1322 desc.its_vmovp_cmd.col = &its->collections[col_id];
1323 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1324 }
1325
1326 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1327 }
1328
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1329 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1330 {
1331 struct its_cmd_desc desc;
1332
1333 desc.its_vinvall_cmd.vpe = vpe;
1334 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1335 }
1336
its_send_vinv(struct its_device * dev,u32 event_id)1337 static void its_send_vinv(struct its_device *dev, u32 event_id)
1338 {
1339 struct its_cmd_desc desc;
1340
1341 /*
1342 * There is no real VINV command. This is just a normal INV,
1343 * with a VSYNC instead of a SYNC.
1344 */
1345 desc.its_inv_cmd.dev = dev;
1346 desc.its_inv_cmd.event_id = event_id;
1347
1348 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1349 }
1350
its_send_vint(struct its_device * dev,u32 event_id)1351 static void its_send_vint(struct its_device *dev, u32 event_id)
1352 {
1353 struct its_cmd_desc desc;
1354
1355 /*
1356 * There is no real VINT command. This is just a normal INT,
1357 * with a VSYNC instead of a SYNC.
1358 */
1359 desc.its_int_cmd.dev = dev;
1360 desc.its_int_cmd.event_id = event_id;
1361
1362 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1363 }
1364
its_send_vclear(struct its_device * dev,u32 event_id)1365 static void its_send_vclear(struct its_device *dev, u32 event_id)
1366 {
1367 struct its_cmd_desc desc;
1368
1369 /*
1370 * There is no real VCLEAR command. This is just a normal CLEAR,
1371 * with a VSYNC instead of a SYNC.
1372 */
1373 desc.its_clear_cmd.dev = dev;
1374 desc.its_clear_cmd.event_id = event_id;
1375
1376 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1377 }
1378
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1379 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1380 {
1381 struct its_cmd_desc desc;
1382
1383 desc.its_invdb_cmd.vpe = vpe;
1384 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1385 }
1386
1387 /*
1388 * irqchip functions - assumes MSI, mostly.
1389 */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1390 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1391 {
1392 struct its_vlpi_map *map = get_vlpi_map(d);
1393 irq_hw_number_t hwirq;
1394 void *va;
1395 u8 *cfg;
1396
1397 if (map) {
1398 va = page_address(map->vm->vprop_page);
1399 hwirq = map->vintid;
1400
1401 /* Remember the updated property */
1402 map->properties &= ~clr;
1403 map->properties |= set | LPI_PROP_GROUP1;
1404 } else {
1405 va = gic_rdists->prop_table_va;
1406 hwirq = d->hwirq;
1407 }
1408
1409 cfg = va + hwirq - 8192;
1410 *cfg &= ~clr;
1411 *cfg |= set | LPI_PROP_GROUP1;
1412
1413 /*
1414 * Make the above write visible to the redistributors.
1415 * And yes, we're flushing exactly: One. Single. Byte.
1416 * Humpf...
1417 */
1418 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1419 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1420 else
1421 dsb(ishst);
1422 }
1423
wait_for_syncr(void __iomem * rdbase)1424 static void wait_for_syncr(void __iomem *rdbase)
1425 {
1426 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1427 cpu_relax();
1428 }
1429
direct_lpi_inv(struct irq_data * d)1430 static void direct_lpi_inv(struct irq_data *d)
1431 {
1432 struct its_vlpi_map *map = get_vlpi_map(d);
1433 void __iomem *rdbase;
1434 unsigned long flags;
1435 u64 val;
1436 int cpu;
1437
1438 if (map) {
1439 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1440
1441 WARN_ON(!is_v4_1(its_dev->its));
1442
1443 val = GICR_INVLPIR_V;
1444 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1445 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1446 } else {
1447 val = d->hwirq;
1448 }
1449
1450 /* Target the redistributor this LPI is currently routed to */
1451 cpu = irq_to_cpuid_lock(d, &flags);
1452 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1453 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1454 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1455
1456 wait_for_syncr(rdbase);
1457 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1458 irq_to_cpuid_unlock(d, flags);
1459 }
1460
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1461 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1462 {
1463 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1464
1465 lpi_write_config(d, clr, set);
1466 if (gic_rdists->has_direct_lpi &&
1467 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1468 direct_lpi_inv(d);
1469 else if (!irqd_is_forwarded_to_vcpu(d))
1470 its_send_inv(its_dev, its_get_event_id(d));
1471 else
1472 its_send_vinv(its_dev, its_get_event_id(d));
1473 }
1474
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1475 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1476 {
1477 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1478 u32 event = its_get_event_id(d);
1479 struct its_vlpi_map *map;
1480
1481 /*
1482 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1483 * here.
1484 */
1485 if (is_v4_1(its_dev->its))
1486 return;
1487
1488 map = dev_event_to_vlpi_map(its_dev, event);
1489
1490 if (map->db_enabled == enable)
1491 return;
1492
1493 map->db_enabled = enable;
1494
1495 /*
1496 * More fun with the architecture:
1497 *
1498 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1499 * value or to 1023, depending on the enable bit. But that
1500 * would be issuing a mapping for an /existing/ DevID+EventID
1501 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1502 * to the /same/ vPE, using this opportunity to adjust the
1503 * doorbell. Mouahahahaha. We loves it, Precious.
1504 */
1505 its_send_vmovi(its_dev, event);
1506 }
1507
its_mask_irq(struct irq_data * d)1508 static void its_mask_irq(struct irq_data *d)
1509 {
1510 if (irqd_is_forwarded_to_vcpu(d))
1511 its_vlpi_set_doorbell(d, false);
1512
1513 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1514 }
1515
its_unmask_irq(struct irq_data * d)1516 static void its_unmask_irq(struct irq_data *d)
1517 {
1518 if (irqd_is_forwarded_to_vcpu(d))
1519 its_vlpi_set_doorbell(d, true);
1520
1521 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1522 }
1523
its_read_lpi_count(struct irq_data * d,int cpu)1524 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1525 {
1526 if (irqd_affinity_is_managed(d))
1527 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1528
1529 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1530 }
1531
its_inc_lpi_count(struct irq_data * d,int cpu)1532 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1533 {
1534 if (irqd_affinity_is_managed(d))
1535 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1536 else
1537 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1538 }
1539
its_dec_lpi_count(struct irq_data * d,int cpu)1540 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1541 {
1542 if (irqd_affinity_is_managed(d))
1543 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1544 else
1545 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1546 }
1547
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1548 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1549 const struct cpumask *cpu_mask)
1550 {
1551 unsigned int cpu = nr_cpu_ids, tmp;
1552 int count = S32_MAX;
1553
1554 for_each_cpu(tmp, cpu_mask) {
1555 int this_count = its_read_lpi_count(d, tmp);
1556 if (this_count < count) {
1557 cpu = tmp;
1558 count = this_count;
1559 }
1560 }
1561
1562 return cpu;
1563 }
1564
1565 /*
1566 * As suggested by Thomas Gleixner in:
1567 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1568 */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1569 static int its_select_cpu(struct irq_data *d,
1570 const struct cpumask *aff_mask)
1571 {
1572 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1573 cpumask_var_t tmpmask;
1574 int cpu, node;
1575
1576 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1577 return -ENOMEM;
1578
1579 node = its_dev->its->numa_node;
1580
1581 if (!irqd_affinity_is_managed(d)) {
1582 /* First try the NUMA node */
1583 if (node != NUMA_NO_NODE) {
1584 /*
1585 * Try the intersection of the affinity mask and the
1586 * node mask (and the online mask, just to be safe).
1587 */
1588 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1589 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1590
1591 /*
1592 * Ideally, we would check if the mask is empty, and
1593 * try again on the full node here.
1594 *
1595 * But it turns out that the way ACPI describes the
1596 * affinity for ITSs only deals about memory, and
1597 * not target CPUs, so it cannot describe a single
1598 * ITS placed next to two NUMA nodes.
1599 *
1600 * Instead, just fallback on the online mask. This
1601 * diverges from Thomas' suggestion above.
1602 */
1603 cpu = cpumask_pick_least_loaded(d, tmpmask);
1604 if (cpu < nr_cpu_ids)
1605 goto out;
1606
1607 /* If we can't cross sockets, give up */
1608 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1609 goto out;
1610
1611 /* If the above failed, expand the search */
1612 }
1613
1614 /* Try the intersection of the affinity and online masks */
1615 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1616
1617 /* If that doesn't fly, the online mask is the last resort */
1618 if (cpumask_empty(tmpmask))
1619 cpumask_copy(tmpmask, cpu_online_mask);
1620
1621 cpu = cpumask_pick_least_loaded(d, tmpmask);
1622 } else {
1623 cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1624
1625 /* If we cannot cross sockets, limit the search to that node */
1626 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1627 node != NUMA_NO_NODE)
1628 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1629
1630 cpu = cpumask_pick_least_loaded(d, tmpmask);
1631 }
1632 out:
1633 free_cpumask_var(tmpmask);
1634
1635 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1636 return cpu;
1637 }
1638
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1639 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1640 bool force)
1641 {
1642 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1643 struct its_collection *target_col;
1644 u32 id = its_get_event_id(d);
1645 int cpu, prev_cpu;
1646
1647 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1648 if (irqd_is_forwarded_to_vcpu(d))
1649 return -EINVAL;
1650
1651 prev_cpu = its_dev->event_map.col_map[id];
1652 its_dec_lpi_count(d, prev_cpu);
1653
1654 if (!force)
1655 cpu = its_select_cpu(d, mask_val);
1656 else
1657 cpu = cpumask_pick_least_loaded(d, mask_val);
1658
1659 if (cpu < 0 || cpu >= nr_cpu_ids)
1660 goto err;
1661
1662 /* don't set the affinity when the target cpu is same as current one */
1663 if (cpu != prev_cpu) {
1664 target_col = &its_dev->its->collections[cpu];
1665 its_send_movi(its_dev, target_col, id);
1666 its_dev->event_map.col_map[id] = cpu;
1667 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1668 }
1669
1670 its_inc_lpi_count(d, cpu);
1671
1672 return IRQ_SET_MASK_OK_DONE;
1673
1674 err:
1675 its_inc_lpi_count(d, prev_cpu);
1676 return -EINVAL;
1677 }
1678
its_irq_get_msi_base(struct its_device * its_dev)1679 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1680 {
1681 struct its_node *its = its_dev->its;
1682
1683 return its->phys_base + GITS_TRANSLATER;
1684 }
1685
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1686 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1687 {
1688 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1689 struct its_node *its;
1690 u64 addr;
1691
1692 its = its_dev->its;
1693 addr = its->get_msi_base(its_dev);
1694
1695 msg->address_lo = lower_32_bits(addr);
1696 msg->address_hi = upper_32_bits(addr);
1697 msg->data = its_get_event_id(d);
1698
1699 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1700 }
1701
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1702 static int its_irq_set_irqchip_state(struct irq_data *d,
1703 enum irqchip_irq_state which,
1704 bool state)
1705 {
1706 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1707 u32 event = its_get_event_id(d);
1708
1709 if (which != IRQCHIP_STATE_PENDING)
1710 return -EINVAL;
1711
1712 if (irqd_is_forwarded_to_vcpu(d)) {
1713 if (state)
1714 its_send_vint(its_dev, event);
1715 else
1716 its_send_vclear(its_dev, event);
1717 } else {
1718 if (state)
1719 its_send_int(its_dev, event);
1720 else
1721 its_send_clear(its_dev, event);
1722 }
1723
1724 return 0;
1725 }
1726
its_irq_retrigger(struct irq_data * d)1727 static int its_irq_retrigger(struct irq_data *d)
1728 {
1729 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1730 }
1731
1732 /*
1733 * Two favourable cases:
1734 *
1735 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1736 * for vSGI delivery
1737 *
1738 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1739 * and we're better off mapping all VPEs always
1740 *
1741 * If neither (a) nor (b) is true, then we map vPEs on demand.
1742 *
1743 */
gic_requires_eager_mapping(void)1744 static bool gic_requires_eager_mapping(void)
1745 {
1746 if (!its_list_map || gic_rdists->has_rvpeid)
1747 return true;
1748
1749 return false;
1750 }
1751
its_map_vm(struct its_node * its,struct its_vm * vm)1752 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1753 {
1754 unsigned long flags;
1755
1756 if (gic_requires_eager_mapping())
1757 return;
1758
1759 raw_spin_lock_irqsave(&vmovp_lock, flags);
1760
1761 /*
1762 * If the VM wasn't mapped yet, iterate over the vpes and get
1763 * them mapped now.
1764 */
1765 vm->vlpi_count[its->list_nr]++;
1766
1767 if (vm->vlpi_count[its->list_nr] == 1) {
1768 int i;
1769
1770 for (i = 0; i < vm->nr_vpes; i++) {
1771 struct its_vpe *vpe = vm->vpes[i];
1772 struct irq_data *d = irq_get_irq_data(vpe->irq);
1773
1774 /* Map the VPE to the first possible CPU */
1775 vpe->col_idx = cpumask_first(cpu_online_mask);
1776 its_send_vmapp(its, vpe, true);
1777 its_send_vinvall(its, vpe);
1778 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1779 }
1780 }
1781
1782 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1783 }
1784
its_unmap_vm(struct its_node * its,struct its_vm * vm)1785 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1786 {
1787 unsigned long flags;
1788
1789 /* Not using the ITS list? Everything is always mapped. */
1790 if (gic_requires_eager_mapping())
1791 return;
1792
1793 raw_spin_lock_irqsave(&vmovp_lock, flags);
1794
1795 if (!--vm->vlpi_count[its->list_nr]) {
1796 int i;
1797
1798 for (i = 0; i < vm->nr_vpes; i++)
1799 its_send_vmapp(its, vm->vpes[i], false);
1800 }
1801
1802 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1803 }
1804
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1805 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1806 {
1807 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1808 u32 event = its_get_event_id(d);
1809 int ret = 0;
1810
1811 if (!info->map)
1812 return -EINVAL;
1813
1814 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1815
1816 if (!its_dev->event_map.vm) {
1817 struct its_vlpi_map *maps;
1818
1819 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1820 GFP_ATOMIC);
1821 if (!maps) {
1822 ret = -ENOMEM;
1823 goto out;
1824 }
1825
1826 its_dev->event_map.vm = info->map->vm;
1827 its_dev->event_map.vlpi_maps = maps;
1828 } else if (its_dev->event_map.vm != info->map->vm) {
1829 ret = -EINVAL;
1830 goto out;
1831 }
1832
1833 /* Get our private copy of the mapping information */
1834 its_dev->event_map.vlpi_maps[event] = *info->map;
1835
1836 if (irqd_is_forwarded_to_vcpu(d)) {
1837 /* Already mapped, move it around */
1838 its_send_vmovi(its_dev, event);
1839 } else {
1840 /* Ensure all the VPEs are mapped on this ITS */
1841 its_map_vm(its_dev->its, info->map->vm);
1842
1843 /*
1844 * Flag the interrupt as forwarded so that we can
1845 * start poking the virtual property table.
1846 */
1847 irqd_set_forwarded_to_vcpu(d);
1848
1849 /* Write out the property to the prop table */
1850 lpi_write_config(d, 0xff, info->map->properties);
1851
1852 /* Drop the physical mapping */
1853 its_send_discard(its_dev, event);
1854
1855 /* and install the virtual one */
1856 its_send_vmapti(its_dev, event);
1857
1858 /* Increment the number of VLPIs */
1859 its_dev->event_map.nr_vlpis++;
1860 }
1861
1862 out:
1863 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1864 return ret;
1865 }
1866
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1867 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1868 {
1869 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1870 struct its_vlpi_map *map;
1871 int ret = 0;
1872
1873 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1874
1875 map = get_vlpi_map(d);
1876
1877 if (!its_dev->event_map.vm || !map) {
1878 ret = -EINVAL;
1879 goto out;
1880 }
1881
1882 /* Copy our mapping information to the incoming request */
1883 *info->map = *map;
1884
1885 out:
1886 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1887 return ret;
1888 }
1889
its_vlpi_unmap(struct irq_data * d)1890 static int its_vlpi_unmap(struct irq_data *d)
1891 {
1892 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1893 u32 event = its_get_event_id(d);
1894 int ret = 0;
1895
1896 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1897
1898 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1899 ret = -EINVAL;
1900 goto out;
1901 }
1902
1903 /* Drop the virtual mapping */
1904 its_send_discard(its_dev, event);
1905
1906 /* and restore the physical one */
1907 irqd_clr_forwarded_to_vcpu(d);
1908 its_send_mapti(its_dev, d->hwirq, event);
1909 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1910 LPI_PROP_ENABLED |
1911 LPI_PROP_GROUP1));
1912
1913 /* Potentially unmap the VM from this ITS */
1914 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1915
1916 /*
1917 * Drop the refcount and make the device available again if
1918 * this was the last VLPI.
1919 */
1920 if (!--its_dev->event_map.nr_vlpis) {
1921 its_dev->event_map.vm = NULL;
1922 kfree(its_dev->event_map.vlpi_maps);
1923 }
1924
1925 out:
1926 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1927 return ret;
1928 }
1929
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1930 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1931 {
1932 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1933
1934 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1935 return -EINVAL;
1936
1937 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1938 lpi_update_config(d, 0xff, info->config);
1939 else
1940 lpi_write_config(d, 0xff, info->config);
1941 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1942
1943 return 0;
1944 }
1945
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1946 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1947 {
1948 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1949 struct its_cmd_info *info = vcpu_info;
1950
1951 /* Need a v4 ITS */
1952 if (!is_v4(its_dev->its))
1953 return -EINVAL;
1954
1955 /* Unmap request? */
1956 if (!info)
1957 return its_vlpi_unmap(d);
1958
1959 switch (info->cmd_type) {
1960 case MAP_VLPI:
1961 return its_vlpi_map(d, info);
1962
1963 case GET_VLPI:
1964 return its_vlpi_get(d, info);
1965
1966 case PROP_UPDATE_VLPI:
1967 case PROP_UPDATE_AND_INV_VLPI:
1968 return its_vlpi_prop_update(d, info);
1969
1970 default:
1971 return -EINVAL;
1972 }
1973 }
1974
1975 static struct irq_chip its_irq_chip = {
1976 .name = "ITS",
1977 .irq_mask = its_mask_irq,
1978 .irq_unmask = its_unmask_irq,
1979 .irq_eoi = irq_chip_eoi_parent,
1980 .irq_set_affinity = its_set_affinity,
1981 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1982 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1983 .irq_retrigger = its_irq_retrigger,
1984 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1985 };
1986
1987
1988 /*
1989 * How we allocate LPIs:
1990 *
1991 * lpi_range_list contains ranges of LPIs that are to available to
1992 * allocate from. To allocate LPIs, just pick the first range that
1993 * fits the required allocation, and reduce it by the required
1994 * amount. Once empty, remove the range from the list.
1995 *
1996 * To free a range of LPIs, add a free range to the list, sort it and
1997 * merge the result if the new range happens to be adjacent to an
1998 * already free block.
1999 *
2000 * The consequence of the above is that allocation is cost is low, but
2001 * freeing is expensive. We assumes that freeing rarely occurs.
2002 */
2003 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2004
2005 static DEFINE_MUTEX(lpi_range_lock);
2006 static LIST_HEAD(lpi_range_list);
2007
2008 struct lpi_range {
2009 struct list_head entry;
2010 u32 base_id;
2011 u32 span;
2012 };
2013
mk_lpi_range(u32 base,u32 span)2014 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2015 {
2016 struct lpi_range *range;
2017
2018 range = kmalloc(sizeof(*range), GFP_KERNEL);
2019 if (range) {
2020 range->base_id = base;
2021 range->span = span;
2022 }
2023
2024 return range;
2025 }
2026
alloc_lpi_range(u32 nr_lpis,u32 * base)2027 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2028 {
2029 struct lpi_range *range, *tmp;
2030 int err = -ENOSPC;
2031
2032 mutex_lock(&lpi_range_lock);
2033
2034 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2035 if (range->span >= nr_lpis) {
2036 *base = range->base_id;
2037 range->base_id += nr_lpis;
2038 range->span -= nr_lpis;
2039
2040 if (range->span == 0) {
2041 list_del(&range->entry);
2042 kfree(range);
2043 }
2044
2045 err = 0;
2046 break;
2047 }
2048 }
2049
2050 mutex_unlock(&lpi_range_lock);
2051
2052 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2053 return err;
2054 }
2055
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2056 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2057 {
2058 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2059 return;
2060 if (a->base_id + a->span != b->base_id)
2061 return;
2062 b->base_id = a->base_id;
2063 b->span += a->span;
2064 list_del(&a->entry);
2065 kfree(a);
2066 }
2067
free_lpi_range(u32 base,u32 nr_lpis)2068 static int free_lpi_range(u32 base, u32 nr_lpis)
2069 {
2070 struct lpi_range *new, *old;
2071
2072 new = mk_lpi_range(base, nr_lpis);
2073 if (!new)
2074 return -ENOMEM;
2075
2076 mutex_lock(&lpi_range_lock);
2077
2078 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2079 if (old->base_id < base)
2080 break;
2081 }
2082 /*
2083 * old is the last element with ->base_id smaller than base,
2084 * so new goes right after it. If there are no elements with
2085 * ->base_id smaller than base, &old->entry ends up pointing
2086 * at the head of the list, and inserting new it the start of
2087 * the list is the right thing to do in that case as well.
2088 */
2089 list_add(&new->entry, &old->entry);
2090 /*
2091 * Now check if we can merge with the preceding and/or
2092 * following ranges.
2093 */
2094 merge_lpi_ranges(old, new);
2095 merge_lpi_ranges(new, list_next_entry(new, entry));
2096
2097 mutex_unlock(&lpi_range_lock);
2098 return 0;
2099 }
2100
its_lpi_init(u32 id_bits)2101 static int __init its_lpi_init(u32 id_bits)
2102 {
2103 u32 lpis = (1UL << id_bits) - 8192;
2104 u32 numlpis;
2105 int err;
2106
2107 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2108
2109 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2110 lpis = numlpis;
2111 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2112 lpis);
2113 }
2114
2115 /*
2116 * Initializing the allocator is just the same as freeing the
2117 * full range of LPIs.
2118 */
2119 err = free_lpi_range(8192, lpis);
2120 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2121 return err;
2122 }
2123
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2124 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2125 {
2126 unsigned long *bitmap = NULL;
2127 int err = 0;
2128
2129 do {
2130 err = alloc_lpi_range(nr_irqs, base);
2131 if (!err)
2132 break;
2133
2134 nr_irqs /= 2;
2135 } while (nr_irqs > 0);
2136
2137 if (!nr_irqs)
2138 err = -ENOSPC;
2139
2140 if (err)
2141 goto out;
2142
2143 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2144 if (!bitmap)
2145 goto out;
2146
2147 *nr_ids = nr_irqs;
2148
2149 out:
2150 if (!bitmap)
2151 *base = *nr_ids = 0;
2152
2153 return bitmap;
2154 }
2155
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2156 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2157 {
2158 WARN_ON(free_lpi_range(base, nr_ids));
2159 bitmap_free(bitmap);
2160 }
2161
gic_reset_prop_table(void * va)2162 static void gic_reset_prop_table(void *va)
2163 {
2164 /* Priority 0xa0, Group-1, disabled */
2165 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2166
2167 /* Make sure the GIC will observe the written configuration */
2168 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2169 }
2170
its_allocate_prop_table(gfp_t gfp_flags)2171 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2172 {
2173 struct page *prop_page;
2174
2175 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2176 if (!prop_page)
2177 return NULL;
2178
2179 gic_reset_prop_table(page_address(prop_page));
2180
2181 return prop_page;
2182 }
2183
its_free_prop_table(struct page * prop_page)2184 static void its_free_prop_table(struct page *prop_page)
2185 {
2186 free_pages((unsigned long)page_address(prop_page),
2187 get_order(LPI_PROPBASE_SZ));
2188 }
2189
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2190 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2191 {
2192 phys_addr_t start, end, addr_end;
2193 u64 i;
2194
2195 /*
2196 * We don't bother checking for a kdump kernel as by
2197 * construction, the LPI tables are out of this kernel's
2198 * memory map.
2199 */
2200 if (is_kdump_kernel())
2201 return true;
2202
2203 addr_end = addr + size - 1;
2204
2205 for_each_reserved_mem_range(i, &start, &end) {
2206 if (addr >= start && addr_end <= end)
2207 return true;
2208 }
2209
2210 /* Not found, not a good sign... */
2211 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2212 &addr, &addr_end);
2213 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2214 return false;
2215 }
2216
gic_reserve_range(phys_addr_t addr,unsigned long size)2217 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2218 {
2219 if (efi_enabled(EFI_CONFIG_TABLES))
2220 return efi_mem_reserve_persistent(addr, size);
2221
2222 return 0;
2223 }
2224
its_setup_lpi_prop_table(void)2225 static int __init its_setup_lpi_prop_table(void)
2226 {
2227 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2228 u64 val;
2229
2230 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2231 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2232
2233 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2234 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2235 LPI_PROPBASE_SZ,
2236 MEMREMAP_WB);
2237 gic_reset_prop_table(gic_rdists->prop_table_va);
2238 } else {
2239 struct page *page;
2240
2241 lpi_id_bits = min_t(u32,
2242 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2243 ITS_MAX_LPI_NRBITS);
2244 page = its_allocate_prop_table(GFP_NOWAIT);
2245 if (!page) {
2246 pr_err("Failed to allocate PROPBASE\n");
2247 return -ENOMEM;
2248 }
2249
2250 gic_rdists->prop_table_pa = page_to_phys(page);
2251 gic_rdists->prop_table_va = page_address(page);
2252 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2253 LPI_PROPBASE_SZ));
2254 }
2255
2256 pr_info("GICv3: using LPI property table @%pa\n",
2257 &gic_rdists->prop_table_pa);
2258
2259 return its_lpi_init(lpi_id_bits);
2260 }
2261
2262 static const char *its_base_type_string[] = {
2263 [GITS_BASER_TYPE_DEVICE] = "Devices",
2264 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2265 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2266 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2267 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2268 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2269 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2270 };
2271
its_read_baser(struct its_node * its,struct its_baser * baser)2272 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2273 {
2274 u32 idx = baser - its->tables;
2275
2276 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2277 }
2278
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2279 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2280 u64 val)
2281 {
2282 u32 idx = baser - its->tables;
2283
2284 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2285 baser->val = its_read_baser(its, baser);
2286 }
2287
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2288 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2289 u64 cache, u64 shr, u32 order, bool indirect)
2290 {
2291 u64 val = its_read_baser(its, baser);
2292 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2293 u64 type = GITS_BASER_TYPE(val);
2294 u64 baser_phys, tmp;
2295 u32 alloc_pages, psz;
2296 struct page *page;
2297 void *base;
2298
2299 psz = baser->psz;
2300 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2301 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2302 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2303 &its->phys_base, its_base_type_string[type],
2304 alloc_pages, GITS_BASER_PAGES_MAX);
2305 alloc_pages = GITS_BASER_PAGES_MAX;
2306 order = get_order(GITS_BASER_PAGES_MAX * psz);
2307 }
2308
2309 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2310 if (!page)
2311 return -ENOMEM;
2312
2313 base = (void *)page_address(page);
2314 baser_phys = virt_to_phys(base);
2315
2316 /* Check if the physical address of the memory is above 48bits */
2317 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2318
2319 /* 52bit PA is supported only when PageSize=64K */
2320 if (psz != SZ_64K) {
2321 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2322 free_pages((unsigned long)base, order);
2323 return -ENXIO;
2324 }
2325
2326 /* Convert 52bit PA to 48bit field */
2327 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2328 }
2329
2330 retry_baser:
2331 val = (baser_phys |
2332 (type << GITS_BASER_TYPE_SHIFT) |
2333 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2334 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2335 cache |
2336 shr |
2337 GITS_BASER_VALID);
2338
2339 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2340
2341 switch (psz) {
2342 case SZ_4K:
2343 val |= GITS_BASER_PAGE_SIZE_4K;
2344 break;
2345 case SZ_16K:
2346 val |= GITS_BASER_PAGE_SIZE_16K;
2347 break;
2348 case SZ_64K:
2349 val |= GITS_BASER_PAGE_SIZE_64K;
2350 break;
2351 }
2352
2353 its_write_baser(its, baser, val);
2354 tmp = baser->val;
2355
2356 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2357 /*
2358 * Shareability didn't stick. Just use
2359 * whatever the read reported, which is likely
2360 * to be the only thing this redistributor
2361 * supports. If that's zero, make it
2362 * non-cacheable as well.
2363 */
2364 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2365 if (!shr) {
2366 cache = GITS_BASER_nC;
2367 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2368 }
2369 goto retry_baser;
2370 }
2371
2372 if (val != tmp) {
2373 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2374 &its->phys_base, its_base_type_string[type],
2375 val, tmp);
2376 free_pages((unsigned long)base, order);
2377 return -ENXIO;
2378 }
2379
2380 baser->order = order;
2381 baser->base = base;
2382 baser->psz = psz;
2383 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2384
2385 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2386 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2387 its_base_type_string[type],
2388 (unsigned long)virt_to_phys(base),
2389 indirect ? "indirect" : "flat", (int)esz,
2390 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2391
2392 return 0;
2393 }
2394
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2395 static bool its_parse_indirect_baser(struct its_node *its,
2396 struct its_baser *baser,
2397 u32 *order, u32 ids)
2398 {
2399 u64 tmp = its_read_baser(its, baser);
2400 u64 type = GITS_BASER_TYPE(tmp);
2401 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2402 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2403 u32 new_order = *order;
2404 u32 psz = baser->psz;
2405 bool indirect = false;
2406
2407 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2408 if ((esz << ids) > (psz * 2)) {
2409 /*
2410 * Find out whether hw supports a single or two-level table by
2411 * table by reading bit at offset '62' after writing '1' to it.
2412 */
2413 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2414 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2415
2416 if (indirect) {
2417 /*
2418 * The size of the lvl2 table is equal to ITS page size
2419 * which is 'psz'. For computing lvl1 table size,
2420 * subtract ID bits that sparse lvl2 table from 'ids'
2421 * which is reported by ITS hardware times lvl1 table
2422 * entry size.
2423 */
2424 ids -= ilog2(psz / (int)esz);
2425 esz = GITS_LVL1_ENTRY_SIZE;
2426 }
2427 }
2428
2429 /*
2430 * Allocate as many entries as required to fit the
2431 * range of device IDs that the ITS can grok... The ID
2432 * space being incredibly sparse, this results in a
2433 * massive waste of memory if two-level device table
2434 * feature is not supported by hardware.
2435 */
2436 new_order = max_t(u32, get_order(esz << ids), new_order);
2437 if (new_order >= MAX_ORDER) {
2438 new_order = MAX_ORDER - 1;
2439 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2440 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2441 &its->phys_base, its_base_type_string[type],
2442 device_ids(its), ids);
2443 }
2444
2445 *order = new_order;
2446
2447 return indirect;
2448 }
2449
compute_common_aff(u64 val)2450 static u32 compute_common_aff(u64 val)
2451 {
2452 u32 aff, clpiaff;
2453
2454 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2455 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2456
2457 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2458 }
2459
compute_its_aff(struct its_node * its)2460 static u32 compute_its_aff(struct its_node *its)
2461 {
2462 u64 val;
2463 u32 svpet;
2464
2465 /*
2466 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2467 * the resulting affinity. We then use that to see if this match
2468 * our own affinity.
2469 */
2470 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2471 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2472 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2473 return compute_common_aff(val);
2474 }
2475
find_sibling_its(struct its_node * cur_its)2476 static struct its_node *find_sibling_its(struct its_node *cur_its)
2477 {
2478 struct its_node *its;
2479 u32 aff;
2480
2481 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2482 return NULL;
2483
2484 aff = compute_its_aff(cur_its);
2485
2486 list_for_each_entry(its, &its_nodes, entry) {
2487 u64 baser;
2488
2489 if (!is_v4_1(its) || its == cur_its)
2490 continue;
2491
2492 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2493 continue;
2494
2495 if (aff != compute_its_aff(its))
2496 continue;
2497
2498 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2499 baser = its->tables[2].val;
2500 if (!(baser & GITS_BASER_VALID))
2501 continue;
2502
2503 return its;
2504 }
2505
2506 return NULL;
2507 }
2508
its_free_tables(struct its_node * its)2509 static void its_free_tables(struct its_node *its)
2510 {
2511 int i;
2512
2513 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2514 if (its->tables[i].base) {
2515 free_pages((unsigned long)its->tables[i].base,
2516 its->tables[i].order);
2517 its->tables[i].base = NULL;
2518 }
2519 }
2520 }
2521
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2522 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2523 {
2524 u64 psz = SZ_64K;
2525
2526 while (psz) {
2527 u64 val, gpsz;
2528
2529 val = its_read_baser(its, baser);
2530 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2531
2532 switch (psz) {
2533 case SZ_64K:
2534 gpsz = GITS_BASER_PAGE_SIZE_64K;
2535 break;
2536 case SZ_16K:
2537 gpsz = GITS_BASER_PAGE_SIZE_16K;
2538 break;
2539 case SZ_4K:
2540 default:
2541 gpsz = GITS_BASER_PAGE_SIZE_4K;
2542 break;
2543 }
2544
2545 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2546
2547 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2548 its_write_baser(its, baser, val);
2549
2550 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2551 break;
2552
2553 switch (psz) {
2554 case SZ_64K:
2555 psz = SZ_16K;
2556 break;
2557 case SZ_16K:
2558 psz = SZ_4K;
2559 break;
2560 case SZ_4K:
2561 default:
2562 return -1;
2563 }
2564 }
2565
2566 baser->psz = psz;
2567 return 0;
2568 }
2569
its_alloc_tables(struct its_node * its)2570 static int its_alloc_tables(struct its_node *its)
2571 {
2572 u64 shr = GITS_BASER_InnerShareable;
2573 u64 cache = GITS_BASER_RaWaWb;
2574 int err, i;
2575
2576 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2577 /* erratum 24313: ignore memory access type */
2578 cache = GITS_BASER_nCnB;
2579
2580 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2581 struct its_baser *baser = its->tables + i;
2582 u64 val = its_read_baser(its, baser);
2583 u64 type = GITS_BASER_TYPE(val);
2584 bool indirect = false;
2585 u32 order;
2586
2587 if (type == GITS_BASER_TYPE_NONE)
2588 continue;
2589
2590 if (its_probe_baser_psz(its, baser)) {
2591 its_free_tables(its);
2592 return -ENXIO;
2593 }
2594
2595 order = get_order(baser->psz);
2596
2597 switch (type) {
2598 case GITS_BASER_TYPE_DEVICE:
2599 indirect = its_parse_indirect_baser(its, baser, &order,
2600 device_ids(its));
2601 break;
2602
2603 case GITS_BASER_TYPE_VCPU:
2604 if (is_v4_1(its)) {
2605 struct its_node *sibling;
2606
2607 WARN_ON(i != 2);
2608 if ((sibling = find_sibling_its(its))) {
2609 *baser = sibling->tables[2];
2610 its_write_baser(its, baser, baser->val);
2611 continue;
2612 }
2613 }
2614
2615 indirect = its_parse_indirect_baser(its, baser, &order,
2616 ITS_MAX_VPEID_BITS);
2617 break;
2618 }
2619
2620 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2621 if (err < 0) {
2622 its_free_tables(its);
2623 return err;
2624 }
2625
2626 /* Update settings which will be used for next BASERn */
2627 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2628 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2629 }
2630
2631 return 0;
2632 }
2633
inherit_vpe_l1_table_from_its(void)2634 static u64 inherit_vpe_l1_table_from_its(void)
2635 {
2636 struct its_node *its;
2637 u64 val;
2638 u32 aff;
2639
2640 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2641 aff = compute_common_aff(val);
2642
2643 list_for_each_entry(its, &its_nodes, entry) {
2644 u64 baser, addr;
2645
2646 if (!is_v4_1(its))
2647 continue;
2648
2649 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2650 continue;
2651
2652 if (aff != compute_its_aff(its))
2653 continue;
2654
2655 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2656 baser = its->tables[2].val;
2657 if (!(baser & GITS_BASER_VALID))
2658 continue;
2659
2660 /* We have a winner! */
2661 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2662
2663 val = GICR_VPROPBASER_4_1_VALID;
2664 if (baser & GITS_BASER_INDIRECT)
2665 val |= GICR_VPROPBASER_4_1_INDIRECT;
2666 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2667 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2668 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2669 case GIC_PAGE_SIZE_64K:
2670 addr = GITS_BASER_ADDR_48_to_52(baser);
2671 break;
2672 default:
2673 addr = baser & GENMASK_ULL(47, 12);
2674 break;
2675 }
2676 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2677 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2678 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2679 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2680 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2681 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2682
2683 return val;
2684 }
2685
2686 return 0;
2687 }
2688
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2689 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2690 {
2691 u32 aff;
2692 u64 val;
2693 int cpu;
2694
2695 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2696 aff = compute_common_aff(val);
2697
2698 for_each_possible_cpu(cpu) {
2699 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2700
2701 if (!base || cpu == smp_processor_id())
2702 continue;
2703
2704 val = gic_read_typer(base + GICR_TYPER);
2705 if (aff != compute_common_aff(val))
2706 continue;
2707
2708 /*
2709 * At this point, we have a victim. This particular CPU
2710 * has already booted, and has an affinity that matches
2711 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2712 * Make sure we don't write the Z bit in that case.
2713 */
2714 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2715 val &= ~GICR_VPROPBASER_4_1_Z;
2716
2717 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2718 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2719
2720 return val;
2721 }
2722
2723 return 0;
2724 }
2725
allocate_vpe_l2_table(int cpu,u32 id)2726 static bool allocate_vpe_l2_table(int cpu, u32 id)
2727 {
2728 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2729 unsigned int psz, esz, idx, npg, gpsz;
2730 u64 val;
2731 struct page *page;
2732 __le64 *table;
2733
2734 if (!gic_rdists->has_rvpeid)
2735 return true;
2736
2737 /* Skip non-present CPUs */
2738 if (!base)
2739 return true;
2740
2741 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2742
2743 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2744 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2745 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2746
2747 switch (gpsz) {
2748 default:
2749 WARN_ON(1);
2750 fallthrough;
2751 case GIC_PAGE_SIZE_4K:
2752 psz = SZ_4K;
2753 break;
2754 case GIC_PAGE_SIZE_16K:
2755 psz = SZ_16K;
2756 break;
2757 case GIC_PAGE_SIZE_64K:
2758 psz = SZ_64K;
2759 break;
2760 }
2761
2762 /* Don't allow vpe_id that exceeds single, flat table limit */
2763 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2764 return (id < (npg * psz / (esz * SZ_8)));
2765
2766 /* Compute 1st level table index & check if that exceeds table limit */
2767 idx = id >> ilog2(psz / (esz * SZ_8));
2768 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2769 return false;
2770
2771 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2772
2773 /* Allocate memory for 2nd level table */
2774 if (!table[idx]) {
2775 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2776 if (!page)
2777 return false;
2778
2779 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2780 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2781 gic_flush_dcache_to_poc(page_address(page), psz);
2782
2783 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2784
2785 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2786 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2787 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2788
2789 /* Ensure updated table contents are visible to RD hardware */
2790 dsb(sy);
2791 }
2792
2793 return true;
2794 }
2795
allocate_vpe_l1_table(void)2796 static int allocate_vpe_l1_table(void)
2797 {
2798 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2799 u64 val, gpsz, npg, pa;
2800 unsigned int psz = SZ_64K;
2801 unsigned int np, epp, esz;
2802 struct page *page;
2803
2804 if (!gic_rdists->has_rvpeid)
2805 return 0;
2806
2807 /*
2808 * if VPENDBASER.Valid is set, disable any previously programmed
2809 * VPE by setting PendingLast while clearing Valid. This has the
2810 * effect of making sure no doorbell will be generated and we can
2811 * then safely clear VPROPBASER.Valid.
2812 */
2813 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2814 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2815 vlpi_base + GICR_VPENDBASER);
2816
2817 /*
2818 * If we can inherit the configuration from another RD, let's do
2819 * so. Otherwise, we have to go through the allocation process. We
2820 * assume that all RDs have the exact same requirements, as
2821 * nothing will work otherwise.
2822 */
2823 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2824 if (val & GICR_VPROPBASER_4_1_VALID)
2825 goto out;
2826
2827 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2828 if (!gic_data_rdist()->vpe_table_mask)
2829 return -ENOMEM;
2830
2831 val = inherit_vpe_l1_table_from_its();
2832 if (val & GICR_VPROPBASER_4_1_VALID)
2833 goto out;
2834
2835 /* First probe the page size */
2836 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2837 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2838 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2839 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2840 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2841
2842 switch (gpsz) {
2843 default:
2844 gpsz = GIC_PAGE_SIZE_4K;
2845 fallthrough;
2846 case GIC_PAGE_SIZE_4K:
2847 psz = SZ_4K;
2848 break;
2849 case GIC_PAGE_SIZE_16K:
2850 psz = SZ_16K;
2851 break;
2852 case GIC_PAGE_SIZE_64K:
2853 psz = SZ_64K;
2854 break;
2855 }
2856
2857 /*
2858 * Start populating the register from scratch, including RO fields
2859 * (which we want to print in debug cases...)
2860 */
2861 val = 0;
2862 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2863 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2864
2865 /* How many entries per GIC page? */
2866 esz++;
2867 epp = psz / (esz * SZ_8);
2868
2869 /*
2870 * If we need more than just a single L1 page, flag the table
2871 * as indirect and compute the number of required L1 pages.
2872 */
2873 if (epp < ITS_MAX_VPEID) {
2874 int nl2;
2875
2876 val |= GICR_VPROPBASER_4_1_INDIRECT;
2877
2878 /* Number of L2 pages required to cover the VPEID space */
2879 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2880
2881 /* Number of L1 pages to point to the L2 pages */
2882 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2883 } else {
2884 npg = 1;
2885 }
2886
2887 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2888
2889 /* Right, that's the number of CPU pages we need for L1 */
2890 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2891
2892 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2893 np, npg, psz, epp, esz);
2894 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2895 if (!page)
2896 return -ENOMEM;
2897
2898 gic_data_rdist()->vpe_l1_base = page_address(page);
2899 pa = virt_to_phys(page_address(page));
2900 WARN_ON(!IS_ALIGNED(pa, psz));
2901
2902 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2903 val |= GICR_VPROPBASER_RaWb;
2904 val |= GICR_VPROPBASER_InnerShareable;
2905 val |= GICR_VPROPBASER_4_1_Z;
2906 val |= GICR_VPROPBASER_4_1_VALID;
2907
2908 out:
2909 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2910 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2911
2912 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2913 smp_processor_id(), val,
2914 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2915
2916 return 0;
2917 }
2918
its_alloc_collections(struct its_node * its)2919 static int its_alloc_collections(struct its_node *its)
2920 {
2921 int i;
2922
2923 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2924 GFP_KERNEL);
2925 if (!its->collections)
2926 return -ENOMEM;
2927
2928 for (i = 0; i < nr_cpu_ids; i++)
2929 its->collections[i].target_address = ~0ULL;
2930
2931 return 0;
2932 }
2933
its_allocate_pending_table(gfp_t gfp_flags)2934 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2935 {
2936 struct page *pend_page;
2937
2938 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2939 get_order(LPI_PENDBASE_SZ));
2940 if (!pend_page)
2941 return NULL;
2942
2943 /* Make sure the GIC will observe the zero-ed page */
2944 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2945
2946 return pend_page;
2947 }
2948
its_free_pending_table(struct page * pt)2949 static void its_free_pending_table(struct page *pt)
2950 {
2951 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2952 }
2953
2954 /*
2955 * Booting with kdump and LPIs enabled is generally fine. Any other
2956 * case is wrong in the absence of firmware/EFI support.
2957 */
enabled_lpis_allowed(void)2958 static bool enabled_lpis_allowed(void)
2959 {
2960 phys_addr_t addr;
2961 u64 val;
2962
2963 /* Check whether the property table is in a reserved region */
2964 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2965 addr = val & GENMASK_ULL(51, 12);
2966
2967 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2968 }
2969
allocate_lpi_tables(void)2970 static int __init allocate_lpi_tables(void)
2971 {
2972 u64 val;
2973 int err, cpu;
2974
2975 /*
2976 * If LPIs are enabled while we run this from the boot CPU,
2977 * flag the RD tables as pre-allocated if the stars do align.
2978 */
2979 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2980 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2981 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2982 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2983 pr_info("GICv3: Using preallocated redistributor tables\n");
2984 }
2985
2986 err = its_setup_lpi_prop_table();
2987 if (err)
2988 return err;
2989
2990 /*
2991 * We allocate all the pending tables anyway, as we may have a
2992 * mix of RDs that have had LPIs enabled, and some that
2993 * don't. We'll free the unused ones as each CPU comes online.
2994 */
2995 for_each_possible_cpu(cpu) {
2996 struct page *pend_page;
2997
2998 pend_page = its_allocate_pending_table(GFP_NOWAIT);
2999 if (!pend_page) {
3000 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3001 return -ENOMEM;
3002 }
3003
3004 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3005 }
3006
3007 return 0;
3008 }
3009
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3010 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3011 {
3012 u32 count = 1000000; /* 1s! */
3013 bool clean;
3014 u64 val;
3015
3016 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3017 val &= ~GICR_VPENDBASER_Valid;
3018 val &= ~clr;
3019 val |= set;
3020 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3021
3022 do {
3023 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3024 clean = !(val & GICR_VPENDBASER_Dirty);
3025 if (!clean) {
3026 count--;
3027 cpu_relax();
3028 udelay(1);
3029 }
3030 } while (!clean && count);
3031
3032 if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3033 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3034 val |= GICR_VPENDBASER_PendingLast;
3035 }
3036
3037 return val;
3038 }
3039
its_cpu_init_lpis(void)3040 static void its_cpu_init_lpis(void)
3041 {
3042 void __iomem *rbase = gic_data_rdist_rd_base();
3043 struct page *pend_page;
3044 phys_addr_t paddr;
3045 u64 val, tmp;
3046
3047 if (gic_data_rdist()->lpi_enabled)
3048 return;
3049
3050 val = readl_relaxed(rbase + GICR_CTLR);
3051 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3052 (val & GICR_CTLR_ENABLE_LPIS)) {
3053 /*
3054 * Check that we get the same property table on all
3055 * RDs. If we don't, this is hopeless.
3056 */
3057 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3058 paddr &= GENMASK_ULL(51, 12);
3059 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3060 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3061
3062 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3063 paddr &= GENMASK_ULL(51, 16);
3064
3065 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3066 its_free_pending_table(gic_data_rdist()->pend_page);
3067 gic_data_rdist()->pend_page = NULL;
3068
3069 goto out;
3070 }
3071
3072 pend_page = gic_data_rdist()->pend_page;
3073 paddr = page_to_phys(pend_page);
3074 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3075
3076 /* set PROPBASE */
3077 val = (gic_rdists->prop_table_pa |
3078 GICR_PROPBASER_InnerShareable |
3079 GICR_PROPBASER_RaWaWb |
3080 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3081
3082 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3083 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3084
3085 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3086 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3087 /*
3088 * The HW reports non-shareable, we must
3089 * remove the cacheability attributes as
3090 * well.
3091 */
3092 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3093 GICR_PROPBASER_CACHEABILITY_MASK);
3094 val |= GICR_PROPBASER_nC;
3095 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3096 }
3097 pr_info_once("GIC: using cache flushing for LPI property table\n");
3098 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3099 }
3100
3101 /* set PENDBASE */
3102 val = (page_to_phys(pend_page) |
3103 GICR_PENDBASER_InnerShareable |
3104 GICR_PENDBASER_RaWaWb);
3105
3106 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3107 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3108
3109 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3110 /*
3111 * The HW reports non-shareable, we must remove the
3112 * cacheability attributes as well.
3113 */
3114 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3115 GICR_PENDBASER_CACHEABILITY_MASK);
3116 val |= GICR_PENDBASER_nC;
3117 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3118 }
3119
3120 /* Enable LPIs */
3121 val = readl_relaxed(rbase + GICR_CTLR);
3122 val |= GICR_CTLR_ENABLE_LPIS;
3123 writel_relaxed(val, rbase + GICR_CTLR);
3124
3125 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3126 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3127
3128 /*
3129 * It's possible for CPU to receive VLPIs before it is
3130 * scheduled as a vPE, especially for the first CPU, and the
3131 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3132 * as out of range and dropped by GIC.
3133 * So we initialize IDbits to known value to avoid VLPI drop.
3134 */
3135 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3136 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3137 smp_processor_id(), val);
3138 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3139
3140 /*
3141 * Also clear Valid bit of GICR_VPENDBASER, in case some
3142 * ancient programming gets left in and has possibility of
3143 * corrupting memory.
3144 */
3145 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3146 }
3147
3148 if (allocate_vpe_l1_table()) {
3149 /*
3150 * If the allocation has failed, we're in massive trouble.
3151 * Disable direct injection, and pray that no VM was
3152 * already running...
3153 */
3154 gic_rdists->has_rvpeid = false;
3155 gic_rdists->has_vlpis = false;
3156 }
3157
3158 /* Make sure the GIC has seen the above */
3159 dsb(sy);
3160 out:
3161 gic_data_rdist()->lpi_enabled = true;
3162 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3163 smp_processor_id(),
3164 gic_data_rdist()->pend_page ? "allocated" : "reserved",
3165 &paddr);
3166 }
3167
its_cpu_init_collection(struct its_node * its)3168 static void its_cpu_init_collection(struct its_node *its)
3169 {
3170 int cpu = smp_processor_id();
3171 u64 target;
3172
3173 /* avoid cross node collections and its mapping */
3174 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3175 struct device_node *cpu_node;
3176
3177 cpu_node = of_get_cpu_node(cpu, NULL);
3178 if (its->numa_node != NUMA_NO_NODE &&
3179 its->numa_node != of_node_to_nid(cpu_node))
3180 return;
3181 }
3182
3183 /*
3184 * We now have to bind each collection to its target
3185 * redistributor.
3186 */
3187 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3188 /*
3189 * This ITS wants the physical address of the
3190 * redistributor.
3191 */
3192 target = gic_data_rdist()->phys_base;
3193 } else {
3194 /* This ITS wants a linear CPU number. */
3195 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3196 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3197 }
3198
3199 /* Perform collection mapping */
3200 its->collections[cpu].target_address = target;
3201 its->collections[cpu].col_id = cpu;
3202
3203 its_send_mapc(its, &its->collections[cpu], 1);
3204 its_send_invall(its, &its->collections[cpu]);
3205 }
3206
its_cpu_init_collections(void)3207 static void its_cpu_init_collections(void)
3208 {
3209 struct its_node *its;
3210
3211 raw_spin_lock(&its_lock);
3212
3213 list_for_each_entry(its, &its_nodes, entry)
3214 its_cpu_init_collection(its);
3215
3216 raw_spin_unlock(&its_lock);
3217 }
3218
its_find_device(struct its_node * its,u32 dev_id)3219 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3220 {
3221 struct its_device *its_dev = NULL, *tmp;
3222 unsigned long flags;
3223
3224 raw_spin_lock_irqsave(&its->lock, flags);
3225
3226 list_for_each_entry(tmp, &its->its_device_list, entry) {
3227 if (tmp->device_id == dev_id) {
3228 its_dev = tmp;
3229 break;
3230 }
3231 }
3232
3233 raw_spin_unlock_irqrestore(&its->lock, flags);
3234
3235 return its_dev;
3236 }
3237
its_get_baser(struct its_node * its,u32 type)3238 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3239 {
3240 int i;
3241
3242 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3243 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3244 return &its->tables[i];
3245 }
3246
3247 return NULL;
3248 }
3249
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3250 static bool its_alloc_table_entry(struct its_node *its,
3251 struct its_baser *baser, u32 id)
3252 {
3253 struct page *page;
3254 u32 esz, idx;
3255 __le64 *table;
3256
3257 /* Don't allow device id that exceeds single, flat table limit */
3258 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3259 if (!(baser->val & GITS_BASER_INDIRECT))
3260 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3261
3262 /* Compute 1st level table index & check if that exceeds table limit */
3263 idx = id >> ilog2(baser->psz / esz);
3264 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3265 return false;
3266
3267 table = baser->base;
3268
3269 /* Allocate memory for 2nd level table */
3270 if (!table[idx]) {
3271 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3272 get_order(baser->psz));
3273 if (!page)
3274 return false;
3275
3276 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3277 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3278 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3279
3280 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3281
3282 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3283 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3284 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3285
3286 /* Ensure updated table contents are visible to ITS hardware */
3287 dsb(sy);
3288 }
3289
3290 return true;
3291 }
3292
its_alloc_device_table(struct its_node * its,u32 dev_id)3293 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3294 {
3295 struct its_baser *baser;
3296
3297 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3298
3299 /* Don't allow device id that exceeds ITS hardware limit */
3300 if (!baser)
3301 return (ilog2(dev_id) < device_ids(its));
3302
3303 return its_alloc_table_entry(its, baser, dev_id);
3304 }
3305
its_alloc_vpe_table(u32 vpe_id)3306 static bool its_alloc_vpe_table(u32 vpe_id)
3307 {
3308 struct its_node *its;
3309 int cpu;
3310
3311 /*
3312 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3313 * could try and only do it on ITSs corresponding to devices
3314 * that have interrupts targeted at this VPE, but the
3315 * complexity becomes crazy (and you have tons of memory
3316 * anyway, right?).
3317 */
3318 list_for_each_entry(its, &its_nodes, entry) {
3319 struct its_baser *baser;
3320
3321 if (!is_v4(its))
3322 continue;
3323
3324 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3325 if (!baser)
3326 return false;
3327
3328 if (!its_alloc_table_entry(its, baser, vpe_id))
3329 return false;
3330 }
3331
3332 /* Non v4.1? No need to iterate RDs and go back early. */
3333 if (!gic_rdists->has_rvpeid)
3334 return true;
3335
3336 /*
3337 * Make sure the L2 tables are allocated for all copies of
3338 * the L1 table on *all* v4.1 RDs.
3339 */
3340 for_each_possible_cpu(cpu) {
3341 if (!allocate_vpe_l2_table(cpu, vpe_id))
3342 return false;
3343 }
3344
3345 return true;
3346 }
3347
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3348 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3349 int nvecs, bool alloc_lpis)
3350 {
3351 struct its_device *dev;
3352 unsigned long *lpi_map = NULL;
3353 unsigned long flags;
3354 u16 *col_map = NULL;
3355 void *itt;
3356 int lpi_base;
3357 int nr_lpis;
3358 int nr_ites;
3359 int sz;
3360
3361 if (!its_alloc_device_table(its, dev_id))
3362 return NULL;
3363
3364 if (WARN_ON(!is_power_of_2(nvecs)))
3365 nvecs = roundup_pow_of_two(nvecs);
3366
3367 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3368 /*
3369 * Even if the device wants a single LPI, the ITT must be
3370 * sized as a power of two (and you need at least one bit...).
3371 */
3372 nr_ites = max(2, nvecs);
3373 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3374 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3375 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3376 if (alloc_lpis) {
3377 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3378 if (lpi_map)
3379 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3380 GFP_KERNEL);
3381 } else {
3382 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3383 nr_lpis = 0;
3384 lpi_base = 0;
3385 }
3386
3387 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3388 kfree(dev);
3389 kfree(itt);
3390 bitmap_free(lpi_map);
3391 kfree(col_map);
3392 return NULL;
3393 }
3394
3395 gic_flush_dcache_to_poc(itt, sz);
3396
3397 dev->its = its;
3398 dev->itt = itt;
3399 dev->nr_ites = nr_ites;
3400 dev->event_map.lpi_map = lpi_map;
3401 dev->event_map.col_map = col_map;
3402 dev->event_map.lpi_base = lpi_base;
3403 dev->event_map.nr_lpis = nr_lpis;
3404 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3405 dev->device_id = dev_id;
3406 INIT_LIST_HEAD(&dev->entry);
3407
3408 raw_spin_lock_irqsave(&its->lock, flags);
3409 list_add(&dev->entry, &its->its_device_list);
3410 raw_spin_unlock_irqrestore(&its->lock, flags);
3411
3412 /* Map device to its ITT */
3413 its_send_mapd(dev, 1);
3414
3415 return dev;
3416 }
3417
its_free_device(struct its_device * its_dev)3418 static void its_free_device(struct its_device *its_dev)
3419 {
3420 unsigned long flags;
3421
3422 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3423 list_del(&its_dev->entry);
3424 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3425 kfree(its_dev->event_map.col_map);
3426 kfree(its_dev->itt);
3427 kfree(its_dev);
3428 }
3429
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3430 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3431 {
3432 int idx;
3433
3434 /* Find a free LPI region in lpi_map and allocate them. */
3435 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3436 dev->event_map.nr_lpis,
3437 get_count_order(nvecs));
3438 if (idx < 0)
3439 return -ENOSPC;
3440
3441 *hwirq = dev->event_map.lpi_base + idx;
3442
3443 return 0;
3444 }
3445
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3446 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3447 int nvec, msi_alloc_info_t *info)
3448 {
3449 struct its_node *its;
3450 struct its_device *its_dev;
3451 struct msi_domain_info *msi_info;
3452 u32 dev_id;
3453 int err = 0;
3454
3455 /*
3456 * We ignore "dev" entirely, and rely on the dev_id that has
3457 * been passed via the scratchpad. This limits this domain's
3458 * usefulness to upper layers that definitely know that they
3459 * are built on top of the ITS.
3460 */
3461 dev_id = info->scratchpad[0].ul;
3462
3463 msi_info = msi_get_domain_info(domain);
3464 its = msi_info->data;
3465
3466 if (!gic_rdists->has_direct_lpi &&
3467 vpe_proxy.dev &&
3468 vpe_proxy.dev->its == its &&
3469 dev_id == vpe_proxy.dev->device_id) {
3470 /* Bad luck. Get yourself a better implementation */
3471 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3472 dev_id);
3473 return -EINVAL;
3474 }
3475
3476 mutex_lock(&its->dev_alloc_lock);
3477 its_dev = its_find_device(its, dev_id);
3478 if (its_dev) {
3479 /*
3480 * We already have seen this ID, probably through
3481 * another alias (PCI bridge of some sort). No need to
3482 * create the device.
3483 */
3484 its_dev->shared = true;
3485 pr_debug("Reusing ITT for devID %x\n", dev_id);
3486 goto out;
3487 }
3488
3489 its_dev = its_create_device(its, dev_id, nvec, true);
3490 if (!its_dev) {
3491 err = -ENOMEM;
3492 goto out;
3493 }
3494
3495 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3496 its_dev->shared = true;
3497
3498 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3499 out:
3500 mutex_unlock(&its->dev_alloc_lock);
3501 info->scratchpad[0].ptr = its_dev;
3502 return err;
3503 }
3504
3505 static struct msi_domain_ops its_msi_domain_ops = {
3506 .msi_prepare = its_msi_prepare,
3507 };
3508
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3509 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3510 unsigned int virq,
3511 irq_hw_number_t hwirq)
3512 {
3513 struct irq_fwspec fwspec;
3514
3515 if (irq_domain_get_of_node(domain->parent)) {
3516 fwspec.fwnode = domain->parent->fwnode;
3517 fwspec.param_count = 3;
3518 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3519 fwspec.param[1] = hwirq;
3520 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3521 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3522 fwspec.fwnode = domain->parent->fwnode;
3523 fwspec.param_count = 2;
3524 fwspec.param[0] = hwirq;
3525 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3526 } else {
3527 return -EINVAL;
3528 }
3529
3530 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3531 }
3532
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3533 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3534 unsigned int nr_irqs, void *args)
3535 {
3536 msi_alloc_info_t *info = args;
3537 struct its_device *its_dev = info->scratchpad[0].ptr;
3538 struct its_node *its = its_dev->its;
3539 struct irq_data *irqd;
3540 irq_hw_number_t hwirq;
3541 int err;
3542 int i;
3543
3544 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3545 if (err)
3546 return err;
3547
3548 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3549 if (err)
3550 return err;
3551
3552 for (i = 0; i < nr_irqs; i++) {
3553 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3554 if (err)
3555 return err;
3556
3557 irq_domain_set_hwirq_and_chip(domain, virq + i,
3558 hwirq + i, &its_irq_chip, its_dev);
3559 irqd = irq_get_irq_data(virq + i);
3560 irqd_set_single_target(irqd);
3561 irqd_set_affinity_on_activate(irqd);
3562 pr_debug("ID:%d pID:%d vID:%d\n",
3563 (int)(hwirq + i - its_dev->event_map.lpi_base),
3564 (int)(hwirq + i), virq + i);
3565 }
3566
3567 return 0;
3568 }
3569
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3570 static int its_irq_domain_activate(struct irq_domain *domain,
3571 struct irq_data *d, bool reserve)
3572 {
3573 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3574 u32 event = its_get_event_id(d);
3575 int cpu;
3576
3577 cpu = its_select_cpu(d, cpu_online_mask);
3578 if (cpu < 0 || cpu >= nr_cpu_ids)
3579 return -EINVAL;
3580
3581 its_inc_lpi_count(d, cpu);
3582 its_dev->event_map.col_map[event] = cpu;
3583 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3584
3585 /* Map the GIC IRQ and event to the device */
3586 its_send_mapti(its_dev, d->hwirq, event);
3587 return 0;
3588 }
3589
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3590 static void its_irq_domain_deactivate(struct irq_domain *domain,
3591 struct irq_data *d)
3592 {
3593 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3594 u32 event = its_get_event_id(d);
3595
3596 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3597 /* Stop the delivery of interrupts */
3598 its_send_discard(its_dev, event);
3599 }
3600
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3601 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3602 unsigned int nr_irqs)
3603 {
3604 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3605 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3606 struct its_node *its = its_dev->its;
3607 int i;
3608
3609 bitmap_release_region(its_dev->event_map.lpi_map,
3610 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3611 get_count_order(nr_irqs));
3612
3613 for (i = 0; i < nr_irqs; i++) {
3614 struct irq_data *data = irq_domain_get_irq_data(domain,
3615 virq + i);
3616 /* Nuke the entry in the domain */
3617 irq_domain_reset_irq_data(data);
3618 }
3619
3620 mutex_lock(&its->dev_alloc_lock);
3621
3622 /*
3623 * If all interrupts have been freed, start mopping the
3624 * floor. This is conditioned on the device not being shared.
3625 */
3626 if (!its_dev->shared &&
3627 bitmap_empty(its_dev->event_map.lpi_map,
3628 its_dev->event_map.nr_lpis)) {
3629 its_lpi_free(its_dev->event_map.lpi_map,
3630 its_dev->event_map.lpi_base,
3631 its_dev->event_map.nr_lpis);
3632
3633 /* Unmap device/itt */
3634 its_send_mapd(its_dev, 0);
3635 its_free_device(its_dev);
3636 }
3637
3638 mutex_unlock(&its->dev_alloc_lock);
3639
3640 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3641 }
3642
3643 static const struct irq_domain_ops its_domain_ops = {
3644 .alloc = its_irq_domain_alloc,
3645 .free = its_irq_domain_free,
3646 .activate = its_irq_domain_activate,
3647 .deactivate = its_irq_domain_deactivate,
3648 };
3649
3650 /*
3651 * This is insane.
3652 *
3653 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3654 * likely), the only way to perform an invalidate is to use a fake
3655 * device to issue an INV command, implying that the LPI has first
3656 * been mapped to some event on that device. Since this is not exactly
3657 * cheap, we try to keep that mapping around as long as possible, and
3658 * only issue an UNMAP if we're short on available slots.
3659 *
3660 * Broken by design(tm).
3661 *
3662 * GICv4.1, on the other hand, mandates that we're able to invalidate
3663 * by writing to a MMIO register. It doesn't implement the whole of
3664 * DirectLPI, but that's good enough. And most of the time, we don't
3665 * even have to invalidate anything, as the redistributor can be told
3666 * whether to generate a doorbell or not (we thus leave it enabled,
3667 * always).
3668 */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3669 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3670 {
3671 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3672 if (gic_rdists->has_rvpeid)
3673 return;
3674
3675 /* Already unmapped? */
3676 if (vpe->vpe_proxy_event == -1)
3677 return;
3678
3679 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3680 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3681
3682 /*
3683 * We don't track empty slots at all, so let's move the
3684 * next_victim pointer if we can quickly reuse that slot
3685 * instead of nuking an existing entry. Not clear that this is
3686 * always a win though, and this might just generate a ripple
3687 * effect... Let's just hope VPEs don't migrate too often.
3688 */
3689 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3690 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3691
3692 vpe->vpe_proxy_event = -1;
3693 }
3694
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3695 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3696 {
3697 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3698 if (gic_rdists->has_rvpeid)
3699 return;
3700
3701 if (!gic_rdists->has_direct_lpi) {
3702 unsigned long flags;
3703
3704 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3705 its_vpe_db_proxy_unmap_locked(vpe);
3706 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3707 }
3708 }
3709
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3710 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3711 {
3712 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3713 if (gic_rdists->has_rvpeid)
3714 return;
3715
3716 /* Already mapped? */
3717 if (vpe->vpe_proxy_event != -1)
3718 return;
3719
3720 /* This slot was already allocated. Kick the other VPE out. */
3721 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3722 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3723
3724 /* Map the new VPE instead */
3725 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3726 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3727 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3728
3729 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3730 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3731 }
3732
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3733 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3734 {
3735 unsigned long flags;
3736 struct its_collection *target_col;
3737
3738 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3739 if (gic_rdists->has_rvpeid)
3740 return;
3741
3742 if (gic_rdists->has_direct_lpi) {
3743 void __iomem *rdbase;
3744
3745 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3746 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3747 wait_for_syncr(rdbase);
3748
3749 return;
3750 }
3751
3752 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3753
3754 its_vpe_db_proxy_map_locked(vpe);
3755
3756 target_col = &vpe_proxy.dev->its->collections[to];
3757 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3758 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3759
3760 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3761 }
3762
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3763 static int its_vpe_set_affinity(struct irq_data *d,
3764 const struct cpumask *mask_val,
3765 bool force)
3766 {
3767 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3768 int from, cpu = cpumask_first(mask_val);
3769 unsigned long flags;
3770
3771 /*
3772 * Changing affinity is mega expensive, so let's be as lazy as
3773 * we can and only do it if we really have to. Also, if mapped
3774 * into the proxy device, we need to move the doorbell
3775 * interrupt to its new location.
3776 *
3777 * Another thing is that changing the affinity of a vPE affects
3778 * *other interrupts* such as all the vLPIs that are routed to
3779 * this vPE. This means that the irq_desc lock is not enough to
3780 * protect us, and that we must ensure nobody samples vpe->col_idx
3781 * during the update, hence the lock below which must also be
3782 * taken on any vLPI handling path that evaluates vpe->col_idx.
3783 */
3784 from = vpe_to_cpuid_lock(vpe, &flags);
3785 if (from == cpu)
3786 goto out;
3787
3788 vpe->col_idx = cpu;
3789
3790 /*
3791 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3792 * is sharing its VPE table with the current one.
3793 */
3794 if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3795 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3796 goto out;
3797
3798 its_send_vmovp(vpe);
3799 its_vpe_db_proxy_move(vpe, from, cpu);
3800
3801 out:
3802 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3803 vpe_to_cpuid_unlock(vpe, flags);
3804
3805 return IRQ_SET_MASK_OK_DONE;
3806 }
3807
its_wait_vpt_parse_complete(void)3808 static void its_wait_vpt_parse_complete(void)
3809 {
3810 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3811 u64 val;
3812
3813 if (!gic_rdists->has_vpend_valid_dirty)
3814 return;
3815
3816 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3817 val,
3818 !(val & GICR_VPENDBASER_Dirty),
3819 1, 500));
3820 }
3821
its_vpe_schedule(struct its_vpe * vpe)3822 static void its_vpe_schedule(struct its_vpe *vpe)
3823 {
3824 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3825 u64 val;
3826
3827 /* Schedule the VPE */
3828 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3829 GENMASK_ULL(51, 12);
3830 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3831 val |= GICR_VPROPBASER_RaWb;
3832 val |= GICR_VPROPBASER_InnerShareable;
3833 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3834
3835 val = virt_to_phys(page_address(vpe->vpt_page)) &
3836 GENMASK_ULL(51, 16);
3837 val |= GICR_VPENDBASER_RaWaWb;
3838 val |= GICR_VPENDBASER_InnerShareable;
3839 /*
3840 * There is no good way of finding out if the pending table is
3841 * empty as we can race against the doorbell interrupt very
3842 * easily. So in the end, vpe->pending_last is only an
3843 * indication that the vcpu has something pending, not one
3844 * that the pending table is empty. A good implementation
3845 * would be able to read its coarse map pretty quickly anyway,
3846 * making this a tolerable issue.
3847 */
3848 val |= GICR_VPENDBASER_PendingLast;
3849 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3850 val |= GICR_VPENDBASER_Valid;
3851 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3852 }
3853
its_vpe_deschedule(struct its_vpe * vpe)3854 static void its_vpe_deschedule(struct its_vpe *vpe)
3855 {
3856 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3857 u64 val;
3858
3859 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3860
3861 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3862 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3863 }
3864
its_vpe_invall(struct its_vpe * vpe)3865 static void its_vpe_invall(struct its_vpe *vpe)
3866 {
3867 struct its_node *its;
3868
3869 list_for_each_entry(its, &its_nodes, entry) {
3870 if (!is_v4(its))
3871 continue;
3872
3873 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3874 continue;
3875
3876 /*
3877 * Sending a VINVALL to a single ITS is enough, as all
3878 * we need is to reach the redistributors.
3879 */
3880 its_send_vinvall(its, vpe);
3881 return;
3882 }
3883 }
3884
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)3885 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3886 {
3887 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3888 struct its_cmd_info *info = vcpu_info;
3889
3890 switch (info->cmd_type) {
3891 case SCHEDULE_VPE:
3892 its_vpe_schedule(vpe);
3893 return 0;
3894
3895 case DESCHEDULE_VPE:
3896 its_vpe_deschedule(vpe);
3897 return 0;
3898
3899 case COMMIT_VPE:
3900 its_wait_vpt_parse_complete();
3901 return 0;
3902
3903 case INVALL_VPE:
3904 its_vpe_invall(vpe);
3905 return 0;
3906
3907 default:
3908 return -EINVAL;
3909 }
3910 }
3911
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))3912 static void its_vpe_send_cmd(struct its_vpe *vpe,
3913 void (*cmd)(struct its_device *, u32))
3914 {
3915 unsigned long flags;
3916
3917 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3918
3919 its_vpe_db_proxy_map_locked(vpe);
3920 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3921
3922 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3923 }
3924
its_vpe_send_inv(struct irq_data * d)3925 static void its_vpe_send_inv(struct irq_data *d)
3926 {
3927 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3928
3929 if (gic_rdists->has_direct_lpi) {
3930 void __iomem *rdbase;
3931
3932 /* Target the redistributor this VPE is currently known on */
3933 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3934 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3935 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3936 wait_for_syncr(rdbase);
3937 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3938 } else {
3939 its_vpe_send_cmd(vpe, its_send_inv);
3940 }
3941 }
3942
its_vpe_mask_irq(struct irq_data * d)3943 static void its_vpe_mask_irq(struct irq_data *d)
3944 {
3945 /*
3946 * We need to unmask the LPI, which is described by the parent
3947 * irq_data. Instead of calling into the parent (which won't
3948 * exactly do the right thing, let's simply use the
3949 * parent_data pointer. Yes, I'm naughty.
3950 */
3951 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3952 its_vpe_send_inv(d);
3953 }
3954
its_vpe_unmask_irq(struct irq_data * d)3955 static void its_vpe_unmask_irq(struct irq_data *d)
3956 {
3957 /* Same hack as above... */
3958 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3959 its_vpe_send_inv(d);
3960 }
3961
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)3962 static int its_vpe_set_irqchip_state(struct irq_data *d,
3963 enum irqchip_irq_state which,
3964 bool state)
3965 {
3966 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3967
3968 if (which != IRQCHIP_STATE_PENDING)
3969 return -EINVAL;
3970
3971 if (gic_rdists->has_direct_lpi) {
3972 void __iomem *rdbase;
3973
3974 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3975 if (state) {
3976 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3977 } else {
3978 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3979 wait_for_syncr(rdbase);
3980 }
3981 } else {
3982 if (state)
3983 its_vpe_send_cmd(vpe, its_send_int);
3984 else
3985 its_vpe_send_cmd(vpe, its_send_clear);
3986 }
3987
3988 return 0;
3989 }
3990
its_vpe_retrigger(struct irq_data * d)3991 static int its_vpe_retrigger(struct irq_data *d)
3992 {
3993 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3994 }
3995
3996 static struct irq_chip its_vpe_irq_chip = {
3997 .name = "GICv4-vpe",
3998 .irq_mask = its_vpe_mask_irq,
3999 .irq_unmask = its_vpe_unmask_irq,
4000 .irq_eoi = irq_chip_eoi_parent,
4001 .irq_set_affinity = its_vpe_set_affinity,
4002 .irq_retrigger = its_vpe_retrigger,
4003 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4004 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4005 };
4006
find_4_1_its(void)4007 static struct its_node *find_4_1_its(void)
4008 {
4009 static struct its_node *its = NULL;
4010
4011 if (!its) {
4012 list_for_each_entry(its, &its_nodes, entry) {
4013 if (is_v4_1(its))
4014 return its;
4015 }
4016
4017 /* Oops? */
4018 its = NULL;
4019 }
4020
4021 return its;
4022 }
4023
its_vpe_4_1_send_inv(struct irq_data * d)4024 static void its_vpe_4_1_send_inv(struct irq_data *d)
4025 {
4026 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4027 struct its_node *its;
4028
4029 /*
4030 * GICv4.1 wants doorbells to be invalidated using the
4031 * INVDB command in order to be broadcast to all RDs. Send
4032 * it to the first valid ITS, and let the HW do its magic.
4033 */
4034 its = find_4_1_its();
4035 if (its)
4036 its_send_invdb(its, vpe);
4037 }
4038
its_vpe_4_1_mask_irq(struct irq_data * d)4039 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4040 {
4041 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4042 its_vpe_4_1_send_inv(d);
4043 }
4044
its_vpe_4_1_unmask_irq(struct irq_data * d)4045 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4046 {
4047 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4048 its_vpe_4_1_send_inv(d);
4049 }
4050
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4051 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4052 struct its_cmd_info *info)
4053 {
4054 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4055 u64 val = 0;
4056
4057 /* Schedule the VPE */
4058 val |= GICR_VPENDBASER_Valid;
4059 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4060 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4061 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4062
4063 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4064 }
4065
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4066 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4067 struct its_cmd_info *info)
4068 {
4069 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4070 u64 val;
4071
4072 if (info->req_db) {
4073 unsigned long flags;
4074
4075 /*
4076 * vPE is going to block: make the vPE non-resident with
4077 * PendingLast clear and DB set. The GIC guarantees that if
4078 * we read-back PendingLast clear, then a doorbell will be
4079 * delivered when an interrupt comes.
4080 *
4081 * Note the locking to deal with the concurrent update of
4082 * pending_last from the doorbell interrupt handler that can
4083 * run concurrently.
4084 */
4085 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4086 val = its_clear_vpend_valid(vlpi_base,
4087 GICR_VPENDBASER_PendingLast,
4088 GICR_VPENDBASER_4_1_DB);
4089 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4090 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4091 } else {
4092 /*
4093 * We're not blocking, so just make the vPE non-resident
4094 * with PendingLast set, indicating that we'll be back.
4095 */
4096 val = its_clear_vpend_valid(vlpi_base,
4097 0,
4098 GICR_VPENDBASER_PendingLast);
4099 vpe->pending_last = true;
4100 }
4101 }
4102
its_vpe_4_1_invall(struct its_vpe * vpe)4103 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4104 {
4105 void __iomem *rdbase;
4106 unsigned long flags;
4107 u64 val;
4108 int cpu;
4109
4110 val = GICR_INVALLR_V;
4111 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4112
4113 /* Target the redistributor this vPE is currently known on */
4114 cpu = vpe_to_cpuid_lock(vpe, &flags);
4115 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4116 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4117 gic_write_lpir(val, rdbase + GICR_INVALLR);
4118
4119 wait_for_syncr(rdbase);
4120 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4121 vpe_to_cpuid_unlock(vpe, flags);
4122 }
4123
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4124 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4125 {
4126 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4127 struct its_cmd_info *info = vcpu_info;
4128
4129 switch (info->cmd_type) {
4130 case SCHEDULE_VPE:
4131 its_vpe_4_1_schedule(vpe, info);
4132 return 0;
4133
4134 case DESCHEDULE_VPE:
4135 its_vpe_4_1_deschedule(vpe, info);
4136 return 0;
4137
4138 case COMMIT_VPE:
4139 its_wait_vpt_parse_complete();
4140 return 0;
4141
4142 case INVALL_VPE:
4143 its_vpe_4_1_invall(vpe);
4144 return 0;
4145
4146 default:
4147 return -EINVAL;
4148 }
4149 }
4150
4151 static struct irq_chip its_vpe_4_1_irq_chip = {
4152 .name = "GICv4.1-vpe",
4153 .irq_mask = its_vpe_4_1_mask_irq,
4154 .irq_unmask = its_vpe_4_1_unmask_irq,
4155 .irq_eoi = irq_chip_eoi_parent,
4156 .irq_set_affinity = its_vpe_set_affinity,
4157 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4158 };
4159
its_configure_sgi(struct irq_data * d,bool clear)4160 static void its_configure_sgi(struct irq_data *d, bool clear)
4161 {
4162 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4163 struct its_cmd_desc desc;
4164
4165 desc.its_vsgi_cmd.vpe = vpe;
4166 desc.its_vsgi_cmd.sgi = d->hwirq;
4167 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4168 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4169 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4170 desc.its_vsgi_cmd.clear = clear;
4171
4172 /*
4173 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4174 * destination VPE is mapped there. Since we map them eagerly at
4175 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4176 */
4177 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4178 }
4179
its_sgi_mask_irq(struct irq_data * d)4180 static void its_sgi_mask_irq(struct irq_data *d)
4181 {
4182 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4183
4184 vpe->sgi_config[d->hwirq].enabled = false;
4185 its_configure_sgi(d, false);
4186 }
4187
its_sgi_unmask_irq(struct irq_data * d)4188 static void its_sgi_unmask_irq(struct irq_data *d)
4189 {
4190 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4191
4192 vpe->sgi_config[d->hwirq].enabled = true;
4193 its_configure_sgi(d, false);
4194 }
4195
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4196 static int its_sgi_set_affinity(struct irq_data *d,
4197 const struct cpumask *mask_val,
4198 bool force)
4199 {
4200 /*
4201 * There is no notion of affinity for virtual SGIs, at least
4202 * not on the host (since they can only be targeting a vPE).
4203 * Tell the kernel we've done whatever it asked for.
4204 */
4205 irq_data_update_effective_affinity(d, mask_val);
4206 return IRQ_SET_MASK_OK;
4207 }
4208
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4209 static int its_sgi_set_irqchip_state(struct irq_data *d,
4210 enum irqchip_irq_state which,
4211 bool state)
4212 {
4213 if (which != IRQCHIP_STATE_PENDING)
4214 return -EINVAL;
4215
4216 if (state) {
4217 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4218 struct its_node *its = find_4_1_its();
4219 u64 val;
4220
4221 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4222 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4223 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4224 } else {
4225 its_configure_sgi(d, true);
4226 }
4227
4228 return 0;
4229 }
4230
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4231 static int its_sgi_get_irqchip_state(struct irq_data *d,
4232 enum irqchip_irq_state which, bool *val)
4233 {
4234 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4235 void __iomem *base;
4236 unsigned long flags;
4237 u32 count = 1000000; /* 1s! */
4238 u32 status;
4239 int cpu;
4240
4241 if (which != IRQCHIP_STATE_PENDING)
4242 return -EINVAL;
4243
4244 /*
4245 * Locking galore! We can race against two different events:
4246 *
4247 * - Concurrent vPE affinity change: we must make sure it cannot
4248 * happen, or we'll talk to the wrong redistributor. This is
4249 * identical to what happens with vLPIs.
4250 *
4251 * - Concurrent VSGIPENDR access: As it involves accessing two
4252 * MMIO registers, this must be made atomic one way or another.
4253 */
4254 cpu = vpe_to_cpuid_lock(vpe, &flags);
4255 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4256 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4257 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4258 do {
4259 status = readl_relaxed(base + GICR_VSGIPENDR);
4260 if (!(status & GICR_VSGIPENDR_BUSY))
4261 goto out;
4262
4263 count--;
4264 if (!count) {
4265 pr_err_ratelimited("Unable to get SGI status\n");
4266 goto out;
4267 }
4268 cpu_relax();
4269 udelay(1);
4270 } while (count);
4271
4272 out:
4273 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4274 vpe_to_cpuid_unlock(vpe, flags);
4275
4276 if (!count)
4277 return -ENXIO;
4278
4279 *val = !!(status & (1 << d->hwirq));
4280
4281 return 0;
4282 }
4283
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4284 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4285 {
4286 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4287 struct its_cmd_info *info = vcpu_info;
4288
4289 switch (info->cmd_type) {
4290 case PROP_UPDATE_VSGI:
4291 vpe->sgi_config[d->hwirq].priority = info->priority;
4292 vpe->sgi_config[d->hwirq].group = info->group;
4293 its_configure_sgi(d, false);
4294 return 0;
4295
4296 default:
4297 return -EINVAL;
4298 }
4299 }
4300
4301 static struct irq_chip its_sgi_irq_chip = {
4302 .name = "GICv4.1-sgi",
4303 .irq_mask = its_sgi_mask_irq,
4304 .irq_unmask = its_sgi_unmask_irq,
4305 .irq_set_affinity = its_sgi_set_affinity,
4306 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4307 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4308 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4309 };
4310
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4311 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4312 unsigned int virq, unsigned int nr_irqs,
4313 void *args)
4314 {
4315 struct its_vpe *vpe = args;
4316 int i;
4317
4318 /* Yes, we do want 16 SGIs */
4319 WARN_ON(nr_irqs != 16);
4320
4321 for (i = 0; i < 16; i++) {
4322 vpe->sgi_config[i].priority = 0;
4323 vpe->sgi_config[i].enabled = false;
4324 vpe->sgi_config[i].group = false;
4325
4326 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4327 &its_sgi_irq_chip, vpe);
4328 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4329 }
4330
4331 return 0;
4332 }
4333
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4334 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4335 unsigned int virq,
4336 unsigned int nr_irqs)
4337 {
4338 /* Nothing to do */
4339 }
4340
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4341 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4342 struct irq_data *d, bool reserve)
4343 {
4344 /* Write out the initial SGI configuration */
4345 its_configure_sgi(d, false);
4346 return 0;
4347 }
4348
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4349 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4350 struct irq_data *d)
4351 {
4352 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4353
4354 /*
4355 * The VSGI command is awkward:
4356 *
4357 * - To change the configuration, CLEAR must be set to false,
4358 * leaving the pending bit unchanged.
4359 * - To clear the pending bit, CLEAR must be set to true, leaving
4360 * the configuration unchanged.
4361 *
4362 * You just can't do both at once, hence the two commands below.
4363 */
4364 vpe->sgi_config[d->hwirq].enabled = false;
4365 its_configure_sgi(d, false);
4366 its_configure_sgi(d, true);
4367 }
4368
4369 static const struct irq_domain_ops its_sgi_domain_ops = {
4370 .alloc = its_sgi_irq_domain_alloc,
4371 .free = its_sgi_irq_domain_free,
4372 .activate = its_sgi_irq_domain_activate,
4373 .deactivate = its_sgi_irq_domain_deactivate,
4374 };
4375
its_vpe_id_alloc(void)4376 static int its_vpe_id_alloc(void)
4377 {
4378 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4379 }
4380
its_vpe_id_free(u16 id)4381 static void its_vpe_id_free(u16 id)
4382 {
4383 ida_simple_remove(&its_vpeid_ida, id);
4384 }
4385
its_vpe_init(struct its_vpe * vpe)4386 static int its_vpe_init(struct its_vpe *vpe)
4387 {
4388 struct page *vpt_page;
4389 int vpe_id;
4390
4391 /* Allocate vpe_id */
4392 vpe_id = its_vpe_id_alloc();
4393 if (vpe_id < 0)
4394 return vpe_id;
4395
4396 /* Allocate VPT */
4397 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4398 if (!vpt_page) {
4399 its_vpe_id_free(vpe_id);
4400 return -ENOMEM;
4401 }
4402
4403 if (!its_alloc_vpe_table(vpe_id)) {
4404 its_vpe_id_free(vpe_id);
4405 its_free_pending_table(vpt_page);
4406 return -ENOMEM;
4407 }
4408
4409 raw_spin_lock_init(&vpe->vpe_lock);
4410 vpe->vpe_id = vpe_id;
4411 vpe->vpt_page = vpt_page;
4412 if (gic_rdists->has_rvpeid)
4413 atomic_set(&vpe->vmapp_count, 0);
4414 else
4415 vpe->vpe_proxy_event = -1;
4416
4417 return 0;
4418 }
4419
its_vpe_teardown(struct its_vpe * vpe)4420 static void its_vpe_teardown(struct its_vpe *vpe)
4421 {
4422 its_vpe_db_proxy_unmap(vpe);
4423 its_vpe_id_free(vpe->vpe_id);
4424 its_free_pending_table(vpe->vpt_page);
4425 }
4426
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4427 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4428 unsigned int virq,
4429 unsigned int nr_irqs)
4430 {
4431 struct its_vm *vm = domain->host_data;
4432 int i;
4433
4434 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4435
4436 for (i = 0; i < nr_irqs; i++) {
4437 struct irq_data *data = irq_domain_get_irq_data(domain,
4438 virq + i);
4439 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4440
4441 BUG_ON(vm != vpe->its_vm);
4442
4443 clear_bit(data->hwirq, vm->db_bitmap);
4444 its_vpe_teardown(vpe);
4445 irq_domain_reset_irq_data(data);
4446 }
4447
4448 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4449 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4450 its_free_prop_table(vm->vprop_page);
4451 }
4452 }
4453
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4454 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4455 unsigned int nr_irqs, void *args)
4456 {
4457 struct irq_chip *irqchip = &its_vpe_irq_chip;
4458 struct its_vm *vm = args;
4459 unsigned long *bitmap;
4460 struct page *vprop_page;
4461 int base, nr_ids, i, err = 0;
4462
4463 BUG_ON(!vm);
4464
4465 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4466 if (!bitmap)
4467 return -ENOMEM;
4468
4469 if (nr_ids < nr_irqs) {
4470 its_lpi_free(bitmap, base, nr_ids);
4471 return -ENOMEM;
4472 }
4473
4474 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4475 if (!vprop_page) {
4476 its_lpi_free(bitmap, base, nr_ids);
4477 return -ENOMEM;
4478 }
4479
4480 vm->db_bitmap = bitmap;
4481 vm->db_lpi_base = base;
4482 vm->nr_db_lpis = nr_ids;
4483 vm->vprop_page = vprop_page;
4484
4485 if (gic_rdists->has_rvpeid)
4486 irqchip = &its_vpe_4_1_irq_chip;
4487
4488 for (i = 0; i < nr_irqs; i++) {
4489 vm->vpes[i]->vpe_db_lpi = base + i;
4490 err = its_vpe_init(vm->vpes[i]);
4491 if (err)
4492 break;
4493 err = its_irq_gic_domain_alloc(domain, virq + i,
4494 vm->vpes[i]->vpe_db_lpi);
4495 if (err)
4496 break;
4497 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4498 irqchip, vm->vpes[i]);
4499 set_bit(i, bitmap);
4500 }
4501
4502 if (err) {
4503 if (i > 0)
4504 its_vpe_irq_domain_free(domain, virq, i);
4505
4506 its_lpi_free(bitmap, base, nr_ids);
4507 its_free_prop_table(vprop_page);
4508 }
4509
4510 return err;
4511 }
4512
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4513 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4514 struct irq_data *d, bool reserve)
4515 {
4516 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4517 struct its_node *its;
4518
4519 /*
4520 * If we use the list map, we issue VMAPP on demand... Unless
4521 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4522 * so that VSGIs can work.
4523 */
4524 if (!gic_requires_eager_mapping())
4525 return 0;
4526
4527 /* Map the VPE to the first possible CPU */
4528 vpe->col_idx = cpumask_first(cpu_online_mask);
4529
4530 list_for_each_entry(its, &its_nodes, entry) {
4531 if (!is_v4(its))
4532 continue;
4533
4534 its_send_vmapp(its, vpe, true);
4535 its_send_vinvall(its, vpe);
4536 }
4537
4538 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4539
4540 return 0;
4541 }
4542
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4543 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4544 struct irq_data *d)
4545 {
4546 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4547 struct its_node *its;
4548
4549 /*
4550 * If we use the list map on GICv4.0, we unmap the VPE once no
4551 * VLPIs are associated with the VM.
4552 */
4553 if (!gic_requires_eager_mapping())
4554 return;
4555
4556 list_for_each_entry(its, &its_nodes, entry) {
4557 if (!is_v4(its))
4558 continue;
4559
4560 its_send_vmapp(its, vpe, false);
4561 }
4562
4563 /*
4564 * There may be a direct read to the VPT after unmapping the
4565 * vPE, to guarantee the validity of this, we make the VPT
4566 * memory coherent with the CPU caches here.
4567 */
4568 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4569 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4570 LPI_PENDBASE_SZ);
4571 }
4572
4573 static const struct irq_domain_ops its_vpe_domain_ops = {
4574 .alloc = its_vpe_irq_domain_alloc,
4575 .free = its_vpe_irq_domain_free,
4576 .activate = its_vpe_irq_domain_activate,
4577 .deactivate = its_vpe_irq_domain_deactivate,
4578 };
4579
its_force_quiescent(void __iomem * base)4580 static int its_force_quiescent(void __iomem *base)
4581 {
4582 u32 count = 1000000; /* 1s */
4583 u32 val;
4584
4585 val = readl_relaxed(base + GITS_CTLR);
4586 /*
4587 * GIC architecture specification requires the ITS to be both
4588 * disabled and quiescent for writes to GITS_BASER<n> or
4589 * GITS_CBASER to not have UNPREDICTABLE results.
4590 */
4591 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4592 return 0;
4593
4594 /* Disable the generation of all interrupts to this ITS */
4595 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4596 writel_relaxed(val, base + GITS_CTLR);
4597
4598 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4599 while (1) {
4600 val = readl_relaxed(base + GITS_CTLR);
4601 if (val & GITS_CTLR_QUIESCENT)
4602 return 0;
4603
4604 count--;
4605 if (!count)
4606 return -EBUSY;
4607
4608 cpu_relax();
4609 udelay(1);
4610 }
4611 }
4612
its_enable_quirk_cavium_22375(void * data)4613 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4614 {
4615 struct its_node *its = data;
4616
4617 /* erratum 22375: only alloc 8MB table size (20 bits) */
4618 its->typer &= ~GITS_TYPER_DEVBITS;
4619 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4620 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4621
4622 return true;
4623 }
4624
its_enable_quirk_cavium_23144(void * data)4625 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4626 {
4627 struct its_node *its = data;
4628
4629 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4630
4631 return true;
4632 }
4633
its_enable_quirk_qdf2400_e0065(void * data)4634 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4635 {
4636 struct its_node *its = data;
4637
4638 /* On QDF2400, the size of the ITE is 16Bytes */
4639 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4640 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4641
4642 return true;
4643 }
4644
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4645 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4646 {
4647 struct its_node *its = its_dev->its;
4648
4649 /*
4650 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4651 * which maps 32-bit writes targeted at a separate window of
4652 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4653 * with device ID taken from bits [device_id_bits + 1:2] of
4654 * the window offset.
4655 */
4656 return its->pre_its_base + (its_dev->device_id << 2);
4657 }
4658
its_enable_quirk_socionext_synquacer(void * data)4659 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4660 {
4661 struct its_node *its = data;
4662 u32 pre_its_window[2];
4663 u32 ids;
4664
4665 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4666 "socionext,synquacer-pre-its",
4667 pre_its_window,
4668 ARRAY_SIZE(pre_its_window))) {
4669
4670 its->pre_its_base = pre_its_window[0];
4671 its->get_msi_base = its_irq_get_msi_base_pre_its;
4672
4673 ids = ilog2(pre_its_window[1]) - 2;
4674 if (device_ids(its) > ids) {
4675 its->typer &= ~GITS_TYPER_DEVBITS;
4676 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4677 }
4678
4679 /* the pre-ITS breaks isolation, so disable MSI remapping */
4680 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4681 return true;
4682 }
4683 return false;
4684 }
4685
its_enable_quirk_hip07_161600802(void * data)4686 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4687 {
4688 struct its_node *its = data;
4689
4690 /*
4691 * Hip07 insists on using the wrong address for the VLPI
4692 * page. Trick it into doing the right thing...
4693 */
4694 its->vlpi_redist_offset = SZ_128K;
4695 return true;
4696 }
4697
4698 static const struct gic_quirk its_quirks[] = {
4699 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4700 {
4701 .desc = "ITS: Cavium errata 22375, 24313",
4702 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4703 .mask = 0xffff0fff,
4704 .init = its_enable_quirk_cavium_22375,
4705 },
4706 #endif
4707 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4708 {
4709 .desc = "ITS: Cavium erratum 23144",
4710 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4711 .mask = 0xffff0fff,
4712 .init = its_enable_quirk_cavium_23144,
4713 },
4714 #endif
4715 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4716 {
4717 .desc = "ITS: QDF2400 erratum 0065",
4718 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4719 .mask = 0xffffffff,
4720 .init = its_enable_quirk_qdf2400_e0065,
4721 },
4722 #endif
4723 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4724 {
4725 /*
4726 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4727 * implementation, but with a 'pre-ITS' added that requires
4728 * special handling in software.
4729 */
4730 .desc = "ITS: Socionext Synquacer pre-ITS",
4731 .iidr = 0x0001143b,
4732 .mask = 0xffffffff,
4733 .init = its_enable_quirk_socionext_synquacer,
4734 },
4735 #endif
4736 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4737 {
4738 .desc = "ITS: Hip07 erratum 161600802",
4739 .iidr = 0x00000004,
4740 .mask = 0xffffffff,
4741 .init = its_enable_quirk_hip07_161600802,
4742 },
4743 #endif
4744 {
4745 }
4746 };
4747
its_enable_quirks(struct its_node * its)4748 static void its_enable_quirks(struct its_node *its)
4749 {
4750 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4751
4752 gic_enable_quirks(iidr, its_quirks, its);
4753 }
4754
its_save_disable(void)4755 static int its_save_disable(void)
4756 {
4757 struct its_node *its;
4758 int err = 0;
4759
4760 raw_spin_lock(&its_lock);
4761 list_for_each_entry(its, &its_nodes, entry) {
4762 void __iomem *base;
4763
4764 base = its->base;
4765 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4766 err = its_force_quiescent(base);
4767 if (err) {
4768 pr_err("ITS@%pa: failed to quiesce: %d\n",
4769 &its->phys_base, err);
4770 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4771 goto err;
4772 }
4773
4774 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4775 }
4776
4777 err:
4778 if (err) {
4779 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4780 void __iomem *base;
4781
4782 base = its->base;
4783 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4784 }
4785 }
4786 raw_spin_unlock(&its_lock);
4787
4788 return err;
4789 }
4790
its_restore_enable(void)4791 static void its_restore_enable(void)
4792 {
4793 struct its_node *its;
4794 int ret;
4795
4796 raw_spin_lock(&its_lock);
4797 list_for_each_entry(its, &its_nodes, entry) {
4798 void __iomem *base;
4799 int i;
4800
4801 base = its->base;
4802
4803 /*
4804 * Make sure that the ITS is disabled. If it fails to quiesce,
4805 * don't restore it since writing to CBASER or BASER<n>
4806 * registers is undefined according to the GIC v3 ITS
4807 * Specification.
4808 *
4809 * Firmware resuming with the ITS enabled is terminally broken.
4810 */
4811 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4812 ret = its_force_quiescent(base);
4813 if (ret) {
4814 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4815 &its->phys_base, ret);
4816 continue;
4817 }
4818
4819 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4820
4821 /*
4822 * Writing CBASER resets CREADR to 0, so make CWRITER and
4823 * cmd_write line up with it.
4824 */
4825 its->cmd_write = its->cmd_base;
4826 gits_write_cwriter(0, base + GITS_CWRITER);
4827
4828 /* Restore GITS_BASER from the value cache. */
4829 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4830 struct its_baser *baser = &its->tables[i];
4831
4832 if (!(baser->val & GITS_BASER_VALID))
4833 continue;
4834
4835 its_write_baser(its, baser, baser->val);
4836 }
4837 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4838
4839 /*
4840 * Reinit the collection if it's stored in the ITS. This is
4841 * indicated by the col_id being less than the HCC field.
4842 * CID < HCC as specified in the GIC v3 Documentation.
4843 */
4844 if (its->collections[smp_processor_id()].col_id <
4845 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4846 its_cpu_init_collection(its);
4847 }
4848 raw_spin_unlock(&its_lock);
4849 }
4850
4851 static struct syscore_ops its_syscore_ops = {
4852 .suspend = its_save_disable,
4853 .resume = its_restore_enable,
4854 };
4855
its_init_domain(struct fwnode_handle * handle,struct its_node * its)4856 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4857 {
4858 struct irq_domain *inner_domain;
4859 struct msi_domain_info *info;
4860
4861 info = kzalloc(sizeof(*info), GFP_KERNEL);
4862 if (!info)
4863 return -ENOMEM;
4864
4865 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4866 if (!inner_domain) {
4867 kfree(info);
4868 return -ENOMEM;
4869 }
4870
4871 inner_domain->parent = its_parent;
4872 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4873 inner_domain->flags |= its->msi_domain_flags;
4874 info->ops = &its_msi_domain_ops;
4875 info->data = its;
4876 inner_domain->host_data = info;
4877
4878 return 0;
4879 }
4880
its_init_vpe_domain(void)4881 static int its_init_vpe_domain(void)
4882 {
4883 struct its_node *its;
4884 u32 devid;
4885 int entries;
4886
4887 if (gic_rdists->has_direct_lpi) {
4888 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4889 return 0;
4890 }
4891
4892 /* Any ITS will do, even if not v4 */
4893 its = list_first_entry(&its_nodes, struct its_node, entry);
4894
4895 entries = roundup_pow_of_two(nr_cpu_ids);
4896 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4897 GFP_KERNEL);
4898 if (!vpe_proxy.vpes)
4899 return -ENOMEM;
4900
4901 /* Use the last possible DevID */
4902 devid = GENMASK(device_ids(its) - 1, 0);
4903 vpe_proxy.dev = its_create_device(its, devid, entries, false);
4904 if (!vpe_proxy.dev) {
4905 kfree(vpe_proxy.vpes);
4906 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4907 return -ENOMEM;
4908 }
4909
4910 BUG_ON(entries > vpe_proxy.dev->nr_ites);
4911
4912 raw_spin_lock_init(&vpe_proxy.lock);
4913 vpe_proxy.next_victim = 0;
4914 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4915 devid, vpe_proxy.dev->nr_ites);
4916
4917 return 0;
4918 }
4919
its_compute_its_list_map(struct resource * res,void __iomem * its_base)4920 static int __init its_compute_its_list_map(struct resource *res,
4921 void __iomem *its_base)
4922 {
4923 int its_number;
4924 u32 ctlr;
4925
4926 /*
4927 * This is assumed to be done early enough that we're
4928 * guaranteed to be single-threaded, hence no
4929 * locking. Should this change, we should address
4930 * this.
4931 */
4932 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4933 if (its_number >= GICv4_ITS_LIST_MAX) {
4934 pr_err("ITS@%pa: No ITSList entry available!\n",
4935 &res->start);
4936 return -EINVAL;
4937 }
4938
4939 ctlr = readl_relaxed(its_base + GITS_CTLR);
4940 ctlr &= ~GITS_CTLR_ITS_NUMBER;
4941 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4942 writel_relaxed(ctlr, its_base + GITS_CTLR);
4943 ctlr = readl_relaxed(its_base + GITS_CTLR);
4944 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4945 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4946 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4947 }
4948
4949 if (test_and_set_bit(its_number, &its_list_map)) {
4950 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4951 &res->start, its_number);
4952 return -EINVAL;
4953 }
4954
4955 return its_number;
4956 }
4957
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)4958 static int __init its_probe_one(struct resource *res,
4959 struct fwnode_handle *handle, int numa_node)
4960 {
4961 struct its_node *its;
4962 void __iomem *its_base;
4963 u32 val, ctlr;
4964 u64 baser, tmp, typer;
4965 struct page *page;
4966 int err;
4967
4968 its_base = ioremap(res->start, SZ_64K);
4969 if (!its_base) {
4970 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4971 return -ENOMEM;
4972 }
4973
4974 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4975 if (val != 0x30 && val != 0x40) {
4976 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4977 err = -ENODEV;
4978 goto out_unmap;
4979 }
4980
4981 err = its_force_quiescent(its_base);
4982 if (err) {
4983 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4984 goto out_unmap;
4985 }
4986
4987 pr_info("ITS %pR\n", res);
4988
4989 its = kzalloc(sizeof(*its), GFP_KERNEL);
4990 if (!its) {
4991 err = -ENOMEM;
4992 goto out_unmap;
4993 }
4994
4995 raw_spin_lock_init(&its->lock);
4996 mutex_init(&its->dev_alloc_lock);
4997 INIT_LIST_HEAD(&its->entry);
4998 INIT_LIST_HEAD(&its->its_device_list);
4999 typer = gic_read_typer(its_base + GITS_TYPER);
5000 its->typer = typer;
5001 its->base = its_base;
5002 its->phys_base = res->start;
5003 if (is_v4(its)) {
5004 if (!(typer & GITS_TYPER_VMOVP)) {
5005 err = its_compute_its_list_map(res, its_base);
5006 if (err < 0)
5007 goto out_free_its;
5008
5009 its->list_nr = err;
5010
5011 pr_info("ITS@%pa: Using ITS number %d\n",
5012 &res->start, err);
5013 } else {
5014 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5015 }
5016
5017 if (is_v4_1(its)) {
5018 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5019
5020 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5021 if (!its->sgir_base) {
5022 err = -ENOMEM;
5023 goto out_free_its;
5024 }
5025
5026 its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5027
5028 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5029 &res->start, its->mpidr, svpet);
5030 }
5031 }
5032
5033 its->numa_node = numa_node;
5034
5035 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5036 get_order(ITS_CMD_QUEUE_SZ));
5037 if (!page) {
5038 err = -ENOMEM;
5039 goto out_unmap_sgir;
5040 }
5041 its->cmd_base = (void *)page_address(page);
5042 its->cmd_write = its->cmd_base;
5043 its->fwnode_handle = handle;
5044 its->get_msi_base = its_irq_get_msi_base;
5045 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5046
5047 its_enable_quirks(its);
5048
5049 err = its_alloc_tables(its);
5050 if (err)
5051 goto out_free_cmd;
5052
5053 err = its_alloc_collections(its);
5054 if (err)
5055 goto out_free_tables;
5056
5057 baser = (virt_to_phys(its->cmd_base) |
5058 GITS_CBASER_RaWaWb |
5059 GITS_CBASER_InnerShareable |
5060 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5061 GITS_CBASER_VALID);
5062
5063 gits_write_cbaser(baser, its->base + GITS_CBASER);
5064 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5065
5066 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5067 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5068 /*
5069 * The HW reports non-shareable, we must
5070 * remove the cacheability attributes as
5071 * well.
5072 */
5073 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5074 GITS_CBASER_CACHEABILITY_MASK);
5075 baser |= GITS_CBASER_nC;
5076 gits_write_cbaser(baser, its->base + GITS_CBASER);
5077 }
5078 pr_info("ITS: using cache flushing for cmd queue\n");
5079 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5080 }
5081
5082 gits_write_cwriter(0, its->base + GITS_CWRITER);
5083 ctlr = readl_relaxed(its->base + GITS_CTLR);
5084 ctlr |= GITS_CTLR_ENABLE;
5085 if (is_v4(its))
5086 ctlr |= GITS_CTLR_ImDe;
5087 writel_relaxed(ctlr, its->base + GITS_CTLR);
5088
5089 err = its_init_domain(handle, its);
5090 if (err)
5091 goto out_free_tables;
5092
5093 raw_spin_lock(&its_lock);
5094 list_add(&its->entry, &its_nodes);
5095 raw_spin_unlock(&its_lock);
5096
5097 return 0;
5098
5099 out_free_tables:
5100 its_free_tables(its);
5101 out_free_cmd:
5102 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5103 out_unmap_sgir:
5104 if (its->sgir_base)
5105 iounmap(its->sgir_base);
5106 out_free_its:
5107 kfree(its);
5108 out_unmap:
5109 iounmap(its_base);
5110 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5111 return err;
5112 }
5113
gic_rdists_supports_plpis(void)5114 static bool gic_rdists_supports_plpis(void)
5115 {
5116 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5117 }
5118
redist_disable_lpis(void)5119 static int redist_disable_lpis(void)
5120 {
5121 void __iomem *rbase = gic_data_rdist_rd_base();
5122 u64 timeout = USEC_PER_SEC;
5123 u64 val;
5124
5125 if (!gic_rdists_supports_plpis()) {
5126 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5127 return -ENXIO;
5128 }
5129
5130 val = readl_relaxed(rbase + GICR_CTLR);
5131 if (!(val & GICR_CTLR_ENABLE_LPIS))
5132 return 0;
5133
5134 /*
5135 * If coming via a CPU hotplug event, we don't need to disable
5136 * LPIs before trying to re-enable them. They are already
5137 * configured and all is well in the world.
5138 *
5139 * If running with preallocated tables, there is nothing to do.
5140 */
5141 if (gic_data_rdist()->lpi_enabled ||
5142 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5143 return 0;
5144
5145 /*
5146 * From that point on, we only try to do some damage control.
5147 */
5148 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5149 smp_processor_id());
5150 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5151
5152 /* Disable LPIs */
5153 val &= ~GICR_CTLR_ENABLE_LPIS;
5154 writel_relaxed(val, rbase + GICR_CTLR);
5155
5156 /* Make sure any change to GICR_CTLR is observable by the GIC */
5157 dsb(sy);
5158
5159 /*
5160 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5161 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5162 * Error out if we time out waiting for RWP to clear.
5163 */
5164 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5165 if (!timeout) {
5166 pr_err("CPU%d: Timeout while disabling LPIs\n",
5167 smp_processor_id());
5168 return -ETIMEDOUT;
5169 }
5170 udelay(1);
5171 timeout--;
5172 }
5173
5174 /*
5175 * After it has been written to 1, it is IMPLEMENTATION
5176 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5177 * cleared to 0. Error out if clearing the bit failed.
5178 */
5179 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5180 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5181 return -EBUSY;
5182 }
5183
5184 return 0;
5185 }
5186
its_cpu_init(void)5187 int its_cpu_init(void)
5188 {
5189 if (!list_empty(&its_nodes)) {
5190 int ret;
5191
5192 ret = redist_disable_lpis();
5193 if (ret)
5194 return ret;
5195
5196 its_cpu_init_lpis();
5197 its_cpu_init_collections();
5198 }
5199
5200 return 0;
5201 }
5202
5203 static const struct of_device_id its_device_id[] = {
5204 { .compatible = "arm,gic-v3-its", },
5205 {},
5206 };
5207
its_of_probe(struct device_node * node)5208 static int __init its_of_probe(struct device_node *node)
5209 {
5210 struct device_node *np;
5211 struct resource res;
5212
5213 for (np = of_find_matching_node(node, its_device_id); np;
5214 np = of_find_matching_node(np, its_device_id)) {
5215 if (!of_device_is_available(np))
5216 continue;
5217 if (!of_property_read_bool(np, "msi-controller")) {
5218 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5219 np);
5220 continue;
5221 }
5222
5223 if (of_address_to_resource(np, 0, &res)) {
5224 pr_warn("%pOF: no regs?\n", np);
5225 continue;
5226 }
5227
5228 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5229 }
5230 return 0;
5231 }
5232
5233 #ifdef CONFIG_ACPI
5234
5235 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5236
5237 #ifdef CONFIG_ACPI_NUMA
5238 struct its_srat_map {
5239 /* numa node id */
5240 u32 numa_node;
5241 /* GIC ITS ID */
5242 u32 its_id;
5243 };
5244
5245 static struct its_srat_map *its_srat_maps __initdata;
5246 static int its_in_srat __initdata;
5247
acpi_get_its_numa_node(u32 its_id)5248 static int __init acpi_get_its_numa_node(u32 its_id)
5249 {
5250 int i;
5251
5252 for (i = 0; i < its_in_srat; i++) {
5253 if (its_id == its_srat_maps[i].its_id)
5254 return its_srat_maps[i].numa_node;
5255 }
5256 return NUMA_NO_NODE;
5257 }
5258
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5259 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5260 const unsigned long end)
5261 {
5262 return 0;
5263 }
5264
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5265 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5266 const unsigned long end)
5267 {
5268 int node;
5269 struct acpi_srat_gic_its_affinity *its_affinity;
5270
5271 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5272 if (!its_affinity)
5273 return -EINVAL;
5274
5275 if (its_affinity->header.length < sizeof(*its_affinity)) {
5276 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5277 its_affinity->header.length);
5278 return -EINVAL;
5279 }
5280
5281 /*
5282 * Note that in theory a new proximity node could be created by this
5283 * entry as it is an SRAT resource allocation structure.
5284 * We do not currently support doing so.
5285 */
5286 node = pxm_to_node(its_affinity->proximity_domain);
5287
5288 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5289 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5290 return 0;
5291 }
5292
5293 its_srat_maps[its_in_srat].numa_node = node;
5294 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5295 its_in_srat++;
5296 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5297 its_affinity->proximity_domain, its_affinity->its_id, node);
5298
5299 return 0;
5300 }
5301
acpi_table_parse_srat_its(void)5302 static void __init acpi_table_parse_srat_its(void)
5303 {
5304 int count;
5305
5306 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5307 sizeof(struct acpi_table_srat),
5308 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5309 gic_acpi_match_srat_its, 0);
5310 if (count <= 0)
5311 return;
5312
5313 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5314 GFP_KERNEL);
5315 if (!its_srat_maps)
5316 return;
5317
5318 acpi_table_parse_entries(ACPI_SIG_SRAT,
5319 sizeof(struct acpi_table_srat),
5320 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5321 gic_acpi_parse_srat_its, 0);
5322 }
5323
5324 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5325 static void __init acpi_its_srat_maps_free(void)
5326 {
5327 kfree(its_srat_maps);
5328 }
5329 #else
acpi_table_parse_srat_its(void)5330 static void __init acpi_table_parse_srat_its(void) { }
acpi_get_its_numa_node(u32 its_id)5331 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5332 static void __init acpi_its_srat_maps_free(void) { }
5333 #endif
5334
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5335 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5336 const unsigned long end)
5337 {
5338 struct acpi_madt_generic_translator *its_entry;
5339 struct fwnode_handle *dom_handle;
5340 struct resource res;
5341 int err;
5342
5343 its_entry = (struct acpi_madt_generic_translator *)header;
5344 memset(&res, 0, sizeof(res));
5345 res.start = its_entry->base_address;
5346 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5347 res.flags = IORESOURCE_MEM;
5348
5349 dom_handle = irq_domain_alloc_fwnode(&res.start);
5350 if (!dom_handle) {
5351 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5352 &res.start);
5353 return -ENOMEM;
5354 }
5355
5356 err = iort_register_domain_token(its_entry->translation_id, res.start,
5357 dom_handle);
5358 if (err) {
5359 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5360 &res.start, its_entry->translation_id);
5361 goto dom_err;
5362 }
5363
5364 err = its_probe_one(&res, dom_handle,
5365 acpi_get_its_numa_node(its_entry->translation_id));
5366 if (!err)
5367 return 0;
5368
5369 iort_deregister_domain_token(its_entry->translation_id);
5370 dom_err:
5371 irq_domain_free_fwnode(dom_handle);
5372 return err;
5373 }
5374
its_acpi_probe(void)5375 static void __init its_acpi_probe(void)
5376 {
5377 acpi_table_parse_srat_its();
5378 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5379 gic_acpi_parse_madt_its, 0);
5380 acpi_its_srat_maps_free();
5381 }
5382 #else
its_acpi_probe(void)5383 static void __init its_acpi_probe(void) { }
5384 #endif
5385
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)5386 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5387 struct irq_domain *parent_domain)
5388 {
5389 struct device_node *of_node;
5390 struct its_node *its;
5391 bool has_v4 = false;
5392 bool has_v4_1 = false;
5393 int err;
5394
5395 gic_rdists = rdists;
5396
5397 its_parent = parent_domain;
5398 of_node = to_of_node(handle);
5399 if (of_node)
5400 its_of_probe(of_node);
5401 else
5402 its_acpi_probe();
5403
5404 if (list_empty(&its_nodes)) {
5405 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5406 return -ENXIO;
5407 }
5408
5409 err = allocate_lpi_tables();
5410 if (err)
5411 return err;
5412
5413 list_for_each_entry(its, &its_nodes, entry) {
5414 has_v4 |= is_v4(its);
5415 has_v4_1 |= is_v4_1(its);
5416 }
5417
5418 /* Don't bother with inconsistent systems */
5419 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5420 rdists->has_rvpeid = false;
5421
5422 if (has_v4 & rdists->has_vlpis) {
5423 const struct irq_domain_ops *sgi_ops;
5424
5425 if (has_v4_1)
5426 sgi_ops = &its_sgi_domain_ops;
5427 else
5428 sgi_ops = NULL;
5429
5430 if (its_init_vpe_domain() ||
5431 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5432 rdists->has_vlpis = false;
5433 pr_err("ITS: Disabling GICv4 support\n");
5434 }
5435 }
5436
5437 register_syscore_ops(&its_syscore_ops);
5438
5439 return 0;
5440 }
5441