1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11 #include <linux/acpi_iort.h>
12 #include <linux/device.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/gfp.h>
16 #include <linux/huge_mm.h>
17 #include <linux/iommu.h>
18 #include <linux/iova.h>
19 #include <linux/irq.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/pci.h>
23 #include <linux/swiotlb.h>
24 #include <linux/scatterlist.h>
25 #include <linux/vmalloc.h>
26 #include <linux/crash_dump.h>
27 #include <linux/dma-direct.h>
28
29 struct iommu_dma_msi_page {
30 struct list_head list;
31 dma_addr_t iova;
32 phys_addr_t phys;
33 };
34
35 enum iommu_dma_cookie_type {
36 IOMMU_DMA_IOVA_COOKIE,
37 IOMMU_DMA_MSI_COOKIE,
38 };
39
40 struct iommu_dma_cookie {
41 enum iommu_dma_cookie_type type;
42 union {
43 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
44 struct iova_domain iovad;
45 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
46 dma_addr_t msi_iova;
47 };
48 struct list_head msi_page_list;
49
50 /* Domain for flush queue callback; NULL if flush queue not in use */
51 struct iommu_domain *fq_domain;
52 };
53
54 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
55 bool iommu_dma_forcedac __read_mostly;
56
iommu_dma_forcedac_setup(char * str)57 static int __init iommu_dma_forcedac_setup(char *str)
58 {
59 int ret = kstrtobool(str, &iommu_dma_forcedac);
60
61 if (!ret && iommu_dma_forcedac)
62 pr_info("Forcing DAC for PCI devices\n");
63 return ret;
64 }
65 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
66
iommu_dma_entry_dtor(unsigned long data)67 static void iommu_dma_entry_dtor(unsigned long data)
68 {
69 struct page *freelist = (struct page *)data;
70
71 while (freelist) {
72 unsigned long p = (unsigned long)page_address(freelist);
73
74 freelist = freelist->freelist;
75 free_page(p);
76 }
77 }
78
cookie_msi_granule(struct iommu_dma_cookie * cookie)79 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
80 {
81 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
82 return cookie->iovad.granule;
83 return PAGE_SIZE;
84 }
85
cookie_alloc(enum iommu_dma_cookie_type type)86 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
87 {
88 struct iommu_dma_cookie *cookie;
89
90 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
91 if (cookie) {
92 INIT_LIST_HEAD(&cookie->msi_page_list);
93 cookie->type = type;
94 }
95 return cookie;
96 }
97
98 /**
99 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
100 * @domain: IOMMU domain to prepare for DMA-API usage
101 *
102 * IOMMU drivers should normally call this from their domain_alloc
103 * callback when domain->type == IOMMU_DOMAIN_DMA.
104 */
iommu_get_dma_cookie(struct iommu_domain * domain)105 int iommu_get_dma_cookie(struct iommu_domain *domain)
106 {
107 if (domain->iova_cookie)
108 return -EEXIST;
109
110 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
111 if (!domain->iova_cookie)
112 return -ENOMEM;
113
114 return 0;
115 }
116 EXPORT_SYMBOL(iommu_get_dma_cookie);
117
118 /**
119 * iommu_get_msi_cookie - Acquire just MSI remapping resources
120 * @domain: IOMMU domain to prepare
121 * @base: Start address of IOVA region for MSI mappings
122 *
123 * Users who manage their own IOVA allocation and do not want DMA API support,
124 * but would still like to take advantage of automatic MSI remapping, can use
125 * this to initialise their own domain appropriately. Users should reserve a
126 * contiguous IOVA region, starting at @base, large enough to accommodate the
127 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
128 * used by the devices attached to @domain.
129 */
iommu_get_msi_cookie(struct iommu_domain * domain,dma_addr_t base)130 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
131 {
132 struct iommu_dma_cookie *cookie;
133
134 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
135 return -EINVAL;
136
137 if (domain->iova_cookie)
138 return -EEXIST;
139
140 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
141 if (!cookie)
142 return -ENOMEM;
143
144 cookie->msi_iova = base;
145 domain->iova_cookie = cookie;
146 return 0;
147 }
148 EXPORT_SYMBOL(iommu_get_msi_cookie);
149
150 /**
151 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
152 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
153 * iommu_get_msi_cookie()
154 *
155 * IOMMU drivers should normally call this from their domain_free callback.
156 */
iommu_put_dma_cookie(struct iommu_domain * domain)157 void iommu_put_dma_cookie(struct iommu_domain *domain)
158 {
159 struct iommu_dma_cookie *cookie = domain->iova_cookie;
160 struct iommu_dma_msi_page *msi, *tmp;
161
162 if (!cookie)
163 return;
164
165 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
166 put_iova_domain(&cookie->iovad);
167
168 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
169 list_del(&msi->list);
170 kfree(msi);
171 }
172 kfree(cookie);
173 domain->iova_cookie = NULL;
174 }
175 EXPORT_SYMBOL(iommu_put_dma_cookie);
176
177 /**
178 * iommu_dma_get_resv_regions - Reserved region driver helper
179 * @dev: Device from iommu_get_resv_regions()
180 * @list: Reserved region list from iommu_get_resv_regions()
181 *
182 * IOMMU drivers can use this to implement their .get_resv_regions callback
183 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
184 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
185 * reservation.
186 */
iommu_dma_get_resv_regions(struct device * dev,struct list_head * list)187 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
188 {
189
190 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
191 iort_iommu_msi_get_resv_regions(dev, list);
192
193 }
194 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
195
cookie_init_hw_msi_region(struct iommu_dma_cookie * cookie,phys_addr_t start,phys_addr_t end)196 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
197 phys_addr_t start, phys_addr_t end)
198 {
199 struct iova_domain *iovad = &cookie->iovad;
200 struct iommu_dma_msi_page *msi_page;
201 int i, num_pages;
202
203 start -= iova_offset(iovad, start);
204 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
205
206 for (i = 0; i < num_pages; i++) {
207 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
208 if (!msi_page)
209 return -ENOMEM;
210
211 msi_page->phys = start;
212 msi_page->iova = start;
213 INIT_LIST_HEAD(&msi_page->list);
214 list_add(&msi_page->list, &cookie->msi_page_list);
215 start += iovad->granule;
216 }
217
218 return 0;
219 }
220
iova_reserve_pci_windows(struct pci_dev * dev,struct iova_domain * iovad)221 static int iova_reserve_pci_windows(struct pci_dev *dev,
222 struct iova_domain *iovad)
223 {
224 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
225 struct resource_entry *window;
226 unsigned long lo, hi;
227 phys_addr_t start = 0, end;
228
229 resource_list_for_each_entry(window, &bridge->windows) {
230 if (resource_type(window->res) != IORESOURCE_MEM)
231 continue;
232
233 lo = iova_pfn(iovad, window->res->start - window->offset);
234 hi = iova_pfn(iovad, window->res->end - window->offset);
235 reserve_iova(iovad, lo, hi);
236 }
237
238 /* Get reserved DMA windows from host bridge */
239 resource_list_for_each_entry(window, &bridge->dma_ranges) {
240 end = window->res->start - window->offset;
241 resv_iova:
242 if (end > start) {
243 lo = iova_pfn(iovad, start);
244 hi = iova_pfn(iovad, end);
245 reserve_iova(iovad, lo, hi);
246 } else if (end < start) {
247 /* dma_ranges list should be sorted */
248 dev_err(&dev->dev,
249 "Failed to reserve IOVA [%pa-%pa]\n",
250 &start, &end);
251 return -EINVAL;
252 }
253
254 start = window->res->end - window->offset + 1;
255 /* If window is last entry */
256 if (window->node.next == &bridge->dma_ranges &&
257 end != ~(phys_addr_t)0) {
258 end = ~(phys_addr_t)0;
259 goto resv_iova;
260 }
261 }
262
263 return 0;
264 }
265
iova_reserve_iommu_regions(struct device * dev,struct iommu_domain * domain)266 static int iova_reserve_iommu_regions(struct device *dev,
267 struct iommu_domain *domain)
268 {
269 struct iommu_dma_cookie *cookie = domain->iova_cookie;
270 struct iova_domain *iovad = &cookie->iovad;
271 struct iommu_resv_region *region;
272 LIST_HEAD(resv_regions);
273 int ret = 0;
274
275 if (dev_is_pci(dev)) {
276 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
277 if (ret)
278 return ret;
279 }
280
281 iommu_get_resv_regions(dev, &resv_regions);
282 list_for_each_entry(region, &resv_regions, list) {
283 unsigned long lo, hi;
284
285 /* We ARE the software that manages these! */
286 if (region->type == IOMMU_RESV_SW_MSI)
287 continue;
288
289 lo = iova_pfn(iovad, region->start);
290 hi = iova_pfn(iovad, region->start + region->length - 1);
291 reserve_iova(iovad, lo, hi);
292
293 if (region->type == IOMMU_RESV_MSI)
294 ret = cookie_init_hw_msi_region(cookie, region->start,
295 region->start + region->length);
296 if (ret)
297 break;
298 }
299 iommu_put_resv_regions(dev, &resv_regions);
300
301 return ret;
302 }
303
iommu_dma_flush_iotlb_all(struct iova_domain * iovad)304 static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
305 {
306 struct iommu_dma_cookie *cookie;
307 struct iommu_domain *domain;
308
309 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
310 domain = cookie->fq_domain;
311
312 domain->ops->flush_iotlb_all(domain);
313 }
314
dev_is_untrusted(struct device * dev)315 static bool dev_is_untrusted(struct device *dev)
316 {
317 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
318 }
319
320 /* sysfs updates are serialised by the mutex of the group owning @domain */
iommu_dma_init_fq(struct iommu_domain * domain)321 int iommu_dma_init_fq(struct iommu_domain *domain)
322 {
323 struct iommu_dma_cookie *cookie = domain->iova_cookie;
324 int ret;
325
326 if (cookie->fq_domain)
327 return 0;
328
329 ret = init_iova_flush_queue(&cookie->iovad, iommu_dma_flush_iotlb_all,
330 iommu_dma_entry_dtor);
331 if (ret) {
332 pr_warn("iova flush queue initialization failed\n");
333 return ret;
334 }
335 /*
336 * Prevent incomplete iovad->fq being observable. Pairs with path from
337 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
338 */
339 smp_wmb();
340 WRITE_ONCE(cookie->fq_domain, domain);
341 return 0;
342 }
343
344 /**
345 * iommu_dma_init_domain - Initialise a DMA mapping domain
346 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
347 * @base: IOVA at which the mappable address space starts
348 * @limit: Last address of the IOVA space
349 * @dev: Device the domain is being initialised for
350 *
351 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
352 * avoid rounding surprises. If necessary, we reserve the page at address 0
353 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
354 * any change which could make prior IOVAs invalid will fail.
355 */
iommu_dma_init_domain(struct iommu_domain * domain,dma_addr_t base,dma_addr_t limit,struct device * dev)356 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
357 dma_addr_t limit, struct device *dev)
358 {
359 struct iommu_dma_cookie *cookie = domain->iova_cookie;
360 unsigned long order, base_pfn;
361 struct iova_domain *iovad;
362
363 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
364 return -EINVAL;
365
366 iovad = &cookie->iovad;
367
368 /* Use the smallest supported page size for IOVA granularity */
369 order = __ffs(domain->pgsize_bitmap);
370 base_pfn = max_t(unsigned long, 1, base >> order);
371
372 /* Check the domain allows at least some access to the device... */
373 if (domain->geometry.force_aperture) {
374 if (base > domain->geometry.aperture_end ||
375 limit < domain->geometry.aperture_start) {
376 pr_warn("specified DMA range outside IOMMU capability\n");
377 return -EFAULT;
378 }
379 /* ...then finally give it a kicking to make sure it fits */
380 base_pfn = max_t(unsigned long, base_pfn,
381 domain->geometry.aperture_start >> order);
382 }
383
384 /* start_pfn is always nonzero for an already-initialised domain */
385 if (iovad->start_pfn) {
386 if (1UL << order != iovad->granule ||
387 base_pfn != iovad->start_pfn) {
388 pr_warn("Incompatible range for DMA domain\n");
389 return -EFAULT;
390 }
391
392 return 0;
393 }
394
395 init_iova_domain(iovad, 1UL << order, base_pfn);
396
397 /* If the FQ fails we can simply fall back to strict mode */
398 if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
399 domain->type = IOMMU_DOMAIN_DMA;
400
401 return iova_reserve_iommu_regions(dev, domain);
402 }
403
404 /**
405 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
406 * page flags.
407 * @dir: Direction of DMA transfer
408 * @coherent: Is the DMA master cache-coherent?
409 * @attrs: DMA attributes for the mapping
410 *
411 * Return: corresponding IOMMU API page protection flags
412 */
dma_info_to_prot(enum dma_data_direction dir,bool coherent,unsigned long attrs)413 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
414 unsigned long attrs)
415 {
416 int prot = coherent ? IOMMU_CACHE : 0;
417
418 if (attrs & DMA_ATTR_PRIVILEGED)
419 prot |= IOMMU_PRIV;
420
421 switch (dir) {
422 case DMA_BIDIRECTIONAL:
423 return prot | IOMMU_READ | IOMMU_WRITE;
424 case DMA_TO_DEVICE:
425 return prot | IOMMU_READ;
426 case DMA_FROM_DEVICE:
427 return prot | IOMMU_WRITE;
428 default:
429 return 0;
430 }
431 }
432
iommu_dma_alloc_iova(struct iommu_domain * domain,size_t size,u64 dma_limit,struct device * dev)433 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
434 size_t size, u64 dma_limit, struct device *dev)
435 {
436 struct iommu_dma_cookie *cookie = domain->iova_cookie;
437 struct iova_domain *iovad = &cookie->iovad;
438 unsigned long shift, iova_len, iova = 0;
439
440 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
441 cookie->msi_iova += size;
442 return cookie->msi_iova - size;
443 }
444
445 shift = iova_shift(iovad);
446 iova_len = size >> shift;
447 /*
448 * Freeing non-power-of-two-sized allocations back into the IOVA caches
449 * will come back to bite us badly, so we have to waste a bit of space
450 * rounding up anything cacheable to make sure that can't happen. The
451 * order of the unadjusted size will still match upon freeing.
452 */
453 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
454 iova_len = roundup_pow_of_two(iova_len);
455
456 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
457
458 if (domain->geometry.force_aperture)
459 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
460
461 /* Try to get PCI devices a SAC address */
462 if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
463 iova = alloc_iova_fast(iovad, iova_len,
464 DMA_BIT_MASK(32) >> shift, false);
465
466 if (!iova)
467 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
468 true);
469
470 return (dma_addr_t)iova << shift;
471 }
472
iommu_dma_free_iova(struct iommu_dma_cookie * cookie,dma_addr_t iova,size_t size,struct iommu_iotlb_gather * gather)473 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
474 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
475 {
476 struct iova_domain *iovad = &cookie->iovad;
477
478 /* The MSI case is only ever cleaning up its most recent allocation */
479 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
480 cookie->msi_iova -= size;
481 else if (gather && gather->queued)
482 queue_iova(iovad, iova_pfn(iovad, iova),
483 size >> iova_shift(iovad),
484 (unsigned long)gather->freelist);
485 else
486 free_iova_fast(iovad, iova_pfn(iovad, iova),
487 size >> iova_shift(iovad));
488 }
489
__iommu_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t size)490 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
491 size_t size)
492 {
493 struct iommu_domain *domain = iommu_get_dma_domain(dev);
494 struct iommu_dma_cookie *cookie = domain->iova_cookie;
495 struct iova_domain *iovad = &cookie->iovad;
496 size_t iova_off = iova_offset(iovad, dma_addr);
497 struct iommu_iotlb_gather iotlb_gather;
498 size_t unmapped;
499
500 dma_addr -= iova_off;
501 size = iova_align(iovad, size + iova_off);
502 iommu_iotlb_gather_init(&iotlb_gather);
503 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
504
505 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
506 WARN_ON(unmapped != size);
507
508 if (!iotlb_gather.queued)
509 iommu_iotlb_sync(domain, &iotlb_gather);
510 iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
511 }
512
__iommu_dma_unmap_swiotlb(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)513 static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
514 size_t size, enum dma_data_direction dir,
515 unsigned long attrs)
516 {
517 struct iommu_domain *domain = iommu_get_dma_domain(dev);
518 phys_addr_t phys;
519
520 phys = iommu_iova_to_phys(domain, dma_addr);
521 if (WARN_ON(!phys))
522 return;
523
524 __iommu_dma_unmap(dev, dma_addr, size);
525
526 if (unlikely(is_swiotlb_buffer(dev, phys)))
527 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
528 }
529
__iommu_dma_map(struct device * dev,phys_addr_t phys,size_t size,int prot,u64 dma_mask)530 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
531 size_t size, int prot, u64 dma_mask)
532 {
533 struct iommu_domain *domain = iommu_get_dma_domain(dev);
534 struct iommu_dma_cookie *cookie = domain->iova_cookie;
535 struct iova_domain *iovad = &cookie->iovad;
536 size_t iova_off = iova_offset(iovad, phys);
537 dma_addr_t iova;
538
539 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
540 iommu_deferred_attach(dev, domain))
541 return DMA_MAPPING_ERROR;
542
543 size = iova_align(iovad, size + iova_off);
544
545 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
546 if (!iova)
547 return DMA_MAPPING_ERROR;
548
549 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
550 iommu_dma_free_iova(cookie, iova, size, NULL);
551 return DMA_MAPPING_ERROR;
552 }
553 return iova + iova_off;
554 }
555
__iommu_dma_map_swiotlb(struct device * dev,phys_addr_t phys,size_t org_size,dma_addr_t dma_mask,bool coherent,enum dma_data_direction dir,unsigned long attrs)556 static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
557 size_t org_size, dma_addr_t dma_mask, bool coherent,
558 enum dma_data_direction dir, unsigned long attrs)
559 {
560 int prot = dma_info_to_prot(dir, coherent, attrs);
561 struct iommu_domain *domain = iommu_get_dma_domain(dev);
562 struct iommu_dma_cookie *cookie = domain->iova_cookie;
563 struct iova_domain *iovad = &cookie->iovad;
564 size_t aligned_size = org_size;
565 void *padding_start;
566 size_t padding_size;
567 dma_addr_t iova;
568
569 /*
570 * If both the physical buffer start address and size are
571 * page aligned, we don't need to use a bounce page.
572 */
573 if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) &&
574 iova_offset(iovad, phys | org_size)) {
575 aligned_size = iova_align(iovad, org_size);
576 phys = swiotlb_tbl_map_single(dev, phys, org_size,
577 aligned_size, dir, attrs);
578
579 if (phys == DMA_MAPPING_ERROR)
580 return DMA_MAPPING_ERROR;
581
582 /* Cleanup the padding area. */
583 padding_start = phys_to_virt(phys);
584 padding_size = aligned_size;
585
586 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
587 (dir == DMA_TO_DEVICE ||
588 dir == DMA_BIDIRECTIONAL)) {
589 padding_start += org_size;
590 padding_size -= org_size;
591 }
592
593 memset(padding_start, 0, padding_size);
594 }
595
596 iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
597 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
598 swiotlb_tbl_unmap_single(dev, phys, org_size, dir, attrs);
599 return iova;
600 }
601
__iommu_dma_free_pages(struct page ** pages,int count)602 static void __iommu_dma_free_pages(struct page **pages, int count)
603 {
604 while (count--)
605 __free_page(pages[count]);
606 kvfree(pages);
607 }
608
__iommu_dma_alloc_pages(struct device * dev,unsigned int count,unsigned long order_mask,gfp_t gfp)609 static struct page **__iommu_dma_alloc_pages(struct device *dev,
610 unsigned int count, unsigned long order_mask, gfp_t gfp)
611 {
612 struct page **pages;
613 unsigned int i = 0, nid = dev_to_node(dev);
614
615 order_mask &= (2U << MAX_ORDER) - 1;
616 if (!order_mask)
617 return NULL;
618
619 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
620 if (!pages)
621 return NULL;
622
623 /* IOMMU can map any pages, so himem can also be used here */
624 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
625
626 /* It makes no sense to muck about with huge pages */
627 gfp &= ~__GFP_COMP;
628
629 while (count) {
630 struct page *page = NULL;
631 unsigned int order_size;
632
633 /*
634 * Higher-order allocations are a convenience rather
635 * than a necessity, hence using __GFP_NORETRY until
636 * falling back to minimum-order allocations.
637 */
638 for (order_mask &= (2U << __fls(count)) - 1;
639 order_mask; order_mask &= ~order_size) {
640 unsigned int order = __fls(order_mask);
641 gfp_t alloc_flags = gfp;
642
643 order_size = 1U << order;
644 if (order_mask > order_size)
645 alloc_flags |= __GFP_NORETRY;
646 page = alloc_pages_node(nid, alloc_flags, order);
647 if (!page)
648 continue;
649 if (order)
650 split_page(page, order);
651 break;
652 }
653 if (!page) {
654 __iommu_dma_free_pages(pages, i);
655 return NULL;
656 }
657 count -= order_size;
658 while (order_size--)
659 pages[i++] = page++;
660 }
661 return pages;
662 }
663
664 /*
665 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
666 * but an IOMMU which supports smaller pages might not map the whole thing.
667 */
__iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,gfp_t gfp,pgprot_t prot,unsigned long attrs)668 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
669 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
670 unsigned long attrs)
671 {
672 struct iommu_domain *domain = iommu_get_dma_domain(dev);
673 struct iommu_dma_cookie *cookie = domain->iova_cookie;
674 struct iova_domain *iovad = &cookie->iovad;
675 bool coherent = dev_is_dma_coherent(dev);
676 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
677 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
678 struct page **pages;
679 dma_addr_t iova;
680
681 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
682 iommu_deferred_attach(dev, domain))
683 return NULL;
684
685 min_size = alloc_sizes & -alloc_sizes;
686 if (min_size < PAGE_SIZE) {
687 min_size = PAGE_SIZE;
688 alloc_sizes |= PAGE_SIZE;
689 } else {
690 size = ALIGN(size, min_size);
691 }
692 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
693 alloc_sizes = min_size;
694
695 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
696 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
697 gfp);
698 if (!pages)
699 return NULL;
700
701 size = iova_align(iovad, size);
702 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
703 if (!iova)
704 goto out_free_pages;
705
706 if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
707 goto out_free_iova;
708
709 if (!(ioprot & IOMMU_CACHE)) {
710 struct scatterlist *sg;
711 int i;
712
713 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
714 arch_dma_prep_coherent(sg_page(sg), sg->length);
715 }
716
717 if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot)
718 < size)
719 goto out_free_sg;
720
721 sgt->sgl->dma_address = iova;
722 sgt->sgl->dma_length = size;
723 return pages;
724
725 out_free_sg:
726 sg_free_table(sgt);
727 out_free_iova:
728 iommu_dma_free_iova(cookie, iova, size, NULL);
729 out_free_pages:
730 __iommu_dma_free_pages(pages, count);
731 return NULL;
732 }
733
iommu_dma_alloc_remap(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,pgprot_t prot,unsigned long attrs)734 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
735 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
736 unsigned long attrs)
737 {
738 struct page **pages;
739 struct sg_table sgt;
740 void *vaddr;
741
742 pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
743 attrs);
744 if (!pages)
745 return NULL;
746 *dma_handle = sgt.sgl->dma_address;
747 sg_free_table(&sgt);
748 vaddr = dma_common_pages_remap(pages, size, prot,
749 __builtin_return_address(0));
750 if (!vaddr)
751 goto out_unmap;
752 return vaddr;
753
754 out_unmap:
755 __iommu_dma_unmap(dev, *dma_handle, size);
756 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
757 return NULL;
758 }
759
760 #ifdef CONFIG_DMA_REMAP
iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)761 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
762 size_t size, enum dma_data_direction dir, gfp_t gfp,
763 unsigned long attrs)
764 {
765 struct dma_sgt_handle *sh;
766
767 sh = kmalloc(sizeof(*sh), gfp);
768 if (!sh)
769 return NULL;
770
771 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
772 PAGE_KERNEL, attrs);
773 if (!sh->pages) {
774 kfree(sh);
775 return NULL;
776 }
777 return &sh->sgt;
778 }
779
iommu_dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)780 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
781 struct sg_table *sgt, enum dma_data_direction dir)
782 {
783 struct dma_sgt_handle *sh = sgt_handle(sgt);
784
785 __iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
786 __iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
787 sg_free_table(&sh->sgt);
788 kfree(sh);
789 }
790 #endif /* CONFIG_DMA_REMAP */
791
iommu_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)792 static void iommu_dma_sync_single_for_cpu(struct device *dev,
793 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
794 {
795 phys_addr_t phys;
796
797 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
798 return;
799
800 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
801 if (!dev_is_dma_coherent(dev))
802 arch_sync_dma_for_cpu(phys, size, dir);
803
804 if (is_swiotlb_buffer(dev, phys))
805 swiotlb_sync_single_for_cpu(dev, phys, size, dir);
806 }
807
iommu_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)808 static void iommu_dma_sync_single_for_device(struct device *dev,
809 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
810 {
811 phys_addr_t phys;
812
813 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
814 return;
815
816 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
817 if (is_swiotlb_buffer(dev, phys))
818 swiotlb_sync_single_for_device(dev, phys, size, dir);
819
820 if (!dev_is_dma_coherent(dev))
821 arch_sync_dma_for_device(phys, size, dir);
822 }
823
iommu_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)824 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
825 struct scatterlist *sgl, int nelems,
826 enum dma_data_direction dir)
827 {
828 struct scatterlist *sg;
829 int i;
830
831 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
832 return;
833
834 for_each_sg(sgl, sg, nelems, i) {
835 if (!dev_is_dma_coherent(dev))
836 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
837
838 if (is_swiotlb_buffer(dev, sg_phys(sg)))
839 swiotlb_sync_single_for_cpu(dev, sg_phys(sg),
840 sg->length, dir);
841 }
842 }
843
iommu_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)844 static void iommu_dma_sync_sg_for_device(struct device *dev,
845 struct scatterlist *sgl, int nelems,
846 enum dma_data_direction dir)
847 {
848 struct scatterlist *sg;
849 int i;
850
851 if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
852 return;
853
854 for_each_sg(sgl, sg, nelems, i) {
855 if (is_swiotlb_buffer(dev, sg_phys(sg)))
856 swiotlb_sync_single_for_device(dev, sg_phys(sg),
857 sg->length, dir);
858
859 if (!dev_is_dma_coherent(dev))
860 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
861 }
862 }
863
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)864 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
865 unsigned long offset, size_t size, enum dma_data_direction dir,
866 unsigned long attrs)
867 {
868 phys_addr_t phys = page_to_phys(page) + offset;
869 bool coherent = dev_is_dma_coherent(dev);
870 dma_addr_t dma_handle;
871
872 dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev),
873 coherent, dir, attrs);
874 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
875 dma_handle != DMA_MAPPING_ERROR)
876 arch_sync_dma_for_device(phys, size, dir);
877 return dma_handle;
878 }
879
iommu_dma_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)880 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
881 size_t size, enum dma_data_direction dir, unsigned long attrs)
882 {
883 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
884 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
885 __iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs);
886 }
887
888 /*
889 * Prepare a successfully-mapped scatterlist to give back to the caller.
890 *
891 * At this point the segments are already laid out by iommu_dma_map_sg() to
892 * avoid individually crossing any boundaries, so we merely need to check a
893 * segment's start address to avoid concatenating across one.
894 */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)895 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
896 dma_addr_t dma_addr)
897 {
898 struct scatterlist *s, *cur = sg;
899 unsigned long seg_mask = dma_get_seg_boundary(dev);
900 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
901 int i, count = 0;
902
903 for_each_sg(sg, s, nents, i) {
904 /* Restore this segment's original unaligned fields first */
905 unsigned int s_iova_off = sg_dma_address(s);
906 unsigned int s_length = sg_dma_len(s);
907 unsigned int s_iova_len = s->length;
908
909 s->offset += s_iova_off;
910 s->length = s_length;
911 sg_dma_address(s) = DMA_MAPPING_ERROR;
912 sg_dma_len(s) = 0;
913
914 /*
915 * Now fill in the real DMA data. If...
916 * - there is a valid output segment to append to
917 * - and this segment starts on an IOVA page boundary
918 * - but doesn't fall at a segment boundary
919 * - and wouldn't make the resulting output segment too long
920 */
921 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
922 (max_len - cur_len >= s_length)) {
923 /* ...then concatenate it with the previous one */
924 cur_len += s_length;
925 } else {
926 /* Otherwise start the next output segment */
927 if (i > 0)
928 cur = sg_next(cur);
929 cur_len = s_length;
930 count++;
931
932 sg_dma_address(cur) = dma_addr + s_iova_off;
933 }
934
935 sg_dma_len(cur) = cur_len;
936 dma_addr += s_iova_len;
937
938 if (s_length + s_iova_off < s_iova_len)
939 cur_len = 0;
940 }
941 return count;
942 }
943
944 /*
945 * If mapping failed, then just restore the original list,
946 * but making sure the DMA fields are invalidated.
947 */
__invalidate_sg(struct scatterlist * sg,int nents)948 static void __invalidate_sg(struct scatterlist *sg, int nents)
949 {
950 struct scatterlist *s;
951 int i;
952
953 for_each_sg(sg, s, nents, i) {
954 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
955 s->offset += sg_dma_address(s);
956 if (sg_dma_len(s))
957 s->length = sg_dma_len(s);
958 sg_dma_address(s) = DMA_MAPPING_ERROR;
959 sg_dma_len(s) = 0;
960 }
961 }
962
iommu_dma_unmap_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)963 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
964 int nents, enum dma_data_direction dir, unsigned long attrs)
965 {
966 struct scatterlist *s;
967 int i;
968
969 for_each_sg(sg, s, nents, i)
970 __iommu_dma_unmap_swiotlb(dev, sg_dma_address(s),
971 sg_dma_len(s), dir, attrs);
972 }
973
iommu_dma_map_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)974 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
975 int nents, enum dma_data_direction dir, unsigned long attrs)
976 {
977 struct scatterlist *s;
978 int i;
979
980 for_each_sg(sg, s, nents, i) {
981 sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s),
982 s->length, dma_get_mask(dev),
983 dev_is_dma_coherent(dev), dir, attrs);
984 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
985 goto out_unmap;
986 sg_dma_len(s) = s->length;
987 }
988
989 return nents;
990
991 out_unmap:
992 iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
993 return -EIO;
994 }
995
996 /*
997 * The DMA API client is passing in a scatterlist which could describe
998 * any old buffer layout, but the IOMMU API requires everything to be
999 * aligned to IOMMU pages. Hence the need for this complicated bit of
1000 * impedance-matching, to be able to hand off a suitably-aligned list,
1001 * but still preserve the original offsets and sizes for the caller.
1002 */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1003 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1004 int nents, enum dma_data_direction dir, unsigned long attrs)
1005 {
1006 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1007 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1008 struct iova_domain *iovad = &cookie->iovad;
1009 struct scatterlist *s, *prev = NULL;
1010 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1011 dma_addr_t iova;
1012 size_t iova_len = 0;
1013 unsigned long mask = dma_get_seg_boundary(dev);
1014 ssize_t ret;
1015 int i;
1016
1017 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1018 ret = iommu_deferred_attach(dev, domain);
1019 goto out;
1020 }
1021
1022 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1023 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1024
1025 if (dev_is_untrusted(dev))
1026 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1027
1028 /*
1029 * Work out how much IOVA space we need, and align the segments to
1030 * IOVA granules for the IOMMU driver to handle. With some clever
1031 * trickery we can modify the list in-place, but reversibly, by
1032 * stashing the unaligned parts in the as-yet-unused DMA fields.
1033 */
1034 for_each_sg(sg, s, nents, i) {
1035 size_t s_iova_off = iova_offset(iovad, s->offset);
1036 size_t s_length = s->length;
1037 size_t pad_len = (mask - iova_len + 1) & mask;
1038
1039 sg_dma_address(s) = s_iova_off;
1040 sg_dma_len(s) = s_length;
1041 s->offset -= s_iova_off;
1042 s_length = iova_align(iovad, s_length + s_iova_off);
1043 s->length = s_length;
1044
1045 /*
1046 * Due to the alignment of our single IOVA allocation, we can
1047 * depend on these assumptions about the segment boundary mask:
1048 * - If mask size >= IOVA size, then the IOVA range cannot
1049 * possibly fall across a boundary, so we don't care.
1050 * - If mask size < IOVA size, then the IOVA range must start
1051 * exactly on a boundary, therefore we can lay things out
1052 * based purely on segment lengths without needing to know
1053 * the actual addresses beforehand.
1054 * - The mask must be a power of 2, so pad_len == 0 if
1055 * iova_len == 0, thus we cannot dereference prev the first
1056 * time through here (i.e. before it has a meaningful value).
1057 */
1058 if (pad_len && pad_len < s_length - 1) {
1059 prev->length += pad_len;
1060 iova_len += pad_len;
1061 }
1062
1063 iova_len += s_length;
1064 prev = s;
1065 }
1066
1067 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1068 if (!iova) {
1069 ret = -ENOMEM;
1070 goto out_restore_sg;
1071 }
1072
1073 /*
1074 * We'll leave any physical concatenation to the IOMMU driver's
1075 * implementation - it knows better than we do.
1076 */
1077 ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1078 if (ret < iova_len)
1079 goto out_free_iova;
1080
1081 return __finalise_sg(dev, sg, nents, iova);
1082
1083 out_free_iova:
1084 iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1085 out_restore_sg:
1086 __invalidate_sg(sg, nents);
1087 out:
1088 if (ret != -ENOMEM)
1089 return -EINVAL;
1090 return ret;
1091 }
1092
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1093 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1094 int nents, enum dma_data_direction dir, unsigned long attrs)
1095 {
1096 dma_addr_t start, end;
1097 struct scatterlist *tmp;
1098 int i;
1099
1100 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1101 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1102
1103 if (dev_is_untrusted(dev)) {
1104 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1105 return;
1106 }
1107
1108 /*
1109 * The scatterlist segments are mapped into a single
1110 * contiguous IOVA allocation, so this is incredibly easy.
1111 */
1112 start = sg_dma_address(sg);
1113 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
1114 if (sg_dma_len(tmp) == 0)
1115 break;
1116 sg = tmp;
1117 }
1118 end = sg_dma_address(sg) + sg_dma_len(sg);
1119 __iommu_dma_unmap(dev, start, end - start);
1120 }
1121
iommu_dma_map_resource(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1122 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1123 size_t size, enum dma_data_direction dir, unsigned long attrs)
1124 {
1125 return __iommu_dma_map(dev, phys, size,
1126 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1127 dma_get_mask(dev));
1128 }
1129
iommu_dma_unmap_resource(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1130 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1131 size_t size, enum dma_data_direction dir, unsigned long attrs)
1132 {
1133 __iommu_dma_unmap(dev, handle, size);
1134 }
1135
__iommu_dma_free(struct device * dev,size_t size,void * cpu_addr)1136 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1137 {
1138 size_t alloc_size = PAGE_ALIGN(size);
1139 int count = alloc_size >> PAGE_SHIFT;
1140 struct page *page = NULL, **pages = NULL;
1141
1142 /* Non-coherent atomic allocation? Easy */
1143 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1144 dma_free_from_pool(dev, cpu_addr, alloc_size))
1145 return;
1146
1147 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1148 /*
1149 * If it the address is remapped, then it's either non-coherent
1150 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1151 */
1152 pages = dma_common_find_pages(cpu_addr);
1153 if (!pages)
1154 page = vmalloc_to_page(cpu_addr);
1155 dma_common_free_remap(cpu_addr, alloc_size);
1156 } else {
1157 /* Lowmem means a coherent atomic or CMA allocation */
1158 page = virt_to_page(cpu_addr);
1159 }
1160
1161 if (pages)
1162 __iommu_dma_free_pages(pages, count);
1163 if (page)
1164 dma_free_contiguous(dev, page, alloc_size);
1165 }
1166
iommu_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1167 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1168 dma_addr_t handle, unsigned long attrs)
1169 {
1170 __iommu_dma_unmap(dev, handle, size);
1171 __iommu_dma_free(dev, size, cpu_addr);
1172 }
1173
iommu_dma_alloc_pages(struct device * dev,size_t size,struct page ** pagep,gfp_t gfp,unsigned long attrs)1174 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1175 struct page **pagep, gfp_t gfp, unsigned long attrs)
1176 {
1177 bool coherent = dev_is_dma_coherent(dev);
1178 size_t alloc_size = PAGE_ALIGN(size);
1179 int node = dev_to_node(dev);
1180 struct page *page = NULL;
1181 void *cpu_addr;
1182
1183 page = dma_alloc_contiguous(dev, alloc_size, gfp);
1184 if (!page)
1185 page = alloc_pages_node(node, gfp, get_order(alloc_size));
1186 if (!page)
1187 return NULL;
1188
1189 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1190 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1191
1192 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1193 prot, __builtin_return_address(0));
1194 if (!cpu_addr)
1195 goto out_free_pages;
1196
1197 if (!coherent)
1198 arch_dma_prep_coherent(page, size);
1199 } else {
1200 cpu_addr = page_address(page);
1201 }
1202
1203 *pagep = page;
1204 memset(cpu_addr, 0, alloc_size);
1205 return cpu_addr;
1206 out_free_pages:
1207 dma_free_contiguous(dev, page, alloc_size);
1208 return NULL;
1209 }
1210
iommu_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1211 static void *iommu_dma_alloc(struct device *dev, size_t size,
1212 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1213 {
1214 bool coherent = dev_is_dma_coherent(dev);
1215 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1216 struct page *page = NULL;
1217 void *cpu_addr;
1218
1219 gfp |= __GFP_ZERO;
1220
1221 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1222 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1223 return iommu_dma_alloc_remap(dev, size, handle, gfp,
1224 dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1225 }
1226
1227 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1228 !gfpflags_allow_blocking(gfp) && !coherent)
1229 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1230 gfp, NULL);
1231 else
1232 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1233 if (!cpu_addr)
1234 return NULL;
1235
1236 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1237 dev->coherent_dma_mask);
1238 if (*handle == DMA_MAPPING_ERROR) {
1239 __iommu_dma_free(dev, size, cpu_addr);
1240 return NULL;
1241 }
1242
1243 return cpu_addr;
1244 }
1245
iommu_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1246 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1247 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1248 unsigned long attrs)
1249 {
1250 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1251 unsigned long pfn, off = vma->vm_pgoff;
1252 int ret;
1253
1254 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1255
1256 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1257 return ret;
1258
1259 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1260 return -ENXIO;
1261
1262 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1263 struct page **pages = dma_common_find_pages(cpu_addr);
1264
1265 if (pages)
1266 return vm_map_pages(vma, pages, nr_pages);
1267 pfn = vmalloc_to_pfn(cpu_addr);
1268 } else {
1269 pfn = page_to_pfn(virt_to_page(cpu_addr));
1270 }
1271
1272 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1273 vma->vm_end - vma->vm_start,
1274 vma->vm_page_prot);
1275 }
1276
iommu_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1277 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1278 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1279 unsigned long attrs)
1280 {
1281 struct page *page;
1282 int ret;
1283
1284 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1285 struct page **pages = dma_common_find_pages(cpu_addr);
1286
1287 if (pages) {
1288 return sg_alloc_table_from_pages(sgt, pages,
1289 PAGE_ALIGN(size) >> PAGE_SHIFT,
1290 0, size, GFP_KERNEL);
1291 }
1292
1293 page = vmalloc_to_page(cpu_addr);
1294 } else {
1295 page = virt_to_page(cpu_addr);
1296 }
1297
1298 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1299 if (!ret)
1300 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1301 return ret;
1302 }
1303
iommu_dma_get_merge_boundary(struct device * dev)1304 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1305 {
1306 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1307
1308 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1309 }
1310
1311 static const struct dma_map_ops iommu_dma_ops = {
1312 .alloc = iommu_dma_alloc,
1313 .free = iommu_dma_free,
1314 .alloc_pages = dma_common_alloc_pages,
1315 .free_pages = dma_common_free_pages,
1316 #ifdef CONFIG_DMA_REMAP
1317 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
1318 .free_noncontiguous = iommu_dma_free_noncontiguous,
1319 #endif
1320 .mmap = iommu_dma_mmap,
1321 .get_sgtable = iommu_dma_get_sgtable,
1322 .map_page = iommu_dma_map_page,
1323 .unmap_page = iommu_dma_unmap_page,
1324 .map_sg = iommu_dma_map_sg,
1325 .unmap_sg = iommu_dma_unmap_sg,
1326 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1327 .sync_single_for_device = iommu_dma_sync_single_for_device,
1328 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1329 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1330 .map_resource = iommu_dma_map_resource,
1331 .unmap_resource = iommu_dma_unmap_resource,
1332 .get_merge_boundary = iommu_dma_get_merge_boundary,
1333 };
1334
1335 /*
1336 * The IOMMU core code allocates the default DMA domain, which the underlying
1337 * IOMMU driver needs to support via the dma-iommu layer.
1338 */
iommu_setup_dma_ops(struct device * dev,u64 dma_base,u64 dma_limit)1339 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1340 {
1341 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1342
1343 if (!domain)
1344 goto out_err;
1345
1346 /*
1347 * The IOMMU core code allocates the default DMA domain, which the
1348 * underlying IOMMU driver needs to support via the dma-iommu layer.
1349 */
1350 if (iommu_is_dma_domain(domain)) {
1351 if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1352 goto out_err;
1353 dev->dma_ops = &iommu_dma_ops;
1354 }
1355
1356 return;
1357 out_err:
1358 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1359 dev_name(dev));
1360 }
1361 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1362
iommu_dma_get_msi_page(struct device * dev,phys_addr_t msi_addr,struct iommu_domain * domain)1363 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1364 phys_addr_t msi_addr, struct iommu_domain *domain)
1365 {
1366 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1367 struct iommu_dma_msi_page *msi_page;
1368 dma_addr_t iova;
1369 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1370 size_t size = cookie_msi_granule(cookie);
1371
1372 msi_addr &= ~(phys_addr_t)(size - 1);
1373 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1374 if (msi_page->phys == msi_addr)
1375 return msi_page;
1376
1377 msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1378 if (!msi_page)
1379 return NULL;
1380
1381 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1382 if (!iova)
1383 goto out_free_page;
1384
1385 if (iommu_map(domain, iova, msi_addr, size, prot))
1386 goto out_free_iova;
1387
1388 INIT_LIST_HEAD(&msi_page->list);
1389 msi_page->phys = msi_addr;
1390 msi_page->iova = iova;
1391 list_add(&msi_page->list, &cookie->msi_page_list);
1392 return msi_page;
1393
1394 out_free_iova:
1395 iommu_dma_free_iova(cookie, iova, size, NULL);
1396 out_free_page:
1397 kfree(msi_page);
1398 return NULL;
1399 }
1400
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)1401 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1402 {
1403 struct device *dev = msi_desc_to_dev(desc);
1404 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1405 struct iommu_dma_msi_page *msi_page;
1406 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1407
1408 if (!domain || !domain->iova_cookie) {
1409 desc->iommu_cookie = NULL;
1410 return 0;
1411 }
1412
1413 /*
1414 * In fact the whole prepare operation should already be serialised by
1415 * irq_domain_mutex further up the callchain, but that's pretty subtle
1416 * on its own, so consider this locking as failsafe documentation...
1417 */
1418 mutex_lock(&msi_prepare_lock);
1419 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1420 mutex_unlock(&msi_prepare_lock);
1421
1422 msi_desc_set_iommu_cookie(desc, msi_page);
1423
1424 if (!msi_page)
1425 return -ENOMEM;
1426 return 0;
1427 }
1428
iommu_dma_compose_msi_msg(struct msi_desc * desc,struct msi_msg * msg)1429 void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1430 struct msi_msg *msg)
1431 {
1432 struct device *dev = msi_desc_to_dev(desc);
1433 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1434 const struct iommu_dma_msi_page *msi_page;
1435
1436 msi_page = msi_desc_get_iommu_cookie(desc);
1437
1438 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1439 return;
1440
1441 msg->address_hi = upper_32_bits(msi_page->iova);
1442 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1443 msg->address_lo += lower_32_bits(msi_page->iova);
1444 }
1445
iommu_dma_init(void)1446 static int iommu_dma_init(void)
1447 {
1448 if (is_kdump_kernel())
1449 static_branch_enable(&iommu_deferred_attach_enabled);
1450
1451 return iova_cache_get();
1452 }
1453 arch_initcall(iommu_dma_init);
1454