1 /*
2 * Copyright (c) 2005 Cisco Systems. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <linux/lockdep.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46
47 #include <linux/atomic.h>
48
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_dbg.h>
52 #include <scsi/scsi_tcq.h>
53 #include <scsi/srp.h>
54 #include <scsi/scsi_transport_srp.h>
55
56 #include "ib_srp.h"
57
58 #define DRV_NAME "ib_srp"
59 #define PFX DRV_NAME ": "
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64
65 #if !defined(CONFIG_DYNAMIC_DEBUG)
66 #define DEFINE_DYNAMIC_DEBUG_METADATA(name, fmt)
67 #define DYNAMIC_DEBUG_BRANCH(descriptor) false
68 #endif
69
70 static unsigned int srp_sg_tablesize;
71 static unsigned int cmd_sg_entries;
72 static unsigned int indirect_sg_entries;
73 static bool allow_ext_sg;
74 static bool register_always = true;
75 static bool never_register;
76 static int topspin_workarounds = 1;
77
78 module_param(srp_sg_tablesize, uint, 0444);
79 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
80
81 module_param(cmd_sg_entries, uint, 0444);
82 MODULE_PARM_DESC(cmd_sg_entries,
83 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
84
85 module_param(indirect_sg_entries, uint, 0444);
86 MODULE_PARM_DESC(indirect_sg_entries,
87 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SG_MAX_SEGMENTS) ")");
88
89 module_param(allow_ext_sg, bool, 0444);
90 MODULE_PARM_DESC(allow_ext_sg,
91 "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
92
93 module_param(topspin_workarounds, int, 0444);
94 MODULE_PARM_DESC(topspin_workarounds,
95 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
96
97 module_param(register_always, bool, 0444);
98 MODULE_PARM_DESC(register_always,
99 "Use memory registration even for contiguous memory regions");
100
101 module_param(never_register, bool, 0444);
102 MODULE_PARM_DESC(never_register, "Never register memory");
103
104 static const struct kernel_param_ops srp_tmo_ops;
105
106 static int srp_reconnect_delay = 10;
107 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
108 S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
110
111 static int srp_fast_io_fail_tmo = 15;
112 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
113 S_IRUGO | S_IWUSR);
114 MODULE_PARM_DESC(fast_io_fail_tmo,
115 "Number of seconds between the observation of a transport"
116 " layer error and failing all I/O. \"off\" means that this"
117 " functionality is disabled.");
118
119 static int srp_dev_loss_tmo = 600;
120 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
121 S_IRUGO | S_IWUSR);
122 MODULE_PARM_DESC(dev_loss_tmo,
123 "Maximum number of seconds that the SRP transport should"
124 " insulate transport layer errors. After this time has been"
125 " exceeded the SCSI host is removed. Should be"
126 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
127 " if fast_io_fail_tmo has not been set. \"off\" means that"
128 " this functionality is disabled.");
129
130 static bool srp_use_imm_data = true;
131 module_param_named(use_imm_data, srp_use_imm_data, bool, 0644);
132 MODULE_PARM_DESC(use_imm_data,
133 "Whether or not to request permission to use immediate data during SRP login.");
134
135 static unsigned int srp_max_imm_data = 8 * 1024;
136 module_param_named(max_imm_data, srp_max_imm_data, uint, 0644);
137 MODULE_PARM_DESC(max_imm_data, "Maximum immediate data size.");
138
139 static unsigned ch_count;
140 module_param(ch_count, uint, 0444);
141 MODULE_PARM_DESC(ch_count,
142 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
143
144 static int srp_add_one(struct ib_device *device);
145 static void srp_remove_one(struct ib_device *device, void *client_data);
146 static void srp_rename_dev(struct ib_device *device, void *client_data);
147 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc);
148 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
149 const char *opname);
150 static int srp_ib_cm_handler(struct ib_cm_id *cm_id,
151 const struct ib_cm_event *event);
152 static int srp_rdma_cm_handler(struct rdma_cm_id *cm_id,
153 struct rdma_cm_event *event);
154
155 static struct scsi_transport_template *ib_srp_transport_template;
156 static struct workqueue_struct *srp_remove_wq;
157
158 static struct ib_client srp_client = {
159 .name = "srp",
160 .add = srp_add_one,
161 .remove = srp_remove_one,
162 .rename = srp_rename_dev
163 };
164
165 static struct ib_sa_client srp_sa_client;
166
srp_tmo_get(char * buffer,const struct kernel_param * kp)167 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
168 {
169 int tmo = *(int *)kp->arg;
170
171 if (tmo >= 0)
172 return sysfs_emit(buffer, "%d\n", tmo);
173 else
174 return sysfs_emit(buffer, "off\n");
175 }
176
srp_tmo_set(const char * val,const struct kernel_param * kp)177 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
178 {
179 int tmo, res;
180
181 res = srp_parse_tmo(&tmo, val);
182 if (res)
183 goto out;
184
185 if (kp->arg == &srp_reconnect_delay)
186 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
187 srp_dev_loss_tmo);
188 else if (kp->arg == &srp_fast_io_fail_tmo)
189 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
190 else
191 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
192 tmo);
193 if (res)
194 goto out;
195 *(int *)kp->arg = tmo;
196
197 out:
198 return res;
199 }
200
201 static const struct kernel_param_ops srp_tmo_ops = {
202 .get = srp_tmo_get,
203 .set = srp_tmo_set,
204 };
205
host_to_target(struct Scsi_Host * host)206 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
207 {
208 return (struct srp_target_port *) host->hostdata;
209 }
210
srp_target_info(struct Scsi_Host * host)211 static const char *srp_target_info(struct Scsi_Host *host)
212 {
213 return host_to_target(host)->target_name;
214 }
215
srp_target_is_topspin(struct srp_target_port * target)216 static int srp_target_is_topspin(struct srp_target_port *target)
217 {
218 static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
219 static const u8 cisco_oui[3] = { 0x00, 0x1b, 0x0d };
220
221 return topspin_workarounds &&
222 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
223 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
224 }
225
srp_alloc_iu(struct srp_host * host,size_t size,gfp_t gfp_mask,enum dma_data_direction direction)226 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
227 gfp_t gfp_mask,
228 enum dma_data_direction direction)
229 {
230 struct srp_iu *iu;
231
232 iu = kmalloc(sizeof *iu, gfp_mask);
233 if (!iu)
234 goto out;
235
236 iu->buf = kzalloc(size, gfp_mask);
237 if (!iu->buf)
238 goto out_free_iu;
239
240 iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
241 direction);
242 if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
243 goto out_free_buf;
244
245 iu->size = size;
246 iu->direction = direction;
247
248 return iu;
249
250 out_free_buf:
251 kfree(iu->buf);
252 out_free_iu:
253 kfree(iu);
254 out:
255 return NULL;
256 }
257
srp_free_iu(struct srp_host * host,struct srp_iu * iu)258 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
259 {
260 if (!iu)
261 return;
262
263 ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
264 iu->direction);
265 kfree(iu->buf);
266 kfree(iu);
267 }
268
srp_qp_event(struct ib_event * event,void * context)269 static void srp_qp_event(struct ib_event *event, void *context)
270 {
271 pr_debug("QP event %s (%d)\n",
272 ib_event_msg(event->event), event->event);
273 }
274
srp_init_ib_qp(struct srp_target_port * target,struct ib_qp * qp)275 static int srp_init_ib_qp(struct srp_target_port *target,
276 struct ib_qp *qp)
277 {
278 struct ib_qp_attr *attr;
279 int ret;
280
281 attr = kmalloc(sizeof *attr, GFP_KERNEL);
282 if (!attr)
283 return -ENOMEM;
284
285 ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
286 target->srp_host->port,
287 be16_to_cpu(target->ib_cm.pkey),
288 &attr->pkey_index);
289 if (ret)
290 goto out;
291
292 attr->qp_state = IB_QPS_INIT;
293 attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
294 IB_ACCESS_REMOTE_WRITE);
295 attr->port_num = target->srp_host->port;
296
297 ret = ib_modify_qp(qp, attr,
298 IB_QP_STATE |
299 IB_QP_PKEY_INDEX |
300 IB_QP_ACCESS_FLAGS |
301 IB_QP_PORT);
302
303 out:
304 kfree(attr);
305 return ret;
306 }
307
srp_new_ib_cm_id(struct srp_rdma_ch * ch)308 static int srp_new_ib_cm_id(struct srp_rdma_ch *ch)
309 {
310 struct srp_target_port *target = ch->target;
311 struct ib_cm_id *new_cm_id;
312
313 new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
314 srp_ib_cm_handler, ch);
315 if (IS_ERR(new_cm_id))
316 return PTR_ERR(new_cm_id);
317
318 if (ch->ib_cm.cm_id)
319 ib_destroy_cm_id(ch->ib_cm.cm_id);
320 ch->ib_cm.cm_id = new_cm_id;
321 if (rdma_cap_opa_ah(target->srp_host->srp_dev->dev,
322 target->srp_host->port))
323 ch->ib_cm.path.rec_type = SA_PATH_REC_TYPE_OPA;
324 else
325 ch->ib_cm.path.rec_type = SA_PATH_REC_TYPE_IB;
326 ch->ib_cm.path.sgid = target->sgid;
327 ch->ib_cm.path.dgid = target->ib_cm.orig_dgid;
328 ch->ib_cm.path.pkey = target->ib_cm.pkey;
329 ch->ib_cm.path.service_id = target->ib_cm.service_id;
330
331 return 0;
332 }
333
srp_new_rdma_cm_id(struct srp_rdma_ch * ch)334 static int srp_new_rdma_cm_id(struct srp_rdma_ch *ch)
335 {
336 struct srp_target_port *target = ch->target;
337 struct rdma_cm_id *new_cm_id;
338 int ret;
339
340 new_cm_id = rdma_create_id(target->net, srp_rdma_cm_handler, ch,
341 RDMA_PS_TCP, IB_QPT_RC);
342 if (IS_ERR(new_cm_id)) {
343 ret = PTR_ERR(new_cm_id);
344 new_cm_id = NULL;
345 goto out;
346 }
347
348 init_completion(&ch->done);
349 ret = rdma_resolve_addr(new_cm_id, target->rdma_cm.src_specified ?
350 &target->rdma_cm.src.sa : NULL,
351 &target->rdma_cm.dst.sa,
352 SRP_PATH_REC_TIMEOUT_MS);
353 if (ret) {
354 pr_err("No route available from %pISpsc to %pISpsc (%d)\n",
355 &target->rdma_cm.src, &target->rdma_cm.dst, ret);
356 goto out;
357 }
358 ret = wait_for_completion_interruptible(&ch->done);
359 if (ret < 0)
360 goto out;
361
362 ret = ch->status;
363 if (ret) {
364 pr_err("Resolving address %pISpsc failed (%d)\n",
365 &target->rdma_cm.dst, ret);
366 goto out;
367 }
368
369 swap(ch->rdma_cm.cm_id, new_cm_id);
370
371 out:
372 if (new_cm_id)
373 rdma_destroy_id(new_cm_id);
374
375 return ret;
376 }
377
srp_new_cm_id(struct srp_rdma_ch * ch)378 static int srp_new_cm_id(struct srp_rdma_ch *ch)
379 {
380 struct srp_target_port *target = ch->target;
381
382 return target->using_rdma_cm ? srp_new_rdma_cm_id(ch) :
383 srp_new_ib_cm_id(ch);
384 }
385
386 /**
387 * srp_destroy_fr_pool() - free the resources owned by a pool
388 * @pool: Fast registration pool to be destroyed.
389 */
srp_destroy_fr_pool(struct srp_fr_pool * pool)390 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
391 {
392 int i;
393 struct srp_fr_desc *d;
394
395 if (!pool)
396 return;
397
398 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
399 if (d->mr)
400 ib_dereg_mr(d->mr);
401 }
402 kfree(pool);
403 }
404
405 /**
406 * srp_create_fr_pool() - allocate and initialize a pool for fast registration
407 * @device: IB device to allocate fast registration descriptors for.
408 * @pd: Protection domain associated with the FR descriptors.
409 * @pool_size: Number of descriptors to allocate.
410 * @max_page_list_len: Maximum fast registration work request page list length.
411 */
srp_create_fr_pool(struct ib_device * device,struct ib_pd * pd,int pool_size,int max_page_list_len)412 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
413 struct ib_pd *pd, int pool_size,
414 int max_page_list_len)
415 {
416 struct srp_fr_pool *pool;
417 struct srp_fr_desc *d;
418 struct ib_mr *mr;
419 int i, ret = -EINVAL;
420 enum ib_mr_type mr_type;
421
422 if (pool_size <= 0)
423 goto err;
424 ret = -ENOMEM;
425 pool = kzalloc(struct_size(pool, desc, pool_size), GFP_KERNEL);
426 if (!pool)
427 goto err;
428 pool->size = pool_size;
429 pool->max_page_list_len = max_page_list_len;
430 spin_lock_init(&pool->lock);
431 INIT_LIST_HEAD(&pool->free_list);
432
433 if (device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
434 mr_type = IB_MR_TYPE_SG_GAPS;
435 else
436 mr_type = IB_MR_TYPE_MEM_REG;
437
438 for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
439 mr = ib_alloc_mr(pd, mr_type, max_page_list_len);
440 if (IS_ERR(mr)) {
441 ret = PTR_ERR(mr);
442 if (ret == -ENOMEM)
443 pr_info("%s: ib_alloc_mr() failed. Try to reduce max_cmd_per_lun, max_sect or ch_count\n",
444 dev_name(&device->dev));
445 goto destroy_pool;
446 }
447 d->mr = mr;
448 list_add_tail(&d->entry, &pool->free_list);
449 }
450
451 out:
452 return pool;
453
454 destroy_pool:
455 srp_destroy_fr_pool(pool);
456
457 err:
458 pool = ERR_PTR(ret);
459 goto out;
460 }
461
462 /**
463 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
464 * @pool: Pool to obtain descriptor from.
465 */
srp_fr_pool_get(struct srp_fr_pool * pool)466 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
467 {
468 struct srp_fr_desc *d = NULL;
469 unsigned long flags;
470
471 spin_lock_irqsave(&pool->lock, flags);
472 if (!list_empty(&pool->free_list)) {
473 d = list_first_entry(&pool->free_list, typeof(*d), entry);
474 list_del(&d->entry);
475 }
476 spin_unlock_irqrestore(&pool->lock, flags);
477
478 return d;
479 }
480
481 /**
482 * srp_fr_pool_put() - put an FR descriptor back in the free list
483 * @pool: Pool the descriptor was allocated from.
484 * @desc: Pointer to an array of fast registration descriptor pointers.
485 * @n: Number of descriptors to put back.
486 *
487 * Note: The caller must already have queued an invalidation request for
488 * desc->mr->rkey before calling this function.
489 */
srp_fr_pool_put(struct srp_fr_pool * pool,struct srp_fr_desc ** desc,int n)490 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
491 int n)
492 {
493 unsigned long flags;
494 int i;
495
496 spin_lock_irqsave(&pool->lock, flags);
497 for (i = 0; i < n; i++)
498 list_add(&desc[i]->entry, &pool->free_list);
499 spin_unlock_irqrestore(&pool->lock, flags);
500 }
501
srp_alloc_fr_pool(struct srp_target_port * target)502 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
503 {
504 struct srp_device *dev = target->srp_host->srp_dev;
505
506 return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size,
507 dev->max_pages_per_mr);
508 }
509
510 /**
511 * srp_destroy_qp() - destroy an RDMA queue pair
512 * @ch: SRP RDMA channel.
513 *
514 * Drain the qp before destroying it. This avoids that the receive
515 * completion handler can access the queue pair while it is
516 * being destroyed.
517 */
srp_destroy_qp(struct srp_rdma_ch * ch)518 static void srp_destroy_qp(struct srp_rdma_ch *ch)
519 {
520 spin_lock_irq(&ch->lock);
521 ib_process_cq_direct(ch->send_cq, -1);
522 spin_unlock_irq(&ch->lock);
523
524 ib_drain_qp(ch->qp);
525 ib_destroy_qp(ch->qp);
526 }
527
srp_create_ch_ib(struct srp_rdma_ch * ch)528 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
529 {
530 struct srp_target_port *target = ch->target;
531 struct srp_device *dev = target->srp_host->srp_dev;
532 const struct ib_device_attr *attr = &dev->dev->attrs;
533 struct ib_qp_init_attr *init_attr;
534 struct ib_cq *recv_cq, *send_cq;
535 struct ib_qp *qp;
536 struct srp_fr_pool *fr_pool = NULL;
537 const int m = 1 + dev->use_fast_reg * target->mr_per_cmd * 2;
538 int ret;
539
540 init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
541 if (!init_attr)
542 return -ENOMEM;
543
544 /* queue_size + 1 for ib_drain_rq() */
545 recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1,
546 ch->comp_vector, IB_POLL_SOFTIRQ);
547 if (IS_ERR(recv_cq)) {
548 ret = PTR_ERR(recv_cq);
549 goto err;
550 }
551
552 send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size,
553 ch->comp_vector, IB_POLL_DIRECT);
554 if (IS_ERR(send_cq)) {
555 ret = PTR_ERR(send_cq);
556 goto err_recv_cq;
557 }
558
559 init_attr->event_handler = srp_qp_event;
560 init_attr->cap.max_send_wr = m * target->queue_size;
561 init_attr->cap.max_recv_wr = target->queue_size + 1;
562 init_attr->cap.max_recv_sge = 1;
563 init_attr->cap.max_send_sge = min(SRP_MAX_SGE, attr->max_send_sge);
564 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
565 init_attr->qp_type = IB_QPT_RC;
566 init_attr->send_cq = send_cq;
567 init_attr->recv_cq = recv_cq;
568
569 ch->max_imm_sge = min(init_attr->cap.max_send_sge - 1U, 255U);
570
571 if (target->using_rdma_cm) {
572 ret = rdma_create_qp(ch->rdma_cm.cm_id, dev->pd, init_attr);
573 qp = ch->rdma_cm.cm_id->qp;
574 } else {
575 qp = ib_create_qp(dev->pd, init_attr);
576 if (!IS_ERR(qp)) {
577 ret = srp_init_ib_qp(target, qp);
578 if (ret)
579 ib_destroy_qp(qp);
580 } else {
581 ret = PTR_ERR(qp);
582 }
583 }
584 if (ret) {
585 pr_err("QP creation failed for dev %s: %d\n",
586 dev_name(&dev->dev->dev), ret);
587 goto err_send_cq;
588 }
589
590 if (dev->use_fast_reg) {
591 fr_pool = srp_alloc_fr_pool(target);
592 if (IS_ERR(fr_pool)) {
593 ret = PTR_ERR(fr_pool);
594 shost_printk(KERN_WARNING, target->scsi_host, PFX
595 "FR pool allocation failed (%d)\n", ret);
596 goto err_qp;
597 }
598 }
599
600 if (ch->qp)
601 srp_destroy_qp(ch);
602 if (ch->recv_cq)
603 ib_free_cq(ch->recv_cq);
604 if (ch->send_cq)
605 ib_free_cq(ch->send_cq);
606
607 ch->qp = qp;
608 ch->recv_cq = recv_cq;
609 ch->send_cq = send_cq;
610
611 if (dev->use_fast_reg) {
612 if (ch->fr_pool)
613 srp_destroy_fr_pool(ch->fr_pool);
614 ch->fr_pool = fr_pool;
615 }
616
617 kfree(init_attr);
618 return 0;
619
620 err_qp:
621 if (target->using_rdma_cm)
622 rdma_destroy_qp(ch->rdma_cm.cm_id);
623 else
624 ib_destroy_qp(qp);
625
626 err_send_cq:
627 ib_free_cq(send_cq);
628
629 err_recv_cq:
630 ib_free_cq(recv_cq);
631
632 err:
633 kfree(init_attr);
634 return ret;
635 }
636
637 /*
638 * Note: this function may be called without srp_alloc_iu_bufs() having been
639 * invoked. Hence the ch->[rt]x_ring checks.
640 */
srp_free_ch_ib(struct srp_target_port * target,struct srp_rdma_ch * ch)641 static void srp_free_ch_ib(struct srp_target_port *target,
642 struct srp_rdma_ch *ch)
643 {
644 struct srp_device *dev = target->srp_host->srp_dev;
645 int i;
646
647 if (!ch->target)
648 return;
649
650 if (target->using_rdma_cm) {
651 if (ch->rdma_cm.cm_id) {
652 rdma_destroy_id(ch->rdma_cm.cm_id);
653 ch->rdma_cm.cm_id = NULL;
654 }
655 } else {
656 if (ch->ib_cm.cm_id) {
657 ib_destroy_cm_id(ch->ib_cm.cm_id);
658 ch->ib_cm.cm_id = NULL;
659 }
660 }
661
662 /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
663 if (!ch->qp)
664 return;
665
666 if (dev->use_fast_reg) {
667 if (ch->fr_pool)
668 srp_destroy_fr_pool(ch->fr_pool);
669 }
670
671 srp_destroy_qp(ch);
672 ib_free_cq(ch->send_cq);
673 ib_free_cq(ch->recv_cq);
674
675 /*
676 * Avoid that the SCSI error handler tries to use this channel after
677 * it has been freed. The SCSI error handler can namely continue
678 * trying to perform recovery actions after scsi_remove_host()
679 * returned.
680 */
681 ch->target = NULL;
682
683 ch->qp = NULL;
684 ch->send_cq = ch->recv_cq = NULL;
685
686 if (ch->rx_ring) {
687 for (i = 0; i < target->queue_size; ++i)
688 srp_free_iu(target->srp_host, ch->rx_ring[i]);
689 kfree(ch->rx_ring);
690 ch->rx_ring = NULL;
691 }
692 if (ch->tx_ring) {
693 for (i = 0; i < target->queue_size; ++i)
694 srp_free_iu(target->srp_host, ch->tx_ring[i]);
695 kfree(ch->tx_ring);
696 ch->tx_ring = NULL;
697 }
698 }
699
srp_path_rec_completion(int status,struct sa_path_rec * pathrec,void * ch_ptr)700 static void srp_path_rec_completion(int status,
701 struct sa_path_rec *pathrec,
702 void *ch_ptr)
703 {
704 struct srp_rdma_ch *ch = ch_ptr;
705 struct srp_target_port *target = ch->target;
706
707 ch->status = status;
708 if (status)
709 shost_printk(KERN_ERR, target->scsi_host,
710 PFX "Got failed path rec status %d\n", status);
711 else
712 ch->ib_cm.path = *pathrec;
713 complete(&ch->done);
714 }
715
srp_ib_lookup_path(struct srp_rdma_ch * ch)716 static int srp_ib_lookup_path(struct srp_rdma_ch *ch)
717 {
718 struct srp_target_port *target = ch->target;
719 int ret;
720
721 ch->ib_cm.path.numb_path = 1;
722
723 init_completion(&ch->done);
724
725 ch->ib_cm.path_query_id = ib_sa_path_rec_get(&srp_sa_client,
726 target->srp_host->srp_dev->dev,
727 target->srp_host->port,
728 &ch->ib_cm.path,
729 IB_SA_PATH_REC_SERVICE_ID |
730 IB_SA_PATH_REC_DGID |
731 IB_SA_PATH_REC_SGID |
732 IB_SA_PATH_REC_NUMB_PATH |
733 IB_SA_PATH_REC_PKEY,
734 SRP_PATH_REC_TIMEOUT_MS,
735 GFP_KERNEL,
736 srp_path_rec_completion,
737 ch, &ch->ib_cm.path_query);
738 if (ch->ib_cm.path_query_id < 0)
739 return ch->ib_cm.path_query_id;
740
741 ret = wait_for_completion_interruptible(&ch->done);
742 if (ret < 0)
743 return ret;
744
745 if (ch->status < 0)
746 shost_printk(KERN_WARNING, target->scsi_host,
747 PFX "Path record query failed: sgid %pI6, dgid %pI6, pkey %#04x, service_id %#16llx\n",
748 ch->ib_cm.path.sgid.raw, ch->ib_cm.path.dgid.raw,
749 be16_to_cpu(target->ib_cm.pkey),
750 be64_to_cpu(target->ib_cm.service_id));
751
752 return ch->status;
753 }
754
srp_rdma_lookup_path(struct srp_rdma_ch * ch)755 static int srp_rdma_lookup_path(struct srp_rdma_ch *ch)
756 {
757 struct srp_target_port *target = ch->target;
758 int ret;
759
760 init_completion(&ch->done);
761
762 ret = rdma_resolve_route(ch->rdma_cm.cm_id, SRP_PATH_REC_TIMEOUT_MS);
763 if (ret)
764 return ret;
765
766 wait_for_completion_interruptible(&ch->done);
767
768 if (ch->status != 0)
769 shost_printk(KERN_WARNING, target->scsi_host,
770 PFX "Path resolution failed\n");
771
772 return ch->status;
773 }
774
srp_lookup_path(struct srp_rdma_ch * ch)775 static int srp_lookup_path(struct srp_rdma_ch *ch)
776 {
777 struct srp_target_port *target = ch->target;
778
779 return target->using_rdma_cm ? srp_rdma_lookup_path(ch) :
780 srp_ib_lookup_path(ch);
781 }
782
srp_get_subnet_timeout(struct srp_host * host)783 static u8 srp_get_subnet_timeout(struct srp_host *host)
784 {
785 struct ib_port_attr attr;
786 int ret;
787 u8 subnet_timeout = 18;
788
789 ret = ib_query_port(host->srp_dev->dev, host->port, &attr);
790 if (ret == 0)
791 subnet_timeout = attr.subnet_timeout;
792
793 if (unlikely(subnet_timeout < 15))
794 pr_warn("%s: subnet timeout %d may cause SRP login to fail.\n",
795 dev_name(&host->srp_dev->dev->dev), subnet_timeout);
796
797 return subnet_timeout;
798 }
799
srp_send_req(struct srp_rdma_ch * ch,uint32_t max_iu_len,bool multich)800 static int srp_send_req(struct srp_rdma_ch *ch, uint32_t max_iu_len,
801 bool multich)
802 {
803 struct srp_target_port *target = ch->target;
804 struct {
805 struct rdma_conn_param rdma_param;
806 struct srp_login_req_rdma rdma_req;
807 struct ib_cm_req_param ib_param;
808 struct srp_login_req ib_req;
809 } *req = NULL;
810 char *ipi, *tpi;
811 int status;
812
813 req = kzalloc(sizeof *req, GFP_KERNEL);
814 if (!req)
815 return -ENOMEM;
816
817 req->ib_param.flow_control = 1;
818 req->ib_param.retry_count = target->tl_retry_count;
819
820 /*
821 * Pick some arbitrary defaults here; we could make these
822 * module parameters if anyone cared about setting them.
823 */
824 req->ib_param.responder_resources = 4;
825 req->ib_param.rnr_retry_count = 7;
826 req->ib_param.max_cm_retries = 15;
827
828 req->ib_req.opcode = SRP_LOGIN_REQ;
829 req->ib_req.tag = 0;
830 req->ib_req.req_it_iu_len = cpu_to_be32(max_iu_len);
831 req->ib_req.req_buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
832 SRP_BUF_FORMAT_INDIRECT);
833 req->ib_req.req_flags = (multich ? SRP_MULTICHAN_MULTI :
834 SRP_MULTICHAN_SINGLE);
835 if (srp_use_imm_data) {
836 req->ib_req.req_flags |= SRP_IMMED_REQUESTED;
837 req->ib_req.imm_data_offset = cpu_to_be16(SRP_IMM_DATA_OFFSET);
838 }
839
840 if (target->using_rdma_cm) {
841 req->rdma_param.flow_control = req->ib_param.flow_control;
842 req->rdma_param.responder_resources =
843 req->ib_param.responder_resources;
844 req->rdma_param.initiator_depth = req->ib_param.initiator_depth;
845 req->rdma_param.retry_count = req->ib_param.retry_count;
846 req->rdma_param.rnr_retry_count = req->ib_param.rnr_retry_count;
847 req->rdma_param.private_data = &req->rdma_req;
848 req->rdma_param.private_data_len = sizeof(req->rdma_req);
849
850 req->rdma_req.opcode = req->ib_req.opcode;
851 req->rdma_req.tag = req->ib_req.tag;
852 req->rdma_req.req_it_iu_len = req->ib_req.req_it_iu_len;
853 req->rdma_req.req_buf_fmt = req->ib_req.req_buf_fmt;
854 req->rdma_req.req_flags = req->ib_req.req_flags;
855 req->rdma_req.imm_data_offset = req->ib_req.imm_data_offset;
856
857 ipi = req->rdma_req.initiator_port_id;
858 tpi = req->rdma_req.target_port_id;
859 } else {
860 u8 subnet_timeout;
861
862 subnet_timeout = srp_get_subnet_timeout(target->srp_host);
863
864 req->ib_param.primary_path = &ch->ib_cm.path;
865 req->ib_param.alternate_path = NULL;
866 req->ib_param.service_id = target->ib_cm.service_id;
867 get_random_bytes(&req->ib_param.starting_psn, 4);
868 req->ib_param.starting_psn &= 0xffffff;
869 req->ib_param.qp_num = ch->qp->qp_num;
870 req->ib_param.qp_type = ch->qp->qp_type;
871 req->ib_param.local_cm_response_timeout = subnet_timeout + 2;
872 req->ib_param.remote_cm_response_timeout = subnet_timeout + 2;
873 req->ib_param.private_data = &req->ib_req;
874 req->ib_param.private_data_len = sizeof(req->ib_req);
875
876 ipi = req->ib_req.initiator_port_id;
877 tpi = req->ib_req.target_port_id;
878 }
879
880 /*
881 * In the published SRP specification (draft rev. 16a), the
882 * port identifier format is 8 bytes of ID extension followed
883 * by 8 bytes of GUID. Older drafts put the two halves in the
884 * opposite order, so that the GUID comes first.
885 *
886 * Targets conforming to these obsolete drafts can be
887 * recognized by the I/O Class they report.
888 */
889 if (target->io_class == SRP_REV10_IB_IO_CLASS) {
890 memcpy(ipi, &target->sgid.global.interface_id, 8);
891 memcpy(ipi + 8, &target->initiator_ext, 8);
892 memcpy(tpi, &target->ioc_guid, 8);
893 memcpy(tpi + 8, &target->id_ext, 8);
894 } else {
895 memcpy(ipi, &target->initiator_ext, 8);
896 memcpy(ipi + 8, &target->sgid.global.interface_id, 8);
897 memcpy(tpi, &target->id_ext, 8);
898 memcpy(tpi + 8, &target->ioc_guid, 8);
899 }
900
901 /*
902 * Topspin/Cisco SRP targets will reject our login unless we
903 * zero out the first 8 bytes of our initiator port ID and set
904 * the second 8 bytes to the local node GUID.
905 */
906 if (srp_target_is_topspin(target)) {
907 shost_printk(KERN_DEBUG, target->scsi_host,
908 PFX "Topspin/Cisco initiator port ID workaround "
909 "activated for target GUID %016llx\n",
910 be64_to_cpu(target->ioc_guid));
911 memset(ipi, 0, 8);
912 memcpy(ipi + 8, &target->srp_host->srp_dev->dev->node_guid, 8);
913 }
914
915 if (target->using_rdma_cm)
916 status = rdma_connect(ch->rdma_cm.cm_id, &req->rdma_param);
917 else
918 status = ib_send_cm_req(ch->ib_cm.cm_id, &req->ib_param);
919
920 kfree(req);
921
922 return status;
923 }
924
srp_queue_remove_work(struct srp_target_port * target)925 static bool srp_queue_remove_work(struct srp_target_port *target)
926 {
927 bool changed = false;
928
929 spin_lock_irq(&target->lock);
930 if (target->state != SRP_TARGET_REMOVED) {
931 target->state = SRP_TARGET_REMOVED;
932 changed = true;
933 }
934 spin_unlock_irq(&target->lock);
935
936 if (changed)
937 queue_work(srp_remove_wq, &target->remove_work);
938
939 return changed;
940 }
941
srp_disconnect_target(struct srp_target_port * target)942 static void srp_disconnect_target(struct srp_target_port *target)
943 {
944 struct srp_rdma_ch *ch;
945 int i, ret;
946
947 /* XXX should send SRP_I_LOGOUT request */
948
949 for (i = 0; i < target->ch_count; i++) {
950 ch = &target->ch[i];
951 ch->connected = false;
952 ret = 0;
953 if (target->using_rdma_cm) {
954 if (ch->rdma_cm.cm_id)
955 rdma_disconnect(ch->rdma_cm.cm_id);
956 } else {
957 if (ch->ib_cm.cm_id)
958 ret = ib_send_cm_dreq(ch->ib_cm.cm_id,
959 NULL, 0);
960 }
961 if (ret < 0) {
962 shost_printk(KERN_DEBUG, target->scsi_host,
963 PFX "Sending CM DREQ failed\n");
964 }
965 }
966 }
967
srp_exit_cmd_priv(struct Scsi_Host * shost,struct scsi_cmnd * cmd)968 static int srp_exit_cmd_priv(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
969 {
970 struct srp_target_port *target = host_to_target(shost);
971 struct srp_device *dev = target->srp_host->srp_dev;
972 struct ib_device *ibdev = dev->dev;
973 struct srp_request *req = scsi_cmd_priv(cmd);
974
975 kfree(req->fr_list);
976 if (req->indirect_dma_addr) {
977 ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
978 target->indirect_size,
979 DMA_TO_DEVICE);
980 }
981 kfree(req->indirect_desc);
982
983 return 0;
984 }
985
srp_init_cmd_priv(struct Scsi_Host * shost,struct scsi_cmnd * cmd)986 static int srp_init_cmd_priv(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
987 {
988 struct srp_target_port *target = host_to_target(shost);
989 struct srp_device *srp_dev = target->srp_host->srp_dev;
990 struct ib_device *ibdev = srp_dev->dev;
991 struct srp_request *req = scsi_cmd_priv(cmd);
992 dma_addr_t dma_addr;
993 int ret = -ENOMEM;
994
995 if (srp_dev->use_fast_reg) {
996 req->fr_list = kmalloc_array(target->mr_per_cmd, sizeof(void *),
997 GFP_KERNEL);
998 if (!req->fr_list)
999 goto out;
1000 }
1001 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
1002 if (!req->indirect_desc)
1003 goto out;
1004
1005 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
1006 target->indirect_size,
1007 DMA_TO_DEVICE);
1008 if (ib_dma_mapping_error(ibdev, dma_addr)) {
1009 srp_exit_cmd_priv(shost, cmd);
1010 goto out;
1011 }
1012
1013 req->indirect_dma_addr = dma_addr;
1014 ret = 0;
1015
1016 out:
1017 return ret;
1018 }
1019
1020 /**
1021 * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
1022 * @shost: SCSI host whose attributes to remove from sysfs.
1023 *
1024 * Note: Any attributes defined in the host template and that did not exist
1025 * before invocation of this function will be ignored.
1026 */
srp_del_scsi_host_attr(struct Scsi_Host * shost)1027 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
1028 {
1029 struct device_attribute **attr;
1030
1031 for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
1032 device_remove_file(&shost->shost_dev, *attr);
1033 }
1034
srp_remove_target(struct srp_target_port * target)1035 static void srp_remove_target(struct srp_target_port *target)
1036 {
1037 struct srp_rdma_ch *ch;
1038 int i;
1039
1040 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
1041
1042 srp_del_scsi_host_attr(target->scsi_host);
1043 srp_rport_get(target->rport);
1044 srp_remove_host(target->scsi_host);
1045 scsi_remove_host(target->scsi_host);
1046 srp_stop_rport_timers(target->rport);
1047 srp_disconnect_target(target);
1048 kobj_ns_drop(KOBJ_NS_TYPE_NET, target->net);
1049 for (i = 0; i < target->ch_count; i++) {
1050 ch = &target->ch[i];
1051 srp_free_ch_ib(target, ch);
1052 }
1053 cancel_work_sync(&target->tl_err_work);
1054 srp_rport_put(target->rport);
1055 kfree(target->ch);
1056 target->ch = NULL;
1057
1058 spin_lock(&target->srp_host->target_lock);
1059 list_del(&target->list);
1060 spin_unlock(&target->srp_host->target_lock);
1061
1062 scsi_host_put(target->scsi_host);
1063 }
1064
srp_remove_work(struct work_struct * work)1065 static void srp_remove_work(struct work_struct *work)
1066 {
1067 struct srp_target_port *target =
1068 container_of(work, struct srp_target_port, remove_work);
1069
1070 WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
1071
1072 srp_remove_target(target);
1073 }
1074
srp_rport_delete(struct srp_rport * rport)1075 static void srp_rport_delete(struct srp_rport *rport)
1076 {
1077 struct srp_target_port *target = rport->lld_data;
1078
1079 srp_queue_remove_work(target);
1080 }
1081
1082 /**
1083 * srp_connected_ch() - number of connected channels
1084 * @target: SRP target port.
1085 */
srp_connected_ch(struct srp_target_port * target)1086 static int srp_connected_ch(struct srp_target_port *target)
1087 {
1088 int i, c = 0;
1089
1090 for (i = 0; i < target->ch_count; i++)
1091 c += target->ch[i].connected;
1092
1093 return c;
1094 }
1095
srp_connect_ch(struct srp_rdma_ch * ch,uint32_t max_iu_len,bool multich)1096 static int srp_connect_ch(struct srp_rdma_ch *ch, uint32_t max_iu_len,
1097 bool multich)
1098 {
1099 struct srp_target_port *target = ch->target;
1100 int ret;
1101
1102 WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
1103
1104 ret = srp_lookup_path(ch);
1105 if (ret)
1106 goto out;
1107
1108 while (1) {
1109 init_completion(&ch->done);
1110 ret = srp_send_req(ch, max_iu_len, multich);
1111 if (ret)
1112 goto out;
1113 ret = wait_for_completion_interruptible(&ch->done);
1114 if (ret < 0)
1115 goto out;
1116
1117 /*
1118 * The CM event handling code will set status to
1119 * SRP_PORT_REDIRECT if we get a port redirect REJ
1120 * back, or SRP_DLID_REDIRECT if we get a lid/qp
1121 * redirect REJ back.
1122 */
1123 ret = ch->status;
1124 switch (ret) {
1125 case 0:
1126 ch->connected = true;
1127 goto out;
1128
1129 case SRP_PORT_REDIRECT:
1130 ret = srp_lookup_path(ch);
1131 if (ret)
1132 goto out;
1133 break;
1134
1135 case SRP_DLID_REDIRECT:
1136 break;
1137
1138 case SRP_STALE_CONN:
1139 shost_printk(KERN_ERR, target->scsi_host, PFX
1140 "giving up on stale connection\n");
1141 ret = -ECONNRESET;
1142 goto out;
1143
1144 default:
1145 goto out;
1146 }
1147 }
1148
1149 out:
1150 return ret <= 0 ? ret : -ENODEV;
1151 }
1152
srp_inv_rkey_err_done(struct ib_cq * cq,struct ib_wc * wc)1153 static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)
1154 {
1155 srp_handle_qp_err(cq, wc, "INV RKEY");
1156 }
1157
srp_inv_rkey(struct srp_request * req,struct srp_rdma_ch * ch,u32 rkey)1158 static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch,
1159 u32 rkey)
1160 {
1161 struct ib_send_wr wr = {
1162 .opcode = IB_WR_LOCAL_INV,
1163 .next = NULL,
1164 .num_sge = 0,
1165 .send_flags = 0,
1166 .ex.invalidate_rkey = rkey,
1167 };
1168
1169 wr.wr_cqe = &req->reg_cqe;
1170 req->reg_cqe.done = srp_inv_rkey_err_done;
1171 return ib_post_send(ch->qp, &wr, NULL);
1172 }
1173
srp_unmap_data(struct scsi_cmnd * scmnd,struct srp_rdma_ch * ch,struct srp_request * req)1174 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1175 struct srp_rdma_ch *ch,
1176 struct srp_request *req)
1177 {
1178 struct srp_target_port *target = ch->target;
1179 struct srp_device *dev = target->srp_host->srp_dev;
1180 struct ib_device *ibdev = dev->dev;
1181 int i, res;
1182
1183 if (!scsi_sglist(scmnd) ||
1184 (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1185 scmnd->sc_data_direction != DMA_FROM_DEVICE))
1186 return;
1187
1188 if (dev->use_fast_reg) {
1189 struct srp_fr_desc **pfr;
1190
1191 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1192 res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey);
1193 if (res < 0) {
1194 shost_printk(KERN_ERR, target->scsi_host, PFX
1195 "Queueing INV WR for rkey %#x failed (%d)\n",
1196 (*pfr)->mr->rkey, res);
1197 queue_work(system_long_wq,
1198 &target->tl_err_work);
1199 }
1200 }
1201 if (req->nmdesc)
1202 srp_fr_pool_put(ch->fr_pool, req->fr_list,
1203 req->nmdesc);
1204 }
1205
1206 ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1207 scmnd->sc_data_direction);
1208 }
1209
1210 /**
1211 * srp_claim_req - Take ownership of the scmnd associated with a request.
1212 * @ch: SRP RDMA channel.
1213 * @req: SRP request.
1214 * @sdev: If not NULL, only take ownership for this SCSI device.
1215 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1216 * ownership of @req->scmnd if it equals @scmnd.
1217 *
1218 * Return value:
1219 * Either NULL or a pointer to the SCSI command the caller became owner of.
1220 */
srp_claim_req(struct srp_rdma_ch * ch,struct srp_request * req,struct scsi_device * sdev,struct scsi_cmnd * scmnd)1221 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1222 struct srp_request *req,
1223 struct scsi_device *sdev,
1224 struct scsi_cmnd *scmnd)
1225 {
1226 unsigned long flags;
1227
1228 spin_lock_irqsave(&ch->lock, flags);
1229 if (req->scmnd &&
1230 (!sdev || req->scmnd->device == sdev) &&
1231 (!scmnd || req->scmnd == scmnd)) {
1232 scmnd = req->scmnd;
1233 req->scmnd = NULL;
1234 } else {
1235 scmnd = NULL;
1236 }
1237 spin_unlock_irqrestore(&ch->lock, flags);
1238
1239 return scmnd;
1240 }
1241
1242 /**
1243 * srp_free_req() - Unmap data and adjust ch->req_lim.
1244 * @ch: SRP RDMA channel.
1245 * @req: Request to be freed.
1246 * @scmnd: SCSI command associated with @req.
1247 * @req_lim_delta: Amount to be added to @target->req_lim.
1248 */
srp_free_req(struct srp_rdma_ch * ch,struct srp_request * req,struct scsi_cmnd * scmnd,s32 req_lim_delta)1249 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1250 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1251 {
1252 unsigned long flags;
1253
1254 srp_unmap_data(scmnd, ch, req);
1255
1256 spin_lock_irqsave(&ch->lock, flags);
1257 ch->req_lim += req_lim_delta;
1258 spin_unlock_irqrestore(&ch->lock, flags);
1259 }
1260
srp_finish_req(struct srp_rdma_ch * ch,struct srp_request * req,struct scsi_device * sdev,int result)1261 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1262 struct scsi_device *sdev, int result)
1263 {
1264 struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1265
1266 if (scmnd) {
1267 srp_free_req(ch, req, scmnd, 0);
1268 scmnd->result = result;
1269 scmnd->scsi_done(scmnd);
1270 }
1271 }
1272
1273 struct srp_terminate_context {
1274 struct srp_target_port *srp_target;
1275 int scsi_result;
1276 };
1277
srp_terminate_cmd(struct scsi_cmnd * scmnd,void * context_ptr,bool reserved)1278 static bool srp_terminate_cmd(struct scsi_cmnd *scmnd, void *context_ptr,
1279 bool reserved)
1280 {
1281 struct srp_terminate_context *context = context_ptr;
1282 struct srp_target_port *target = context->srp_target;
1283 u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmnd));
1284 struct srp_rdma_ch *ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
1285 struct srp_request *req = scsi_cmd_priv(scmnd);
1286
1287 srp_finish_req(ch, req, NULL, context->scsi_result);
1288
1289 return true;
1290 }
1291
srp_terminate_io(struct srp_rport * rport)1292 static void srp_terminate_io(struct srp_rport *rport)
1293 {
1294 struct srp_target_port *target = rport->lld_data;
1295 struct srp_terminate_context context = { .srp_target = target,
1296 .scsi_result = DID_TRANSPORT_FAILFAST << 16 };
1297
1298 scsi_host_busy_iter(target->scsi_host, srp_terminate_cmd, &context);
1299 }
1300
1301 /* Calculate maximum initiator to target information unit length. */
srp_max_it_iu_len(int cmd_sg_cnt,bool use_imm_data,uint32_t max_it_iu_size)1302 static uint32_t srp_max_it_iu_len(int cmd_sg_cnt, bool use_imm_data,
1303 uint32_t max_it_iu_size)
1304 {
1305 uint32_t max_iu_len = sizeof(struct srp_cmd) + SRP_MAX_ADD_CDB_LEN +
1306 sizeof(struct srp_indirect_buf) +
1307 cmd_sg_cnt * sizeof(struct srp_direct_buf);
1308
1309 if (use_imm_data)
1310 max_iu_len = max(max_iu_len, SRP_IMM_DATA_OFFSET +
1311 srp_max_imm_data);
1312
1313 if (max_it_iu_size)
1314 max_iu_len = min(max_iu_len, max_it_iu_size);
1315
1316 pr_debug("max_iu_len = %d\n", max_iu_len);
1317
1318 return max_iu_len;
1319 }
1320
1321 /*
1322 * It is up to the caller to ensure that srp_rport_reconnect() calls are
1323 * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1324 * srp_reset_device() or srp_reset_host() calls will occur while this function
1325 * is in progress. One way to realize that is not to call this function
1326 * directly but to call srp_reconnect_rport() instead since that last function
1327 * serializes calls of this function via rport->mutex and also blocks
1328 * srp_queuecommand() calls before invoking this function.
1329 */
srp_rport_reconnect(struct srp_rport * rport)1330 static int srp_rport_reconnect(struct srp_rport *rport)
1331 {
1332 struct srp_target_port *target = rport->lld_data;
1333 struct srp_rdma_ch *ch;
1334 uint32_t max_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
1335 srp_use_imm_data,
1336 target->max_it_iu_size);
1337 int i, j, ret = 0;
1338 bool multich = false;
1339
1340 srp_disconnect_target(target);
1341
1342 if (target->state == SRP_TARGET_SCANNING)
1343 return -ENODEV;
1344
1345 /*
1346 * Now get a new local CM ID so that we avoid confusing the target in
1347 * case things are really fouled up. Doing so also ensures that all CM
1348 * callbacks will have finished before a new QP is allocated.
1349 */
1350 for (i = 0; i < target->ch_count; i++) {
1351 ch = &target->ch[i];
1352 ret += srp_new_cm_id(ch);
1353 }
1354 {
1355 struct srp_terminate_context context = {
1356 .srp_target = target, .scsi_result = DID_RESET << 16};
1357
1358 scsi_host_busy_iter(target->scsi_host, srp_terminate_cmd,
1359 &context);
1360 }
1361 for (i = 0; i < target->ch_count; i++) {
1362 ch = &target->ch[i];
1363 /*
1364 * Whether or not creating a new CM ID succeeded, create a new
1365 * QP. This guarantees that all completion callback function
1366 * invocations have finished before request resetting starts.
1367 */
1368 ret += srp_create_ch_ib(ch);
1369
1370 INIT_LIST_HEAD(&ch->free_tx);
1371 for (j = 0; j < target->queue_size; ++j)
1372 list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1373 }
1374
1375 target->qp_in_error = false;
1376
1377 for (i = 0; i < target->ch_count; i++) {
1378 ch = &target->ch[i];
1379 if (ret)
1380 break;
1381 ret = srp_connect_ch(ch, max_iu_len, multich);
1382 multich = true;
1383 }
1384
1385 if (ret == 0)
1386 shost_printk(KERN_INFO, target->scsi_host,
1387 PFX "reconnect succeeded\n");
1388
1389 return ret;
1390 }
1391
srp_map_desc(struct srp_map_state * state,dma_addr_t dma_addr,unsigned int dma_len,u32 rkey)1392 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1393 unsigned int dma_len, u32 rkey)
1394 {
1395 struct srp_direct_buf *desc = state->desc;
1396
1397 WARN_ON_ONCE(!dma_len);
1398
1399 desc->va = cpu_to_be64(dma_addr);
1400 desc->key = cpu_to_be32(rkey);
1401 desc->len = cpu_to_be32(dma_len);
1402
1403 state->total_len += dma_len;
1404 state->desc++;
1405 state->ndesc++;
1406 }
1407
srp_reg_mr_err_done(struct ib_cq * cq,struct ib_wc * wc)1408 static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)
1409 {
1410 srp_handle_qp_err(cq, wc, "FAST REG");
1411 }
1412
1413 /*
1414 * Map up to sg_nents elements of state->sg where *sg_offset_p is the offset
1415 * where to start in the first element. If sg_offset_p != NULL then
1416 * *sg_offset_p is updated to the offset in state->sg[retval] of the first
1417 * byte that has not yet been mapped.
1418 */
srp_map_finish_fr(struct srp_map_state * state,struct srp_request * req,struct srp_rdma_ch * ch,int sg_nents,unsigned int * sg_offset_p)1419 static int srp_map_finish_fr(struct srp_map_state *state,
1420 struct srp_request *req,
1421 struct srp_rdma_ch *ch, int sg_nents,
1422 unsigned int *sg_offset_p)
1423 {
1424 struct srp_target_port *target = ch->target;
1425 struct srp_device *dev = target->srp_host->srp_dev;
1426 struct ib_reg_wr wr;
1427 struct srp_fr_desc *desc;
1428 u32 rkey;
1429 int n, err;
1430
1431 if (state->fr.next >= state->fr.end) {
1432 shost_printk(KERN_ERR, ch->target->scsi_host,
1433 PFX "Out of MRs (mr_per_cmd = %d)\n",
1434 ch->target->mr_per_cmd);
1435 return -ENOMEM;
1436 }
1437
1438 WARN_ON_ONCE(!dev->use_fast_reg);
1439
1440 if (sg_nents == 1 && target->global_rkey) {
1441 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1442
1443 srp_map_desc(state, sg_dma_address(state->sg) + sg_offset,
1444 sg_dma_len(state->sg) - sg_offset,
1445 target->global_rkey);
1446 if (sg_offset_p)
1447 *sg_offset_p = 0;
1448 return 1;
1449 }
1450
1451 desc = srp_fr_pool_get(ch->fr_pool);
1452 if (!desc)
1453 return -ENOMEM;
1454
1455 rkey = ib_inc_rkey(desc->mr->rkey);
1456 ib_update_fast_reg_key(desc->mr, rkey);
1457
1458 n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, sg_offset_p,
1459 dev->mr_page_size);
1460 if (unlikely(n < 0)) {
1461 srp_fr_pool_put(ch->fr_pool, &desc, 1);
1462 pr_debug("%s: ib_map_mr_sg(%d, %d) returned %d.\n",
1463 dev_name(&req->scmnd->device->sdev_gendev), sg_nents,
1464 sg_offset_p ? *sg_offset_p : -1, n);
1465 return n;
1466 }
1467
1468 WARN_ON_ONCE(desc->mr->length == 0);
1469
1470 req->reg_cqe.done = srp_reg_mr_err_done;
1471
1472 wr.wr.next = NULL;
1473 wr.wr.opcode = IB_WR_REG_MR;
1474 wr.wr.wr_cqe = &req->reg_cqe;
1475 wr.wr.num_sge = 0;
1476 wr.wr.send_flags = 0;
1477 wr.mr = desc->mr;
1478 wr.key = desc->mr->rkey;
1479 wr.access = (IB_ACCESS_LOCAL_WRITE |
1480 IB_ACCESS_REMOTE_READ |
1481 IB_ACCESS_REMOTE_WRITE);
1482
1483 *state->fr.next++ = desc;
1484 state->nmdesc++;
1485
1486 srp_map_desc(state, desc->mr->iova,
1487 desc->mr->length, desc->mr->rkey);
1488
1489 err = ib_post_send(ch->qp, &wr.wr, NULL);
1490 if (unlikely(err)) {
1491 WARN_ON_ONCE(err == -ENOMEM);
1492 return err;
1493 }
1494
1495 return n;
1496 }
1497
srp_map_sg_fr(struct srp_map_state * state,struct srp_rdma_ch * ch,struct srp_request * req,struct scatterlist * scat,int count)1498 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1499 struct srp_request *req, struct scatterlist *scat,
1500 int count)
1501 {
1502 unsigned int sg_offset = 0;
1503
1504 state->fr.next = req->fr_list;
1505 state->fr.end = req->fr_list + ch->target->mr_per_cmd;
1506 state->sg = scat;
1507
1508 if (count == 0)
1509 return 0;
1510
1511 while (count) {
1512 int i, n;
1513
1514 n = srp_map_finish_fr(state, req, ch, count, &sg_offset);
1515 if (unlikely(n < 0))
1516 return n;
1517
1518 count -= n;
1519 for (i = 0; i < n; i++)
1520 state->sg = sg_next(state->sg);
1521 }
1522
1523 return 0;
1524 }
1525
srp_map_sg_dma(struct srp_map_state * state,struct srp_rdma_ch * ch,struct srp_request * req,struct scatterlist * scat,int count)1526 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1527 struct srp_request *req, struct scatterlist *scat,
1528 int count)
1529 {
1530 struct srp_target_port *target = ch->target;
1531 struct scatterlist *sg;
1532 int i;
1533
1534 for_each_sg(scat, sg, count, i) {
1535 srp_map_desc(state, sg_dma_address(sg), sg_dma_len(sg),
1536 target->global_rkey);
1537 }
1538
1539 return 0;
1540 }
1541
1542 /*
1543 * Register the indirect data buffer descriptor with the HCA.
1544 *
1545 * Note: since the indirect data buffer descriptor has been allocated with
1546 * kmalloc() it is guaranteed that this buffer is a physically contiguous
1547 * memory buffer.
1548 */
srp_map_idb(struct srp_rdma_ch * ch,struct srp_request * req,void ** next_mr,void ** end_mr,u32 idb_len,__be32 * idb_rkey)1549 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1550 void **next_mr, void **end_mr, u32 idb_len,
1551 __be32 *idb_rkey)
1552 {
1553 struct srp_target_port *target = ch->target;
1554 struct srp_device *dev = target->srp_host->srp_dev;
1555 struct srp_map_state state;
1556 struct srp_direct_buf idb_desc;
1557 struct scatterlist idb_sg[1];
1558 int ret;
1559
1560 memset(&state, 0, sizeof(state));
1561 memset(&idb_desc, 0, sizeof(idb_desc));
1562 state.gen.next = next_mr;
1563 state.gen.end = end_mr;
1564 state.desc = &idb_desc;
1565 state.base_dma_addr = req->indirect_dma_addr;
1566 state.dma_len = idb_len;
1567
1568 if (dev->use_fast_reg) {
1569 state.sg = idb_sg;
1570 sg_init_one(idb_sg, req->indirect_desc, idb_len);
1571 idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1572 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1573 idb_sg->dma_length = idb_sg->length; /* hack^2 */
1574 #endif
1575 ret = srp_map_finish_fr(&state, req, ch, 1, NULL);
1576 if (ret < 0)
1577 return ret;
1578 WARN_ON_ONCE(ret < 1);
1579 } else {
1580 return -EINVAL;
1581 }
1582
1583 *idb_rkey = idb_desc.key;
1584
1585 return 0;
1586 }
1587
srp_check_mapping(struct srp_map_state * state,struct srp_rdma_ch * ch,struct srp_request * req,struct scatterlist * scat,int count)1588 static void srp_check_mapping(struct srp_map_state *state,
1589 struct srp_rdma_ch *ch, struct srp_request *req,
1590 struct scatterlist *scat, int count)
1591 {
1592 struct srp_device *dev = ch->target->srp_host->srp_dev;
1593 struct srp_fr_desc **pfr;
1594 u64 desc_len = 0, mr_len = 0;
1595 int i;
1596
1597 for (i = 0; i < state->ndesc; i++)
1598 desc_len += be32_to_cpu(req->indirect_desc[i].len);
1599 if (dev->use_fast_reg)
1600 for (i = 0, pfr = req->fr_list; i < state->nmdesc; i++, pfr++)
1601 mr_len += (*pfr)->mr->length;
1602 if (desc_len != scsi_bufflen(req->scmnd) ||
1603 mr_len > scsi_bufflen(req->scmnd))
1604 pr_err("Inconsistent: scsi len %d <> desc len %lld <> mr len %lld; ndesc %d; nmdesc = %d\n",
1605 scsi_bufflen(req->scmnd), desc_len, mr_len,
1606 state->ndesc, state->nmdesc);
1607 }
1608
1609 /**
1610 * srp_map_data() - map SCSI data buffer onto an SRP request
1611 * @scmnd: SCSI command to map
1612 * @ch: SRP RDMA channel
1613 * @req: SRP request
1614 *
1615 * Returns the length in bytes of the SRP_CMD IU or a negative value if
1616 * mapping failed. The size of any immediate data is not included in the
1617 * return value.
1618 */
srp_map_data(struct scsi_cmnd * scmnd,struct srp_rdma_ch * ch,struct srp_request * req)1619 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1620 struct srp_request *req)
1621 {
1622 struct srp_target_port *target = ch->target;
1623 struct scatterlist *scat, *sg;
1624 struct srp_cmd *cmd = req->cmd->buf;
1625 int i, len, nents, count, ret;
1626 struct srp_device *dev;
1627 struct ib_device *ibdev;
1628 struct srp_map_state state;
1629 struct srp_indirect_buf *indirect_hdr;
1630 u64 data_len;
1631 u32 idb_len, table_len;
1632 __be32 idb_rkey;
1633 u8 fmt;
1634
1635 req->cmd->num_sge = 1;
1636
1637 if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1638 return sizeof(struct srp_cmd) + cmd->add_cdb_len;
1639
1640 if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1641 scmnd->sc_data_direction != DMA_TO_DEVICE) {
1642 shost_printk(KERN_WARNING, target->scsi_host,
1643 PFX "Unhandled data direction %d\n",
1644 scmnd->sc_data_direction);
1645 return -EINVAL;
1646 }
1647
1648 nents = scsi_sg_count(scmnd);
1649 scat = scsi_sglist(scmnd);
1650 data_len = scsi_bufflen(scmnd);
1651
1652 dev = target->srp_host->srp_dev;
1653 ibdev = dev->dev;
1654
1655 count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1656 if (unlikely(count == 0))
1657 return -EIO;
1658
1659 if (ch->use_imm_data &&
1660 count <= ch->max_imm_sge &&
1661 SRP_IMM_DATA_OFFSET + data_len <= ch->max_it_iu_len &&
1662 scmnd->sc_data_direction == DMA_TO_DEVICE) {
1663 struct srp_imm_buf *buf;
1664 struct ib_sge *sge = &req->cmd->sge[1];
1665
1666 fmt = SRP_DATA_DESC_IMM;
1667 len = SRP_IMM_DATA_OFFSET;
1668 req->nmdesc = 0;
1669 buf = (void *)cmd->add_data + cmd->add_cdb_len;
1670 buf->len = cpu_to_be32(data_len);
1671 WARN_ON_ONCE((void *)(buf + 1) > (void *)cmd + len);
1672 for_each_sg(scat, sg, count, i) {
1673 sge[i].addr = sg_dma_address(sg);
1674 sge[i].length = sg_dma_len(sg);
1675 sge[i].lkey = target->lkey;
1676 }
1677 req->cmd->num_sge += count;
1678 goto map_complete;
1679 }
1680
1681 fmt = SRP_DATA_DESC_DIRECT;
1682 len = sizeof(struct srp_cmd) + cmd->add_cdb_len +
1683 sizeof(struct srp_direct_buf);
1684
1685 if (count == 1 && target->global_rkey) {
1686 /*
1687 * The midlayer only generated a single gather/scatter
1688 * entry, or DMA mapping coalesced everything to a
1689 * single entry. So a direct descriptor along with
1690 * the DMA MR suffices.
1691 */
1692 struct srp_direct_buf *buf;
1693
1694 buf = (void *)cmd->add_data + cmd->add_cdb_len;
1695 buf->va = cpu_to_be64(sg_dma_address(scat));
1696 buf->key = cpu_to_be32(target->global_rkey);
1697 buf->len = cpu_to_be32(sg_dma_len(scat));
1698
1699 req->nmdesc = 0;
1700 goto map_complete;
1701 }
1702
1703 /*
1704 * We have more than one scatter/gather entry, so build our indirect
1705 * descriptor table, trying to merge as many entries as we can.
1706 */
1707 indirect_hdr = (void *)cmd->add_data + cmd->add_cdb_len;
1708
1709 ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1710 target->indirect_size, DMA_TO_DEVICE);
1711
1712 memset(&state, 0, sizeof(state));
1713 state.desc = req->indirect_desc;
1714 if (dev->use_fast_reg)
1715 ret = srp_map_sg_fr(&state, ch, req, scat, count);
1716 else
1717 ret = srp_map_sg_dma(&state, ch, req, scat, count);
1718 req->nmdesc = state.nmdesc;
1719 if (ret < 0)
1720 goto unmap;
1721
1722 {
1723 DEFINE_DYNAMIC_DEBUG_METADATA(ddm,
1724 "Memory mapping consistency check");
1725 if (DYNAMIC_DEBUG_BRANCH(ddm))
1726 srp_check_mapping(&state, ch, req, scat, count);
1727 }
1728
1729 /* We've mapped the request, now pull as much of the indirect
1730 * descriptor table as we can into the command buffer. If this
1731 * target is not using an external indirect table, we are
1732 * guaranteed to fit into the command, as the SCSI layer won't
1733 * give us more S/G entries than we allow.
1734 */
1735 if (state.ndesc == 1) {
1736 /*
1737 * Memory registration collapsed the sg-list into one entry,
1738 * so use a direct descriptor.
1739 */
1740 struct srp_direct_buf *buf;
1741
1742 buf = (void *)cmd->add_data + cmd->add_cdb_len;
1743 *buf = req->indirect_desc[0];
1744 goto map_complete;
1745 }
1746
1747 if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1748 !target->allow_ext_sg)) {
1749 shost_printk(KERN_ERR, target->scsi_host,
1750 "Could not fit S/G list into SRP_CMD\n");
1751 ret = -EIO;
1752 goto unmap;
1753 }
1754
1755 count = min(state.ndesc, target->cmd_sg_cnt);
1756 table_len = state.ndesc * sizeof (struct srp_direct_buf);
1757 idb_len = sizeof(struct srp_indirect_buf) + table_len;
1758
1759 fmt = SRP_DATA_DESC_INDIRECT;
1760 len = sizeof(struct srp_cmd) + cmd->add_cdb_len +
1761 sizeof(struct srp_indirect_buf);
1762 len += count * sizeof (struct srp_direct_buf);
1763
1764 memcpy(indirect_hdr->desc_list, req->indirect_desc,
1765 count * sizeof (struct srp_direct_buf));
1766
1767 if (!target->global_rkey) {
1768 ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1769 idb_len, &idb_rkey);
1770 if (ret < 0)
1771 goto unmap;
1772 req->nmdesc++;
1773 } else {
1774 idb_rkey = cpu_to_be32(target->global_rkey);
1775 }
1776
1777 indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1778 indirect_hdr->table_desc.key = idb_rkey;
1779 indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1780 indirect_hdr->len = cpu_to_be32(state.total_len);
1781
1782 if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1783 cmd->data_out_desc_cnt = count;
1784 else
1785 cmd->data_in_desc_cnt = count;
1786
1787 ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1788 DMA_TO_DEVICE);
1789
1790 map_complete:
1791 if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1792 cmd->buf_fmt = fmt << 4;
1793 else
1794 cmd->buf_fmt = fmt;
1795
1796 return len;
1797
1798 unmap:
1799 srp_unmap_data(scmnd, ch, req);
1800 if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size)
1801 ret = -E2BIG;
1802 return ret;
1803 }
1804
1805 /*
1806 * Return an IU and possible credit to the free pool
1807 */
srp_put_tx_iu(struct srp_rdma_ch * ch,struct srp_iu * iu,enum srp_iu_type iu_type)1808 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1809 enum srp_iu_type iu_type)
1810 {
1811 unsigned long flags;
1812
1813 spin_lock_irqsave(&ch->lock, flags);
1814 list_add(&iu->list, &ch->free_tx);
1815 if (iu_type != SRP_IU_RSP)
1816 ++ch->req_lim;
1817 spin_unlock_irqrestore(&ch->lock, flags);
1818 }
1819
1820 /*
1821 * Must be called with ch->lock held to protect req_lim and free_tx.
1822 * If IU is not sent, it must be returned using srp_put_tx_iu().
1823 *
1824 * Note:
1825 * An upper limit for the number of allocated information units for each
1826 * request type is:
1827 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1828 * more than Scsi_Host.can_queue requests.
1829 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1830 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1831 * one unanswered SRP request to an initiator.
1832 */
__srp_get_tx_iu(struct srp_rdma_ch * ch,enum srp_iu_type iu_type)1833 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1834 enum srp_iu_type iu_type)
1835 {
1836 struct srp_target_port *target = ch->target;
1837 s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1838 struct srp_iu *iu;
1839
1840 lockdep_assert_held(&ch->lock);
1841
1842 ib_process_cq_direct(ch->send_cq, -1);
1843
1844 if (list_empty(&ch->free_tx))
1845 return NULL;
1846
1847 /* Initiator responses to target requests do not consume credits */
1848 if (iu_type != SRP_IU_RSP) {
1849 if (ch->req_lim <= rsv) {
1850 ++target->zero_req_lim;
1851 return NULL;
1852 }
1853
1854 --ch->req_lim;
1855 }
1856
1857 iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1858 list_del(&iu->list);
1859 return iu;
1860 }
1861
1862 /*
1863 * Note: if this function is called from inside ib_drain_sq() then it will
1864 * be called without ch->lock being held. If ib_drain_sq() dequeues a WQE
1865 * with status IB_WC_SUCCESS then that's a bug.
1866 */
srp_send_done(struct ib_cq * cq,struct ib_wc * wc)1867 static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc)
1868 {
1869 struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
1870 struct srp_rdma_ch *ch = cq->cq_context;
1871
1872 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1873 srp_handle_qp_err(cq, wc, "SEND");
1874 return;
1875 }
1876
1877 lockdep_assert_held(&ch->lock);
1878
1879 list_add(&iu->list, &ch->free_tx);
1880 }
1881
1882 /**
1883 * srp_post_send() - send an SRP information unit
1884 * @ch: RDMA channel over which to send the information unit.
1885 * @iu: Information unit to send.
1886 * @len: Length of the information unit excluding immediate data.
1887 */
srp_post_send(struct srp_rdma_ch * ch,struct srp_iu * iu,int len)1888 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1889 {
1890 struct srp_target_port *target = ch->target;
1891 struct ib_send_wr wr;
1892
1893 if (WARN_ON_ONCE(iu->num_sge > SRP_MAX_SGE))
1894 return -EINVAL;
1895
1896 iu->sge[0].addr = iu->dma;
1897 iu->sge[0].length = len;
1898 iu->sge[0].lkey = target->lkey;
1899
1900 iu->cqe.done = srp_send_done;
1901
1902 wr.next = NULL;
1903 wr.wr_cqe = &iu->cqe;
1904 wr.sg_list = &iu->sge[0];
1905 wr.num_sge = iu->num_sge;
1906 wr.opcode = IB_WR_SEND;
1907 wr.send_flags = IB_SEND_SIGNALED;
1908
1909 return ib_post_send(ch->qp, &wr, NULL);
1910 }
1911
srp_post_recv(struct srp_rdma_ch * ch,struct srp_iu * iu)1912 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1913 {
1914 struct srp_target_port *target = ch->target;
1915 struct ib_recv_wr wr;
1916 struct ib_sge list;
1917
1918 list.addr = iu->dma;
1919 list.length = iu->size;
1920 list.lkey = target->lkey;
1921
1922 iu->cqe.done = srp_recv_done;
1923
1924 wr.next = NULL;
1925 wr.wr_cqe = &iu->cqe;
1926 wr.sg_list = &list;
1927 wr.num_sge = 1;
1928
1929 return ib_post_recv(ch->qp, &wr, NULL);
1930 }
1931
srp_process_rsp(struct srp_rdma_ch * ch,struct srp_rsp * rsp)1932 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1933 {
1934 struct srp_target_port *target = ch->target;
1935 struct srp_request *req;
1936 struct scsi_cmnd *scmnd;
1937 unsigned long flags;
1938
1939 if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1940 spin_lock_irqsave(&ch->lock, flags);
1941 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1942 if (rsp->tag == ch->tsk_mgmt_tag) {
1943 ch->tsk_mgmt_status = -1;
1944 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1945 ch->tsk_mgmt_status = rsp->data[3];
1946 complete(&ch->tsk_mgmt_done);
1947 } else {
1948 shost_printk(KERN_ERR, target->scsi_host,
1949 "Received tsk mgmt response too late for tag %#llx\n",
1950 rsp->tag);
1951 }
1952 spin_unlock_irqrestore(&ch->lock, flags);
1953 } else {
1954 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1955 if (scmnd) {
1956 req = scsi_cmd_priv(scmnd);
1957 scmnd = srp_claim_req(ch, req, NULL, scmnd);
1958 } else {
1959 shost_printk(KERN_ERR, target->scsi_host,
1960 "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1961 rsp->tag, ch - target->ch, ch->qp->qp_num);
1962
1963 spin_lock_irqsave(&ch->lock, flags);
1964 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1965 spin_unlock_irqrestore(&ch->lock, flags);
1966
1967 return;
1968 }
1969 scmnd->result = rsp->status;
1970
1971 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1972 memcpy(scmnd->sense_buffer, rsp->data +
1973 be32_to_cpu(rsp->resp_data_len),
1974 min_t(int, be32_to_cpu(rsp->sense_data_len),
1975 SCSI_SENSE_BUFFERSIZE));
1976 }
1977
1978 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1979 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1980 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1981 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1982 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1983 scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1984 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1985 scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1986
1987 srp_free_req(ch, req, scmnd,
1988 be32_to_cpu(rsp->req_lim_delta));
1989
1990 scmnd->scsi_done(scmnd);
1991 }
1992 }
1993
srp_response_common(struct srp_rdma_ch * ch,s32 req_delta,void * rsp,int len)1994 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1995 void *rsp, int len)
1996 {
1997 struct srp_target_port *target = ch->target;
1998 struct ib_device *dev = target->srp_host->srp_dev->dev;
1999 unsigned long flags;
2000 struct srp_iu *iu;
2001 int err;
2002
2003 spin_lock_irqsave(&ch->lock, flags);
2004 ch->req_lim += req_delta;
2005 iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
2006 spin_unlock_irqrestore(&ch->lock, flags);
2007
2008 if (!iu) {
2009 shost_printk(KERN_ERR, target->scsi_host, PFX
2010 "no IU available to send response\n");
2011 return 1;
2012 }
2013
2014 iu->num_sge = 1;
2015 ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
2016 memcpy(iu->buf, rsp, len);
2017 ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
2018
2019 err = srp_post_send(ch, iu, len);
2020 if (err) {
2021 shost_printk(KERN_ERR, target->scsi_host, PFX
2022 "unable to post response: %d\n", err);
2023 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
2024 }
2025
2026 return err;
2027 }
2028
srp_process_cred_req(struct srp_rdma_ch * ch,struct srp_cred_req * req)2029 static void srp_process_cred_req(struct srp_rdma_ch *ch,
2030 struct srp_cred_req *req)
2031 {
2032 struct srp_cred_rsp rsp = {
2033 .opcode = SRP_CRED_RSP,
2034 .tag = req->tag,
2035 };
2036 s32 delta = be32_to_cpu(req->req_lim_delta);
2037
2038 if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2039 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
2040 "problems processing SRP_CRED_REQ\n");
2041 }
2042
srp_process_aer_req(struct srp_rdma_ch * ch,struct srp_aer_req * req)2043 static void srp_process_aer_req(struct srp_rdma_ch *ch,
2044 struct srp_aer_req *req)
2045 {
2046 struct srp_target_port *target = ch->target;
2047 struct srp_aer_rsp rsp = {
2048 .opcode = SRP_AER_RSP,
2049 .tag = req->tag,
2050 };
2051 s32 delta = be32_to_cpu(req->req_lim_delta);
2052
2053 shost_printk(KERN_ERR, target->scsi_host, PFX
2054 "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
2055
2056 if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
2057 shost_printk(KERN_ERR, target->scsi_host, PFX
2058 "problems processing SRP_AER_REQ\n");
2059 }
2060
srp_recv_done(struct ib_cq * cq,struct ib_wc * wc)2061 static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)
2062 {
2063 struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
2064 struct srp_rdma_ch *ch = cq->cq_context;
2065 struct srp_target_port *target = ch->target;
2066 struct ib_device *dev = target->srp_host->srp_dev->dev;
2067 int res;
2068 u8 opcode;
2069
2070 if (unlikely(wc->status != IB_WC_SUCCESS)) {
2071 srp_handle_qp_err(cq, wc, "RECV");
2072 return;
2073 }
2074
2075 ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
2076 DMA_FROM_DEVICE);
2077
2078 opcode = *(u8 *) iu->buf;
2079
2080 if (0) {
2081 shost_printk(KERN_ERR, target->scsi_host,
2082 PFX "recv completion, opcode 0x%02x\n", opcode);
2083 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
2084 iu->buf, wc->byte_len, true);
2085 }
2086
2087 switch (opcode) {
2088 case SRP_RSP:
2089 srp_process_rsp(ch, iu->buf);
2090 break;
2091
2092 case SRP_CRED_REQ:
2093 srp_process_cred_req(ch, iu->buf);
2094 break;
2095
2096 case SRP_AER_REQ:
2097 srp_process_aer_req(ch, iu->buf);
2098 break;
2099
2100 case SRP_T_LOGOUT:
2101 /* XXX Handle target logout */
2102 shost_printk(KERN_WARNING, target->scsi_host,
2103 PFX "Got target logout request\n");
2104 break;
2105
2106 default:
2107 shost_printk(KERN_WARNING, target->scsi_host,
2108 PFX "Unhandled SRP opcode 0x%02x\n", opcode);
2109 break;
2110 }
2111
2112 ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
2113 DMA_FROM_DEVICE);
2114
2115 res = srp_post_recv(ch, iu);
2116 if (res != 0)
2117 shost_printk(KERN_ERR, target->scsi_host,
2118 PFX "Recv failed with error code %d\n", res);
2119 }
2120
2121 /**
2122 * srp_tl_err_work() - handle a transport layer error
2123 * @work: Work structure embedded in an SRP target port.
2124 *
2125 * Note: This function may get invoked before the rport has been created,
2126 * hence the target->rport test.
2127 */
srp_tl_err_work(struct work_struct * work)2128 static void srp_tl_err_work(struct work_struct *work)
2129 {
2130 struct srp_target_port *target;
2131
2132 target = container_of(work, struct srp_target_port, tl_err_work);
2133 if (target->rport)
2134 srp_start_tl_fail_timers(target->rport);
2135 }
2136
srp_handle_qp_err(struct ib_cq * cq,struct ib_wc * wc,const char * opname)2137 static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
2138 const char *opname)
2139 {
2140 struct srp_rdma_ch *ch = cq->cq_context;
2141 struct srp_target_port *target = ch->target;
2142
2143 if (ch->connected && !target->qp_in_error) {
2144 shost_printk(KERN_ERR, target->scsi_host,
2145 PFX "failed %s status %s (%d) for CQE %p\n",
2146 opname, ib_wc_status_msg(wc->status), wc->status,
2147 wc->wr_cqe);
2148 queue_work(system_long_wq, &target->tl_err_work);
2149 }
2150 target->qp_in_error = true;
2151 }
2152
srp_queuecommand(struct Scsi_Host * shost,struct scsi_cmnd * scmnd)2153 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2154 {
2155 struct request *rq = scsi_cmd_to_rq(scmnd);
2156 struct srp_target_port *target = host_to_target(shost);
2157 struct srp_rdma_ch *ch;
2158 struct srp_request *req = scsi_cmd_priv(scmnd);
2159 struct srp_iu *iu;
2160 struct srp_cmd *cmd;
2161 struct ib_device *dev;
2162 unsigned long flags;
2163 u32 tag;
2164 int len, ret;
2165
2166 scmnd->result = srp_chkready(target->rport);
2167 if (unlikely(scmnd->result))
2168 goto err;
2169
2170 WARN_ON_ONCE(rq->tag < 0);
2171 tag = blk_mq_unique_tag(rq);
2172 ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2173
2174 spin_lock_irqsave(&ch->lock, flags);
2175 iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2176 spin_unlock_irqrestore(&ch->lock, flags);
2177
2178 if (!iu)
2179 goto err;
2180
2181 dev = target->srp_host->srp_dev->dev;
2182 ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_it_iu_len,
2183 DMA_TO_DEVICE);
2184
2185 cmd = iu->buf;
2186 memset(cmd, 0, sizeof *cmd);
2187
2188 cmd->opcode = SRP_CMD;
2189 int_to_scsilun(scmnd->device->lun, &cmd->lun);
2190 cmd->tag = tag;
2191 memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2192 if (unlikely(scmnd->cmd_len > sizeof(cmd->cdb))) {
2193 cmd->add_cdb_len = round_up(scmnd->cmd_len - sizeof(cmd->cdb),
2194 4);
2195 if (WARN_ON_ONCE(cmd->add_cdb_len > SRP_MAX_ADD_CDB_LEN))
2196 goto err_iu;
2197 }
2198
2199 req->scmnd = scmnd;
2200 req->cmd = iu;
2201
2202 len = srp_map_data(scmnd, ch, req);
2203 if (len < 0) {
2204 shost_printk(KERN_ERR, target->scsi_host,
2205 PFX "Failed to map data (%d)\n", len);
2206 /*
2207 * If we ran out of memory descriptors (-ENOMEM) because an
2208 * application is queuing many requests with more than
2209 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2210 * to reduce queue depth temporarily.
2211 */
2212 scmnd->result = len == -ENOMEM ?
2213 DID_OK << 16 | SAM_STAT_TASK_SET_FULL : DID_ERROR << 16;
2214 goto err_iu;
2215 }
2216
2217 ib_dma_sync_single_for_device(dev, iu->dma, ch->max_it_iu_len,
2218 DMA_TO_DEVICE);
2219
2220 if (srp_post_send(ch, iu, len)) {
2221 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2222 scmnd->result = DID_ERROR << 16;
2223 goto err_unmap;
2224 }
2225
2226 return 0;
2227
2228 err_unmap:
2229 srp_unmap_data(scmnd, ch, req);
2230
2231 err_iu:
2232 srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2233
2234 /*
2235 * Avoid that the loops that iterate over the request ring can
2236 * encounter a dangling SCSI command pointer.
2237 */
2238 req->scmnd = NULL;
2239
2240 err:
2241 if (scmnd->result) {
2242 scmnd->scsi_done(scmnd);
2243 ret = 0;
2244 } else {
2245 ret = SCSI_MLQUEUE_HOST_BUSY;
2246 }
2247
2248 return ret;
2249 }
2250
2251 /*
2252 * Note: the resources allocated in this function are freed in
2253 * srp_free_ch_ib().
2254 */
srp_alloc_iu_bufs(struct srp_rdma_ch * ch)2255 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2256 {
2257 struct srp_target_port *target = ch->target;
2258 int i;
2259
2260 ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2261 GFP_KERNEL);
2262 if (!ch->rx_ring)
2263 goto err_no_ring;
2264 ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2265 GFP_KERNEL);
2266 if (!ch->tx_ring)
2267 goto err_no_ring;
2268
2269 for (i = 0; i < target->queue_size; ++i) {
2270 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2271 ch->max_ti_iu_len,
2272 GFP_KERNEL, DMA_FROM_DEVICE);
2273 if (!ch->rx_ring[i])
2274 goto err;
2275 }
2276
2277 for (i = 0; i < target->queue_size; ++i) {
2278 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2279 ch->max_it_iu_len,
2280 GFP_KERNEL, DMA_TO_DEVICE);
2281 if (!ch->tx_ring[i])
2282 goto err;
2283
2284 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2285 }
2286
2287 return 0;
2288
2289 err:
2290 for (i = 0; i < target->queue_size; ++i) {
2291 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2292 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2293 }
2294
2295
2296 err_no_ring:
2297 kfree(ch->tx_ring);
2298 ch->tx_ring = NULL;
2299 kfree(ch->rx_ring);
2300 ch->rx_ring = NULL;
2301
2302 return -ENOMEM;
2303 }
2304
srp_compute_rq_tmo(struct ib_qp_attr * qp_attr,int attr_mask)2305 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2306 {
2307 uint64_t T_tr_ns, max_compl_time_ms;
2308 uint32_t rq_tmo_jiffies;
2309
2310 /*
2311 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2312 * table 91), both the QP timeout and the retry count have to be set
2313 * for RC QP's during the RTR to RTS transition.
2314 */
2315 WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2316 (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2317
2318 /*
2319 * Set target->rq_tmo_jiffies to one second more than the largest time
2320 * it can take before an error completion is generated. See also
2321 * C9-140..142 in the IBTA spec for more information about how to
2322 * convert the QP Local ACK Timeout value to nanoseconds.
2323 */
2324 T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2325 max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2326 do_div(max_compl_time_ms, NSEC_PER_MSEC);
2327 rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2328
2329 return rq_tmo_jiffies;
2330 }
2331
srp_cm_rep_handler(struct ib_cm_id * cm_id,const struct srp_login_rsp * lrsp,struct srp_rdma_ch * ch)2332 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2333 const struct srp_login_rsp *lrsp,
2334 struct srp_rdma_ch *ch)
2335 {
2336 struct srp_target_port *target = ch->target;
2337 struct ib_qp_attr *qp_attr = NULL;
2338 int attr_mask = 0;
2339 int ret = 0;
2340 int i;
2341
2342 if (lrsp->opcode == SRP_LOGIN_RSP) {
2343 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2344 ch->req_lim = be32_to_cpu(lrsp->req_lim_delta);
2345 ch->use_imm_data = srp_use_imm_data &&
2346 (lrsp->rsp_flags & SRP_LOGIN_RSP_IMMED_SUPP);
2347 ch->max_it_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
2348 ch->use_imm_data,
2349 target->max_it_iu_size);
2350 WARN_ON_ONCE(ch->max_it_iu_len >
2351 be32_to_cpu(lrsp->max_it_iu_len));
2352
2353 if (ch->use_imm_data)
2354 shost_printk(KERN_DEBUG, target->scsi_host,
2355 PFX "using immediate data\n");
2356
2357 /*
2358 * Reserve credits for task management so we don't
2359 * bounce requests back to the SCSI mid-layer.
2360 */
2361 target->scsi_host->can_queue
2362 = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2363 target->scsi_host->can_queue);
2364 target->scsi_host->cmd_per_lun
2365 = min_t(int, target->scsi_host->can_queue,
2366 target->scsi_host->cmd_per_lun);
2367 } else {
2368 shost_printk(KERN_WARNING, target->scsi_host,
2369 PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2370 ret = -ECONNRESET;
2371 goto error;
2372 }
2373
2374 if (!ch->rx_ring) {
2375 ret = srp_alloc_iu_bufs(ch);
2376 if (ret)
2377 goto error;
2378 }
2379
2380 for (i = 0; i < target->queue_size; i++) {
2381 struct srp_iu *iu = ch->rx_ring[i];
2382
2383 ret = srp_post_recv(ch, iu);
2384 if (ret)
2385 goto error;
2386 }
2387
2388 if (!target->using_rdma_cm) {
2389 ret = -ENOMEM;
2390 qp_attr = kmalloc(sizeof(*qp_attr), GFP_KERNEL);
2391 if (!qp_attr)
2392 goto error;
2393
2394 qp_attr->qp_state = IB_QPS_RTR;
2395 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2396 if (ret)
2397 goto error_free;
2398
2399 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2400 if (ret)
2401 goto error_free;
2402
2403 qp_attr->qp_state = IB_QPS_RTS;
2404 ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2405 if (ret)
2406 goto error_free;
2407
2408 target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2409
2410 ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2411 if (ret)
2412 goto error_free;
2413
2414 ret = ib_send_cm_rtu(cm_id, NULL, 0);
2415 }
2416
2417 error_free:
2418 kfree(qp_attr);
2419
2420 error:
2421 ch->status = ret;
2422 }
2423
srp_ib_cm_rej_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * event,struct srp_rdma_ch * ch)2424 static void srp_ib_cm_rej_handler(struct ib_cm_id *cm_id,
2425 const struct ib_cm_event *event,
2426 struct srp_rdma_ch *ch)
2427 {
2428 struct srp_target_port *target = ch->target;
2429 struct Scsi_Host *shost = target->scsi_host;
2430 struct ib_class_port_info *cpi;
2431 int opcode;
2432 u16 dlid;
2433
2434 switch (event->param.rej_rcvd.reason) {
2435 case IB_CM_REJ_PORT_CM_REDIRECT:
2436 cpi = event->param.rej_rcvd.ari;
2437 dlid = be16_to_cpu(cpi->redirect_lid);
2438 sa_path_set_dlid(&ch->ib_cm.path, dlid);
2439 ch->ib_cm.path.pkey = cpi->redirect_pkey;
2440 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2441 memcpy(ch->ib_cm.path.dgid.raw, cpi->redirect_gid, 16);
2442
2443 ch->status = dlid ? SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2444 break;
2445
2446 case IB_CM_REJ_PORT_REDIRECT:
2447 if (srp_target_is_topspin(target)) {
2448 union ib_gid *dgid = &ch->ib_cm.path.dgid;
2449
2450 /*
2451 * Topspin/Cisco SRP gateways incorrectly send
2452 * reject reason code 25 when they mean 24
2453 * (port redirect).
2454 */
2455 memcpy(dgid->raw, event->param.rej_rcvd.ari, 16);
2456
2457 shost_printk(KERN_DEBUG, shost,
2458 PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2459 be64_to_cpu(dgid->global.subnet_prefix),
2460 be64_to_cpu(dgid->global.interface_id));
2461
2462 ch->status = SRP_PORT_REDIRECT;
2463 } else {
2464 shost_printk(KERN_WARNING, shost,
2465 " REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2466 ch->status = -ECONNRESET;
2467 }
2468 break;
2469
2470 case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2471 shost_printk(KERN_WARNING, shost,
2472 " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2473 ch->status = -ECONNRESET;
2474 break;
2475
2476 case IB_CM_REJ_CONSUMER_DEFINED:
2477 opcode = *(u8 *) event->private_data;
2478 if (opcode == SRP_LOGIN_REJ) {
2479 struct srp_login_rej *rej = event->private_data;
2480 u32 reason = be32_to_cpu(rej->reason);
2481
2482 if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2483 shost_printk(KERN_WARNING, shost,
2484 PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2485 else
2486 shost_printk(KERN_WARNING, shost, PFX
2487 "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2488 target->sgid.raw,
2489 target->ib_cm.orig_dgid.raw,
2490 reason);
2491 } else
2492 shost_printk(KERN_WARNING, shost,
2493 " REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2494 " opcode 0x%02x\n", opcode);
2495 ch->status = -ECONNRESET;
2496 break;
2497
2498 case IB_CM_REJ_STALE_CONN:
2499 shost_printk(KERN_WARNING, shost, " REJ reason: stale connection\n");
2500 ch->status = SRP_STALE_CONN;
2501 break;
2502
2503 default:
2504 shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n",
2505 event->param.rej_rcvd.reason);
2506 ch->status = -ECONNRESET;
2507 }
2508 }
2509
srp_ib_cm_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * event)2510 static int srp_ib_cm_handler(struct ib_cm_id *cm_id,
2511 const struct ib_cm_event *event)
2512 {
2513 struct srp_rdma_ch *ch = cm_id->context;
2514 struct srp_target_port *target = ch->target;
2515 int comp = 0;
2516
2517 switch (event->event) {
2518 case IB_CM_REQ_ERROR:
2519 shost_printk(KERN_DEBUG, target->scsi_host,
2520 PFX "Sending CM REQ failed\n");
2521 comp = 1;
2522 ch->status = -ECONNRESET;
2523 break;
2524
2525 case IB_CM_REP_RECEIVED:
2526 comp = 1;
2527 srp_cm_rep_handler(cm_id, event->private_data, ch);
2528 break;
2529
2530 case IB_CM_REJ_RECEIVED:
2531 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2532 comp = 1;
2533
2534 srp_ib_cm_rej_handler(cm_id, event, ch);
2535 break;
2536
2537 case IB_CM_DREQ_RECEIVED:
2538 shost_printk(KERN_WARNING, target->scsi_host,
2539 PFX "DREQ received - connection closed\n");
2540 ch->connected = false;
2541 if (ib_send_cm_drep(cm_id, NULL, 0))
2542 shost_printk(KERN_ERR, target->scsi_host,
2543 PFX "Sending CM DREP failed\n");
2544 queue_work(system_long_wq, &target->tl_err_work);
2545 break;
2546
2547 case IB_CM_TIMEWAIT_EXIT:
2548 shost_printk(KERN_ERR, target->scsi_host,
2549 PFX "connection closed\n");
2550 comp = 1;
2551
2552 ch->status = 0;
2553 break;
2554
2555 case IB_CM_MRA_RECEIVED:
2556 case IB_CM_DREQ_ERROR:
2557 case IB_CM_DREP_RECEIVED:
2558 break;
2559
2560 default:
2561 shost_printk(KERN_WARNING, target->scsi_host,
2562 PFX "Unhandled CM event %d\n", event->event);
2563 break;
2564 }
2565
2566 if (comp)
2567 complete(&ch->done);
2568
2569 return 0;
2570 }
2571
srp_rdma_cm_rej_handler(struct srp_rdma_ch * ch,struct rdma_cm_event * event)2572 static void srp_rdma_cm_rej_handler(struct srp_rdma_ch *ch,
2573 struct rdma_cm_event *event)
2574 {
2575 struct srp_target_port *target = ch->target;
2576 struct Scsi_Host *shost = target->scsi_host;
2577 int opcode;
2578
2579 switch (event->status) {
2580 case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2581 shost_printk(KERN_WARNING, shost,
2582 " REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2583 ch->status = -ECONNRESET;
2584 break;
2585
2586 case IB_CM_REJ_CONSUMER_DEFINED:
2587 opcode = *(u8 *) event->param.conn.private_data;
2588 if (opcode == SRP_LOGIN_REJ) {
2589 struct srp_login_rej *rej =
2590 (struct srp_login_rej *)
2591 event->param.conn.private_data;
2592 u32 reason = be32_to_cpu(rej->reason);
2593
2594 if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2595 shost_printk(KERN_WARNING, shost,
2596 PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2597 else
2598 shost_printk(KERN_WARNING, shost,
2599 PFX "SRP LOGIN REJECTED, reason 0x%08x\n", reason);
2600 } else {
2601 shost_printk(KERN_WARNING, shost,
2602 " REJ reason: IB_CM_REJ_CONSUMER_DEFINED, opcode 0x%02x\n",
2603 opcode);
2604 }
2605 ch->status = -ECONNRESET;
2606 break;
2607
2608 case IB_CM_REJ_STALE_CONN:
2609 shost_printk(KERN_WARNING, shost,
2610 " REJ reason: stale connection\n");
2611 ch->status = SRP_STALE_CONN;
2612 break;
2613
2614 default:
2615 shost_printk(KERN_WARNING, shost, " REJ reason 0x%x\n",
2616 event->status);
2617 ch->status = -ECONNRESET;
2618 break;
2619 }
2620 }
2621
srp_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)2622 static int srp_rdma_cm_handler(struct rdma_cm_id *cm_id,
2623 struct rdma_cm_event *event)
2624 {
2625 struct srp_rdma_ch *ch = cm_id->context;
2626 struct srp_target_port *target = ch->target;
2627 int comp = 0;
2628
2629 switch (event->event) {
2630 case RDMA_CM_EVENT_ADDR_RESOLVED:
2631 ch->status = 0;
2632 comp = 1;
2633 break;
2634
2635 case RDMA_CM_EVENT_ADDR_ERROR:
2636 ch->status = -ENXIO;
2637 comp = 1;
2638 break;
2639
2640 case RDMA_CM_EVENT_ROUTE_RESOLVED:
2641 ch->status = 0;
2642 comp = 1;
2643 break;
2644
2645 case RDMA_CM_EVENT_ROUTE_ERROR:
2646 case RDMA_CM_EVENT_UNREACHABLE:
2647 ch->status = -EHOSTUNREACH;
2648 comp = 1;
2649 break;
2650
2651 case RDMA_CM_EVENT_CONNECT_ERROR:
2652 shost_printk(KERN_DEBUG, target->scsi_host,
2653 PFX "Sending CM REQ failed\n");
2654 comp = 1;
2655 ch->status = -ECONNRESET;
2656 break;
2657
2658 case RDMA_CM_EVENT_ESTABLISHED:
2659 comp = 1;
2660 srp_cm_rep_handler(NULL, event->param.conn.private_data, ch);
2661 break;
2662
2663 case RDMA_CM_EVENT_REJECTED:
2664 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2665 comp = 1;
2666
2667 srp_rdma_cm_rej_handler(ch, event);
2668 break;
2669
2670 case RDMA_CM_EVENT_DISCONNECTED:
2671 if (ch->connected) {
2672 shost_printk(KERN_WARNING, target->scsi_host,
2673 PFX "received DREQ\n");
2674 rdma_disconnect(ch->rdma_cm.cm_id);
2675 comp = 1;
2676 ch->status = 0;
2677 queue_work(system_long_wq, &target->tl_err_work);
2678 }
2679 break;
2680
2681 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2682 shost_printk(KERN_ERR, target->scsi_host,
2683 PFX "connection closed\n");
2684
2685 comp = 1;
2686 ch->status = 0;
2687 break;
2688
2689 default:
2690 shost_printk(KERN_WARNING, target->scsi_host,
2691 PFX "Unhandled CM event %d\n", event->event);
2692 break;
2693 }
2694
2695 if (comp)
2696 complete(&ch->done);
2697
2698 return 0;
2699 }
2700
2701 /**
2702 * srp_change_queue_depth - setting device queue depth
2703 * @sdev: scsi device struct
2704 * @qdepth: requested queue depth
2705 *
2706 * Returns queue depth.
2707 */
2708 static int
srp_change_queue_depth(struct scsi_device * sdev,int qdepth)2709 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2710 {
2711 if (!sdev->tagged_supported)
2712 qdepth = 1;
2713 return scsi_change_queue_depth(sdev, qdepth);
2714 }
2715
srp_send_tsk_mgmt(struct srp_rdma_ch * ch,u64 req_tag,u64 lun,u8 func,u8 * status)2716 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2717 u8 func, u8 *status)
2718 {
2719 struct srp_target_port *target = ch->target;
2720 struct srp_rport *rport = target->rport;
2721 struct ib_device *dev = target->srp_host->srp_dev->dev;
2722 struct srp_iu *iu;
2723 struct srp_tsk_mgmt *tsk_mgmt;
2724 int res;
2725
2726 if (!ch->connected || target->qp_in_error)
2727 return -1;
2728
2729 /*
2730 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2731 * invoked while a task management function is being sent.
2732 */
2733 mutex_lock(&rport->mutex);
2734 spin_lock_irq(&ch->lock);
2735 iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2736 spin_unlock_irq(&ch->lock);
2737
2738 if (!iu) {
2739 mutex_unlock(&rport->mutex);
2740
2741 return -1;
2742 }
2743
2744 iu->num_sge = 1;
2745
2746 ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2747 DMA_TO_DEVICE);
2748 tsk_mgmt = iu->buf;
2749 memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2750
2751 tsk_mgmt->opcode = SRP_TSK_MGMT;
2752 int_to_scsilun(lun, &tsk_mgmt->lun);
2753 tsk_mgmt->tsk_mgmt_func = func;
2754 tsk_mgmt->task_tag = req_tag;
2755
2756 spin_lock_irq(&ch->lock);
2757 ch->tsk_mgmt_tag = (ch->tsk_mgmt_tag + 1) | SRP_TAG_TSK_MGMT;
2758 tsk_mgmt->tag = ch->tsk_mgmt_tag;
2759 spin_unlock_irq(&ch->lock);
2760
2761 init_completion(&ch->tsk_mgmt_done);
2762
2763 ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2764 DMA_TO_DEVICE);
2765 if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2766 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2767 mutex_unlock(&rport->mutex);
2768
2769 return -1;
2770 }
2771 res = wait_for_completion_timeout(&ch->tsk_mgmt_done,
2772 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS));
2773 if (res > 0 && status)
2774 *status = ch->tsk_mgmt_status;
2775 mutex_unlock(&rport->mutex);
2776
2777 WARN_ON_ONCE(res < 0);
2778
2779 return res > 0 ? 0 : -1;
2780 }
2781
srp_abort(struct scsi_cmnd * scmnd)2782 static int srp_abort(struct scsi_cmnd *scmnd)
2783 {
2784 struct srp_target_port *target = host_to_target(scmnd->device->host);
2785 struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2786 u32 tag;
2787 u16 ch_idx;
2788 struct srp_rdma_ch *ch;
2789 int ret;
2790
2791 shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2792
2793 if (!req)
2794 return SUCCESS;
2795 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmnd));
2796 ch_idx = blk_mq_unique_tag_to_hwq(tag);
2797 if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2798 return SUCCESS;
2799 ch = &target->ch[ch_idx];
2800 if (!srp_claim_req(ch, req, NULL, scmnd))
2801 return SUCCESS;
2802 shost_printk(KERN_ERR, target->scsi_host,
2803 "Sending SRP abort for tag %#x\n", tag);
2804 if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2805 SRP_TSK_ABORT_TASK, NULL) == 0)
2806 ret = SUCCESS;
2807 else if (target->rport->state == SRP_RPORT_LOST)
2808 ret = FAST_IO_FAIL;
2809 else
2810 ret = FAILED;
2811 if (ret == SUCCESS) {
2812 srp_free_req(ch, req, scmnd, 0);
2813 scmnd->result = DID_ABORT << 16;
2814 scmnd->scsi_done(scmnd);
2815 }
2816
2817 return ret;
2818 }
2819
srp_reset_device(struct scsi_cmnd * scmnd)2820 static int srp_reset_device(struct scsi_cmnd *scmnd)
2821 {
2822 struct srp_target_port *target = host_to_target(scmnd->device->host);
2823 struct srp_rdma_ch *ch;
2824 u8 status;
2825
2826 shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2827
2828 ch = &target->ch[0];
2829 if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2830 SRP_TSK_LUN_RESET, &status))
2831 return FAILED;
2832 if (status)
2833 return FAILED;
2834
2835 return SUCCESS;
2836 }
2837
srp_reset_host(struct scsi_cmnd * scmnd)2838 static int srp_reset_host(struct scsi_cmnd *scmnd)
2839 {
2840 struct srp_target_port *target = host_to_target(scmnd->device->host);
2841
2842 shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2843
2844 return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2845 }
2846
srp_target_alloc(struct scsi_target * starget)2847 static int srp_target_alloc(struct scsi_target *starget)
2848 {
2849 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2850 struct srp_target_port *target = host_to_target(shost);
2851
2852 if (target->target_can_queue)
2853 starget->can_queue = target->target_can_queue;
2854 return 0;
2855 }
2856
srp_slave_configure(struct scsi_device * sdev)2857 static int srp_slave_configure(struct scsi_device *sdev)
2858 {
2859 struct Scsi_Host *shost = sdev->host;
2860 struct srp_target_port *target = host_to_target(shost);
2861 struct request_queue *q = sdev->request_queue;
2862 unsigned long timeout;
2863
2864 if (sdev->type == TYPE_DISK) {
2865 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2866 blk_queue_rq_timeout(q, timeout);
2867 }
2868
2869 return 0;
2870 }
2871
id_ext_show(struct device * dev,struct device_attribute * attr,char * buf)2872 static ssize_t id_ext_show(struct device *dev, struct device_attribute *attr,
2873 char *buf)
2874 {
2875 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2876
2877 return sysfs_emit(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2878 }
2879
2880 static DEVICE_ATTR_RO(id_ext);
2881
ioc_guid_show(struct device * dev,struct device_attribute * attr,char * buf)2882 static ssize_t ioc_guid_show(struct device *dev, struct device_attribute *attr,
2883 char *buf)
2884 {
2885 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2886
2887 return sysfs_emit(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2888 }
2889
2890 static DEVICE_ATTR_RO(ioc_guid);
2891
service_id_show(struct device * dev,struct device_attribute * attr,char * buf)2892 static ssize_t service_id_show(struct device *dev,
2893 struct device_attribute *attr, char *buf)
2894 {
2895 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2896
2897 if (target->using_rdma_cm)
2898 return -ENOENT;
2899 return sysfs_emit(buf, "0x%016llx\n",
2900 be64_to_cpu(target->ib_cm.service_id));
2901 }
2902
2903 static DEVICE_ATTR_RO(service_id);
2904
pkey_show(struct device * dev,struct device_attribute * attr,char * buf)2905 static ssize_t pkey_show(struct device *dev, struct device_attribute *attr,
2906 char *buf)
2907 {
2908 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2909
2910 if (target->using_rdma_cm)
2911 return -ENOENT;
2912
2913 return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(target->ib_cm.pkey));
2914 }
2915
2916 static DEVICE_ATTR_RO(pkey);
2917
sgid_show(struct device * dev,struct device_attribute * attr,char * buf)2918 static ssize_t sgid_show(struct device *dev, struct device_attribute *attr,
2919 char *buf)
2920 {
2921 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2922
2923 return sysfs_emit(buf, "%pI6\n", target->sgid.raw);
2924 }
2925
2926 static DEVICE_ATTR_RO(sgid);
2927
dgid_show(struct device * dev,struct device_attribute * attr,char * buf)2928 static ssize_t dgid_show(struct device *dev, struct device_attribute *attr,
2929 char *buf)
2930 {
2931 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2932 struct srp_rdma_ch *ch = &target->ch[0];
2933
2934 if (target->using_rdma_cm)
2935 return -ENOENT;
2936
2937 return sysfs_emit(buf, "%pI6\n", ch->ib_cm.path.dgid.raw);
2938 }
2939
2940 static DEVICE_ATTR_RO(dgid);
2941
orig_dgid_show(struct device * dev,struct device_attribute * attr,char * buf)2942 static ssize_t orig_dgid_show(struct device *dev, struct device_attribute *attr,
2943 char *buf)
2944 {
2945 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2946
2947 if (target->using_rdma_cm)
2948 return -ENOENT;
2949
2950 return sysfs_emit(buf, "%pI6\n", target->ib_cm.orig_dgid.raw);
2951 }
2952
2953 static DEVICE_ATTR_RO(orig_dgid);
2954
req_lim_show(struct device * dev,struct device_attribute * attr,char * buf)2955 static ssize_t req_lim_show(struct device *dev, struct device_attribute *attr,
2956 char *buf)
2957 {
2958 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2959 struct srp_rdma_ch *ch;
2960 int i, req_lim = INT_MAX;
2961
2962 for (i = 0; i < target->ch_count; i++) {
2963 ch = &target->ch[i];
2964 req_lim = min(req_lim, ch->req_lim);
2965 }
2966
2967 return sysfs_emit(buf, "%d\n", req_lim);
2968 }
2969
2970 static DEVICE_ATTR_RO(req_lim);
2971
zero_req_lim_show(struct device * dev,struct device_attribute * attr,char * buf)2972 static ssize_t zero_req_lim_show(struct device *dev,
2973 struct device_attribute *attr, char *buf)
2974 {
2975 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2976
2977 return sysfs_emit(buf, "%d\n", target->zero_req_lim);
2978 }
2979
2980 static DEVICE_ATTR_RO(zero_req_lim);
2981
local_ib_port_show(struct device * dev,struct device_attribute * attr,char * buf)2982 static ssize_t local_ib_port_show(struct device *dev,
2983 struct device_attribute *attr, char *buf)
2984 {
2985 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2986
2987 return sysfs_emit(buf, "%d\n", target->srp_host->port);
2988 }
2989
2990 static DEVICE_ATTR_RO(local_ib_port);
2991
local_ib_device_show(struct device * dev,struct device_attribute * attr,char * buf)2992 static ssize_t local_ib_device_show(struct device *dev,
2993 struct device_attribute *attr, char *buf)
2994 {
2995 struct srp_target_port *target = host_to_target(class_to_shost(dev));
2996
2997 return sysfs_emit(buf, "%s\n",
2998 dev_name(&target->srp_host->srp_dev->dev->dev));
2999 }
3000
3001 static DEVICE_ATTR_RO(local_ib_device);
3002
ch_count_show(struct device * dev,struct device_attribute * attr,char * buf)3003 static ssize_t ch_count_show(struct device *dev, struct device_attribute *attr,
3004 char *buf)
3005 {
3006 struct srp_target_port *target = host_to_target(class_to_shost(dev));
3007
3008 return sysfs_emit(buf, "%d\n", target->ch_count);
3009 }
3010
3011 static DEVICE_ATTR_RO(ch_count);
3012
comp_vector_show(struct device * dev,struct device_attribute * attr,char * buf)3013 static ssize_t comp_vector_show(struct device *dev,
3014 struct device_attribute *attr, char *buf)
3015 {
3016 struct srp_target_port *target = host_to_target(class_to_shost(dev));
3017
3018 return sysfs_emit(buf, "%d\n", target->comp_vector);
3019 }
3020
3021 static DEVICE_ATTR_RO(comp_vector);
3022
tl_retry_count_show(struct device * dev,struct device_attribute * attr,char * buf)3023 static ssize_t tl_retry_count_show(struct device *dev,
3024 struct device_attribute *attr, char *buf)
3025 {
3026 struct srp_target_port *target = host_to_target(class_to_shost(dev));
3027
3028 return sysfs_emit(buf, "%d\n", target->tl_retry_count);
3029 }
3030
3031 static DEVICE_ATTR_RO(tl_retry_count);
3032
cmd_sg_entries_show(struct device * dev,struct device_attribute * attr,char * buf)3033 static ssize_t cmd_sg_entries_show(struct device *dev,
3034 struct device_attribute *attr, char *buf)
3035 {
3036 struct srp_target_port *target = host_to_target(class_to_shost(dev));
3037
3038 return sysfs_emit(buf, "%u\n", target->cmd_sg_cnt);
3039 }
3040
3041 static DEVICE_ATTR_RO(cmd_sg_entries);
3042
allow_ext_sg_show(struct device * dev,struct device_attribute * attr,char * buf)3043 static ssize_t allow_ext_sg_show(struct device *dev,
3044 struct device_attribute *attr, char *buf)
3045 {
3046 struct srp_target_port *target = host_to_target(class_to_shost(dev));
3047
3048 return sysfs_emit(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
3049 }
3050
3051 static DEVICE_ATTR_RO(allow_ext_sg);
3052
3053 static struct device_attribute *srp_host_attrs[] = {
3054 &dev_attr_id_ext,
3055 &dev_attr_ioc_guid,
3056 &dev_attr_service_id,
3057 &dev_attr_pkey,
3058 &dev_attr_sgid,
3059 &dev_attr_dgid,
3060 &dev_attr_orig_dgid,
3061 &dev_attr_req_lim,
3062 &dev_attr_zero_req_lim,
3063 &dev_attr_local_ib_port,
3064 &dev_attr_local_ib_device,
3065 &dev_attr_ch_count,
3066 &dev_attr_comp_vector,
3067 &dev_attr_tl_retry_count,
3068 &dev_attr_cmd_sg_entries,
3069 &dev_attr_allow_ext_sg,
3070 NULL
3071 };
3072
3073 static struct scsi_host_template srp_template = {
3074 .module = THIS_MODULE,
3075 .name = "InfiniBand SRP initiator",
3076 .proc_name = DRV_NAME,
3077 .target_alloc = srp_target_alloc,
3078 .slave_configure = srp_slave_configure,
3079 .info = srp_target_info,
3080 .init_cmd_priv = srp_init_cmd_priv,
3081 .exit_cmd_priv = srp_exit_cmd_priv,
3082 .queuecommand = srp_queuecommand,
3083 .change_queue_depth = srp_change_queue_depth,
3084 .eh_timed_out = srp_timed_out,
3085 .eh_abort_handler = srp_abort,
3086 .eh_device_reset_handler = srp_reset_device,
3087 .eh_host_reset_handler = srp_reset_host,
3088 .skip_settle_delay = true,
3089 .sg_tablesize = SRP_DEF_SG_TABLESIZE,
3090 .can_queue = SRP_DEFAULT_CMD_SQ_SIZE,
3091 .this_id = -1,
3092 .cmd_per_lun = SRP_DEFAULT_CMD_SQ_SIZE,
3093 .shost_attrs = srp_host_attrs,
3094 .track_queue_depth = 1,
3095 .cmd_size = sizeof(struct srp_request),
3096 };
3097
srp_sdev_count(struct Scsi_Host * host)3098 static int srp_sdev_count(struct Scsi_Host *host)
3099 {
3100 struct scsi_device *sdev;
3101 int c = 0;
3102
3103 shost_for_each_device(sdev, host)
3104 c++;
3105
3106 return c;
3107 }
3108
3109 /*
3110 * Return values:
3111 * < 0 upon failure. Caller is responsible for SRP target port cleanup.
3112 * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
3113 * removal has been scheduled.
3114 * 0 and target->state != SRP_TARGET_REMOVED upon success.
3115 */
srp_add_target(struct srp_host * host,struct srp_target_port * target)3116 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
3117 {
3118 struct srp_rport_identifiers ids;
3119 struct srp_rport *rport;
3120
3121 target->state = SRP_TARGET_SCANNING;
3122 sprintf(target->target_name, "SRP.T10:%016llX",
3123 be64_to_cpu(target->id_ext));
3124
3125 if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dev.parent))
3126 return -ENODEV;
3127
3128 memcpy(ids.port_id, &target->id_ext, 8);
3129 memcpy(ids.port_id + 8, &target->ioc_guid, 8);
3130 ids.roles = SRP_RPORT_ROLE_TARGET;
3131 rport = srp_rport_add(target->scsi_host, &ids);
3132 if (IS_ERR(rport)) {
3133 scsi_remove_host(target->scsi_host);
3134 return PTR_ERR(rport);
3135 }
3136
3137 rport->lld_data = target;
3138 target->rport = rport;
3139
3140 spin_lock(&host->target_lock);
3141 list_add_tail(&target->list, &host->target_list);
3142 spin_unlock(&host->target_lock);
3143
3144 scsi_scan_target(&target->scsi_host->shost_gendev,
3145 0, target->scsi_id, SCAN_WILD_CARD, SCSI_SCAN_INITIAL);
3146
3147 if (srp_connected_ch(target) < target->ch_count ||
3148 target->qp_in_error) {
3149 shost_printk(KERN_INFO, target->scsi_host,
3150 PFX "SCSI scan failed - removing SCSI host\n");
3151 srp_queue_remove_work(target);
3152 goto out;
3153 }
3154
3155 pr_debug("%s: SCSI scan succeeded - detected %d LUNs\n",
3156 dev_name(&target->scsi_host->shost_gendev),
3157 srp_sdev_count(target->scsi_host));
3158
3159 spin_lock_irq(&target->lock);
3160 if (target->state == SRP_TARGET_SCANNING)
3161 target->state = SRP_TARGET_LIVE;
3162 spin_unlock_irq(&target->lock);
3163
3164 out:
3165 return 0;
3166 }
3167
srp_release_dev(struct device * dev)3168 static void srp_release_dev(struct device *dev)
3169 {
3170 struct srp_host *host =
3171 container_of(dev, struct srp_host, dev);
3172
3173 complete(&host->released);
3174 }
3175
3176 static struct class srp_class = {
3177 .name = "infiniband_srp",
3178 .dev_release = srp_release_dev
3179 };
3180
3181 /**
3182 * srp_conn_unique() - check whether the connection to a target is unique
3183 * @host: SRP host.
3184 * @target: SRP target port.
3185 */
srp_conn_unique(struct srp_host * host,struct srp_target_port * target)3186 static bool srp_conn_unique(struct srp_host *host,
3187 struct srp_target_port *target)
3188 {
3189 struct srp_target_port *t;
3190 bool ret = false;
3191
3192 if (target->state == SRP_TARGET_REMOVED)
3193 goto out;
3194
3195 ret = true;
3196
3197 spin_lock(&host->target_lock);
3198 list_for_each_entry(t, &host->target_list, list) {
3199 if (t != target &&
3200 target->id_ext == t->id_ext &&
3201 target->ioc_guid == t->ioc_guid &&
3202 target->initiator_ext == t->initiator_ext) {
3203 ret = false;
3204 break;
3205 }
3206 }
3207 spin_unlock(&host->target_lock);
3208
3209 out:
3210 return ret;
3211 }
3212
3213 /*
3214 * Target ports are added by writing
3215 *
3216 * id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
3217 * pkey=<P_Key>,service_id=<service ID>
3218 * or
3219 * id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,
3220 * [src=<IPv4 address>,]dest=<IPv4 address>:<port number>
3221 *
3222 * to the add_target sysfs attribute.
3223 */
3224 enum {
3225 SRP_OPT_ERR = 0,
3226 SRP_OPT_ID_EXT = 1 << 0,
3227 SRP_OPT_IOC_GUID = 1 << 1,
3228 SRP_OPT_DGID = 1 << 2,
3229 SRP_OPT_PKEY = 1 << 3,
3230 SRP_OPT_SERVICE_ID = 1 << 4,
3231 SRP_OPT_MAX_SECT = 1 << 5,
3232 SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
3233 SRP_OPT_IO_CLASS = 1 << 7,
3234 SRP_OPT_INITIATOR_EXT = 1 << 8,
3235 SRP_OPT_CMD_SG_ENTRIES = 1 << 9,
3236 SRP_OPT_ALLOW_EXT_SG = 1 << 10,
3237 SRP_OPT_SG_TABLESIZE = 1 << 11,
3238 SRP_OPT_COMP_VECTOR = 1 << 12,
3239 SRP_OPT_TL_RETRY_COUNT = 1 << 13,
3240 SRP_OPT_QUEUE_SIZE = 1 << 14,
3241 SRP_OPT_IP_SRC = 1 << 15,
3242 SRP_OPT_IP_DEST = 1 << 16,
3243 SRP_OPT_TARGET_CAN_QUEUE= 1 << 17,
3244 SRP_OPT_MAX_IT_IU_SIZE = 1 << 18,
3245 SRP_OPT_CH_COUNT = 1 << 19,
3246 };
3247
3248 static unsigned int srp_opt_mandatory[] = {
3249 SRP_OPT_ID_EXT |
3250 SRP_OPT_IOC_GUID |
3251 SRP_OPT_DGID |
3252 SRP_OPT_PKEY |
3253 SRP_OPT_SERVICE_ID,
3254 SRP_OPT_ID_EXT |
3255 SRP_OPT_IOC_GUID |
3256 SRP_OPT_IP_DEST,
3257 };
3258
3259 static const match_table_t srp_opt_tokens = {
3260 { SRP_OPT_ID_EXT, "id_ext=%s" },
3261 { SRP_OPT_IOC_GUID, "ioc_guid=%s" },
3262 { SRP_OPT_DGID, "dgid=%s" },
3263 { SRP_OPT_PKEY, "pkey=%x" },
3264 { SRP_OPT_SERVICE_ID, "service_id=%s" },
3265 { SRP_OPT_MAX_SECT, "max_sect=%d" },
3266 { SRP_OPT_MAX_CMD_PER_LUN, "max_cmd_per_lun=%d" },
3267 { SRP_OPT_TARGET_CAN_QUEUE, "target_can_queue=%d" },
3268 { SRP_OPT_IO_CLASS, "io_class=%x" },
3269 { SRP_OPT_INITIATOR_EXT, "initiator_ext=%s" },
3270 { SRP_OPT_CMD_SG_ENTRIES, "cmd_sg_entries=%u" },
3271 { SRP_OPT_ALLOW_EXT_SG, "allow_ext_sg=%u" },
3272 { SRP_OPT_SG_TABLESIZE, "sg_tablesize=%u" },
3273 { SRP_OPT_COMP_VECTOR, "comp_vector=%u" },
3274 { SRP_OPT_TL_RETRY_COUNT, "tl_retry_count=%u" },
3275 { SRP_OPT_QUEUE_SIZE, "queue_size=%d" },
3276 { SRP_OPT_IP_SRC, "src=%s" },
3277 { SRP_OPT_IP_DEST, "dest=%s" },
3278 { SRP_OPT_MAX_IT_IU_SIZE, "max_it_iu_size=%d" },
3279 { SRP_OPT_CH_COUNT, "ch_count=%u", },
3280 { SRP_OPT_ERR, NULL }
3281 };
3282
3283 /**
3284 * srp_parse_in - parse an IP address and port number combination
3285 * @net: [in] Network namespace.
3286 * @sa: [out] Address family, IP address and port number.
3287 * @addr_port_str: [in] IP address and port number.
3288 * @has_port: [out] Whether or not @addr_port_str includes a port number.
3289 *
3290 * Parse the following address formats:
3291 * - IPv4: <ip_address>:<port>, e.g. 1.2.3.4:5.
3292 * - IPv6: \[<ipv6_address>\]:<port>, e.g. [1::2:3%4]:5.
3293 */
srp_parse_in(struct net * net,struct sockaddr_storage * sa,const char * addr_port_str,bool * has_port)3294 static int srp_parse_in(struct net *net, struct sockaddr_storage *sa,
3295 const char *addr_port_str, bool *has_port)
3296 {
3297 char *addr_end, *addr = kstrdup(addr_port_str, GFP_KERNEL);
3298 char *port_str;
3299 int ret;
3300
3301 if (!addr)
3302 return -ENOMEM;
3303 port_str = strrchr(addr, ':');
3304 if (port_str && strchr(port_str, ']'))
3305 port_str = NULL;
3306 if (port_str)
3307 *port_str++ = '\0';
3308 if (has_port)
3309 *has_port = port_str != NULL;
3310 ret = inet_pton_with_scope(net, AF_INET, addr, port_str, sa);
3311 if (ret && addr[0]) {
3312 addr_end = addr + strlen(addr) - 1;
3313 if (addr[0] == '[' && *addr_end == ']') {
3314 *addr_end = '\0';
3315 ret = inet_pton_with_scope(net, AF_INET6, addr + 1,
3316 port_str, sa);
3317 }
3318 }
3319 kfree(addr);
3320 pr_debug("%s -> %pISpfsc\n", addr_port_str, sa);
3321 return ret;
3322 }
3323
srp_parse_options(struct net * net,const char * buf,struct srp_target_port * target)3324 static int srp_parse_options(struct net *net, const char *buf,
3325 struct srp_target_port *target)
3326 {
3327 char *options, *sep_opt;
3328 char *p;
3329 substring_t args[MAX_OPT_ARGS];
3330 unsigned long long ull;
3331 bool has_port;
3332 int opt_mask = 0;
3333 int token;
3334 int ret = -EINVAL;
3335 int i;
3336
3337 options = kstrdup(buf, GFP_KERNEL);
3338 if (!options)
3339 return -ENOMEM;
3340
3341 sep_opt = options;
3342 while ((p = strsep(&sep_opt, ",\n")) != NULL) {
3343 if (!*p)
3344 continue;
3345
3346 token = match_token(p, srp_opt_tokens, args);
3347 opt_mask |= token;
3348
3349 switch (token) {
3350 case SRP_OPT_ID_EXT:
3351 p = match_strdup(args);
3352 if (!p) {
3353 ret = -ENOMEM;
3354 goto out;
3355 }
3356 ret = kstrtoull(p, 16, &ull);
3357 if (ret) {
3358 pr_warn("invalid id_ext parameter '%s'\n", p);
3359 kfree(p);
3360 goto out;
3361 }
3362 target->id_ext = cpu_to_be64(ull);
3363 kfree(p);
3364 break;
3365
3366 case SRP_OPT_IOC_GUID:
3367 p = match_strdup(args);
3368 if (!p) {
3369 ret = -ENOMEM;
3370 goto out;
3371 }
3372 ret = kstrtoull(p, 16, &ull);
3373 if (ret) {
3374 pr_warn("invalid ioc_guid parameter '%s'\n", p);
3375 kfree(p);
3376 goto out;
3377 }
3378 target->ioc_guid = cpu_to_be64(ull);
3379 kfree(p);
3380 break;
3381
3382 case SRP_OPT_DGID:
3383 p = match_strdup(args);
3384 if (!p) {
3385 ret = -ENOMEM;
3386 goto out;
3387 }
3388 if (strlen(p) != 32) {
3389 pr_warn("bad dest GID parameter '%s'\n", p);
3390 kfree(p);
3391 goto out;
3392 }
3393
3394 ret = hex2bin(target->ib_cm.orig_dgid.raw, p, 16);
3395 kfree(p);
3396 if (ret < 0)
3397 goto out;
3398 break;
3399
3400 case SRP_OPT_PKEY:
3401 if (match_hex(args, &token)) {
3402 pr_warn("bad P_Key parameter '%s'\n", p);
3403 goto out;
3404 }
3405 target->ib_cm.pkey = cpu_to_be16(token);
3406 break;
3407
3408 case SRP_OPT_SERVICE_ID:
3409 p = match_strdup(args);
3410 if (!p) {
3411 ret = -ENOMEM;
3412 goto out;
3413 }
3414 ret = kstrtoull(p, 16, &ull);
3415 if (ret) {
3416 pr_warn("bad service_id parameter '%s'\n", p);
3417 kfree(p);
3418 goto out;
3419 }
3420 target->ib_cm.service_id = cpu_to_be64(ull);
3421 kfree(p);
3422 break;
3423
3424 case SRP_OPT_IP_SRC:
3425 p = match_strdup(args);
3426 if (!p) {
3427 ret = -ENOMEM;
3428 goto out;
3429 }
3430 ret = srp_parse_in(net, &target->rdma_cm.src.ss, p,
3431 NULL);
3432 if (ret < 0) {
3433 pr_warn("bad source parameter '%s'\n", p);
3434 kfree(p);
3435 goto out;
3436 }
3437 target->rdma_cm.src_specified = true;
3438 kfree(p);
3439 break;
3440
3441 case SRP_OPT_IP_DEST:
3442 p = match_strdup(args);
3443 if (!p) {
3444 ret = -ENOMEM;
3445 goto out;
3446 }
3447 ret = srp_parse_in(net, &target->rdma_cm.dst.ss, p,
3448 &has_port);
3449 if (!has_port)
3450 ret = -EINVAL;
3451 if (ret < 0) {
3452 pr_warn("bad dest parameter '%s'\n", p);
3453 kfree(p);
3454 goto out;
3455 }
3456 target->using_rdma_cm = true;
3457 kfree(p);
3458 break;
3459
3460 case SRP_OPT_MAX_SECT:
3461 if (match_int(args, &token)) {
3462 pr_warn("bad max sect parameter '%s'\n", p);
3463 goto out;
3464 }
3465 target->scsi_host->max_sectors = token;
3466 break;
3467
3468 case SRP_OPT_QUEUE_SIZE:
3469 if (match_int(args, &token) || token < 1) {
3470 pr_warn("bad queue_size parameter '%s'\n", p);
3471 goto out;
3472 }
3473 target->scsi_host->can_queue = token;
3474 target->queue_size = token + SRP_RSP_SQ_SIZE +
3475 SRP_TSK_MGMT_SQ_SIZE;
3476 if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3477 target->scsi_host->cmd_per_lun = token;
3478 break;
3479
3480 case SRP_OPT_MAX_CMD_PER_LUN:
3481 if (match_int(args, &token) || token < 1) {
3482 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3483 p);
3484 goto out;
3485 }
3486 target->scsi_host->cmd_per_lun = token;
3487 break;
3488
3489 case SRP_OPT_TARGET_CAN_QUEUE:
3490 if (match_int(args, &token) || token < 1) {
3491 pr_warn("bad max target_can_queue parameter '%s'\n",
3492 p);
3493 goto out;
3494 }
3495 target->target_can_queue = token;
3496 break;
3497
3498 case SRP_OPT_IO_CLASS:
3499 if (match_hex(args, &token)) {
3500 pr_warn("bad IO class parameter '%s'\n", p);
3501 goto out;
3502 }
3503 if (token != SRP_REV10_IB_IO_CLASS &&
3504 token != SRP_REV16A_IB_IO_CLASS) {
3505 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3506 token, SRP_REV10_IB_IO_CLASS,
3507 SRP_REV16A_IB_IO_CLASS);
3508 goto out;
3509 }
3510 target->io_class = token;
3511 break;
3512
3513 case SRP_OPT_INITIATOR_EXT:
3514 p = match_strdup(args);
3515 if (!p) {
3516 ret = -ENOMEM;
3517 goto out;
3518 }
3519 ret = kstrtoull(p, 16, &ull);
3520 if (ret) {
3521 pr_warn("bad initiator_ext value '%s'\n", p);
3522 kfree(p);
3523 goto out;
3524 }
3525 target->initiator_ext = cpu_to_be64(ull);
3526 kfree(p);
3527 break;
3528
3529 case SRP_OPT_CMD_SG_ENTRIES:
3530 if (match_int(args, &token) || token < 1 || token > 255) {
3531 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3532 p);
3533 goto out;
3534 }
3535 target->cmd_sg_cnt = token;
3536 break;
3537
3538 case SRP_OPT_ALLOW_EXT_SG:
3539 if (match_int(args, &token)) {
3540 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3541 goto out;
3542 }
3543 target->allow_ext_sg = !!token;
3544 break;
3545
3546 case SRP_OPT_SG_TABLESIZE:
3547 if (match_int(args, &token) || token < 1 ||
3548 token > SG_MAX_SEGMENTS) {
3549 pr_warn("bad max sg_tablesize parameter '%s'\n",
3550 p);
3551 goto out;
3552 }
3553 target->sg_tablesize = token;
3554 break;
3555
3556 case SRP_OPT_COMP_VECTOR:
3557 if (match_int(args, &token) || token < 0) {
3558 pr_warn("bad comp_vector parameter '%s'\n", p);
3559 goto out;
3560 }
3561 target->comp_vector = token;
3562 break;
3563
3564 case SRP_OPT_TL_RETRY_COUNT:
3565 if (match_int(args, &token) || token < 2 || token > 7) {
3566 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3567 p);
3568 goto out;
3569 }
3570 target->tl_retry_count = token;
3571 break;
3572
3573 case SRP_OPT_MAX_IT_IU_SIZE:
3574 if (match_int(args, &token) || token < 0) {
3575 pr_warn("bad maximum initiator to target IU size '%s'\n", p);
3576 goto out;
3577 }
3578 target->max_it_iu_size = token;
3579 break;
3580
3581 case SRP_OPT_CH_COUNT:
3582 if (match_int(args, &token) || token < 1) {
3583 pr_warn("bad channel count %s\n", p);
3584 goto out;
3585 }
3586 target->ch_count = token;
3587 break;
3588
3589 default:
3590 pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3591 p);
3592 goto out;
3593 }
3594 }
3595
3596 for (i = 0; i < ARRAY_SIZE(srp_opt_mandatory); i++) {
3597 if ((opt_mask & srp_opt_mandatory[i]) == srp_opt_mandatory[i]) {
3598 ret = 0;
3599 break;
3600 }
3601 }
3602 if (ret)
3603 pr_warn("target creation request is missing one or more parameters\n");
3604
3605 if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3606 && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3607 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3608 target->scsi_host->cmd_per_lun,
3609 target->scsi_host->can_queue);
3610
3611 out:
3612 kfree(options);
3613 return ret;
3614 }
3615
add_target_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3616 static ssize_t add_target_store(struct device *dev,
3617 struct device_attribute *attr, const char *buf,
3618 size_t count)
3619 {
3620 struct srp_host *host =
3621 container_of(dev, struct srp_host, dev);
3622 struct Scsi_Host *target_host;
3623 struct srp_target_port *target;
3624 struct srp_rdma_ch *ch;
3625 struct srp_device *srp_dev = host->srp_dev;
3626 struct ib_device *ibdev = srp_dev->dev;
3627 int ret, i, ch_idx;
3628 unsigned int max_sectors_per_mr, mr_per_cmd = 0;
3629 bool multich = false;
3630 uint32_t max_iu_len;
3631
3632 target_host = scsi_host_alloc(&srp_template,
3633 sizeof (struct srp_target_port));
3634 if (!target_host)
3635 return -ENOMEM;
3636
3637 target_host->transportt = ib_srp_transport_template;
3638 target_host->max_channel = 0;
3639 target_host->max_id = 1;
3640 target_host->max_lun = -1LL;
3641 target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3642 target_host->max_segment_size = ib_dma_max_seg_size(ibdev);
3643
3644 if (!(ibdev->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG))
3645 target_host->virt_boundary_mask = ~srp_dev->mr_page_mask;
3646
3647 target = host_to_target(target_host);
3648
3649 target->net = kobj_ns_grab_current(KOBJ_NS_TYPE_NET);
3650 target->io_class = SRP_REV16A_IB_IO_CLASS;
3651 target->scsi_host = target_host;
3652 target->srp_host = host;
3653 target->lkey = host->srp_dev->pd->local_dma_lkey;
3654 target->global_rkey = host->srp_dev->global_rkey;
3655 target->cmd_sg_cnt = cmd_sg_entries;
3656 target->sg_tablesize = indirect_sg_entries ? : cmd_sg_entries;
3657 target->allow_ext_sg = allow_ext_sg;
3658 target->tl_retry_count = 7;
3659 target->queue_size = SRP_DEFAULT_QUEUE_SIZE;
3660
3661 /*
3662 * Avoid that the SCSI host can be removed by srp_remove_target()
3663 * before this function returns.
3664 */
3665 scsi_host_get(target->scsi_host);
3666
3667 ret = mutex_lock_interruptible(&host->add_target_mutex);
3668 if (ret < 0)
3669 goto put;
3670
3671 ret = srp_parse_options(target->net, buf, target);
3672 if (ret)
3673 goto out;
3674
3675 if (!srp_conn_unique(target->srp_host, target)) {
3676 if (target->using_rdma_cm) {
3677 shost_printk(KERN_INFO, target->scsi_host,
3678 PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;dest=%pIS\n",
3679 be64_to_cpu(target->id_ext),
3680 be64_to_cpu(target->ioc_guid),
3681 &target->rdma_cm.dst);
3682 } else {
3683 shost_printk(KERN_INFO, target->scsi_host,
3684 PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3685 be64_to_cpu(target->id_ext),
3686 be64_to_cpu(target->ioc_guid),
3687 be64_to_cpu(target->initiator_ext));
3688 }
3689 ret = -EEXIST;
3690 goto out;
3691 }
3692
3693 if (!srp_dev->has_fr && !target->allow_ext_sg &&
3694 target->cmd_sg_cnt < target->sg_tablesize) {
3695 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3696 target->sg_tablesize = target->cmd_sg_cnt;
3697 }
3698
3699 if (srp_dev->use_fast_reg) {
3700 bool gaps_reg = (ibdev->attrs.device_cap_flags &
3701 IB_DEVICE_SG_GAPS_REG);
3702
3703 max_sectors_per_mr = srp_dev->max_pages_per_mr <<
3704 (ilog2(srp_dev->mr_page_size) - 9);
3705 if (!gaps_reg) {
3706 /*
3707 * FR can only map one HCA page per entry. If the start
3708 * address is not aligned on a HCA page boundary two
3709 * entries will be used for the head and the tail
3710 * although these two entries combined contain at most
3711 * one HCA page of data. Hence the "+ 1" in the
3712 * calculation below.
3713 *
3714 * The indirect data buffer descriptor is contiguous
3715 * so the memory for that buffer will only be
3716 * registered if register_always is true. Hence add
3717 * one to mr_per_cmd if register_always has been set.
3718 */
3719 mr_per_cmd = register_always +
3720 (target->scsi_host->max_sectors + 1 +
3721 max_sectors_per_mr - 1) / max_sectors_per_mr;
3722 } else {
3723 mr_per_cmd = register_always +
3724 (target->sg_tablesize +
3725 srp_dev->max_pages_per_mr - 1) /
3726 srp_dev->max_pages_per_mr;
3727 }
3728 pr_debug("max_sectors = %u; max_pages_per_mr = %u; mr_page_size = %u; max_sectors_per_mr = %u; mr_per_cmd = %u\n",
3729 target->scsi_host->max_sectors, srp_dev->max_pages_per_mr, srp_dev->mr_page_size,
3730 max_sectors_per_mr, mr_per_cmd);
3731 }
3732
3733 target_host->sg_tablesize = target->sg_tablesize;
3734 target->mr_pool_size = target->scsi_host->can_queue * mr_per_cmd;
3735 target->mr_per_cmd = mr_per_cmd;
3736 target->indirect_size = target->sg_tablesize *
3737 sizeof (struct srp_direct_buf);
3738 max_iu_len = srp_max_it_iu_len(target->cmd_sg_cnt,
3739 srp_use_imm_data,
3740 target->max_it_iu_size);
3741
3742 INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3743 INIT_WORK(&target->remove_work, srp_remove_work);
3744 spin_lock_init(&target->lock);
3745 ret = rdma_query_gid(ibdev, host->port, 0, &target->sgid);
3746 if (ret)
3747 goto out;
3748
3749 ret = -ENOMEM;
3750 if (target->ch_count == 0) {
3751 target->ch_count =
3752 min(ch_count ?:
3753 max(4 * num_online_nodes(),
3754 ibdev->num_comp_vectors),
3755 num_online_cpus());
3756 }
3757
3758 target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3759 GFP_KERNEL);
3760 if (!target->ch)
3761 goto out;
3762
3763 for (ch_idx = 0; ch_idx < target->ch_count; ++ch_idx) {
3764 ch = &target->ch[ch_idx];
3765 ch->target = target;
3766 ch->comp_vector = ch_idx % ibdev->num_comp_vectors;
3767 spin_lock_init(&ch->lock);
3768 INIT_LIST_HEAD(&ch->free_tx);
3769 ret = srp_new_cm_id(ch);
3770 if (ret)
3771 goto err_disconnect;
3772
3773 ret = srp_create_ch_ib(ch);
3774 if (ret)
3775 goto err_disconnect;
3776
3777 ret = srp_connect_ch(ch, max_iu_len, multich);
3778 if (ret) {
3779 char dst[64];
3780
3781 if (target->using_rdma_cm)
3782 snprintf(dst, sizeof(dst), "%pIS",
3783 &target->rdma_cm.dst);
3784 else
3785 snprintf(dst, sizeof(dst), "%pI6",
3786 target->ib_cm.orig_dgid.raw);
3787 shost_printk(KERN_ERR, target->scsi_host,
3788 PFX "Connection %d/%d to %s failed\n",
3789 ch_idx,
3790 target->ch_count, dst);
3791 if (ch_idx == 0) {
3792 goto free_ch;
3793 } else {
3794 srp_free_ch_ib(target, ch);
3795 target->ch_count = ch - target->ch;
3796 goto connected;
3797 }
3798 }
3799 multich = true;
3800 }
3801
3802 connected:
3803 target->scsi_host->nr_hw_queues = target->ch_count;
3804
3805 ret = srp_add_target(host, target);
3806 if (ret)
3807 goto err_disconnect;
3808
3809 if (target->state != SRP_TARGET_REMOVED) {
3810 if (target->using_rdma_cm) {
3811 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3812 "new target: id_ext %016llx ioc_guid %016llx sgid %pI6 dest %pIS\n",
3813 be64_to_cpu(target->id_ext),
3814 be64_to_cpu(target->ioc_guid),
3815 target->sgid.raw, &target->rdma_cm.dst);
3816 } else {
3817 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3818 "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3819 be64_to_cpu(target->id_ext),
3820 be64_to_cpu(target->ioc_guid),
3821 be16_to_cpu(target->ib_cm.pkey),
3822 be64_to_cpu(target->ib_cm.service_id),
3823 target->sgid.raw,
3824 target->ib_cm.orig_dgid.raw);
3825 }
3826 }
3827
3828 ret = count;
3829
3830 out:
3831 mutex_unlock(&host->add_target_mutex);
3832
3833 put:
3834 scsi_host_put(target->scsi_host);
3835 if (ret < 0) {
3836 /*
3837 * If a call to srp_remove_target() has not been scheduled,
3838 * drop the network namespace reference now that was obtained
3839 * earlier in this function.
3840 */
3841 if (target->state != SRP_TARGET_REMOVED)
3842 kobj_ns_drop(KOBJ_NS_TYPE_NET, target->net);
3843 scsi_host_put(target->scsi_host);
3844 }
3845
3846 return ret;
3847
3848 err_disconnect:
3849 srp_disconnect_target(target);
3850
3851 free_ch:
3852 for (i = 0; i < target->ch_count; i++) {
3853 ch = &target->ch[i];
3854 srp_free_ch_ib(target, ch);
3855 }
3856
3857 kfree(target->ch);
3858 goto out;
3859 }
3860
3861 static DEVICE_ATTR_WO(add_target);
3862
ibdev_show(struct device * dev,struct device_attribute * attr,char * buf)3863 static ssize_t ibdev_show(struct device *dev, struct device_attribute *attr,
3864 char *buf)
3865 {
3866 struct srp_host *host = container_of(dev, struct srp_host, dev);
3867
3868 return sysfs_emit(buf, "%s\n", dev_name(&host->srp_dev->dev->dev));
3869 }
3870
3871 static DEVICE_ATTR_RO(ibdev);
3872
port_show(struct device * dev,struct device_attribute * attr,char * buf)3873 static ssize_t port_show(struct device *dev, struct device_attribute *attr,
3874 char *buf)
3875 {
3876 struct srp_host *host = container_of(dev, struct srp_host, dev);
3877
3878 return sysfs_emit(buf, "%d\n", host->port);
3879 }
3880
3881 static DEVICE_ATTR_RO(port);
3882
srp_add_port(struct srp_device * device,u8 port)3883 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3884 {
3885 struct srp_host *host;
3886
3887 host = kzalloc(sizeof *host, GFP_KERNEL);
3888 if (!host)
3889 return NULL;
3890
3891 INIT_LIST_HEAD(&host->target_list);
3892 spin_lock_init(&host->target_lock);
3893 init_completion(&host->released);
3894 mutex_init(&host->add_target_mutex);
3895 host->srp_dev = device;
3896 host->port = port;
3897
3898 host->dev.class = &srp_class;
3899 host->dev.parent = device->dev->dev.parent;
3900 dev_set_name(&host->dev, "srp-%s-%d", dev_name(&device->dev->dev),
3901 port);
3902
3903 if (device_register(&host->dev))
3904 goto free_host;
3905 if (device_create_file(&host->dev, &dev_attr_add_target))
3906 goto err_class;
3907 if (device_create_file(&host->dev, &dev_attr_ibdev))
3908 goto err_class;
3909 if (device_create_file(&host->dev, &dev_attr_port))
3910 goto err_class;
3911
3912 return host;
3913
3914 err_class:
3915 device_unregister(&host->dev);
3916
3917 free_host:
3918 kfree(host);
3919
3920 return NULL;
3921 }
3922
srp_rename_dev(struct ib_device * device,void * client_data)3923 static void srp_rename_dev(struct ib_device *device, void *client_data)
3924 {
3925 struct srp_device *srp_dev = client_data;
3926 struct srp_host *host, *tmp_host;
3927
3928 list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3929 char name[IB_DEVICE_NAME_MAX + 8];
3930
3931 snprintf(name, sizeof(name), "srp-%s-%d",
3932 dev_name(&device->dev), host->port);
3933 device_rename(&host->dev, name);
3934 }
3935 }
3936
srp_add_one(struct ib_device * device)3937 static int srp_add_one(struct ib_device *device)
3938 {
3939 struct srp_device *srp_dev;
3940 struct ib_device_attr *attr = &device->attrs;
3941 struct srp_host *host;
3942 int mr_page_shift;
3943 unsigned int p;
3944 u64 max_pages_per_mr;
3945 unsigned int flags = 0;
3946
3947 srp_dev = kzalloc(sizeof(*srp_dev), GFP_KERNEL);
3948 if (!srp_dev)
3949 return -ENOMEM;
3950
3951 /*
3952 * Use the smallest page size supported by the HCA, down to a
3953 * minimum of 4096 bytes. We're unlikely to build large sglists
3954 * out of smaller entries.
3955 */
3956 mr_page_shift = max(12, ffs(attr->page_size_cap) - 1);
3957 srp_dev->mr_page_size = 1 << mr_page_shift;
3958 srp_dev->mr_page_mask = ~((u64) srp_dev->mr_page_size - 1);
3959 max_pages_per_mr = attr->max_mr_size;
3960 do_div(max_pages_per_mr, srp_dev->mr_page_size);
3961 pr_debug("%s: %llu / %u = %llu <> %u\n", __func__,
3962 attr->max_mr_size, srp_dev->mr_page_size,
3963 max_pages_per_mr, SRP_MAX_PAGES_PER_MR);
3964 srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3965 max_pages_per_mr);
3966
3967 srp_dev->has_fr = (attr->device_cap_flags &
3968 IB_DEVICE_MEM_MGT_EXTENSIONS);
3969 if (!never_register && !srp_dev->has_fr)
3970 dev_warn(&device->dev, "FR is not supported\n");
3971 else if (!never_register &&
3972 attr->max_mr_size >= 2 * srp_dev->mr_page_size)
3973 srp_dev->use_fast_reg = srp_dev->has_fr;
3974
3975 if (never_register || !register_always || !srp_dev->has_fr)
3976 flags |= IB_PD_UNSAFE_GLOBAL_RKEY;
3977
3978 if (srp_dev->use_fast_reg) {
3979 srp_dev->max_pages_per_mr =
3980 min_t(u32, srp_dev->max_pages_per_mr,
3981 attr->max_fast_reg_page_list_len);
3982 }
3983 srp_dev->mr_max_size = srp_dev->mr_page_size *
3984 srp_dev->max_pages_per_mr;
3985 pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3986 dev_name(&device->dev), mr_page_shift, attr->max_mr_size,
3987 attr->max_fast_reg_page_list_len,
3988 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3989
3990 INIT_LIST_HEAD(&srp_dev->dev_list);
3991
3992 srp_dev->dev = device;
3993 srp_dev->pd = ib_alloc_pd(device, flags);
3994 if (IS_ERR(srp_dev->pd)) {
3995 int ret = PTR_ERR(srp_dev->pd);
3996
3997 kfree(srp_dev);
3998 return ret;
3999 }
4000
4001 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
4002 srp_dev->global_rkey = srp_dev->pd->unsafe_global_rkey;
4003 WARN_ON_ONCE(srp_dev->global_rkey == 0);
4004 }
4005
4006 rdma_for_each_port (device, p) {
4007 host = srp_add_port(srp_dev, p);
4008 if (host)
4009 list_add_tail(&host->list, &srp_dev->dev_list);
4010 }
4011
4012 ib_set_client_data(device, &srp_client, srp_dev);
4013 return 0;
4014 }
4015
srp_remove_one(struct ib_device * device,void * client_data)4016 static void srp_remove_one(struct ib_device *device, void *client_data)
4017 {
4018 struct srp_device *srp_dev;
4019 struct srp_host *host, *tmp_host;
4020 struct srp_target_port *target;
4021
4022 srp_dev = client_data;
4023
4024 list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
4025 device_unregister(&host->dev);
4026 /*
4027 * Wait for the sysfs entry to go away, so that no new
4028 * target ports can be created.
4029 */
4030 wait_for_completion(&host->released);
4031
4032 /*
4033 * Remove all target ports.
4034 */
4035 spin_lock(&host->target_lock);
4036 list_for_each_entry(target, &host->target_list, list)
4037 srp_queue_remove_work(target);
4038 spin_unlock(&host->target_lock);
4039
4040 /*
4041 * Wait for tl_err and target port removal tasks.
4042 */
4043 flush_workqueue(system_long_wq);
4044 flush_workqueue(srp_remove_wq);
4045
4046 kfree(host);
4047 }
4048
4049 ib_dealloc_pd(srp_dev->pd);
4050
4051 kfree(srp_dev);
4052 }
4053
4054 static struct srp_function_template ib_srp_transport_functions = {
4055 .has_rport_state = true,
4056 .reset_timer_if_blocked = true,
4057 .reconnect_delay = &srp_reconnect_delay,
4058 .fast_io_fail_tmo = &srp_fast_io_fail_tmo,
4059 .dev_loss_tmo = &srp_dev_loss_tmo,
4060 .reconnect = srp_rport_reconnect,
4061 .rport_delete = srp_rport_delete,
4062 .terminate_rport_io = srp_terminate_io,
4063 };
4064
srp_init_module(void)4065 static int __init srp_init_module(void)
4066 {
4067 int ret;
4068
4069 BUILD_BUG_ON(sizeof(struct srp_aer_req) != 36);
4070 BUILD_BUG_ON(sizeof(struct srp_cmd) != 48);
4071 BUILD_BUG_ON(sizeof(struct srp_imm_buf) != 4);
4072 BUILD_BUG_ON(sizeof(struct srp_indirect_buf) != 20);
4073 BUILD_BUG_ON(sizeof(struct srp_login_req) != 64);
4074 BUILD_BUG_ON(sizeof(struct srp_login_req_rdma) != 56);
4075 BUILD_BUG_ON(sizeof(struct srp_rsp) != 36);
4076
4077 if (srp_sg_tablesize) {
4078 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
4079 if (!cmd_sg_entries)
4080 cmd_sg_entries = srp_sg_tablesize;
4081 }
4082
4083 if (!cmd_sg_entries)
4084 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
4085
4086 if (cmd_sg_entries > 255) {
4087 pr_warn("Clamping cmd_sg_entries to 255\n");
4088 cmd_sg_entries = 255;
4089 }
4090
4091 if (!indirect_sg_entries)
4092 indirect_sg_entries = cmd_sg_entries;
4093 else if (indirect_sg_entries < cmd_sg_entries) {
4094 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
4095 cmd_sg_entries);
4096 indirect_sg_entries = cmd_sg_entries;
4097 }
4098
4099 if (indirect_sg_entries > SG_MAX_SEGMENTS) {
4100 pr_warn("Clamping indirect_sg_entries to %u\n",
4101 SG_MAX_SEGMENTS);
4102 indirect_sg_entries = SG_MAX_SEGMENTS;
4103 }
4104
4105 srp_remove_wq = create_workqueue("srp_remove");
4106 if (!srp_remove_wq) {
4107 ret = -ENOMEM;
4108 goto out;
4109 }
4110
4111 ret = -ENOMEM;
4112 ib_srp_transport_template =
4113 srp_attach_transport(&ib_srp_transport_functions);
4114 if (!ib_srp_transport_template)
4115 goto destroy_wq;
4116
4117 ret = class_register(&srp_class);
4118 if (ret) {
4119 pr_err("couldn't register class infiniband_srp\n");
4120 goto release_tr;
4121 }
4122
4123 ib_sa_register_client(&srp_sa_client);
4124
4125 ret = ib_register_client(&srp_client);
4126 if (ret) {
4127 pr_err("couldn't register IB client\n");
4128 goto unreg_sa;
4129 }
4130
4131 out:
4132 return ret;
4133
4134 unreg_sa:
4135 ib_sa_unregister_client(&srp_sa_client);
4136 class_unregister(&srp_class);
4137
4138 release_tr:
4139 srp_release_transport(ib_srp_transport_template);
4140
4141 destroy_wq:
4142 destroy_workqueue(srp_remove_wq);
4143 goto out;
4144 }
4145
srp_cleanup_module(void)4146 static void __exit srp_cleanup_module(void)
4147 {
4148 ib_unregister_client(&srp_client);
4149 ib_sa_unregister_client(&srp_sa_client);
4150 class_unregister(&srp_class);
4151 srp_release_transport(ib_srp_transport_template);
4152 destroy_workqueue(srp_remove_wq);
4153 }
4154
4155 module_init(srp_init_module);
4156 module_exit(srp_cleanup_module);
4157