1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * IOMMU API for Renesas VMSA-compatible IPMMU
4 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5 *
6 * Copyright (C) 2014-2020 Renesas Electronics Corporation
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/io-pgtable.h>
18 #include <linux/iommu.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/sizes.h>
24 #include <linux/slab.h>
25 #include <linux/sys_soc.h>
26
27 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
28 #include <asm/dma-iommu.h>
29 #else
30 #define arm_iommu_create_mapping(...) NULL
31 #define arm_iommu_attach_device(...) -ENODEV
32 #define arm_iommu_release_mapping(...) do {} while (0)
33 #define arm_iommu_detach_device(...) do {} while (0)
34 #endif
35
36 #define IPMMU_CTX_MAX 8U
37 #define IPMMU_CTX_INVALID -1
38
39 #define IPMMU_UTLB_MAX 48U
40
41 struct ipmmu_features {
42 bool use_ns_alias_offset;
43 bool has_cache_leaf_nodes;
44 unsigned int number_of_contexts;
45 unsigned int num_utlbs;
46 bool setup_imbuscr;
47 bool twobit_imttbcr_sl0;
48 bool reserved_context;
49 bool cache_snoop;
50 unsigned int ctx_offset_base;
51 unsigned int ctx_offset_stride;
52 unsigned int utlb_offset_base;
53 };
54
55 struct ipmmu_vmsa_device {
56 struct device *dev;
57 void __iomem *base;
58 struct iommu_device iommu;
59 struct ipmmu_vmsa_device *root;
60 const struct ipmmu_features *features;
61 unsigned int num_ctx;
62 spinlock_t lock; /* Protects ctx and domains[] */
63 DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
64 struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
65 s8 utlb_ctx[IPMMU_UTLB_MAX];
66
67 struct iommu_group *group;
68 struct dma_iommu_mapping *mapping;
69 };
70
71 struct ipmmu_vmsa_domain {
72 struct ipmmu_vmsa_device *mmu;
73 struct iommu_domain io_domain;
74
75 struct io_pgtable_cfg cfg;
76 struct io_pgtable_ops *iop;
77
78 unsigned int context_id;
79 struct mutex mutex; /* Protects mappings */
80 };
81
to_vmsa_domain(struct iommu_domain * dom)82 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
83 {
84 return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
85 }
86
to_ipmmu(struct device * dev)87 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
88 {
89 return dev_iommu_priv_get(dev);
90 }
91
92 #define TLB_LOOP_TIMEOUT 100 /* 100us */
93
94 /* -----------------------------------------------------------------------------
95 * Registers Definition
96 */
97
98 #define IM_NS_ALIAS_OFFSET 0x800
99
100 /* MMU "context" registers */
101 #define IMCTR 0x0000 /* R-Car Gen2/3 */
102 #define IMCTR_INTEN (1 << 2) /* R-Car Gen2/3 */
103 #define IMCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
104 #define IMCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
105
106 #define IMTTBCR 0x0008 /* R-Car Gen2/3 */
107 #define IMTTBCR_EAE (1 << 31) /* R-Car Gen2/3 */
108 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */
109 #define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */
110 #define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */
111 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */
112 #define IMTTBCR_SL0_LVL_1 (1 << 4) /* R-Car Gen2 only */
113
114 #define IMBUSCR 0x000c /* R-Car Gen2 only */
115 #define IMBUSCR_DVM (1 << 2) /* R-Car Gen2 only */
116 #define IMBUSCR_BUSSEL_MASK (3 << 0) /* R-Car Gen2 only */
117
118 #define IMTTLBR0 0x0010 /* R-Car Gen2/3 */
119 #define IMTTUBR0 0x0014 /* R-Car Gen2/3 */
120
121 #define IMSTR 0x0020 /* R-Car Gen2/3 */
122 #define IMSTR_MHIT (1 << 4) /* R-Car Gen2/3 */
123 #define IMSTR_ABORT (1 << 2) /* R-Car Gen2/3 */
124 #define IMSTR_PF (1 << 1) /* R-Car Gen2/3 */
125 #define IMSTR_TF (1 << 0) /* R-Car Gen2/3 */
126
127 #define IMMAIR0 0x0028 /* R-Car Gen2/3 */
128
129 #define IMELAR 0x0030 /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
130 #define IMEUAR 0x0034 /* R-Car Gen3 only */
131
132 /* uTLB registers */
133 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
134 #define IMUCTR0(n) (0x0300 + ((n) * 16)) /* R-Car Gen2/3 */
135 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16)) /* R-Car Gen3 only */
136 #define IMUCTR_TTSEL_MMU(n) ((n) << 4) /* R-Car Gen2/3 */
137 #define IMUCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */
138 #define IMUCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */
139
140 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
141 #define IMUASID0(n) (0x0308 + ((n) * 16)) /* R-Car Gen2/3 */
142 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16)) /* R-Car Gen3 only */
143
144 /* -----------------------------------------------------------------------------
145 * Root device handling
146 */
147
148 static struct platform_driver ipmmu_driver;
149
ipmmu_is_root(struct ipmmu_vmsa_device * mmu)150 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
151 {
152 return mmu->root == mmu;
153 }
154
__ipmmu_check_device(struct device * dev,void * data)155 static int __ipmmu_check_device(struct device *dev, void *data)
156 {
157 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
158 struct ipmmu_vmsa_device **rootp = data;
159
160 if (ipmmu_is_root(mmu))
161 *rootp = mmu;
162
163 return 0;
164 }
165
ipmmu_find_root(void)166 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
167 {
168 struct ipmmu_vmsa_device *root = NULL;
169
170 return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
171 __ipmmu_check_device) == 0 ? root : NULL;
172 }
173
174 /* -----------------------------------------------------------------------------
175 * Read/Write Access
176 */
177
ipmmu_read(struct ipmmu_vmsa_device * mmu,unsigned int offset)178 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
179 {
180 return ioread32(mmu->base + offset);
181 }
182
ipmmu_write(struct ipmmu_vmsa_device * mmu,unsigned int offset,u32 data)183 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
184 u32 data)
185 {
186 iowrite32(data, mmu->base + offset);
187 }
188
ipmmu_ctx_reg(struct ipmmu_vmsa_device * mmu,unsigned int context_id,unsigned int reg)189 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
190 unsigned int context_id, unsigned int reg)
191 {
192 return mmu->features->ctx_offset_base +
193 context_id * mmu->features->ctx_offset_stride + reg;
194 }
195
ipmmu_ctx_read(struct ipmmu_vmsa_device * mmu,unsigned int context_id,unsigned int reg)196 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
197 unsigned int context_id, unsigned int reg)
198 {
199 return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
200 }
201
ipmmu_ctx_write(struct ipmmu_vmsa_device * mmu,unsigned int context_id,unsigned int reg,u32 data)202 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
203 unsigned int context_id, unsigned int reg, u32 data)
204 {
205 ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
206 }
207
ipmmu_ctx_read_root(struct ipmmu_vmsa_domain * domain,unsigned int reg)208 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
209 unsigned int reg)
210 {
211 return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
212 }
213
ipmmu_ctx_write_root(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)214 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
215 unsigned int reg, u32 data)
216 {
217 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
218 }
219
ipmmu_ctx_write_all(struct ipmmu_vmsa_domain * domain,unsigned int reg,u32 data)220 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
221 unsigned int reg, u32 data)
222 {
223 if (domain->mmu != domain->mmu->root)
224 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
225
226 ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
227 }
228
ipmmu_utlb_reg(struct ipmmu_vmsa_device * mmu,unsigned int reg)229 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
230 {
231 return mmu->features->utlb_offset_base + reg;
232 }
233
ipmmu_imuasid_write(struct ipmmu_vmsa_device * mmu,unsigned int utlb,u32 data)234 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
235 unsigned int utlb, u32 data)
236 {
237 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
238 }
239
ipmmu_imuctr_write(struct ipmmu_vmsa_device * mmu,unsigned int utlb,u32 data)240 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
241 unsigned int utlb, u32 data)
242 {
243 ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
244 }
245
246 /* -----------------------------------------------------------------------------
247 * TLB and microTLB Management
248 */
249
250 /* Wait for any pending TLB invalidations to complete */
ipmmu_tlb_sync(struct ipmmu_vmsa_domain * domain)251 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
252 {
253 unsigned int count = 0;
254
255 while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
256 cpu_relax();
257 if (++count == TLB_LOOP_TIMEOUT) {
258 dev_err_ratelimited(domain->mmu->dev,
259 "TLB sync timed out -- MMU may be deadlocked\n");
260 return;
261 }
262 udelay(1);
263 }
264 }
265
ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain * domain)266 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
267 {
268 u32 reg;
269
270 reg = ipmmu_ctx_read_root(domain, IMCTR);
271 reg |= IMCTR_FLUSH;
272 ipmmu_ctx_write_all(domain, IMCTR, reg);
273
274 ipmmu_tlb_sync(domain);
275 }
276
277 /*
278 * Enable MMU translation for the microTLB.
279 */
ipmmu_utlb_enable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)280 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
281 unsigned int utlb)
282 {
283 struct ipmmu_vmsa_device *mmu = domain->mmu;
284
285 /*
286 * TODO: Reference-count the microTLB as several bus masters can be
287 * connected to the same microTLB.
288 */
289
290 /* TODO: What should we set the ASID to ? */
291 ipmmu_imuasid_write(mmu, utlb, 0);
292 /* TODO: Do we need to flush the microTLB ? */
293 ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
294 IMUCTR_FLUSH | IMUCTR_MMUEN);
295 mmu->utlb_ctx[utlb] = domain->context_id;
296 }
297
298 /*
299 * Disable MMU translation for the microTLB.
300 */
ipmmu_utlb_disable(struct ipmmu_vmsa_domain * domain,unsigned int utlb)301 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
302 unsigned int utlb)
303 {
304 struct ipmmu_vmsa_device *mmu = domain->mmu;
305
306 ipmmu_imuctr_write(mmu, utlb, 0);
307 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
308 }
309
ipmmu_tlb_flush_all(void * cookie)310 static void ipmmu_tlb_flush_all(void *cookie)
311 {
312 struct ipmmu_vmsa_domain *domain = cookie;
313
314 ipmmu_tlb_invalidate(domain);
315 }
316
ipmmu_tlb_flush(unsigned long iova,size_t size,size_t granule,void * cookie)317 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
318 size_t granule, void *cookie)
319 {
320 ipmmu_tlb_flush_all(cookie);
321 }
322
323 static const struct iommu_flush_ops ipmmu_flush_ops = {
324 .tlb_flush_all = ipmmu_tlb_flush_all,
325 .tlb_flush_walk = ipmmu_tlb_flush,
326 };
327
328 /* -----------------------------------------------------------------------------
329 * Domain/Context Management
330 */
331
ipmmu_domain_allocate_context(struct ipmmu_vmsa_device * mmu,struct ipmmu_vmsa_domain * domain)332 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
333 struct ipmmu_vmsa_domain *domain)
334 {
335 unsigned long flags;
336 int ret;
337
338 spin_lock_irqsave(&mmu->lock, flags);
339
340 ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
341 if (ret != mmu->num_ctx) {
342 mmu->domains[ret] = domain;
343 set_bit(ret, mmu->ctx);
344 } else
345 ret = -EBUSY;
346
347 spin_unlock_irqrestore(&mmu->lock, flags);
348
349 return ret;
350 }
351
ipmmu_domain_free_context(struct ipmmu_vmsa_device * mmu,unsigned int context_id)352 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
353 unsigned int context_id)
354 {
355 unsigned long flags;
356
357 spin_lock_irqsave(&mmu->lock, flags);
358
359 clear_bit(context_id, mmu->ctx);
360 mmu->domains[context_id] = NULL;
361
362 spin_unlock_irqrestore(&mmu->lock, flags);
363 }
364
ipmmu_domain_setup_context(struct ipmmu_vmsa_domain * domain)365 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
366 {
367 u64 ttbr;
368 u32 tmp;
369
370 /* TTBR0 */
371 ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
372 ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
373 ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
374
375 /*
376 * TTBCR
377 * We use long descriptors and allocate the whole 32-bit VA space to
378 * TTBR0.
379 */
380 if (domain->mmu->features->twobit_imttbcr_sl0)
381 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
382 else
383 tmp = IMTTBCR_SL0_LVL_1;
384
385 if (domain->mmu->features->cache_snoop)
386 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
387 IMTTBCR_IRGN0_WB_WA;
388
389 ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
390
391 /* MAIR0 */
392 ipmmu_ctx_write_root(domain, IMMAIR0,
393 domain->cfg.arm_lpae_s1_cfg.mair);
394
395 /* IMBUSCR */
396 if (domain->mmu->features->setup_imbuscr)
397 ipmmu_ctx_write_root(domain, IMBUSCR,
398 ipmmu_ctx_read_root(domain, IMBUSCR) &
399 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
400
401 /*
402 * IMSTR
403 * Clear all interrupt flags.
404 */
405 ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
406
407 /*
408 * IMCTR
409 * Enable the MMU and interrupt generation. The long-descriptor
410 * translation table format doesn't use TEX remapping. Don't enable AF
411 * software management as we have no use for it. Flush the TLB as
412 * required when modifying the context registers.
413 */
414 ipmmu_ctx_write_all(domain, IMCTR,
415 IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
416 }
417
ipmmu_domain_init_context(struct ipmmu_vmsa_domain * domain)418 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
419 {
420 int ret;
421
422 /*
423 * Allocate the page table operations.
424 *
425 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
426 * access, Long-descriptor format" that the NStable bit being set in a
427 * table descriptor will result in the NStable and NS bits of all child
428 * entries being ignored and considered as being set. The IPMMU seems
429 * not to comply with this, as it generates a secure access page fault
430 * if any of the NStable and NS bits isn't set when running in
431 * non-secure mode.
432 */
433 domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
434 domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
435 domain->cfg.ias = 32;
436 domain->cfg.oas = 40;
437 domain->cfg.tlb = &ipmmu_flush_ops;
438 domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
439 domain->io_domain.geometry.force_aperture = true;
440 /*
441 * TODO: Add support for coherent walk through CCI with DVM and remove
442 * cache handling. For now, delegate it to the io-pgtable code.
443 */
444 domain->cfg.coherent_walk = false;
445 domain->cfg.iommu_dev = domain->mmu->root->dev;
446
447 /*
448 * Find an unused context.
449 */
450 ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
451 if (ret < 0)
452 return ret;
453
454 domain->context_id = ret;
455
456 domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
457 domain);
458 if (!domain->iop) {
459 ipmmu_domain_free_context(domain->mmu->root,
460 domain->context_id);
461 return -EINVAL;
462 }
463
464 ipmmu_domain_setup_context(domain);
465 return 0;
466 }
467
ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain * domain)468 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
469 {
470 if (!domain->mmu)
471 return;
472
473 /*
474 * Disable the context. Flush the TLB as required when modifying the
475 * context registers.
476 *
477 * TODO: Is TLB flush really needed ?
478 */
479 ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
480 ipmmu_tlb_sync(domain);
481 ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
482 }
483
484 /* -----------------------------------------------------------------------------
485 * Fault Handling
486 */
487
ipmmu_domain_irq(struct ipmmu_vmsa_domain * domain)488 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
489 {
490 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
491 struct ipmmu_vmsa_device *mmu = domain->mmu;
492 unsigned long iova;
493 u32 status;
494
495 status = ipmmu_ctx_read_root(domain, IMSTR);
496 if (!(status & err_mask))
497 return IRQ_NONE;
498
499 iova = ipmmu_ctx_read_root(domain, IMELAR);
500 if (IS_ENABLED(CONFIG_64BIT))
501 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
502
503 /*
504 * Clear the error status flags. Unlike traditional interrupt flag
505 * registers that must be cleared by writing 1, this status register
506 * seems to require 0. The error address register must be read before,
507 * otherwise its value will be 0.
508 */
509 ipmmu_ctx_write_root(domain, IMSTR, 0);
510
511 /* Log fatal errors. */
512 if (status & IMSTR_MHIT)
513 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
514 iova);
515 if (status & IMSTR_ABORT)
516 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
517 iova);
518
519 if (!(status & (IMSTR_PF | IMSTR_TF)))
520 return IRQ_NONE;
521
522 /*
523 * Try to handle page faults and translation faults.
524 *
525 * TODO: We need to look up the faulty device based on the I/O VA. Use
526 * the IOMMU device for now.
527 */
528 if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
529 return IRQ_HANDLED;
530
531 dev_err_ratelimited(mmu->dev,
532 "Unhandled fault: status 0x%08x iova 0x%lx\n",
533 status, iova);
534
535 return IRQ_HANDLED;
536 }
537
ipmmu_irq(int irq,void * dev)538 static irqreturn_t ipmmu_irq(int irq, void *dev)
539 {
540 struct ipmmu_vmsa_device *mmu = dev;
541 irqreturn_t status = IRQ_NONE;
542 unsigned int i;
543 unsigned long flags;
544
545 spin_lock_irqsave(&mmu->lock, flags);
546
547 /*
548 * Check interrupts for all active contexts.
549 */
550 for (i = 0; i < mmu->num_ctx; i++) {
551 if (!mmu->domains[i])
552 continue;
553 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
554 status = IRQ_HANDLED;
555 }
556
557 spin_unlock_irqrestore(&mmu->lock, flags);
558
559 return status;
560 }
561
562 /* -----------------------------------------------------------------------------
563 * IOMMU Operations
564 */
565
ipmmu_domain_alloc(unsigned type)566 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
567 {
568 struct ipmmu_vmsa_domain *domain;
569
570 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
571 return NULL;
572
573 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
574 if (!domain)
575 return NULL;
576
577 mutex_init(&domain->mutex);
578
579 return &domain->io_domain;
580 }
581
ipmmu_domain_free(struct iommu_domain * io_domain)582 static void ipmmu_domain_free(struct iommu_domain *io_domain)
583 {
584 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
585
586 /*
587 * Free the domain resources. We assume that all devices have already
588 * been detached.
589 */
590 ipmmu_domain_destroy_context(domain);
591 free_io_pgtable_ops(domain->iop);
592 kfree(domain);
593 }
594
ipmmu_attach_device(struct iommu_domain * io_domain,struct device * dev)595 static int ipmmu_attach_device(struct iommu_domain *io_domain,
596 struct device *dev)
597 {
598 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
599 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
600 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
601 unsigned int i;
602 int ret = 0;
603
604 if (!mmu) {
605 dev_err(dev, "Cannot attach to IPMMU\n");
606 return -ENXIO;
607 }
608
609 mutex_lock(&domain->mutex);
610
611 if (!domain->mmu) {
612 /* The domain hasn't been used yet, initialize it. */
613 domain->mmu = mmu;
614 ret = ipmmu_domain_init_context(domain);
615 if (ret < 0) {
616 dev_err(dev, "Unable to initialize IPMMU context\n");
617 domain->mmu = NULL;
618 } else {
619 dev_info(dev, "Using IPMMU context %u\n",
620 domain->context_id);
621 }
622 } else if (domain->mmu != mmu) {
623 /*
624 * Something is wrong, we can't attach two devices using
625 * different IOMMUs to the same domain.
626 */
627 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
628 dev_name(mmu->dev), dev_name(domain->mmu->dev));
629 ret = -EINVAL;
630 } else
631 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
632
633 mutex_unlock(&domain->mutex);
634
635 if (ret < 0)
636 return ret;
637
638 for (i = 0; i < fwspec->num_ids; ++i)
639 ipmmu_utlb_enable(domain, fwspec->ids[i]);
640
641 return 0;
642 }
643
ipmmu_detach_device(struct iommu_domain * io_domain,struct device * dev)644 static void ipmmu_detach_device(struct iommu_domain *io_domain,
645 struct device *dev)
646 {
647 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
648 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
649 unsigned int i;
650
651 for (i = 0; i < fwspec->num_ids; ++i)
652 ipmmu_utlb_disable(domain, fwspec->ids[i]);
653
654 /*
655 * TODO: Optimize by disabling the context when no device is attached.
656 */
657 }
658
ipmmu_map(struct iommu_domain * io_domain,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)659 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
660 phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
661 {
662 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
663
664 if (!domain)
665 return -ENODEV;
666
667 return domain->iop->map(domain->iop, iova, paddr, size, prot, gfp);
668 }
669
ipmmu_unmap(struct iommu_domain * io_domain,unsigned long iova,size_t size,struct iommu_iotlb_gather * gather)670 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
671 size_t size, struct iommu_iotlb_gather *gather)
672 {
673 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
674
675 return domain->iop->unmap(domain->iop, iova, size, gather);
676 }
677
ipmmu_flush_iotlb_all(struct iommu_domain * io_domain)678 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
679 {
680 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
681
682 if (domain->mmu)
683 ipmmu_tlb_flush_all(domain);
684 }
685
ipmmu_iotlb_sync(struct iommu_domain * io_domain,struct iommu_iotlb_gather * gather)686 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
687 struct iommu_iotlb_gather *gather)
688 {
689 ipmmu_flush_iotlb_all(io_domain);
690 }
691
ipmmu_iova_to_phys(struct iommu_domain * io_domain,dma_addr_t iova)692 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
693 dma_addr_t iova)
694 {
695 struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
696
697 /* TODO: Is locking needed ? */
698
699 return domain->iop->iova_to_phys(domain->iop, iova);
700 }
701
ipmmu_init_platform_device(struct device * dev,struct of_phandle_args * args)702 static int ipmmu_init_platform_device(struct device *dev,
703 struct of_phandle_args *args)
704 {
705 struct platform_device *ipmmu_pdev;
706
707 ipmmu_pdev = of_find_device_by_node(args->np);
708 if (!ipmmu_pdev)
709 return -ENODEV;
710
711 dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
712
713 return 0;
714 }
715
716 static const struct soc_device_attribute soc_needs_opt_in[] = {
717 { .family = "R-Car Gen3", },
718 { .family = "RZ/G2", },
719 { /* sentinel */ }
720 };
721
722 static const struct soc_device_attribute soc_denylist[] = {
723 { .soc_id = "r8a774a1", },
724 { .soc_id = "r8a7795", .revision = "ES1.*" },
725 { .soc_id = "r8a7795", .revision = "ES2.*" },
726 { .soc_id = "r8a7796", },
727 { /* sentinel */ }
728 };
729
730 static const char * const devices_allowlist[] = {
731 "ee100000.mmc",
732 "ee120000.mmc",
733 "ee140000.mmc",
734 "ee160000.mmc"
735 };
736
ipmmu_device_is_allowed(struct device * dev)737 static bool ipmmu_device_is_allowed(struct device *dev)
738 {
739 unsigned int i;
740
741 /*
742 * R-Car Gen3 and RZ/G2 use the allow list to opt-in devices.
743 * For Other SoCs, this returns true anyway.
744 */
745 if (!soc_device_match(soc_needs_opt_in))
746 return true;
747
748 /* Check whether this SoC can use the IPMMU correctly or not */
749 if (soc_device_match(soc_denylist))
750 return false;
751
752 /* Check whether this device can work with the IPMMU */
753 for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
754 if (!strcmp(dev_name(dev), devices_allowlist[i]))
755 return true;
756 }
757
758 /* Otherwise, do not allow use of IPMMU */
759 return false;
760 }
761
ipmmu_of_xlate(struct device * dev,struct of_phandle_args * spec)762 static int ipmmu_of_xlate(struct device *dev,
763 struct of_phandle_args *spec)
764 {
765 if (!ipmmu_device_is_allowed(dev))
766 return -ENODEV;
767
768 iommu_fwspec_add_ids(dev, spec->args, 1);
769
770 /* Initialize once - xlate() will call multiple times */
771 if (to_ipmmu(dev))
772 return 0;
773
774 return ipmmu_init_platform_device(dev, spec);
775 }
776
ipmmu_init_arm_mapping(struct device * dev)777 static int ipmmu_init_arm_mapping(struct device *dev)
778 {
779 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
780 int ret;
781
782 /*
783 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
784 * VAs. This will allocate a corresponding IOMMU domain.
785 *
786 * TODO:
787 * - Create one mapping per context (TLB).
788 * - Make the mapping size configurable ? We currently use a 2GB mapping
789 * at a 1GB offset to ensure that NULL VAs will fault.
790 */
791 if (!mmu->mapping) {
792 struct dma_iommu_mapping *mapping;
793
794 mapping = arm_iommu_create_mapping(&platform_bus_type,
795 SZ_1G, SZ_2G);
796 if (IS_ERR(mapping)) {
797 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
798 ret = PTR_ERR(mapping);
799 goto error;
800 }
801
802 mmu->mapping = mapping;
803 }
804
805 /* Attach the ARM VA mapping to the device. */
806 ret = arm_iommu_attach_device(dev, mmu->mapping);
807 if (ret < 0) {
808 dev_err(dev, "Failed to attach device to VA mapping\n");
809 goto error;
810 }
811
812 return 0;
813
814 error:
815 if (mmu->mapping)
816 arm_iommu_release_mapping(mmu->mapping);
817
818 return ret;
819 }
820
ipmmu_probe_device(struct device * dev)821 static struct iommu_device *ipmmu_probe_device(struct device *dev)
822 {
823 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
824
825 /*
826 * Only let through devices that have been verified in xlate()
827 */
828 if (!mmu)
829 return ERR_PTR(-ENODEV);
830
831 return &mmu->iommu;
832 }
833
ipmmu_probe_finalize(struct device * dev)834 static void ipmmu_probe_finalize(struct device *dev)
835 {
836 int ret = 0;
837
838 if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
839 ret = ipmmu_init_arm_mapping(dev);
840
841 if (ret)
842 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
843 }
844
ipmmu_release_device(struct device * dev)845 static void ipmmu_release_device(struct device *dev)
846 {
847 arm_iommu_detach_device(dev);
848 }
849
ipmmu_find_group(struct device * dev)850 static struct iommu_group *ipmmu_find_group(struct device *dev)
851 {
852 struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
853 struct iommu_group *group;
854
855 if (mmu->group)
856 return iommu_group_ref_get(mmu->group);
857
858 group = iommu_group_alloc();
859 if (!IS_ERR(group))
860 mmu->group = group;
861
862 return group;
863 }
864
865 static const struct iommu_ops ipmmu_ops = {
866 .domain_alloc = ipmmu_domain_alloc,
867 .domain_free = ipmmu_domain_free,
868 .attach_dev = ipmmu_attach_device,
869 .detach_dev = ipmmu_detach_device,
870 .map = ipmmu_map,
871 .unmap = ipmmu_unmap,
872 .flush_iotlb_all = ipmmu_flush_iotlb_all,
873 .iotlb_sync = ipmmu_iotlb_sync,
874 .iova_to_phys = ipmmu_iova_to_phys,
875 .probe_device = ipmmu_probe_device,
876 .release_device = ipmmu_release_device,
877 .probe_finalize = ipmmu_probe_finalize,
878 .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
879 ? generic_device_group : ipmmu_find_group,
880 .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
881 .of_xlate = ipmmu_of_xlate,
882 };
883
884 /* -----------------------------------------------------------------------------
885 * Probe/remove and init
886 */
887
ipmmu_device_reset(struct ipmmu_vmsa_device * mmu)888 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
889 {
890 unsigned int i;
891
892 /* Disable all contexts. */
893 for (i = 0; i < mmu->num_ctx; ++i)
894 ipmmu_ctx_write(mmu, i, IMCTR, 0);
895 }
896
897 static const struct ipmmu_features ipmmu_features_default = {
898 .use_ns_alias_offset = true,
899 .has_cache_leaf_nodes = false,
900 .number_of_contexts = 1, /* software only tested with one context */
901 .num_utlbs = 32,
902 .setup_imbuscr = true,
903 .twobit_imttbcr_sl0 = false,
904 .reserved_context = false,
905 .cache_snoop = true,
906 .ctx_offset_base = 0,
907 .ctx_offset_stride = 0x40,
908 .utlb_offset_base = 0,
909 };
910
911 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
912 .use_ns_alias_offset = false,
913 .has_cache_leaf_nodes = true,
914 .number_of_contexts = 8,
915 .num_utlbs = 48,
916 .setup_imbuscr = false,
917 .twobit_imttbcr_sl0 = true,
918 .reserved_context = true,
919 .cache_snoop = false,
920 .ctx_offset_base = 0,
921 .ctx_offset_stride = 0x40,
922 .utlb_offset_base = 0,
923 };
924
925 static const struct of_device_id ipmmu_of_ids[] = {
926 {
927 .compatible = "renesas,ipmmu-vmsa",
928 .data = &ipmmu_features_default,
929 }, {
930 .compatible = "renesas,ipmmu-r8a774a1",
931 .data = &ipmmu_features_rcar_gen3,
932 }, {
933 .compatible = "renesas,ipmmu-r8a774b1",
934 .data = &ipmmu_features_rcar_gen3,
935 }, {
936 .compatible = "renesas,ipmmu-r8a774c0",
937 .data = &ipmmu_features_rcar_gen3,
938 }, {
939 .compatible = "renesas,ipmmu-r8a774e1",
940 .data = &ipmmu_features_rcar_gen3,
941 }, {
942 .compatible = "renesas,ipmmu-r8a7795",
943 .data = &ipmmu_features_rcar_gen3,
944 }, {
945 .compatible = "renesas,ipmmu-r8a7796",
946 .data = &ipmmu_features_rcar_gen3,
947 }, {
948 .compatible = "renesas,ipmmu-r8a77961",
949 .data = &ipmmu_features_rcar_gen3,
950 }, {
951 .compatible = "renesas,ipmmu-r8a77965",
952 .data = &ipmmu_features_rcar_gen3,
953 }, {
954 .compatible = "renesas,ipmmu-r8a77970",
955 .data = &ipmmu_features_rcar_gen3,
956 }, {
957 .compatible = "renesas,ipmmu-r8a77990",
958 .data = &ipmmu_features_rcar_gen3,
959 }, {
960 .compatible = "renesas,ipmmu-r8a77995",
961 .data = &ipmmu_features_rcar_gen3,
962 }, {
963 /* Terminator */
964 },
965 };
966
ipmmu_probe(struct platform_device * pdev)967 static int ipmmu_probe(struct platform_device *pdev)
968 {
969 struct ipmmu_vmsa_device *mmu;
970 struct resource *res;
971 int irq;
972 int ret;
973
974 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
975 if (!mmu) {
976 dev_err(&pdev->dev, "cannot allocate device data\n");
977 return -ENOMEM;
978 }
979
980 mmu->dev = &pdev->dev;
981 spin_lock_init(&mmu->lock);
982 bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
983 mmu->features = of_device_get_match_data(&pdev->dev);
984 memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
985 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
986
987 /* Map I/O memory and request IRQ. */
988 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
989 mmu->base = devm_ioremap_resource(&pdev->dev, res);
990 if (IS_ERR(mmu->base))
991 return PTR_ERR(mmu->base);
992
993 /*
994 * The IPMMU has two register banks, for secure and non-secure modes.
995 * The bank mapped at the beginning of the IPMMU address space
996 * corresponds to the running mode of the CPU. When running in secure
997 * mode the non-secure register bank is also available at an offset.
998 *
999 * Secure mode operation isn't clearly documented and is thus currently
1000 * not implemented in the driver. Furthermore, preliminary tests of
1001 * non-secure operation with the main register bank were not successful.
1002 * Offset the registers base unconditionally to point to the non-secure
1003 * alias space for now.
1004 */
1005 if (mmu->features->use_ns_alias_offset)
1006 mmu->base += IM_NS_ALIAS_OFFSET;
1007
1008 mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1009
1010 /*
1011 * Determine if this IPMMU instance is a root device by checking for
1012 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1013 */
1014 if (!mmu->features->has_cache_leaf_nodes ||
1015 !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1016 mmu->root = mmu;
1017 else
1018 mmu->root = ipmmu_find_root();
1019
1020 /*
1021 * Wait until the root device has been registered for sure.
1022 */
1023 if (!mmu->root)
1024 return -EPROBE_DEFER;
1025
1026 /* Root devices have mandatory IRQs */
1027 if (ipmmu_is_root(mmu)) {
1028 irq = platform_get_irq(pdev, 0);
1029 if (irq < 0)
1030 return irq;
1031
1032 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1033 dev_name(&pdev->dev), mmu);
1034 if (ret < 0) {
1035 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1036 return ret;
1037 }
1038
1039 ipmmu_device_reset(mmu);
1040
1041 if (mmu->features->reserved_context) {
1042 dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1043 set_bit(0, mmu->ctx);
1044 }
1045 }
1046
1047 /*
1048 * Register the IPMMU to the IOMMU subsystem in the following cases:
1049 * - R-Car Gen2 IPMMU (all devices registered)
1050 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1051 */
1052 if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1053 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1054 dev_name(&pdev->dev));
1055 if (ret)
1056 return ret;
1057
1058 ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev);
1059 if (ret)
1060 return ret;
1061
1062 #if defined(CONFIG_IOMMU_DMA)
1063 if (!iommu_present(&platform_bus_type))
1064 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1065 #endif
1066 }
1067
1068 /*
1069 * We can't create the ARM mapping here as it requires the bus to have
1070 * an IOMMU, which only happens when bus_set_iommu() is called in
1071 * ipmmu_init() after the probe function returns.
1072 */
1073
1074 platform_set_drvdata(pdev, mmu);
1075
1076 return 0;
1077 }
1078
ipmmu_remove(struct platform_device * pdev)1079 static int ipmmu_remove(struct platform_device *pdev)
1080 {
1081 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1082
1083 iommu_device_sysfs_remove(&mmu->iommu);
1084 iommu_device_unregister(&mmu->iommu);
1085
1086 arm_iommu_release_mapping(mmu->mapping);
1087
1088 ipmmu_device_reset(mmu);
1089
1090 return 0;
1091 }
1092
1093 #ifdef CONFIG_PM_SLEEP
ipmmu_resume_noirq(struct device * dev)1094 static int ipmmu_resume_noirq(struct device *dev)
1095 {
1096 struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1097 unsigned int i;
1098
1099 /* Reset root MMU and restore contexts */
1100 if (ipmmu_is_root(mmu)) {
1101 ipmmu_device_reset(mmu);
1102
1103 for (i = 0; i < mmu->num_ctx; i++) {
1104 if (!mmu->domains[i])
1105 continue;
1106
1107 ipmmu_domain_setup_context(mmu->domains[i]);
1108 }
1109 }
1110
1111 /* Re-enable active micro-TLBs */
1112 for (i = 0; i < mmu->features->num_utlbs; i++) {
1113 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1114 continue;
1115
1116 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1117 }
1118
1119 return 0;
1120 }
1121
1122 static const struct dev_pm_ops ipmmu_pm = {
1123 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1124 };
1125 #define DEV_PM_OPS &ipmmu_pm
1126 #else
1127 #define DEV_PM_OPS NULL
1128 #endif /* CONFIG_PM_SLEEP */
1129
1130 static struct platform_driver ipmmu_driver = {
1131 .driver = {
1132 .name = "ipmmu-vmsa",
1133 .of_match_table = of_match_ptr(ipmmu_of_ids),
1134 .pm = DEV_PM_OPS,
1135 },
1136 .probe = ipmmu_probe,
1137 .remove = ipmmu_remove,
1138 };
1139
ipmmu_init(void)1140 static int __init ipmmu_init(void)
1141 {
1142 struct device_node *np;
1143 static bool setup_done;
1144 int ret;
1145
1146 if (setup_done)
1147 return 0;
1148
1149 np = of_find_matching_node(NULL, ipmmu_of_ids);
1150 if (!np)
1151 return 0;
1152
1153 of_node_put(np);
1154
1155 ret = platform_driver_register(&ipmmu_driver);
1156 if (ret < 0)
1157 return ret;
1158
1159 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1160 if (!iommu_present(&platform_bus_type))
1161 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1162 #endif
1163
1164 setup_done = true;
1165 return 0;
1166 }
1167 subsys_initcall(ipmmu_init);
1168