1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-map-ops.h>
22 #include <linux/dma-direct.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/iommu-helper.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/irqdomain.h>
32 #include <linux/percpu.h>
33 #include <linux/io-pgtable.h>
34 #include <asm/irq_remapping.h>
35 #include <asm/io_apic.h>
36 #include <asm/apic.h>
37 #include <asm/hw_irq.h>
38 #include <asm/proto.h>
39 #include <asm/iommu.h>
40 #include <asm/gart.h>
41 #include <asm/dma.h>
42
43 #include "amd_iommu.h"
44 #include "../irq_remapping.h"
45
46 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
47
48 #define LOOP_TIMEOUT 100000
49
50 /* IO virtual address start page frame number */
51 #define IOVA_START_PFN (1)
52 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
53
54 /* Reserved IOVA ranges */
55 #define MSI_RANGE_START (0xfee00000)
56 #define MSI_RANGE_END (0xfeefffff)
57 #define HT_RANGE_START (0xfd00000000ULL)
58 #define HT_RANGE_END (0xffffffffffULL)
59
60 #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL
61
62 static DEFINE_SPINLOCK(pd_bitmap_lock);
63
64 /* List of all available dev_data structures */
65 static LLIST_HEAD(dev_data_list);
66
67 LIST_HEAD(ioapic_map);
68 LIST_HEAD(hpet_map);
69 LIST_HEAD(acpihid_map);
70
71 /*
72 * Domain for untranslated devices - only allocated
73 * if iommu=pt passed on kernel cmd line.
74 */
75 const struct iommu_ops amd_iommu_ops;
76
77 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
78 int amd_iommu_max_glx_val = -1;
79
80 /*
81 * general struct to manage commands send to an IOMMU
82 */
83 struct iommu_cmd {
84 u32 data[4];
85 };
86
87 struct kmem_cache *amd_iommu_irq_cache;
88
89 static void detach_device(struct device *dev);
90
91 /****************************************************************************
92 *
93 * Helper functions
94 *
95 ****************************************************************************/
96
get_pci_device_id(struct device * dev)97 static inline u16 get_pci_device_id(struct device *dev)
98 {
99 struct pci_dev *pdev = to_pci_dev(dev);
100
101 return pci_dev_id(pdev);
102 }
103
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)104 static inline int get_acpihid_device_id(struct device *dev,
105 struct acpihid_map_entry **entry)
106 {
107 struct acpi_device *adev = ACPI_COMPANION(dev);
108 struct acpihid_map_entry *p;
109
110 if (!adev)
111 return -ENODEV;
112
113 list_for_each_entry(p, &acpihid_map, list) {
114 if (acpi_dev_hid_uid_match(adev, p->hid,
115 p->uid[0] ? p->uid : NULL)) {
116 if (entry)
117 *entry = p;
118 return p->devid;
119 }
120 }
121 return -EINVAL;
122 }
123
get_device_id(struct device * dev)124 static inline int get_device_id(struct device *dev)
125 {
126 int devid;
127
128 if (dev_is_pci(dev))
129 devid = get_pci_device_id(dev);
130 else
131 devid = get_acpihid_device_id(dev, NULL);
132
133 return devid;
134 }
135
to_pdomain(struct iommu_domain * dom)136 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
137 {
138 return container_of(dom, struct protection_domain, domain);
139 }
140
alloc_dev_data(u16 devid)141 static struct iommu_dev_data *alloc_dev_data(u16 devid)
142 {
143 struct iommu_dev_data *dev_data;
144
145 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
146 if (!dev_data)
147 return NULL;
148
149 spin_lock_init(&dev_data->lock);
150 dev_data->devid = devid;
151 ratelimit_default_init(&dev_data->rs);
152
153 llist_add(&dev_data->dev_data_list, &dev_data_list);
154 return dev_data;
155 }
156
search_dev_data(u16 devid)157 static struct iommu_dev_data *search_dev_data(u16 devid)
158 {
159 struct iommu_dev_data *dev_data;
160 struct llist_node *node;
161
162 if (llist_empty(&dev_data_list))
163 return NULL;
164
165 node = dev_data_list.first;
166 llist_for_each_entry(dev_data, node, dev_data_list) {
167 if (dev_data->devid == devid)
168 return dev_data;
169 }
170
171 return NULL;
172 }
173
clone_alias(struct pci_dev * pdev,u16 alias,void * data)174 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
175 {
176 u16 devid = pci_dev_id(pdev);
177
178 if (devid == alias)
179 return 0;
180
181 amd_iommu_rlookup_table[alias] =
182 amd_iommu_rlookup_table[devid];
183 memcpy(amd_iommu_dev_table[alias].data,
184 amd_iommu_dev_table[devid].data,
185 sizeof(amd_iommu_dev_table[alias].data));
186
187 return 0;
188 }
189
clone_aliases(struct pci_dev * pdev)190 static void clone_aliases(struct pci_dev *pdev)
191 {
192 if (!pdev)
193 return;
194
195 /*
196 * The IVRS alias stored in the alias table may not be
197 * part of the PCI DMA aliases if it's bus differs
198 * from the original device.
199 */
200 clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL);
201
202 pci_for_each_dma_alias(pdev, clone_alias, NULL);
203 }
204
setup_aliases(struct device * dev)205 static struct pci_dev *setup_aliases(struct device *dev)
206 {
207 struct pci_dev *pdev = to_pci_dev(dev);
208 u16 ivrs_alias;
209
210 /* For ACPI HID devices, there are no aliases */
211 if (!dev_is_pci(dev))
212 return NULL;
213
214 /*
215 * Add the IVRS alias to the pci aliases if it is on the same
216 * bus. The IVRS table may know about a quirk that we don't.
217 */
218 ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)];
219 if (ivrs_alias != pci_dev_id(pdev) &&
220 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
221 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
222
223 clone_aliases(pdev);
224
225 return pdev;
226 }
227
find_dev_data(u16 devid)228 static struct iommu_dev_data *find_dev_data(u16 devid)
229 {
230 struct iommu_dev_data *dev_data;
231 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
232
233 dev_data = search_dev_data(devid);
234
235 if (dev_data == NULL) {
236 dev_data = alloc_dev_data(devid);
237 if (!dev_data)
238 return NULL;
239
240 if (translation_pre_enabled(iommu))
241 dev_data->defer_attach = true;
242 }
243
244 return dev_data;
245 }
246
247 /*
248 * Find or create an IOMMU group for a acpihid device.
249 */
acpihid_device_group(struct device * dev)250 static struct iommu_group *acpihid_device_group(struct device *dev)
251 {
252 struct acpihid_map_entry *p, *entry = NULL;
253 int devid;
254
255 devid = get_acpihid_device_id(dev, &entry);
256 if (devid < 0)
257 return ERR_PTR(devid);
258
259 list_for_each_entry(p, &acpihid_map, list) {
260 if ((devid == p->devid) && p->group)
261 entry->group = p->group;
262 }
263
264 if (!entry->group)
265 entry->group = generic_device_group(dev);
266 else
267 iommu_group_ref_get(entry->group);
268
269 return entry->group;
270 }
271
pci_iommuv2_capable(struct pci_dev * pdev)272 static bool pci_iommuv2_capable(struct pci_dev *pdev)
273 {
274 static const int caps[] = {
275 PCI_EXT_CAP_ID_PRI,
276 PCI_EXT_CAP_ID_PASID,
277 };
278 int i, pos;
279
280 if (!pci_ats_supported(pdev))
281 return false;
282
283 for (i = 0; i < 2; ++i) {
284 pos = pci_find_ext_capability(pdev, caps[i]);
285 if (pos == 0)
286 return false;
287 }
288
289 return true;
290 }
291
292 /*
293 * This function checks if the driver got a valid device from the caller to
294 * avoid dereferencing invalid pointers.
295 */
check_device(struct device * dev)296 static bool check_device(struct device *dev)
297 {
298 int devid;
299
300 if (!dev)
301 return false;
302
303 devid = get_device_id(dev);
304 if (devid < 0)
305 return false;
306
307 /* Out of our scope? */
308 if (devid > amd_iommu_last_bdf)
309 return false;
310
311 if (amd_iommu_rlookup_table[devid] == NULL)
312 return false;
313
314 return true;
315 }
316
iommu_init_device(struct device * dev)317 static int iommu_init_device(struct device *dev)
318 {
319 struct iommu_dev_data *dev_data;
320 int devid;
321
322 if (dev_iommu_priv_get(dev))
323 return 0;
324
325 devid = get_device_id(dev);
326 if (devid < 0)
327 return devid;
328
329 dev_data = find_dev_data(devid);
330 if (!dev_data)
331 return -ENOMEM;
332
333 dev_data->pdev = setup_aliases(dev);
334
335 /*
336 * By default we use passthrough mode for IOMMUv2 capable device.
337 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
338 * invalid address), we ignore the capability for the device so
339 * it'll be forced to go into translation mode.
340 */
341 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
342 dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
343 struct amd_iommu *iommu;
344
345 iommu = amd_iommu_rlookup_table[dev_data->devid];
346 dev_data->iommu_v2 = iommu->is_iommu_v2;
347 }
348
349 dev_iommu_priv_set(dev, dev_data);
350
351 return 0;
352 }
353
iommu_ignore_device(struct device * dev)354 static void iommu_ignore_device(struct device *dev)
355 {
356 int devid;
357
358 devid = get_device_id(dev);
359 if (devid < 0)
360 return;
361
362 amd_iommu_rlookup_table[devid] = NULL;
363 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
364
365 setup_aliases(dev);
366 }
367
amd_iommu_uninit_device(struct device * dev)368 static void amd_iommu_uninit_device(struct device *dev)
369 {
370 struct iommu_dev_data *dev_data;
371
372 dev_data = dev_iommu_priv_get(dev);
373 if (!dev_data)
374 return;
375
376 if (dev_data->domain)
377 detach_device(dev);
378
379 dev_iommu_priv_set(dev, NULL);
380
381 /*
382 * We keep dev_data around for unplugged devices and reuse it when the
383 * device is re-plugged - not doing so would introduce a ton of races.
384 */
385 }
386
387 /****************************************************************************
388 *
389 * Interrupt handling functions
390 *
391 ****************************************************************************/
392
dump_dte_entry(u16 devid)393 static void dump_dte_entry(u16 devid)
394 {
395 int i;
396
397 for (i = 0; i < 4; ++i)
398 pr_err("DTE[%d]: %016llx\n", i,
399 amd_iommu_dev_table[devid].data[i]);
400 }
401
dump_command(unsigned long phys_addr)402 static void dump_command(unsigned long phys_addr)
403 {
404 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
405 int i;
406
407 for (i = 0; i < 4; ++i)
408 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
409 }
410
amd_iommu_report_rmp_hw_error(volatile u32 * event)411 static void amd_iommu_report_rmp_hw_error(volatile u32 *event)
412 {
413 struct iommu_dev_data *dev_data = NULL;
414 int devid, vmg_tag, flags;
415 struct pci_dev *pdev;
416 u64 spa;
417
418 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
419 vmg_tag = (event[1]) & 0xFFFF;
420 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
421 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
422
423 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
424 devid & 0xff);
425 if (pdev)
426 dev_data = dev_iommu_priv_get(&pdev->dev);
427
428 if (dev_data) {
429 if (__ratelimit(&dev_data->rs)) {
430 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
431 vmg_tag, spa, flags);
432 }
433 } else {
434 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
435 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
436 vmg_tag, spa, flags);
437 }
438
439 if (pdev)
440 pci_dev_put(pdev);
441 }
442
amd_iommu_report_rmp_fault(volatile u32 * event)443 static void amd_iommu_report_rmp_fault(volatile u32 *event)
444 {
445 struct iommu_dev_data *dev_data = NULL;
446 int devid, flags_rmp, vmg_tag, flags;
447 struct pci_dev *pdev;
448 u64 gpa;
449
450 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
451 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
452 vmg_tag = (event[1]) & 0xFFFF;
453 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
454 gpa = ((u64)event[3] << 32) | event[2];
455
456 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
457 devid & 0xff);
458 if (pdev)
459 dev_data = dev_iommu_priv_get(&pdev->dev);
460
461 if (dev_data) {
462 if (__ratelimit(&dev_data->rs)) {
463 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
464 vmg_tag, gpa, flags_rmp, flags);
465 }
466 } else {
467 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
468 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
469 vmg_tag, gpa, flags_rmp, flags);
470 }
471
472 if (pdev)
473 pci_dev_put(pdev);
474 }
475
amd_iommu_report_page_fault(u16 devid,u16 domain_id,u64 address,int flags)476 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
477 u64 address, int flags)
478 {
479 struct iommu_dev_data *dev_data = NULL;
480 struct pci_dev *pdev;
481
482 pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
483 devid & 0xff);
484 if (pdev)
485 dev_data = dev_iommu_priv_get(&pdev->dev);
486
487 if (dev_data) {
488 if (__ratelimit(&dev_data->rs)) {
489 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
490 domain_id, address, flags);
491 }
492 } else {
493 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
494 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
495 domain_id, address, flags);
496 }
497
498 if (pdev)
499 pci_dev_put(pdev);
500 }
501
iommu_print_event(struct amd_iommu * iommu,void * __evt)502 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
503 {
504 struct device *dev = iommu->iommu.dev;
505 int type, devid, flags, tag;
506 volatile u32 *event = __evt;
507 int count = 0;
508 u64 address;
509 u32 pasid;
510
511 retry:
512 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
513 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
514 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
515 (event[1] & EVENT_DOMID_MASK_LO);
516 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
517 address = (u64)(((u64)event[3]) << 32) | event[2];
518
519 if (type == 0) {
520 /* Did we hit the erratum? */
521 if (++count == LOOP_TIMEOUT) {
522 pr_err("No event written to event log\n");
523 return;
524 }
525 udelay(1);
526 goto retry;
527 }
528
529 if (type == EVENT_TYPE_IO_FAULT) {
530 amd_iommu_report_page_fault(devid, pasid, address, flags);
531 return;
532 }
533
534 switch (type) {
535 case EVENT_TYPE_ILL_DEV:
536 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
537 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
538 pasid, address, flags);
539 dump_dte_entry(devid);
540 break;
541 case EVENT_TYPE_DEV_TAB_ERR:
542 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
543 "address=0x%llx flags=0x%04x]\n",
544 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
545 address, flags);
546 break;
547 case EVENT_TYPE_PAGE_TAB_ERR:
548 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
549 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
550 pasid, address, flags);
551 break;
552 case EVENT_TYPE_ILL_CMD:
553 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
554 dump_command(address);
555 break;
556 case EVENT_TYPE_CMD_HARD_ERR:
557 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
558 address, flags);
559 break;
560 case EVENT_TYPE_IOTLB_INV_TO:
561 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
562 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
563 address);
564 break;
565 case EVENT_TYPE_INV_DEV_REQ:
566 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
567 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
568 pasid, address, flags);
569 break;
570 case EVENT_TYPE_RMP_FAULT:
571 amd_iommu_report_rmp_fault(event);
572 break;
573 case EVENT_TYPE_RMP_HW_ERR:
574 amd_iommu_report_rmp_hw_error(event);
575 break;
576 case EVENT_TYPE_INV_PPR_REQ:
577 pasid = PPR_PASID(*((u64 *)__evt));
578 tag = event[1] & 0x03FF;
579 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
580 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
581 pasid, address, flags, tag);
582 break;
583 default:
584 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
585 event[0], event[1], event[2], event[3]);
586 }
587
588 memset(__evt, 0, 4 * sizeof(u32));
589 }
590
iommu_poll_events(struct amd_iommu * iommu)591 static void iommu_poll_events(struct amd_iommu *iommu)
592 {
593 u32 head, tail;
594
595 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
596 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
597
598 while (head != tail) {
599 iommu_print_event(iommu, iommu->evt_buf + head);
600 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
601 }
602
603 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
604 }
605
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)606 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
607 {
608 struct amd_iommu_fault fault;
609
610 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
611 pr_err_ratelimited("Unknown PPR request received\n");
612 return;
613 }
614
615 fault.address = raw[1];
616 fault.pasid = PPR_PASID(raw[0]);
617 fault.device_id = PPR_DEVID(raw[0]);
618 fault.tag = PPR_TAG(raw[0]);
619 fault.flags = PPR_FLAGS(raw[0]);
620
621 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
622 }
623
iommu_poll_ppr_log(struct amd_iommu * iommu)624 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
625 {
626 u32 head, tail;
627
628 if (iommu->ppr_log == NULL)
629 return;
630
631 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
632 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
633
634 while (head != tail) {
635 volatile u64 *raw;
636 u64 entry[2];
637 int i;
638
639 raw = (u64 *)(iommu->ppr_log + head);
640
641 /*
642 * Hardware bug: Interrupt may arrive before the entry is
643 * written to memory. If this happens we need to wait for the
644 * entry to arrive.
645 */
646 for (i = 0; i < LOOP_TIMEOUT; ++i) {
647 if (PPR_REQ_TYPE(raw[0]) != 0)
648 break;
649 udelay(1);
650 }
651
652 /* Avoid memcpy function-call overhead */
653 entry[0] = raw[0];
654 entry[1] = raw[1];
655
656 /*
657 * To detect the hardware bug we need to clear the entry
658 * back to zero.
659 */
660 raw[0] = raw[1] = 0UL;
661
662 /* Update head pointer of hardware ring-buffer */
663 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
664 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
665
666 /* Handle PPR entry */
667 iommu_handle_ppr_entry(iommu, entry);
668
669 /* Refresh ring-buffer information */
670 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
671 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
672 }
673 }
674
675 #ifdef CONFIG_IRQ_REMAP
676 static int (*iommu_ga_log_notifier)(u32);
677
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))678 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
679 {
680 iommu_ga_log_notifier = notifier;
681
682 return 0;
683 }
684 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
685
iommu_poll_ga_log(struct amd_iommu * iommu)686 static void iommu_poll_ga_log(struct amd_iommu *iommu)
687 {
688 u32 head, tail, cnt = 0;
689
690 if (iommu->ga_log == NULL)
691 return;
692
693 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
694 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
695
696 while (head != tail) {
697 volatile u64 *raw;
698 u64 log_entry;
699
700 raw = (u64 *)(iommu->ga_log + head);
701 cnt++;
702
703 /* Avoid memcpy function-call overhead */
704 log_entry = *raw;
705
706 /* Update head pointer of hardware ring-buffer */
707 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
708 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
709
710 /* Handle GA entry */
711 switch (GA_REQ_TYPE(log_entry)) {
712 case GA_GUEST_NR:
713 if (!iommu_ga_log_notifier)
714 break;
715
716 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
717 __func__, GA_DEVID(log_entry),
718 GA_TAG(log_entry));
719
720 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
721 pr_err("GA log notifier failed.\n");
722 break;
723 default:
724 break;
725 }
726 }
727 }
728
729 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)730 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
731 {
732 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
733 pci_dev_has_special_msi_domain(to_pci_dev(dev)))
734 return;
735
736 dev_set_msi_domain(dev, iommu->msi_domain);
737 }
738
739 #else /* CONFIG_IRQ_REMAP */
740 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)741 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
742 #endif /* !CONFIG_IRQ_REMAP */
743
744 #define AMD_IOMMU_INT_MASK \
745 (MMIO_STATUS_EVT_INT_MASK | \
746 MMIO_STATUS_PPR_INT_MASK | \
747 MMIO_STATUS_GALOG_INT_MASK)
748
amd_iommu_int_thread(int irq,void * data)749 irqreturn_t amd_iommu_int_thread(int irq, void *data)
750 {
751 struct amd_iommu *iommu = (struct amd_iommu *) data;
752 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
753
754 while (status & AMD_IOMMU_INT_MASK) {
755 /* Enable EVT and PPR and GA interrupts again */
756 writel(AMD_IOMMU_INT_MASK,
757 iommu->mmio_base + MMIO_STATUS_OFFSET);
758
759 if (status & MMIO_STATUS_EVT_INT_MASK) {
760 pr_devel("Processing IOMMU Event Log\n");
761 iommu_poll_events(iommu);
762 }
763
764 if (status & MMIO_STATUS_PPR_INT_MASK) {
765 pr_devel("Processing IOMMU PPR Log\n");
766 iommu_poll_ppr_log(iommu);
767 }
768
769 #ifdef CONFIG_IRQ_REMAP
770 if (status & MMIO_STATUS_GALOG_INT_MASK) {
771 pr_devel("Processing IOMMU GA Log\n");
772 iommu_poll_ga_log(iommu);
773 }
774 #endif
775
776 /*
777 * Hardware bug: ERBT1312
778 * When re-enabling interrupt (by writing 1
779 * to clear the bit), the hardware might also try to set
780 * the interrupt bit in the event status register.
781 * In this scenario, the bit will be set, and disable
782 * subsequent interrupts.
783 *
784 * Workaround: The IOMMU driver should read back the
785 * status register and check if the interrupt bits are cleared.
786 * If not, driver will need to go through the interrupt handler
787 * again and re-clear the bits
788 */
789 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
790 }
791 return IRQ_HANDLED;
792 }
793
amd_iommu_int_handler(int irq,void * data)794 irqreturn_t amd_iommu_int_handler(int irq, void *data)
795 {
796 return IRQ_WAKE_THREAD;
797 }
798
799 /****************************************************************************
800 *
801 * IOMMU command queuing functions
802 *
803 ****************************************************************************/
804
wait_on_sem(struct amd_iommu * iommu,u64 data)805 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
806 {
807 int i = 0;
808
809 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
810 udelay(1);
811 i += 1;
812 }
813
814 if (i == LOOP_TIMEOUT) {
815 pr_alert("Completion-Wait loop timed out\n");
816 return -EIO;
817 }
818
819 return 0;
820 }
821
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)822 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
823 struct iommu_cmd *cmd)
824 {
825 u8 *target;
826 u32 tail;
827
828 /* Copy command to buffer */
829 tail = iommu->cmd_buf_tail;
830 target = iommu->cmd_buf + tail;
831 memcpy(target, cmd, sizeof(*cmd));
832
833 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
834 iommu->cmd_buf_tail = tail;
835
836 /* Tell the IOMMU about it */
837 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
838 }
839
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)840 static void build_completion_wait(struct iommu_cmd *cmd,
841 struct amd_iommu *iommu,
842 u64 data)
843 {
844 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
845
846 memset(cmd, 0, sizeof(*cmd));
847 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
848 cmd->data[1] = upper_32_bits(paddr);
849 cmd->data[2] = data;
850 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
851 }
852
build_inv_dte(struct iommu_cmd * cmd,u16 devid)853 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
854 {
855 memset(cmd, 0, sizeof(*cmd));
856 cmd->data[0] = devid;
857 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
858 }
859
860 /*
861 * Builds an invalidation address which is suitable for one page or multiple
862 * pages. Sets the size bit (S) as needed is more than one page is flushed.
863 */
build_inv_address(u64 address,size_t size)864 static inline u64 build_inv_address(u64 address, size_t size)
865 {
866 u64 pages, end, msb_diff;
867
868 pages = iommu_num_pages(address, size, PAGE_SIZE);
869
870 if (pages == 1)
871 return address & PAGE_MASK;
872
873 end = address + size - 1;
874
875 /*
876 * msb_diff would hold the index of the most significant bit that
877 * flipped between the start and end.
878 */
879 msb_diff = fls64(end ^ address) - 1;
880
881 /*
882 * Bits 63:52 are sign extended. If for some reason bit 51 is different
883 * between the start and the end, invalidate everything.
884 */
885 if (unlikely(msb_diff > 51)) {
886 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
887 } else {
888 /*
889 * The msb-bit must be clear on the address. Just set all the
890 * lower bits.
891 */
892 address |= (1ull << msb_diff) - 1;
893 }
894
895 /* Clear bits 11:0 */
896 address &= PAGE_MASK;
897
898 /* Set the size bit - we flush more than one 4kb page */
899 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
900 }
901
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)902 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
903 size_t size, u16 domid, int pde)
904 {
905 u64 inv_address = build_inv_address(address, size);
906
907 memset(cmd, 0, sizeof(*cmd));
908 cmd->data[1] |= domid;
909 cmd->data[2] = lower_32_bits(inv_address);
910 cmd->data[3] = upper_32_bits(inv_address);
911 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
912 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
913 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
914 }
915
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)916 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
917 u64 address, size_t size)
918 {
919 u64 inv_address = build_inv_address(address, size);
920
921 memset(cmd, 0, sizeof(*cmd));
922 cmd->data[0] = devid;
923 cmd->data[0] |= (qdep & 0xff) << 24;
924 cmd->data[1] = devid;
925 cmd->data[2] = lower_32_bits(inv_address);
926 cmd->data[3] = upper_32_bits(inv_address);
927 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
928 }
929
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,u32 pasid,u64 address,bool size)930 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
931 u64 address, bool size)
932 {
933 memset(cmd, 0, sizeof(*cmd));
934
935 address &= ~(0xfffULL);
936
937 cmd->data[0] = pasid;
938 cmd->data[1] = domid;
939 cmd->data[2] = lower_32_bits(address);
940 cmd->data[3] = upper_32_bits(address);
941 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
942 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
943 if (size)
944 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
945 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
946 }
947
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,u32 pasid,int qdep,u64 address,bool size)948 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
949 int qdep, u64 address, bool size)
950 {
951 memset(cmd, 0, sizeof(*cmd));
952
953 address &= ~(0xfffULL);
954
955 cmd->data[0] = devid;
956 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
957 cmd->data[0] |= (qdep & 0xff) << 24;
958 cmd->data[1] = devid;
959 cmd->data[1] |= (pasid & 0xff) << 16;
960 cmd->data[2] = lower_32_bits(address);
961 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
962 cmd->data[3] = upper_32_bits(address);
963 if (size)
964 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
965 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
966 }
967
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,bool gn)968 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
969 int status, int tag, bool gn)
970 {
971 memset(cmd, 0, sizeof(*cmd));
972
973 cmd->data[0] = devid;
974 if (gn) {
975 cmd->data[1] = pasid;
976 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
977 }
978 cmd->data[3] = tag & 0x1ff;
979 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
980
981 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
982 }
983
build_inv_all(struct iommu_cmd * cmd)984 static void build_inv_all(struct iommu_cmd *cmd)
985 {
986 memset(cmd, 0, sizeof(*cmd));
987 CMD_SET_TYPE(cmd, CMD_INV_ALL);
988 }
989
build_inv_irt(struct iommu_cmd * cmd,u16 devid)990 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
991 {
992 memset(cmd, 0, sizeof(*cmd));
993 cmd->data[0] = devid;
994 CMD_SET_TYPE(cmd, CMD_INV_IRT);
995 }
996
997 /*
998 * Writes the command to the IOMMUs command buffer and informs the
999 * hardware about the new command.
1000 */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1001 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1002 struct iommu_cmd *cmd,
1003 bool sync)
1004 {
1005 unsigned int count = 0;
1006 u32 left, next_tail;
1007
1008 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1009 again:
1010 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1011
1012 if (left <= 0x20) {
1013 /* Skip udelay() the first time around */
1014 if (count++) {
1015 if (count == LOOP_TIMEOUT) {
1016 pr_err("Command buffer timeout\n");
1017 return -EIO;
1018 }
1019
1020 udelay(1);
1021 }
1022
1023 /* Update head and recheck remaining space */
1024 iommu->cmd_buf_head = readl(iommu->mmio_base +
1025 MMIO_CMD_HEAD_OFFSET);
1026
1027 goto again;
1028 }
1029
1030 copy_cmd_to_buffer(iommu, cmd);
1031
1032 /* Do we need to make sure all commands are processed? */
1033 iommu->need_sync = sync;
1034
1035 return 0;
1036 }
1037
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1038 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1039 struct iommu_cmd *cmd,
1040 bool sync)
1041 {
1042 unsigned long flags;
1043 int ret;
1044
1045 raw_spin_lock_irqsave(&iommu->lock, flags);
1046 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1047 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1048
1049 return ret;
1050 }
1051
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1052 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1053 {
1054 return iommu_queue_command_sync(iommu, cmd, true);
1055 }
1056
1057 /*
1058 * This function queues a completion wait command into the command
1059 * buffer of an IOMMU
1060 */
iommu_completion_wait(struct amd_iommu * iommu)1061 static int iommu_completion_wait(struct amd_iommu *iommu)
1062 {
1063 struct iommu_cmd cmd;
1064 unsigned long flags;
1065 int ret;
1066 u64 data;
1067
1068 if (!iommu->need_sync)
1069 return 0;
1070
1071 raw_spin_lock_irqsave(&iommu->lock, flags);
1072
1073 data = ++iommu->cmd_sem_val;
1074 build_completion_wait(&cmd, iommu, data);
1075
1076 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1077 if (ret)
1078 goto out_unlock;
1079
1080 ret = wait_on_sem(iommu, data);
1081
1082 out_unlock:
1083 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1084
1085 return ret;
1086 }
1087
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1088 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1089 {
1090 struct iommu_cmd cmd;
1091
1092 build_inv_dte(&cmd, devid);
1093
1094 return iommu_queue_command(iommu, &cmd);
1095 }
1096
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1097 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1098 {
1099 u32 devid;
1100
1101 for (devid = 0; devid <= 0xffff; ++devid)
1102 iommu_flush_dte(iommu, devid);
1103
1104 iommu_completion_wait(iommu);
1105 }
1106
1107 /*
1108 * This function uses heavy locking and may disable irqs for some time. But
1109 * this is no issue because it is only called during resume.
1110 */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1111 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1112 {
1113 u32 dom_id;
1114
1115 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1116 struct iommu_cmd cmd;
1117 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1118 dom_id, 1);
1119 iommu_queue_command(iommu, &cmd);
1120 }
1121
1122 iommu_completion_wait(iommu);
1123 }
1124
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1125 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1126 {
1127 struct iommu_cmd cmd;
1128
1129 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1130 dom_id, 1);
1131 iommu_queue_command(iommu, &cmd);
1132
1133 iommu_completion_wait(iommu);
1134 }
1135
amd_iommu_flush_all(struct amd_iommu * iommu)1136 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1137 {
1138 struct iommu_cmd cmd;
1139
1140 build_inv_all(&cmd);
1141
1142 iommu_queue_command(iommu, &cmd);
1143 iommu_completion_wait(iommu);
1144 }
1145
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1146 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1147 {
1148 struct iommu_cmd cmd;
1149
1150 build_inv_irt(&cmd, devid);
1151
1152 iommu_queue_command(iommu, &cmd);
1153 }
1154
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1155 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1156 {
1157 u32 devid;
1158
1159 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1160 iommu_flush_irt(iommu, devid);
1161
1162 iommu_completion_wait(iommu);
1163 }
1164
iommu_flush_all_caches(struct amd_iommu * iommu)1165 void iommu_flush_all_caches(struct amd_iommu *iommu)
1166 {
1167 if (iommu_feature(iommu, FEATURE_IA)) {
1168 amd_iommu_flush_all(iommu);
1169 } else {
1170 amd_iommu_flush_dte_all(iommu);
1171 amd_iommu_flush_irt_all(iommu);
1172 amd_iommu_flush_tlb_all(iommu);
1173 }
1174 }
1175
1176 /*
1177 * Command send function for flushing on-device TLB
1178 */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1179 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1180 u64 address, size_t size)
1181 {
1182 struct amd_iommu *iommu;
1183 struct iommu_cmd cmd;
1184 int qdep;
1185
1186 qdep = dev_data->ats.qdep;
1187 iommu = amd_iommu_rlookup_table[dev_data->devid];
1188
1189 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1190
1191 return iommu_queue_command(iommu, &cmd);
1192 }
1193
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1194 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1195 {
1196 struct amd_iommu *iommu = data;
1197
1198 return iommu_flush_dte(iommu, alias);
1199 }
1200
1201 /*
1202 * Command send function for invalidating a device table entry
1203 */
device_flush_dte(struct iommu_dev_data * dev_data)1204 static int device_flush_dte(struct iommu_dev_data *dev_data)
1205 {
1206 struct amd_iommu *iommu;
1207 u16 alias;
1208 int ret;
1209
1210 iommu = amd_iommu_rlookup_table[dev_data->devid];
1211
1212 if (dev_data->pdev)
1213 ret = pci_for_each_dma_alias(dev_data->pdev,
1214 device_flush_dte_alias, iommu);
1215 else
1216 ret = iommu_flush_dte(iommu, dev_data->devid);
1217 if (ret)
1218 return ret;
1219
1220 alias = amd_iommu_alias_table[dev_data->devid];
1221 if (alias != dev_data->devid) {
1222 ret = iommu_flush_dte(iommu, alias);
1223 if (ret)
1224 return ret;
1225 }
1226
1227 if (dev_data->ats.enabled)
1228 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1229
1230 return ret;
1231 }
1232
1233 /*
1234 * TLB invalidation function which is called from the mapping functions.
1235 * It invalidates a single PTE if the range to flush is within a single
1236 * page. Otherwise it flushes the whole TLB of the IOMMU.
1237 */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1238 static void __domain_flush_pages(struct protection_domain *domain,
1239 u64 address, size_t size, int pde)
1240 {
1241 struct iommu_dev_data *dev_data;
1242 struct iommu_cmd cmd;
1243 int ret = 0, i;
1244
1245 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1246
1247 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1248 if (!domain->dev_iommu[i])
1249 continue;
1250
1251 /*
1252 * Devices of this domain are behind this IOMMU
1253 * We need a TLB flush
1254 */
1255 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1256 }
1257
1258 list_for_each_entry(dev_data, &domain->dev_list, list) {
1259
1260 if (!dev_data->ats.enabled)
1261 continue;
1262
1263 ret |= device_flush_iotlb(dev_data, address, size);
1264 }
1265
1266 WARN_ON(ret);
1267 }
1268
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1269 static void domain_flush_pages(struct protection_domain *domain,
1270 u64 address, size_t size, int pde)
1271 {
1272 if (likely(!amd_iommu_np_cache)) {
1273 __domain_flush_pages(domain, address, size, pde);
1274 return;
1275 }
1276
1277 /*
1278 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1279 * In such setups it is best to avoid flushes of ranges which are not
1280 * naturally aligned, since it would lead to flushes of unmodified
1281 * PTEs. Such flushes would require the hypervisor to do more work than
1282 * necessary. Therefore, perform repeated flushes of aligned ranges
1283 * until you cover the range. Each iteration flushes the smaller
1284 * between the natural alignment of the address that we flush and the
1285 * greatest naturally aligned region that fits in the range.
1286 */
1287 while (size != 0) {
1288 int addr_alignment = __ffs(address);
1289 int size_alignment = __fls(size);
1290 int min_alignment;
1291 size_t flush_size;
1292
1293 /*
1294 * size is always non-zero, but address might be zero, causing
1295 * addr_alignment to be negative. As the casting of the
1296 * argument in __ffs(address) to long might trim the high bits
1297 * of the address on x86-32, cast to long when doing the check.
1298 */
1299 if (likely((unsigned long)address != 0))
1300 min_alignment = min(addr_alignment, size_alignment);
1301 else
1302 min_alignment = size_alignment;
1303
1304 flush_size = 1ul << min_alignment;
1305
1306 __domain_flush_pages(domain, address, flush_size, pde);
1307 address += flush_size;
1308 size -= flush_size;
1309 }
1310 }
1311
1312 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_tlb_pde(struct protection_domain * domain)1313 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1314 {
1315 domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1316 }
1317
amd_iommu_domain_flush_complete(struct protection_domain * domain)1318 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1319 {
1320 int i;
1321
1322 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1323 if (domain && !domain->dev_iommu[i])
1324 continue;
1325
1326 /*
1327 * Devices of this domain are behind this IOMMU
1328 * We need to wait for completion of all commands.
1329 */
1330 iommu_completion_wait(amd_iommus[i]);
1331 }
1332 }
1333
1334 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1335 static void domain_flush_np_cache(struct protection_domain *domain,
1336 dma_addr_t iova, size_t size)
1337 {
1338 if (unlikely(amd_iommu_np_cache)) {
1339 unsigned long flags;
1340
1341 spin_lock_irqsave(&domain->lock, flags);
1342 domain_flush_pages(domain, iova, size, 1);
1343 amd_iommu_domain_flush_complete(domain);
1344 spin_unlock_irqrestore(&domain->lock, flags);
1345 }
1346 }
1347
1348
1349 /*
1350 * This function flushes the DTEs for all devices in domain
1351 */
domain_flush_devices(struct protection_domain * domain)1352 static void domain_flush_devices(struct protection_domain *domain)
1353 {
1354 struct iommu_dev_data *dev_data;
1355
1356 list_for_each_entry(dev_data, &domain->dev_list, list)
1357 device_flush_dte(dev_data);
1358 }
1359
1360 /****************************************************************************
1361 *
1362 * The next functions belong to the domain allocation. A domain is
1363 * allocated for every IOMMU as the default domain. If device isolation
1364 * is enabled, every device get its own domain. The most important thing
1365 * about domains is the page table mapping the DMA address space they
1366 * contain.
1367 *
1368 ****************************************************************************/
1369
domain_id_alloc(void)1370 static u16 domain_id_alloc(void)
1371 {
1372 int id;
1373
1374 spin_lock(&pd_bitmap_lock);
1375 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1376 BUG_ON(id == 0);
1377 if (id > 0 && id < MAX_DOMAIN_ID)
1378 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1379 else
1380 id = 0;
1381 spin_unlock(&pd_bitmap_lock);
1382
1383 return id;
1384 }
1385
domain_id_free(int id)1386 static void domain_id_free(int id)
1387 {
1388 spin_lock(&pd_bitmap_lock);
1389 if (id > 0 && id < MAX_DOMAIN_ID)
1390 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1391 spin_unlock(&pd_bitmap_lock);
1392 }
1393
free_gcr3_tbl_level1(u64 * tbl)1394 static void free_gcr3_tbl_level1(u64 *tbl)
1395 {
1396 u64 *ptr;
1397 int i;
1398
1399 for (i = 0; i < 512; ++i) {
1400 if (!(tbl[i] & GCR3_VALID))
1401 continue;
1402
1403 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1404
1405 free_page((unsigned long)ptr);
1406 }
1407 }
1408
free_gcr3_tbl_level2(u64 * tbl)1409 static void free_gcr3_tbl_level2(u64 *tbl)
1410 {
1411 u64 *ptr;
1412 int i;
1413
1414 for (i = 0; i < 512; ++i) {
1415 if (!(tbl[i] & GCR3_VALID))
1416 continue;
1417
1418 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1419
1420 free_gcr3_tbl_level1(ptr);
1421 }
1422 }
1423
free_gcr3_table(struct protection_domain * domain)1424 static void free_gcr3_table(struct protection_domain *domain)
1425 {
1426 if (domain->glx == 2)
1427 free_gcr3_tbl_level2(domain->gcr3_tbl);
1428 else if (domain->glx == 1)
1429 free_gcr3_tbl_level1(domain->gcr3_tbl);
1430 else
1431 BUG_ON(domain->glx != 0);
1432
1433 free_page((unsigned long)domain->gcr3_tbl);
1434 }
1435
set_dte_entry(u16 devid,struct protection_domain * domain,bool ats,bool ppr)1436 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1437 bool ats, bool ppr)
1438 {
1439 u64 pte_root = 0;
1440 u64 flags = 0;
1441 u32 old_domid;
1442
1443 if (domain->iop.mode != PAGE_MODE_NONE)
1444 pte_root = iommu_virt_to_phys(domain->iop.root);
1445
1446 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1447 << DEV_ENTRY_MODE_SHIFT;
1448 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1449
1450 flags = amd_iommu_dev_table[devid].data[1];
1451
1452 if (ats)
1453 flags |= DTE_FLAG_IOTLB;
1454
1455 if (ppr) {
1456 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1457
1458 if (iommu_feature(iommu, FEATURE_EPHSUP))
1459 pte_root |= 1ULL << DEV_ENTRY_PPR;
1460 }
1461
1462 if (domain->flags & PD_IOMMUV2_MASK) {
1463 u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1464 u64 glx = domain->glx;
1465 u64 tmp;
1466
1467 pte_root |= DTE_FLAG_GV;
1468 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1469
1470 /* First mask out possible old values for GCR3 table */
1471 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1472 flags &= ~tmp;
1473
1474 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1475 flags &= ~tmp;
1476
1477 /* Encode GCR3 table into DTE */
1478 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1479 pte_root |= tmp;
1480
1481 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1482 flags |= tmp;
1483
1484 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1485 flags |= tmp;
1486 }
1487
1488 flags &= ~DEV_DOMID_MASK;
1489 flags |= domain->id;
1490
1491 old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1492 amd_iommu_dev_table[devid].data[1] = flags;
1493 amd_iommu_dev_table[devid].data[0] = pte_root;
1494
1495 /*
1496 * A kdump kernel might be replacing a domain ID that was copied from
1497 * the previous kernel--if so, it needs to flush the translation cache
1498 * entries for the old domain ID that is being overwritten
1499 */
1500 if (old_domid) {
1501 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1502
1503 amd_iommu_flush_tlb_domid(iommu, old_domid);
1504 }
1505 }
1506
clear_dte_entry(u16 devid)1507 static void clear_dte_entry(u16 devid)
1508 {
1509 /* remove entry from the device table seen by the hardware */
1510 amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV;
1511 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1512
1513 amd_iommu_apply_erratum_63(devid);
1514 }
1515
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)1516 static void do_attach(struct iommu_dev_data *dev_data,
1517 struct protection_domain *domain)
1518 {
1519 struct amd_iommu *iommu;
1520 bool ats;
1521
1522 iommu = amd_iommu_rlookup_table[dev_data->devid];
1523 ats = dev_data->ats.enabled;
1524
1525 /* Update data structures */
1526 dev_data->domain = domain;
1527 list_add(&dev_data->list, &domain->dev_list);
1528
1529 /* Do reference counting */
1530 domain->dev_iommu[iommu->index] += 1;
1531 domain->dev_cnt += 1;
1532
1533 /* Update device table */
1534 set_dte_entry(dev_data->devid, domain,
1535 ats, dev_data->iommu_v2);
1536 clone_aliases(dev_data->pdev);
1537
1538 device_flush_dte(dev_data);
1539 }
1540
do_detach(struct iommu_dev_data * dev_data)1541 static void do_detach(struct iommu_dev_data *dev_data)
1542 {
1543 struct protection_domain *domain = dev_data->domain;
1544 struct amd_iommu *iommu;
1545
1546 iommu = amd_iommu_rlookup_table[dev_data->devid];
1547
1548 /* Update data structures */
1549 dev_data->domain = NULL;
1550 list_del(&dev_data->list);
1551 clear_dte_entry(dev_data->devid);
1552 clone_aliases(dev_data->pdev);
1553
1554 /* Flush the DTE entry */
1555 device_flush_dte(dev_data);
1556
1557 /* Flush IOTLB */
1558 amd_iommu_domain_flush_tlb_pde(domain);
1559
1560 /* Wait for the flushes to finish */
1561 amd_iommu_domain_flush_complete(domain);
1562
1563 /* decrease reference counters - needs to happen after the flushes */
1564 domain->dev_iommu[iommu->index] -= 1;
1565 domain->dev_cnt -= 1;
1566 }
1567
pdev_iommuv2_disable(struct pci_dev * pdev)1568 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1569 {
1570 pci_disable_ats(pdev);
1571 pci_disable_pri(pdev);
1572 pci_disable_pasid(pdev);
1573 }
1574
pdev_iommuv2_enable(struct pci_dev * pdev)1575 static int pdev_iommuv2_enable(struct pci_dev *pdev)
1576 {
1577 int ret;
1578
1579 /* Only allow access to user-accessible pages */
1580 ret = pci_enable_pasid(pdev, 0);
1581 if (ret)
1582 goto out_err;
1583
1584 /* First reset the PRI state of the device */
1585 ret = pci_reset_pri(pdev);
1586 if (ret)
1587 goto out_err;
1588
1589 /* Enable PRI */
1590 /* FIXME: Hardcode number of outstanding requests for now */
1591 ret = pci_enable_pri(pdev, 32);
1592 if (ret)
1593 goto out_err;
1594
1595 ret = pci_enable_ats(pdev, PAGE_SHIFT);
1596 if (ret)
1597 goto out_err;
1598
1599 return 0;
1600
1601 out_err:
1602 pci_disable_pri(pdev);
1603 pci_disable_pasid(pdev);
1604
1605 return ret;
1606 }
1607
1608 /*
1609 * If a device is not yet associated with a domain, this function makes the
1610 * device visible in the domain
1611 */
attach_device(struct device * dev,struct protection_domain * domain)1612 static int attach_device(struct device *dev,
1613 struct protection_domain *domain)
1614 {
1615 struct iommu_dev_data *dev_data;
1616 struct pci_dev *pdev;
1617 unsigned long flags;
1618 int ret;
1619
1620 spin_lock_irqsave(&domain->lock, flags);
1621
1622 dev_data = dev_iommu_priv_get(dev);
1623
1624 spin_lock(&dev_data->lock);
1625
1626 ret = -EBUSY;
1627 if (dev_data->domain != NULL)
1628 goto out;
1629
1630 if (!dev_is_pci(dev))
1631 goto skip_ats_check;
1632
1633 pdev = to_pci_dev(dev);
1634 if (domain->flags & PD_IOMMUV2_MASK) {
1635 struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
1636
1637 ret = -EINVAL;
1638 if (def_domain->type != IOMMU_DOMAIN_IDENTITY)
1639 goto out;
1640
1641 if (dev_data->iommu_v2) {
1642 if (pdev_iommuv2_enable(pdev) != 0)
1643 goto out;
1644
1645 dev_data->ats.enabled = true;
1646 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1647 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
1648 }
1649 } else if (amd_iommu_iotlb_sup &&
1650 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1651 dev_data->ats.enabled = true;
1652 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1653 }
1654
1655 skip_ats_check:
1656 ret = 0;
1657
1658 do_attach(dev_data, domain);
1659
1660 /*
1661 * We might boot into a crash-kernel here. The crashed kernel
1662 * left the caches in the IOMMU dirty. So we have to flush
1663 * here to evict all dirty stuff.
1664 */
1665 amd_iommu_domain_flush_tlb_pde(domain);
1666
1667 amd_iommu_domain_flush_complete(domain);
1668
1669 out:
1670 spin_unlock(&dev_data->lock);
1671
1672 spin_unlock_irqrestore(&domain->lock, flags);
1673
1674 return ret;
1675 }
1676
1677 /*
1678 * Removes a device from a protection domain (with devtable_lock held)
1679 */
detach_device(struct device * dev)1680 static void detach_device(struct device *dev)
1681 {
1682 struct protection_domain *domain;
1683 struct iommu_dev_data *dev_data;
1684 unsigned long flags;
1685
1686 dev_data = dev_iommu_priv_get(dev);
1687 domain = dev_data->domain;
1688
1689 spin_lock_irqsave(&domain->lock, flags);
1690
1691 spin_lock(&dev_data->lock);
1692
1693 /*
1694 * First check if the device is still attached. It might already
1695 * be detached from its domain because the generic
1696 * iommu_detach_group code detached it and we try again here in
1697 * our alias handling.
1698 */
1699 if (WARN_ON(!dev_data->domain))
1700 goto out;
1701
1702 do_detach(dev_data);
1703
1704 if (!dev_is_pci(dev))
1705 goto out;
1706
1707 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
1708 pdev_iommuv2_disable(to_pci_dev(dev));
1709 else if (dev_data->ats.enabled)
1710 pci_disable_ats(to_pci_dev(dev));
1711
1712 dev_data->ats.enabled = false;
1713
1714 out:
1715 spin_unlock(&dev_data->lock);
1716
1717 spin_unlock_irqrestore(&domain->lock, flags);
1718 }
1719
amd_iommu_probe_device(struct device * dev)1720 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1721 {
1722 struct iommu_device *iommu_dev;
1723 struct amd_iommu *iommu;
1724 int ret, devid;
1725
1726 if (!check_device(dev))
1727 return ERR_PTR(-ENODEV);
1728
1729 devid = get_device_id(dev);
1730 iommu = amd_iommu_rlookup_table[devid];
1731
1732 if (dev_iommu_priv_get(dev))
1733 return &iommu->iommu;
1734
1735 ret = iommu_init_device(dev);
1736 if (ret) {
1737 if (ret != -ENOTSUPP)
1738 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1739 iommu_dev = ERR_PTR(ret);
1740 iommu_ignore_device(dev);
1741 } else {
1742 amd_iommu_set_pci_msi_domain(dev, iommu);
1743 iommu_dev = &iommu->iommu;
1744 }
1745
1746 iommu_completion_wait(iommu);
1747
1748 return iommu_dev;
1749 }
1750
amd_iommu_probe_finalize(struct device * dev)1751 static void amd_iommu_probe_finalize(struct device *dev)
1752 {
1753 /* Domains are initialized for this device - have a look what we ended up with */
1754 set_dma_ops(dev, NULL);
1755 iommu_setup_dma_ops(dev, 0, U64_MAX);
1756 }
1757
amd_iommu_release_device(struct device * dev)1758 static void amd_iommu_release_device(struct device *dev)
1759 {
1760 int devid = get_device_id(dev);
1761 struct amd_iommu *iommu;
1762
1763 if (!check_device(dev))
1764 return;
1765
1766 iommu = amd_iommu_rlookup_table[devid];
1767
1768 amd_iommu_uninit_device(dev);
1769 iommu_completion_wait(iommu);
1770 }
1771
amd_iommu_device_group(struct device * dev)1772 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1773 {
1774 if (dev_is_pci(dev))
1775 return pci_device_group(dev);
1776
1777 return acpihid_device_group(dev);
1778 }
1779
1780 /*****************************************************************************
1781 *
1782 * The next functions belong to the dma_ops mapping/unmapping code.
1783 *
1784 *****************************************************************************/
1785
update_device_table(struct protection_domain * domain)1786 static void update_device_table(struct protection_domain *domain)
1787 {
1788 struct iommu_dev_data *dev_data;
1789
1790 list_for_each_entry(dev_data, &domain->dev_list, list) {
1791 set_dte_entry(dev_data->devid, domain,
1792 dev_data->ats.enabled, dev_data->iommu_v2);
1793 clone_aliases(dev_data->pdev);
1794 }
1795 }
1796
amd_iommu_update_and_flush_device_table(struct protection_domain * domain)1797 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1798 {
1799 update_device_table(domain);
1800 domain_flush_devices(domain);
1801 }
1802
amd_iommu_domain_update(struct protection_domain * domain)1803 void amd_iommu_domain_update(struct protection_domain *domain)
1804 {
1805 /* Update device table */
1806 amd_iommu_update_and_flush_device_table(domain);
1807
1808 /* Flush domain TLB(s) and wait for completion */
1809 amd_iommu_domain_flush_tlb_pde(domain);
1810 amd_iommu_domain_flush_complete(domain);
1811 }
1812
amd_iommu_init_dma_ops(void)1813 static void __init amd_iommu_init_dma_ops(void)
1814 {
1815 swiotlb = (iommu_default_passthrough() || sme_me_mask) ? 1 : 0;
1816 }
1817
amd_iommu_init_api(void)1818 int __init amd_iommu_init_api(void)
1819 {
1820 int err;
1821
1822 amd_iommu_init_dma_ops();
1823
1824 err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
1825 if (err)
1826 return err;
1827 #ifdef CONFIG_ARM_AMBA
1828 err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
1829 if (err)
1830 return err;
1831 #endif
1832 err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
1833 if (err)
1834 return err;
1835
1836 return 0;
1837 }
1838
1839 /*****************************************************************************
1840 *
1841 * The following functions belong to the exported interface of AMD IOMMU
1842 *
1843 * This interface allows access to lower level functions of the IOMMU
1844 * like protection domain handling and assignement of devices to domains
1845 * which is not possible with the dma_ops interface.
1846 *
1847 *****************************************************************************/
1848
cleanup_domain(struct protection_domain * domain)1849 static void cleanup_domain(struct protection_domain *domain)
1850 {
1851 struct iommu_dev_data *entry;
1852 unsigned long flags;
1853
1854 spin_lock_irqsave(&domain->lock, flags);
1855
1856 while (!list_empty(&domain->dev_list)) {
1857 entry = list_first_entry(&domain->dev_list,
1858 struct iommu_dev_data, list);
1859 BUG_ON(!entry->domain);
1860 do_detach(entry);
1861 }
1862
1863 spin_unlock_irqrestore(&domain->lock, flags);
1864 }
1865
protection_domain_free(struct protection_domain * domain)1866 static void protection_domain_free(struct protection_domain *domain)
1867 {
1868 if (!domain)
1869 return;
1870
1871 if (domain->id)
1872 domain_id_free(domain->id);
1873
1874 if (domain->iop.pgtbl_cfg.tlb)
1875 free_io_pgtable_ops(&domain->iop.iop.ops);
1876
1877 kfree(domain);
1878 }
1879
protection_domain_init_v1(struct protection_domain * domain,int mode)1880 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
1881 {
1882 u64 *pt_root = NULL;
1883
1884 BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
1885
1886 spin_lock_init(&domain->lock);
1887 domain->id = domain_id_alloc();
1888 if (!domain->id)
1889 return -ENOMEM;
1890 INIT_LIST_HEAD(&domain->dev_list);
1891
1892 if (mode != PAGE_MODE_NONE) {
1893 pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1894 if (!pt_root)
1895 return -ENOMEM;
1896 }
1897
1898 amd_iommu_domain_set_pgtable(domain, pt_root, mode);
1899
1900 return 0;
1901 }
1902
protection_domain_alloc(unsigned int type)1903 static struct protection_domain *protection_domain_alloc(unsigned int type)
1904 {
1905 struct io_pgtable_ops *pgtbl_ops;
1906 struct protection_domain *domain;
1907 int pgtable = amd_iommu_pgtable;
1908 int mode = DEFAULT_PGTABLE_LEVEL;
1909 int ret;
1910
1911 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1912 if (!domain)
1913 return NULL;
1914
1915 /*
1916 * Force IOMMU v1 page table when iommu=pt and
1917 * when allocating domain for pass-through devices.
1918 */
1919 if (type == IOMMU_DOMAIN_IDENTITY) {
1920 pgtable = AMD_IOMMU_V1;
1921 mode = PAGE_MODE_NONE;
1922 } else if (type == IOMMU_DOMAIN_UNMANAGED) {
1923 pgtable = AMD_IOMMU_V1;
1924 }
1925
1926 switch (pgtable) {
1927 case AMD_IOMMU_V1:
1928 ret = protection_domain_init_v1(domain, mode);
1929 break;
1930 default:
1931 ret = -EINVAL;
1932 }
1933
1934 if (ret)
1935 goto out_err;
1936
1937 pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
1938 if (!pgtbl_ops)
1939 goto out_err;
1940
1941 return domain;
1942 out_err:
1943 kfree(domain);
1944 return NULL;
1945 }
1946
amd_iommu_domain_alloc(unsigned type)1947 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
1948 {
1949 struct protection_domain *domain;
1950
1951 domain = protection_domain_alloc(type);
1952 if (!domain)
1953 return NULL;
1954
1955 domain->domain.geometry.aperture_start = 0;
1956 domain->domain.geometry.aperture_end = ~0ULL;
1957 domain->domain.geometry.force_aperture = true;
1958
1959 return &domain->domain;
1960 }
1961
amd_iommu_domain_free(struct iommu_domain * dom)1962 static void amd_iommu_domain_free(struct iommu_domain *dom)
1963 {
1964 struct protection_domain *domain;
1965
1966 domain = to_pdomain(dom);
1967
1968 if (domain->dev_cnt > 0)
1969 cleanup_domain(domain);
1970
1971 BUG_ON(domain->dev_cnt != 0);
1972
1973 if (!dom)
1974 return;
1975
1976 if (domain->flags & PD_IOMMUV2_MASK)
1977 free_gcr3_table(domain);
1978
1979 protection_domain_free(domain);
1980 }
1981
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)1982 static void amd_iommu_detach_device(struct iommu_domain *dom,
1983 struct device *dev)
1984 {
1985 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
1986 int devid = get_device_id(dev);
1987 struct amd_iommu *iommu;
1988
1989 if (!check_device(dev))
1990 return;
1991
1992 if (dev_data->domain != NULL)
1993 detach_device(dev);
1994
1995 iommu = amd_iommu_rlookup_table[devid];
1996 if (!iommu)
1997 return;
1998
1999 #ifdef CONFIG_IRQ_REMAP
2000 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2001 (dom->type == IOMMU_DOMAIN_UNMANAGED))
2002 dev_data->use_vapic = 0;
2003 #endif
2004
2005 iommu_completion_wait(iommu);
2006 }
2007
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2008 static int amd_iommu_attach_device(struct iommu_domain *dom,
2009 struct device *dev)
2010 {
2011 struct protection_domain *domain = to_pdomain(dom);
2012 struct iommu_dev_data *dev_data;
2013 struct amd_iommu *iommu;
2014 int ret;
2015
2016 if (!check_device(dev))
2017 return -EINVAL;
2018
2019 dev_data = dev_iommu_priv_get(dev);
2020 dev_data->defer_attach = false;
2021
2022 iommu = amd_iommu_rlookup_table[dev_data->devid];
2023 if (!iommu)
2024 return -EINVAL;
2025
2026 if (dev_data->domain)
2027 detach_device(dev);
2028
2029 ret = attach_device(dev, domain);
2030
2031 #ifdef CONFIG_IRQ_REMAP
2032 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2033 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2034 dev_data->use_vapic = 1;
2035 else
2036 dev_data->use_vapic = 0;
2037 }
2038 #endif
2039
2040 iommu_completion_wait(iommu);
2041
2042 return ret;
2043 }
2044
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2045 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2046 unsigned long iova, size_t size)
2047 {
2048 struct protection_domain *domain = to_pdomain(dom);
2049 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2050
2051 if (ops->map)
2052 domain_flush_np_cache(domain, iova, size);
2053 }
2054
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot,gfp_t gfp)2055 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2056 phys_addr_t paddr, size_t page_size, int iommu_prot,
2057 gfp_t gfp)
2058 {
2059 struct protection_domain *domain = to_pdomain(dom);
2060 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2061 int prot = 0;
2062 int ret = -EINVAL;
2063
2064 if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2065 (domain->iop.mode == PAGE_MODE_NONE))
2066 return -EINVAL;
2067
2068 if (iommu_prot & IOMMU_READ)
2069 prot |= IOMMU_PROT_IR;
2070 if (iommu_prot & IOMMU_WRITE)
2071 prot |= IOMMU_PROT_IW;
2072
2073 if (ops->map)
2074 ret = ops->map(ops, iova, paddr, page_size, prot, gfp);
2075
2076 return ret;
2077 }
2078
amd_iommu_iotlb_gather_add_page(struct iommu_domain * domain,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size)2079 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2080 struct iommu_iotlb_gather *gather,
2081 unsigned long iova, size_t size)
2082 {
2083 /*
2084 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2085 * Unless we run in a virtual machine, which can be inferred according
2086 * to whether "non-present cache" is on, it is probably best to prefer
2087 * (potentially) too extensive TLB flushing (i.e., more misses) over
2088 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2089 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2090 * the guest, and the trade-off is different: unnecessary TLB flushes
2091 * should be avoided.
2092 */
2093 if (amd_iommu_np_cache &&
2094 iommu_iotlb_gather_is_disjoint(gather, iova, size))
2095 iommu_iotlb_sync(domain, gather);
2096
2097 iommu_iotlb_gather_add_range(gather, iova, size);
2098 }
2099
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size,struct iommu_iotlb_gather * gather)2100 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2101 size_t page_size,
2102 struct iommu_iotlb_gather *gather)
2103 {
2104 struct protection_domain *domain = to_pdomain(dom);
2105 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2106 size_t r;
2107
2108 if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2109 (domain->iop.mode == PAGE_MODE_NONE))
2110 return 0;
2111
2112 r = (ops->unmap) ? ops->unmap(ops, iova, page_size, gather) : 0;
2113
2114 amd_iommu_iotlb_gather_add_page(dom, gather, iova, page_size);
2115
2116 return r;
2117 }
2118
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2119 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2120 dma_addr_t iova)
2121 {
2122 struct protection_domain *domain = to_pdomain(dom);
2123 struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2124
2125 return ops->iova_to_phys(ops, iova);
2126 }
2127
amd_iommu_capable(enum iommu_cap cap)2128 static bool amd_iommu_capable(enum iommu_cap cap)
2129 {
2130 switch (cap) {
2131 case IOMMU_CAP_CACHE_COHERENCY:
2132 return true;
2133 case IOMMU_CAP_INTR_REMAP:
2134 return (irq_remapping_enabled == 1);
2135 case IOMMU_CAP_NOEXEC:
2136 return false;
2137 default:
2138 break;
2139 }
2140
2141 return false;
2142 }
2143
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2144 static void amd_iommu_get_resv_regions(struct device *dev,
2145 struct list_head *head)
2146 {
2147 struct iommu_resv_region *region;
2148 struct unity_map_entry *entry;
2149 int devid;
2150
2151 devid = get_device_id(dev);
2152 if (devid < 0)
2153 return;
2154
2155 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
2156 int type, prot = 0;
2157 size_t length;
2158
2159 if (devid < entry->devid_start || devid > entry->devid_end)
2160 continue;
2161
2162 type = IOMMU_RESV_DIRECT;
2163 length = entry->address_end - entry->address_start;
2164 if (entry->prot & IOMMU_PROT_IR)
2165 prot |= IOMMU_READ;
2166 if (entry->prot & IOMMU_PROT_IW)
2167 prot |= IOMMU_WRITE;
2168 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2169 /* Exclusion range */
2170 type = IOMMU_RESV_RESERVED;
2171
2172 region = iommu_alloc_resv_region(entry->address_start,
2173 length, prot, type);
2174 if (!region) {
2175 dev_err(dev, "Out of memory allocating dm-regions\n");
2176 return;
2177 }
2178 list_add_tail(®ion->list, head);
2179 }
2180
2181 region = iommu_alloc_resv_region(MSI_RANGE_START,
2182 MSI_RANGE_END - MSI_RANGE_START + 1,
2183 0, IOMMU_RESV_MSI);
2184 if (!region)
2185 return;
2186 list_add_tail(®ion->list, head);
2187
2188 region = iommu_alloc_resv_region(HT_RANGE_START,
2189 HT_RANGE_END - HT_RANGE_START + 1,
2190 0, IOMMU_RESV_RESERVED);
2191 if (!region)
2192 return;
2193 list_add_tail(®ion->list, head);
2194 }
2195
amd_iommu_is_attach_deferred(struct iommu_domain * domain,struct device * dev)2196 bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
2197 struct device *dev)
2198 {
2199 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2200
2201 return dev_data->defer_attach;
2202 }
2203 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2204
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2205 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2206 {
2207 struct protection_domain *dom = to_pdomain(domain);
2208 unsigned long flags;
2209
2210 spin_lock_irqsave(&dom->lock, flags);
2211 amd_iommu_domain_flush_tlb_pde(dom);
2212 amd_iommu_domain_flush_complete(dom);
2213 spin_unlock_irqrestore(&dom->lock, flags);
2214 }
2215
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2216 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2217 struct iommu_iotlb_gather *gather)
2218 {
2219 struct protection_domain *dom = to_pdomain(domain);
2220 unsigned long flags;
2221
2222 spin_lock_irqsave(&dom->lock, flags);
2223 domain_flush_pages(dom, gather->start, gather->end - gather->start, 1);
2224 amd_iommu_domain_flush_complete(dom);
2225 spin_unlock_irqrestore(&dom->lock, flags);
2226 }
2227
amd_iommu_def_domain_type(struct device * dev)2228 static int amd_iommu_def_domain_type(struct device *dev)
2229 {
2230 struct iommu_dev_data *dev_data;
2231
2232 dev_data = dev_iommu_priv_get(dev);
2233 if (!dev_data)
2234 return 0;
2235
2236 /*
2237 * Do not identity map IOMMUv2 capable devices when memory encryption is
2238 * active, because some of those devices (AMD GPUs) don't have the
2239 * encryption bit in their DMA-mask and require remapping.
2240 */
2241 if (!mem_encrypt_active() && dev_data->iommu_v2)
2242 return IOMMU_DOMAIN_IDENTITY;
2243
2244 return 0;
2245 }
2246
2247 const struct iommu_ops amd_iommu_ops = {
2248 .capable = amd_iommu_capable,
2249 .domain_alloc = amd_iommu_domain_alloc,
2250 .domain_free = amd_iommu_domain_free,
2251 .attach_dev = amd_iommu_attach_device,
2252 .detach_dev = amd_iommu_detach_device,
2253 .map = amd_iommu_map,
2254 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
2255 .unmap = amd_iommu_unmap,
2256 .iova_to_phys = amd_iommu_iova_to_phys,
2257 .probe_device = amd_iommu_probe_device,
2258 .release_device = amd_iommu_release_device,
2259 .probe_finalize = amd_iommu_probe_finalize,
2260 .device_group = amd_iommu_device_group,
2261 .get_resv_regions = amd_iommu_get_resv_regions,
2262 .put_resv_regions = generic_iommu_put_resv_regions,
2263 .is_attach_deferred = amd_iommu_is_attach_deferred,
2264 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
2265 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2266 .iotlb_sync = amd_iommu_iotlb_sync,
2267 .def_domain_type = amd_iommu_def_domain_type,
2268 };
2269
2270 /*****************************************************************************
2271 *
2272 * The next functions do a basic initialization of IOMMU for pass through
2273 * mode
2274 *
2275 * In passthrough mode the IOMMU is initialized and enabled but not used for
2276 * DMA-API translation.
2277 *
2278 *****************************************************************************/
2279
2280 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)2281 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2282 {
2283 return atomic_notifier_chain_register(&ppr_notifier, nb);
2284 }
2285 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2286
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)2287 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2288 {
2289 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2290 }
2291 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2292
amd_iommu_domain_direct_map(struct iommu_domain * dom)2293 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2294 {
2295 struct protection_domain *domain = to_pdomain(dom);
2296 unsigned long flags;
2297
2298 spin_lock_irqsave(&domain->lock, flags);
2299
2300 if (domain->iop.pgtbl_cfg.tlb)
2301 free_io_pgtable_ops(&domain->iop.iop.ops);
2302
2303 spin_unlock_irqrestore(&domain->lock, flags);
2304 }
2305 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2306
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)2307 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2308 {
2309 struct protection_domain *domain = to_pdomain(dom);
2310 unsigned long flags;
2311 int levels, ret;
2312
2313 /* Number of GCR3 table levels required */
2314 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2315 levels += 1;
2316
2317 if (levels > amd_iommu_max_glx_val)
2318 return -EINVAL;
2319
2320 spin_lock_irqsave(&domain->lock, flags);
2321
2322 /*
2323 * Save us all sanity checks whether devices already in the
2324 * domain support IOMMUv2. Just force that the domain has no
2325 * devices attached when it is switched into IOMMUv2 mode.
2326 */
2327 ret = -EBUSY;
2328 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
2329 goto out;
2330
2331 ret = -ENOMEM;
2332 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2333 if (domain->gcr3_tbl == NULL)
2334 goto out;
2335
2336 domain->glx = levels;
2337 domain->flags |= PD_IOMMUV2_MASK;
2338
2339 amd_iommu_domain_update(domain);
2340
2341 ret = 0;
2342
2343 out:
2344 spin_unlock_irqrestore(&domain->lock, flags);
2345
2346 return ret;
2347 }
2348 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2349
__flush_pasid(struct protection_domain * domain,u32 pasid,u64 address,bool size)2350 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2351 u64 address, bool size)
2352 {
2353 struct iommu_dev_data *dev_data;
2354 struct iommu_cmd cmd;
2355 int i, ret;
2356
2357 if (!(domain->flags & PD_IOMMUV2_MASK))
2358 return -EINVAL;
2359
2360 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2361
2362 /*
2363 * IOMMU TLB needs to be flushed before Device TLB to
2364 * prevent device TLB refill from IOMMU TLB
2365 */
2366 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2367 if (domain->dev_iommu[i] == 0)
2368 continue;
2369
2370 ret = iommu_queue_command(amd_iommus[i], &cmd);
2371 if (ret != 0)
2372 goto out;
2373 }
2374
2375 /* Wait until IOMMU TLB flushes are complete */
2376 amd_iommu_domain_flush_complete(domain);
2377
2378 /* Now flush device TLBs */
2379 list_for_each_entry(dev_data, &domain->dev_list, list) {
2380 struct amd_iommu *iommu;
2381 int qdep;
2382
2383 /*
2384 There might be non-IOMMUv2 capable devices in an IOMMUv2
2385 * domain.
2386 */
2387 if (!dev_data->ats.enabled)
2388 continue;
2389
2390 qdep = dev_data->ats.qdep;
2391 iommu = amd_iommu_rlookup_table[dev_data->devid];
2392
2393 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2394 qdep, address, size);
2395
2396 ret = iommu_queue_command(iommu, &cmd);
2397 if (ret != 0)
2398 goto out;
2399 }
2400
2401 /* Wait until all device TLBs are flushed */
2402 amd_iommu_domain_flush_complete(domain);
2403
2404 ret = 0;
2405
2406 out:
2407
2408 return ret;
2409 }
2410
__amd_iommu_flush_page(struct protection_domain * domain,u32 pasid,u64 address)2411 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2412 u64 address)
2413 {
2414 return __flush_pasid(domain, pasid, address, false);
2415 }
2416
amd_iommu_flush_page(struct iommu_domain * dom,u32 pasid,u64 address)2417 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2418 u64 address)
2419 {
2420 struct protection_domain *domain = to_pdomain(dom);
2421 unsigned long flags;
2422 int ret;
2423
2424 spin_lock_irqsave(&domain->lock, flags);
2425 ret = __amd_iommu_flush_page(domain, pasid, address);
2426 spin_unlock_irqrestore(&domain->lock, flags);
2427
2428 return ret;
2429 }
2430 EXPORT_SYMBOL(amd_iommu_flush_page);
2431
__amd_iommu_flush_tlb(struct protection_domain * domain,u32 pasid)2432 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2433 {
2434 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2435 true);
2436 }
2437
amd_iommu_flush_tlb(struct iommu_domain * dom,u32 pasid)2438 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2439 {
2440 struct protection_domain *domain = to_pdomain(dom);
2441 unsigned long flags;
2442 int ret;
2443
2444 spin_lock_irqsave(&domain->lock, flags);
2445 ret = __amd_iommu_flush_tlb(domain, pasid);
2446 spin_unlock_irqrestore(&domain->lock, flags);
2447
2448 return ret;
2449 }
2450 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2451
__get_gcr3_pte(u64 * root,int level,u32 pasid,bool alloc)2452 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2453 {
2454 int index;
2455 u64 *pte;
2456
2457 while (true) {
2458
2459 index = (pasid >> (9 * level)) & 0x1ff;
2460 pte = &root[index];
2461
2462 if (level == 0)
2463 break;
2464
2465 if (!(*pte & GCR3_VALID)) {
2466 if (!alloc)
2467 return NULL;
2468
2469 root = (void *)get_zeroed_page(GFP_ATOMIC);
2470 if (root == NULL)
2471 return NULL;
2472
2473 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
2474 }
2475
2476 root = iommu_phys_to_virt(*pte & PAGE_MASK);
2477
2478 level -= 1;
2479 }
2480
2481 return pte;
2482 }
2483
__set_gcr3(struct protection_domain * domain,u32 pasid,unsigned long cr3)2484 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2485 unsigned long cr3)
2486 {
2487 u64 *pte;
2488
2489 if (domain->iop.mode != PAGE_MODE_NONE)
2490 return -EINVAL;
2491
2492 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2493 if (pte == NULL)
2494 return -ENOMEM;
2495
2496 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2497
2498 return __amd_iommu_flush_tlb(domain, pasid);
2499 }
2500
__clear_gcr3(struct protection_domain * domain,u32 pasid)2501 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2502 {
2503 u64 *pte;
2504
2505 if (domain->iop.mode != PAGE_MODE_NONE)
2506 return -EINVAL;
2507
2508 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2509 if (pte == NULL)
2510 return 0;
2511
2512 *pte = 0;
2513
2514 return __amd_iommu_flush_tlb(domain, pasid);
2515 }
2516
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,u32 pasid,unsigned long cr3)2517 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2518 unsigned long cr3)
2519 {
2520 struct protection_domain *domain = to_pdomain(dom);
2521 unsigned long flags;
2522 int ret;
2523
2524 spin_lock_irqsave(&domain->lock, flags);
2525 ret = __set_gcr3(domain, pasid, cr3);
2526 spin_unlock_irqrestore(&domain->lock, flags);
2527
2528 return ret;
2529 }
2530 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2531
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,u32 pasid)2532 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2533 {
2534 struct protection_domain *domain = to_pdomain(dom);
2535 unsigned long flags;
2536 int ret;
2537
2538 spin_lock_irqsave(&domain->lock, flags);
2539 ret = __clear_gcr3(domain, pasid);
2540 spin_unlock_irqrestore(&domain->lock, flags);
2541
2542 return ret;
2543 }
2544 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2545
amd_iommu_complete_ppr(struct pci_dev * pdev,u32 pasid,int status,int tag)2546 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2547 int status, int tag)
2548 {
2549 struct iommu_dev_data *dev_data;
2550 struct amd_iommu *iommu;
2551 struct iommu_cmd cmd;
2552
2553 dev_data = dev_iommu_priv_get(&pdev->dev);
2554 iommu = amd_iommu_rlookup_table[dev_data->devid];
2555
2556 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2557 tag, dev_data->pri_tlp);
2558
2559 return iommu_queue_command(iommu, &cmd);
2560 }
2561 EXPORT_SYMBOL(amd_iommu_complete_ppr);
2562
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)2563 int amd_iommu_device_info(struct pci_dev *pdev,
2564 struct amd_iommu_device_info *info)
2565 {
2566 int max_pasids;
2567 int pos;
2568
2569 if (pdev == NULL || info == NULL)
2570 return -EINVAL;
2571
2572 if (!amd_iommu_v2_supported())
2573 return -EINVAL;
2574
2575 memset(info, 0, sizeof(*info));
2576
2577 if (pci_ats_supported(pdev))
2578 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
2579
2580 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2581 if (pos)
2582 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
2583
2584 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
2585 if (pos) {
2586 int features;
2587
2588 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
2589 max_pasids = min(max_pasids, (1 << 20));
2590
2591 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
2592 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
2593
2594 features = pci_pasid_features(pdev);
2595 if (features & PCI_PASID_CAP_EXEC)
2596 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
2597 if (features & PCI_PASID_CAP_PRIV)
2598 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
2599 }
2600
2601 return 0;
2602 }
2603 EXPORT_SYMBOL(amd_iommu_device_info);
2604
2605 #ifdef CONFIG_IRQ_REMAP
2606
2607 /*****************************************************************************
2608 *
2609 * Interrupt Remapping Implementation
2610 *
2611 *****************************************************************************/
2612
2613 static struct irq_chip amd_ir_chip;
2614 static DEFINE_SPINLOCK(iommu_table_lock);
2615
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)2616 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
2617 {
2618 u64 dte;
2619
2620 dte = amd_iommu_dev_table[devid].data[2];
2621 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
2622 dte |= iommu_virt_to_phys(table->table);
2623 dte |= DTE_IRQ_REMAP_INTCTL;
2624 dte |= DTE_INTTABLEN;
2625 dte |= DTE_IRQ_REMAP_ENABLE;
2626
2627 amd_iommu_dev_table[devid].data[2] = dte;
2628 }
2629
get_irq_table(u16 devid)2630 static struct irq_remap_table *get_irq_table(u16 devid)
2631 {
2632 struct irq_remap_table *table;
2633
2634 if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
2635 "%s: no iommu for devid %x\n", __func__, devid))
2636 return NULL;
2637
2638 table = irq_lookup_table[devid];
2639 if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
2640 return NULL;
2641
2642 return table;
2643 }
2644
__alloc_irq_table(void)2645 static struct irq_remap_table *__alloc_irq_table(void)
2646 {
2647 struct irq_remap_table *table;
2648
2649 table = kzalloc(sizeof(*table), GFP_KERNEL);
2650 if (!table)
2651 return NULL;
2652
2653 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2654 if (!table->table) {
2655 kfree(table);
2656 return NULL;
2657 }
2658 raw_spin_lock_init(&table->lock);
2659
2660 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2661 memset(table->table, 0,
2662 MAX_IRQS_PER_TABLE * sizeof(u32));
2663 else
2664 memset(table->table, 0,
2665 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2666 return table;
2667 }
2668
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)2669 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2670 struct irq_remap_table *table)
2671 {
2672 irq_lookup_table[devid] = table;
2673 set_dte_irq_entry(devid, table);
2674 iommu_flush_dte(iommu, devid);
2675 }
2676
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)2677 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2678 void *data)
2679 {
2680 struct irq_remap_table *table = data;
2681
2682 irq_lookup_table[alias] = table;
2683 set_dte_irq_entry(alias, table);
2684
2685 iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
2686
2687 return 0;
2688 }
2689
alloc_irq_table(u16 devid,struct pci_dev * pdev)2690 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
2691 {
2692 struct irq_remap_table *table = NULL;
2693 struct irq_remap_table *new_table = NULL;
2694 struct amd_iommu *iommu;
2695 unsigned long flags;
2696 u16 alias;
2697
2698 spin_lock_irqsave(&iommu_table_lock, flags);
2699
2700 iommu = amd_iommu_rlookup_table[devid];
2701 if (!iommu)
2702 goto out_unlock;
2703
2704 table = irq_lookup_table[devid];
2705 if (table)
2706 goto out_unlock;
2707
2708 alias = amd_iommu_alias_table[devid];
2709 table = irq_lookup_table[alias];
2710 if (table) {
2711 set_remap_table_entry(iommu, devid, table);
2712 goto out_wait;
2713 }
2714 spin_unlock_irqrestore(&iommu_table_lock, flags);
2715
2716 /* Nothing there yet, allocate new irq remapping table */
2717 new_table = __alloc_irq_table();
2718 if (!new_table)
2719 return NULL;
2720
2721 spin_lock_irqsave(&iommu_table_lock, flags);
2722
2723 table = irq_lookup_table[devid];
2724 if (table)
2725 goto out_unlock;
2726
2727 table = irq_lookup_table[alias];
2728 if (table) {
2729 set_remap_table_entry(iommu, devid, table);
2730 goto out_wait;
2731 }
2732
2733 table = new_table;
2734 new_table = NULL;
2735
2736 if (pdev)
2737 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
2738 table);
2739 else
2740 set_remap_table_entry(iommu, devid, table);
2741
2742 if (devid != alias)
2743 set_remap_table_entry(iommu, alias, table);
2744
2745 out_wait:
2746 iommu_completion_wait(iommu);
2747
2748 out_unlock:
2749 spin_unlock_irqrestore(&iommu_table_lock, flags);
2750
2751 if (new_table) {
2752 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
2753 kfree(new_table);
2754 }
2755 return table;
2756 }
2757
alloc_irq_index(u16 devid,int count,bool align,struct pci_dev * pdev)2758 static int alloc_irq_index(u16 devid, int count, bool align,
2759 struct pci_dev *pdev)
2760 {
2761 struct irq_remap_table *table;
2762 int index, c, alignment = 1;
2763 unsigned long flags;
2764 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
2765
2766 if (!iommu)
2767 return -ENODEV;
2768
2769 table = alloc_irq_table(devid, pdev);
2770 if (!table)
2771 return -ENODEV;
2772
2773 if (align)
2774 alignment = roundup_pow_of_two(count);
2775
2776 raw_spin_lock_irqsave(&table->lock, flags);
2777
2778 /* Scan table for free entries */
2779 for (index = ALIGN(table->min_index, alignment), c = 0;
2780 index < MAX_IRQS_PER_TABLE;) {
2781 if (!iommu->irte_ops->is_allocated(table, index)) {
2782 c += 1;
2783 } else {
2784 c = 0;
2785 index = ALIGN(index + 1, alignment);
2786 continue;
2787 }
2788
2789 if (c == count) {
2790 for (; c != 0; --c)
2791 iommu->irte_ops->set_allocated(table, index - c + 1);
2792
2793 index -= count - 1;
2794 goto out;
2795 }
2796
2797 index++;
2798 }
2799
2800 index = -ENOSPC;
2801
2802 out:
2803 raw_spin_unlock_irqrestore(&table->lock, flags);
2804
2805 return index;
2806 }
2807
modify_irte_ga(u16 devid,int index,struct irte_ga * irte,struct amd_ir_data * data)2808 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
2809 struct amd_ir_data *data)
2810 {
2811 bool ret;
2812 struct irq_remap_table *table;
2813 struct amd_iommu *iommu;
2814 unsigned long flags;
2815 struct irte_ga *entry;
2816
2817 iommu = amd_iommu_rlookup_table[devid];
2818 if (iommu == NULL)
2819 return -EINVAL;
2820
2821 table = get_irq_table(devid);
2822 if (!table)
2823 return -ENOMEM;
2824
2825 raw_spin_lock_irqsave(&table->lock, flags);
2826
2827 entry = (struct irte_ga *)table->table;
2828 entry = &entry[index];
2829
2830 ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
2831 entry->lo.val, entry->hi.val,
2832 irte->lo.val, irte->hi.val);
2833 /*
2834 * We use cmpxchg16 to atomically update the 128-bit IRTE,
2835 * and it cannot be updated by the hardware or other processors
2836 * behind us, so the return value of cmpxchg16 should be the
2837 * same as the old value.
2838 */
2839 WARN_ON(!ret);
2840
2841 if (data)
2842 data->ref = entry;
2843
2844 raw_spin_unlock_irqrestore(&table->lock, flags);
2845
2846 iommu_flush_irt(iommu, devid);
2847 iommu_completion_wait(iommu);
2848
2849 return 0;
2850 }
2851
modify_irte(u16 devid,int index,union irte * irte)2852 static int modify_irte(u16 devid, int index, union irte *irte)
2853 {
2854 struct irq_remap_table *table;
2855 struct amd_iommu *iommu;
2856 unsigned long flags;
2857
2858 iommu = amd_iommu_rlookup_table[devid];
2859 if (iommu == NULL)
2860 return -EINVAL;
2861
2862 table = get_irq_table(devid);
2863 if (!table)
2864 return -ENOMEM;
2865
2866 raw_spin_lock_irqsave(&table->lock, flags);
2867 table->table[index] = irte->val;
2868 raw_spin_unlock_irqrestore(&table->lock, flags);
2869
2870 iommu_flush_irt(iommu, devid);
2871 iommu_completion_wait(iommu);
2872
2873 return 0;
2874 }
2875
free_irte(u16 devid,int index)2876 static void free_irte(u16 devid, int index)
2877 {
2878 struct irq_remap_table *table;
2879 struct amd_iommu *iommu;
2880 unsigned long flags;
2881
2882 iommu = amd_iommu_rlookup_table[devid];
2883 if (iommu == NULL)
2884 return;
2885
2886 table = get_irq_table(devid);
2887 if (!table)
2888 return;
2889
2890 raw_spin_lock_irqsave(&table->lock, flags);
2891 iommu->irte_ops->clear_allocated(table, index);
2892 raw_spin_unlock_irqrestore(&table->lock, flags);
2893
2894 iommu_flush_irt(iommu, devid);
2895 iommu_completion_wait(iommu);
2896 }
2897
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)2898 static void irte_prepare(void *entry,
2899 u32 delivery_mode, bool dest_mode,
2900 u8 vector, u32 dest_apicid, int devid)
2901 {
2902 union irte *irte = (union irte *) entry;
2903
2904 irte->val = 0;
2905 irte->fields.vector = vector;
2906 irte->fields.int_type = delivery_mode;
2907 irte->fields.destination = dest_apicid;
2908 irte->fields.dm = dest_mode;
2909 irte->fields.valid = 1;
2910 }
2911
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)2912 static void irte_ga_prepare(void *entry,
2913 u32 delivery_mode, bool dest_mode,
2914 u8 vector, u32 dest_apicid, int devid)
2915 {
2916 struct irte_ga *irte = (struct irte_ga *) entry;
2917
2918 irte->lo.val = 0;
2919 irte->hi.val = 0;
2920 irte->lo.fields_remap.int_type = delivery_mode;
2921 irte->lo.fields_remap.dm = dest_mode;
2922 irte->hi.fields.vector = vector;
2923 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
2924 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
2925 irte->lo.fields_remap.valid = 1;
2926 }
2927
irte_activate(void * entry,u16 devid,u16 index)2928 static void irte_activate(void *entry, u16 devid, u16 index)
2929 {
2930 union irte *irte = (union irte *) entry;
2931
2932 irte->fields.valid = 1;
2933 modify_irte(devid, index, irte);
2934 }
2935
irte_ga_activate(void * entry,u16 devid,u16 index)2936 static void irte_ga_activate(void *entry, u16 devid, u16 index)
2937 {
2938 struct irte_ga *irte = (struct irte_ga *) entry;
2939
2940 irte->lo.fields_remap.valid = 1;
2941 modify_irte_ga(devid, index, irte, NULL);
2942 }
2943
irte_deactivate(void * entry,u16 devid,u16 index)2944 static void irte_deactivate(void *entry, u16 devid, u16 index)
2945 {
2946 union irte *irte = (union irte *) entry;
2947
2948 irte->fields.valid = 0;
2949 modify_irte(devid, index, irte);
2950 }
2951
irte_ga_deactivate(void * entry,u16 devid,u16 index)2952 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
2953 {
2954 struct irte_ga *irte = (struct irte_ga *) entry;
2955
2956 irte->lo.fields_remap.valid = 0;
2957 modify_irte_ga(devid, index, irte, NULL);
2958 }
2959
irte_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)2960 static void irte_set_affinity(void *entry, u16 devid, u16 index,
2961 u8 vector, u32 dest_apicid)
2962 {
2963 union irte *irte = (union irte *) entry;
2964
2965 irte->fields.vector = vector;
2966 irte->fields.destination = dest_apicid;
2967 modify_irte(devid, index, irte);
2968 }
2969
irte_ga_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)2970 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
2971 u8 vector, u32 dest_apicid)
2972 {
2973 struct irte_ga *irte = (struct irte_ga *) entry;
2974
2975 if (!irte->lo.fields_remap.guest_mode) {
2976 irte->hi.fields.vector = vector;
2977 irte->lo.fields_remap.destination =
2978 APICID_TO_IRTE_DEST_LO(dest_apicid);
2979 irte->hi.fields.destination =
2980 APICID_TO_IRTE_DEST_HI(dest_apicid);
2981 modify_irte_ga(devid, index, irte, NULL);
2982 }
2983 }
2984
2985 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)2986 static void irte_set_allocated(struct irq_remap_table *table, int index)
2987 {
2988 table->table[index] = IRTE_ALLOCATED;
2989 }
2990
irte_ga_set_allocated(struct irq_remap_table * table,int index)2991 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
2992 {
2993 struct irte_ga *ptr = (struct irte_ga *)table->table;
2994 struct irte_ga *irte = &ptr[index];
2995
2996 memset(&irte->lo.val, 0, sizeof(u64));
2997 memset(&irte->hi.val, 0, sizeof(u64));
2998 irte->hi.fields.vector = 0xff;
2999 }
3000
irte_is_allocated(struct irq_remap_table * table,int index)3001 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3002 {
3003 union irte *ptr = (union irte *)table->table;
3004 union irte *irte = &ptr[index];
3005
3006 return irte->val != 0;
3007 }
3008
irte_ga_is_allocated(struct irq_remap_table * table,int index)3009 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3010 {
3011 struct irte_ga *ptr = (struct irte_ga *)table->table;
3012 struct irte_ga *irte = &ptr[index];
3013
3014 return irte->hi.fields.vector != 0;
3015 }
3016
irte_clear_allocated(struct irq_remap_table * table,int index)3017 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3018 {
3019 table->table[index] = 0;
3020 }
3021
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3022 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3023 {
3024 struct irte_ga *ptr = (struct irte_ga *)table->table;
3025 struct irte_ga *irte = &ptr[index];
3026
3027 memset(&irte->lo.val, 0, sizeof(u64));
3028 memset(&irte->hi.val, 0, sizeof(u64));
3029 }
3030
get_devid(struct irq_alloc_info * info)3031 static int get_devid(struct irq_alloc_info *info)
3032 {
3033 switch (info->type) {
3034 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3035 return get_ioapic_devid(info->devid);
3036 case X86_IRQ_ALLOC_TYPE_HPET:
3037 return get_hpet_devid(info->devid);
3038 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3039 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3040 return get_device_id(msi_desc_to_dev(info->desc));
3041 default:
3042 WARN_ON_ONCE(1);
3043 return -1;
3044 }
3045 }
3046
3047 struct irq_remap_ops amd_iommu_irq_ops = {
3048 .prepare = amd_iommu_prepare,
3049 .enable = amd_iommu_enable,
3050 .disable = amd_iommu_disable,
3051 .reenable = amd_iommu_reenable,
3052 .enable_faulting = amd_iommu_enable_faulting,
3053 };
3054
fill_msi_msg(struct msi_msg * msg,u32 index)3055 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3056 {
3057 msg->data = index;
3058 msg->address_lo = 0;
3059 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3060 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3061 }
3062
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3063 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3064 struct irq_cfg *irq_cfg,
3065 struct irq_alloc_info *info,
3066 int devid, int index, int sub_handle)
3067 {
3068 struct irq_2_irte *irte_info = &data->irq_2_irte;
3069 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3070
3071 if (!iommu)
3072 return;
3073
3074 data->irq_2_irte.devid = devid;
3075 data->irq_2_irte.index = index + sub_handle;
3076 iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3077 apic->dest_mode_logical, irq_cfg->vector,
3078 irq_cfg->dest_apicid, devid);
3079
3080 switch (info->type) {
3081 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3082 case X86_IRQ_ALLOC_TYPE_HPET:
3083 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3084 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3085 fill_msi_msg(&data->msi_entry, irte_info->index);
3086 break;
3087
3088 default:
3089 BUG_ON(1);
3090 break;
3091 }
3092 }
3093
3094 struct amd_irte_ops irte_32_ops = {
3095 .prepare = irte_prepare,
3096 .activate = irte_activate,
3097 .deactivate = irte_deactivate,
3098 .set_affinity = irte_set_affinity,
3099 .set_allocated = irte_set_allocated,
3100 .is_allocated = irte_is_allocated,
3101 .clear_allocated = irte_clear_allocated,
3102 };
3103
3104 struct amd_irte_ops irte_128_ops = {
3105 .prepare = irte_ga_prepare,
3106 .activate = irte_ga_activate,
3107 .deactivate = irte_ga_deactivate,
3108 .set_affinity = irte_ga_set_affinity,
3109 .set_allocated = irte_ga_set_allocated,
3110 .is_allocated = irte_ga_is_allocated,
3111 .clear_allocated = irte_ga_clear_allocated,
3112 };
3113
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3114 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3115 unsigned int nr_irqs, void *arg)
3116 {
3117 struct irq_alloc_info *info = arg;
3118 struct irq_data *irq_data;
3119 struct amd_ir_data *data = NULL;
3120 struct irq_cfg *cfg;
3121 int i, ret, devid;
3122 int index;
3123
3124 if (!info)
3125 return -EINVAL;
3126 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3127 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3128 return -EINVAL;
3129
3130 /*
3131 * With IRQ remapping enabled, don't need contiguous CPU vectors
3132 * to support multiple MSI interrupts.
3133 */
3134 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3135 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3136
3137 devid = get_devid(info);
3138 if (devid < 0)
3139 return -EINVAL;
3140
3141 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3142 if (ret < 0)
3143 return ret;
3144
3145 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3146 struct irq_remap_table *table;
3147 struct amd_iommu *iommu;
3148
3149 table = alloc_irq_table(devid, NULL);
3150 if (table) {
3151 if (!table->min_index) {
3152 /*
3153 * Keep the first 32 indexes free for IOAPIC
3154 * interrupts.
3155 */
3156 table->min_index = 32;
3157 iommu = amd_iommu_rlookup_table[devid];
3158 for (i = 0; i < 32; ++i)
3159 iommu->irte_ops->set_allocated(table, i);
3160 }
3161 WARN_ON(table->min_index != 32);
3162 index = info->ioapic.pin;
3163 } else {
3164 index = -ENOMEM;
3165 }
3166 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3167 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3168 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3169
3170 index = alloc_irq_index(devid, nr_irqs, align,
3171 msi_desc_to_pci_dev(info->desc));
3172 } else {
3173 index = alloc_irq_index(devid, nr_irqs, false, NULL);
3174 }
3175
3176 if (index < 0) {
3177 pr_warn("Failed to allocate IRTE\n");
3178 ret = index;
3179 goto out_free_parent;
3180 }
3181
3182 for (i = 0; i < nr_irqs; i++) {
3183 irq_data = irq_domain_get_irq_data(domain, virq + i);
3184 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3185 if (!cfg) {
3186 ret = -EINVAL;
3187 goto out_free_data;
3188 }
3189
3190 ret = -ENOMEM;
3191 data = kzalloc(sizeof(*data), GFP_KERNEL);
3192 if (!data)
3193 goto out_free_data;
3194
3195 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3196 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3197 else
3198 data->entry = kzalloc(sizeof(struct irte_ga),
3199 GFP_KERNEL);
3200 if (!data->entry) {
3201 kfree(data);
3202 goto out_free_data;
3203 }
3204
3205 irq_data->hwirq = (devid << 16) + i;
3206 irq_data->chip_data = data;
3207 irq_data->chip = &amd_ir_chip;
3208 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3209 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3210 }
3211
3212 return 0;
3213
3214 out_free_data:
3215 for (i--; i >= 0; i--) {
3216 irq_data = irq_domain_get_irq_data(domain, virq + i);
3217 if (irq_data)
3218 kfree(irq_data->chip_data);
3219 }
3220 for (i = 0; i < nr_irqs; i++)
3221 free_irte(devid, index + i);
3222 out_free_parent:
3223 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3224 return ret;
3225 }
3226
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3227 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3228 unsigned int nr_irqs)
3229 {
3230 struct irq_2_irte *irte_info;
3231 struct irq_data *irq_data;
3232 struct amd_ir_data *data;
3233 int i;
3234
3235 for (i = 0; i < nr_irqs; i++) {
3236 irq_data = irq_domain_get_irq_data(domain, virq + i);
3237 if (irq_data && irq_data->chip_data) {
3238 data = irq_data->chip_data;
3239 irte_info = &data->irq_2_irte;
3240 free_irte(irte_info->devid, irte_info->index);
3241 kfree(data->entry);
3242 kfree(data);
3243 }
3244 }
3245 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3246 }
3247
3248 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3249 struct amd_ir_data *ir_data,
3250 struct irq_2_irte *irte_info,
3251 struct irq_cfg *cfg);
3252
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3253 static int irq_remapping_activate(struct irq_domain *domain,
3254 struct irq_data *irq_data, bool reserve)
3255 {
3256 struct amd_ir_data *data = irq_data->chip_data;
3257 struct irq_2_irte *irte_info = &data->irq_2_irte;
3258 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3259 struct irq_cfg *cfg = irqd_cfg(irq_data);
3260
3261 if (!iommu)
3262 return 0;
3263
3264 iommu->irte_ops->activate(data->entry, irte_info->devid,
3265 irte_info->index);
3266 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3267 return 0;
3268 }
3269
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3270 static void irq_remapping_deactivate(struct irq_domain *domain,
3271 struct irq_data *irq_data)
3272 {
3273 struct amd_ir_data *data = irq_data->chip_data;
3274 struct irq_2_irte *irte_info = &data->irq_2_irte;
3275 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3276
3277 if (iommu)
3278 iommu->irte_ops->deactivate(data->entry, irte_info->devid,
3279 irte_info->index);
3280 }
3281
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3282 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3283 enum irq_domain_bus_token bus_token)
3284 {
3285 struct amd_iommu *iommu;
3286 int devid = -1;
3287
3288 if (!amd_iommu_irq_remap)
3289 return 0;
3290
3291 if (x86_fwspec_is_ioapic(fwspec))
3292 devid = get_ioapic_devid(fwspec->param[0]);
3293 else if (x86_fwspec_is_hpet(fwspec))
3294 devid = get_hpet_devid(fwspec->param[0]);
3295
3296 if (devid < 0)
3297 return 0;
3298
3299 iommu = amd_iommu_rlookup_table[devid];
3300 return iommu && iommu->ir_domain == d;
3301 }
3302
3303 static const struct irq_domain_ops amd_ir_domain_ops = {
3304 .select = irq_remapping_select,
3305 .alloc = irq_remapping_alloc,
3306 .free = irq_remapping_free,
3307 .activate = irq_remapping_activate,
3308 .deactivate = irq_remapping_deactivate,
3309 };
3310
amd_iommu_activate_guest_mode(void * data)3311 int amd_iommu_activate_guest_mode(void *data)
3312 {
3313 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3314 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3315 u64 valid;
3316
3317 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3318 !entry || entry->lo.fields_vapic.guest_mode)
3319 return 0;
3320
3321 valid = entry->lo.fields_vapic.valid;
3322
3323 entry->lo.val = 0;
3324 entry->hi.val = 0;
3325
3326 entry->lo.fields_vapic.valid = valid;
3327 entry->lo.fields_vapic.guest_mode = 1;
3328 entry->lo.fields_vapic.ga_log_intr = 1;
3329 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3330 entry->hi.fields.vector = ir_data->ga_vector;
3331 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3332
3333 return modify_irte_ga(ir_data->irq_2_irte.devid,
3334 ir_data->irq_2_irte.index, entry, ir_data);
3335 }
3336 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3337
amd_iommu_deactivate_guest_mode(void * data)3338 int amd_iommu_deactivate_guest_mode(void *data)
3339 {
3340 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3341 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3342 struct irq_cfg *cfg = ir_data->cfg;
3343 u64 valid;
3344
3345 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3346 !entry || !entry->lo.fields_vapic.guest_mode)
3347 return 0;
3348
3349 valid = entry->lo.fields_remap.valid;
3350
3351 entry->lo.val = 0;
3352 entry->hi.val = 0;
3353
3354 entry->lo.fields_remap.valid = valid;
3355 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3356 entry->lo.fields_remap.int_type = apic->delivery_mode;
3357 entry->hi.fields.vector = cfg->vector;
3358 entry->lo.fields_remap.destination =
3359 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3360 entry->hi.fields.destination =
3361 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3362
3363 return modify_irte_ga(ir_data->irq_2_irte.devid,
3364 ir_data->irq_2_irte.index, entry, ir_data);
3365 }
3366 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3367
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3368 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3369 {
3370 int ret;
3371 struct amd_iommu *iommu;
3372 struct amd_iommu_pi_data *pi_data = vcpu_info;
3373 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3374 struct amd_ir_data *ir_data = data->chip_data;
3375 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3376 struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
3377
3378 /* Note:
3379 * This device has never been set up for guest mode.
3380 * we should not modify the IRTE
3381 */
3382 if (!dev_data || !dev_data->use_vapic)
3383 return 0;
3384
3385 ir_data->cfg = irqd_cfg(data);
3386 pi_data->ir_data = ir_data;
3387
3388 /* Note:
3389 * SVM tries to set up for VAPIC mode, but we are in
3390 * legacy mode. So, we force legacy mode instead.
3391 */
3392 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3393 pr_debug("%s: Fall back to using intr legacy remap\n",
3394 __func__);
3395 pi_data->is_guest_mode = false;
3396 }
3397
3398 iommu = amd_iommu_rlookup_table[irte_info->devid];
3399 if (iommu == NULL)
3400 return -EINVAL;
3401
3402 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3403 if (pi_data->is_guest_mode) {
3404 ir_data->ga_root_ptr = (pi_data->base >> 12);
3405 ir_data->ga_vector = vcpu_pi_info->vector;
3406 ir_data->ga_tag = pi_data->ga_tag;
3407 ret = amd_iommu_activate_guest_mode(ir_data);
3408 if (!ret)
3409 ir_data->cached_ga_tag = pi_data->ga_tag;
3410 } else {
3411 ret = amd_iommu_deactivate_guest_mode(ir_data);
3412
3413 /*
3414 * This communicates the ga_tag back to the caller
3415 * so that it can do all the necessary clean up.
3416 */
3417 if (!ret)
3418 ir_data->cached_ga_tag = 0;
3419 }
3420
3421 return ret;
3422 }
3423
3424
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)3425 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3426 struct amd_ir_data *ir_data,
3427 struct irq_2_irte *irte_info,
3428 struct irq_cfg *cfg)
3429 {
3430
3431 /*
3432 * Atomically updates the IRTE with the new destination, vector
3433 * and flushes the interrupt entry cache.
3434 */
3435 iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
3436 irte_info->index, cfg->vector,
3437 cfg->dest_apicid);
3438 }
3439
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3440 static int amd_ir_set_affinity(struct irq_data *data,
3441 const struct cpumask *mask, bool force)
3442 {
3443 struct amd_ir_data *ir_data = data->chip_data;
3444 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3445 struct irq_cfg *cfg = irqd_cfg(data);
3446 struct irq_data *parent = data->parent_data;
3447 struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3448 int ret;
3449
3450 if (!iommu)
3451 return -ENODEV;
3452
3453 ret = parent->chip->irq_set_affinity(parent, mask, force);
3454 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3455 return ret;
3456
3457 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3458 /*
3459 * After this point, all the interrupts will start arriving
3460 * at the new destination. So, time to cleanup the previous
3461 * vector allocation.
3462 */
3463 send_cleanup_vector(cfg);
3464
3465 return IRQ_SET_MASK_OK_DONE;
3466 }
3467
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)3468 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3469 {
3470 struct amd_ir_data *ir_data = irq_data->chip_data;
3471
3472 *msg = ir_data->msi_entry;
3473 }
3474
3475 static struct irq_chip amd_ir_chip = {
3476 .name = "AMD-IR",
3477 .irq_ack = apic_ack_irq,
3478 .irq_set_affinity = amd_ir_set_affinity,
3479 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
3480 .irq_compose_msi_msg = ir_compose_msi_msg,
3481 };
3482
amd_iommu_create_irq_domain(struct amd_iommu * iommu)3483 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3484 {
3485 struct fwnode_handle *fn;
3486
3487 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3488 if (!fn)
3489 return -ENOMEM;
3490 iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
3491 if (!iommu->ir_domain) {
3492 irq_domain_free_fwnode(fn);
3493 return -ENOMEM;
3494 }
3495
3496 iommu->ir_domain->parent = arch_get_ir_parent_domain();
3497 iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
3498 "AMD-IR-MSI",
3499 iommu->index);
3500 return 0;
3501 }
3502
amd_iommu_update_ga(int cpu,bool is_run,void * data)3503 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3504 {
3505 unsigned long flags;
3506 struct amd_iommu *iommu;
3507 struct irq_remap_table *table;
3508 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3509 int devid = ir_data->irq_2_irte.devid;
3510 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3511 struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
3512
3513 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3514 !ref || !entry || !entry->lo.fields_vapic.guest_mode)
3515 return 0;
3516
3517 iommu = amd_iommu_rlookup_table[devid];
3518 if (!iommu)
3519 return -ENODEV;
3520
3521 table = get_irq_table(devid);
3522 if (!table)
3523 return -ENODEV;
3524
3525 raw_spin_lock_irqsave(&table->lock, flags);
3526
3527 if (ref->lo.fields_vapic.guest_mode) {
3528 if (cpu >= 0) {
3529 ref->lo.fields_vapic.destination =
3530 APICID_TO_IRTE_DEST_LO(cpu);
3531 ref->hi.fields.destination =
3532 APICID_TO_IRTE_DEST_HI(cpu);
3533 }
3534 ref->lo.fields_vapic.is_run = is_run;
3535 barrier();
3536 }
3537
3538 raw_spin_unlock_irqrestore(&table->lock, flags);
3539
3540 iommu_flush_irt(iommu, devid);
3541 iommu_completion_wait(iommu);
3542 return 0;
3543 }
3544 EXPORT_SYMBOL(amd_iommu_update_ga);
3545 #endif
3546