1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright © 2018 Intel Corporation
4 */
5
6 #include <linux/sort.h>
7
8 #include "i915_selftest.h"
9 #include "intel_gpu_commands.h"
10 #include "intel_gt_clock_utils.h"
11 #include "selftest_engine.h"
12 #include "selftest_engine_heartbeat.h"
13 #include "selftests/igt_atomic.h"
14 #include "selftests/igt_flush_test.h"
15 #include "selftests/igt_spinner.h"
16
17 #define COUNT 5
18
cmp_u64(const void * A,const void * B)19 static int cmp_u64(const void *A, const void *B)
20 {
21 const u64 *a = A, *b = B;
22
23 return *a - *b;
24 }
25
trifilter(u64 * a)26 static u64 trifilter(u64 *a)
27 {
28 sort(a, COUNT, sizeof(*a), cmp_u64, NULL);
29 return (a[1] + 2 * a[2] + a[3]) >> 2;
30 }
31
emit_wait(u32 * cs,u32 offset,int op,u32 value)32 static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value)
33 {
34 *cs++ = MI_SEMAPHORE_WAIT |
35 MI_SEMAPHORE_GLOBAL_GTT |
36 MI_SEMAPHORE_POLL |
37 op;
38 *cs++ = value;
39 *cs++ = offset;
40 *cs++ = 0;
41
42 return cs;
43 }
44
emit_store(u32 * cs,u32 offset,u32 value)45 static u32 *emit_store(u32 *cs, u32 offset, u32 value)
46 {
47 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
48 *cs++ = offset;
49 *cs++ = 0;
50 *cs++ = value;
51
52 return cs;
53 }
54
emit_srm(u32 * cs,i915_reg_t reg,u32 offset)55 static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset)
56 {
57 *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
58 *cs++ = i915_mmio_reg_offset(reg);
59 *cs++ = offset;
60 *cs++ = 0;
61
62 return cs;
63 }
64
write_semaphore(u32 * x,u32 value)65 static void write_semaphore(u32 *x, u32 value)
66 {
67 WRITE_ONCE(*x, value);
68 wmb();
69 }
70
__measure_timestamps(struct intel_context * ce,u64 * dt,u64 * d_ring,u64 * d_ctx)71 static int __measure_timestamps(struct intel_context *ce,
72 u64 *dt, u64 *d_ring, u64 *d_ctx)
73 {
74 struct intel_engine_cs *engine = ce->engine;
75 u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5);
76 u32 offset = i915_ggtt_offset(engine->status_page.vma);
77 struct i915_request *rq;
78 u32 *cs;
79
80 rq = intel_context_create_request(ce);
81 if (IS_ERR(rq))
82 return PTR_ERR(rq);
83
84 cs = intel_ring_begin(rq, 28);
85 if (IS_ERR(cs)) {
86 i915_request_add(rq);
87 return PTR_ERR(cs);
88 }
89
90 /* Signal & wait for start */
91 cs = emit_store(cs, offset + 4008, 1);
92 cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1);
93
94 cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000);
95 cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004);
96
97 /* Busy wait */
98 cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1);
99
100 cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016);
101 cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012);
102
103 intel_ring_advance(rq, cs);
104 i915_request_get(rq);
105 i915_request_add(rq);
106 intel_engine_flush_submission(engine);
107
108 /* Wait for the request to start executing, that then waits for us */
109 while (READ_ONCE(sema[2]) == 0)
110 cpu_relax();
111
112 /* Run the request for a 100us, sampling timestamps before/after */
113 local_irq_disable();
114 write_semaphore(&sema[2], 0);
115 while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */
116 cpu_relax();
117 *dt = local_clock();
118 udelay(100);
119 *dt = local_clock() - *dt;
120 write_semaphore(&sema[2], 1);
121 local_irq_enable();
122
123 if (i915_request_wait(rq, 0, HZ / 2) < 0) {
124 i915_request_put(rq);
125 return -ETIME;
126 }
127 i915_request_put(rq);
128
129 pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n",
130 engine->name, sema[1], sema[3], sema[0], sema[4]);
131
132 *d_ctx = sema[3] - sema[1];
133 *d_ring = sema[4] - sema[0];
134 return 0;
135 }
136
__live_engine_timestamps(struct intel_engine_cs * engine)137 static int __live_engine_timestamps(struct intel_engine_cs *engine)
138 {
139 u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt;
140 struct intel_context *ce;
141 int i, err = 0;
142
143 ce = intel_context_create(engine);
144 if (IS_ERR(ce))
145 return PTR_ERR(ce);
146
147 for (i = 0; i < COUNT; i++) {
148 err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]);
149 if (err)
150 break;
151 }
152 intel_context_put(ce);
153 if (err)
154 return err;
155
156 dt = trifilter(st);
157 d_ring = trifilter(s_ring);
158 d_ctx = trifilter(s_ctx);
159
160 pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n",
161 engine->name, dt,
162 intel_gt_clock_interval_to_ns(engine->gt, d_ctx),
163 intel_gt_clock_interval_to_ns(engine->gt, d_ring));
164
165 d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring);
166 if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) {
167 pr_err("%s Mismatch between ring timestamp and walltime!\n",
168 engine->name);
169 return -EINVAL;
170 }
171
172 d_ring = trifilter(s_ring);
173 d_ctx = trifilter(s_ctx);
174
175 d_ctx *= engine->gt->clock_frequency;
176 if (GRAPHICS_VER(engine->i915) == 11)
177 d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */
178 else
179 d_ring *= engine->gt->clock_frequency;
180
181 if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) {
182 pr_err("%s Mismatch between ring and context timestamps!\n",
183 engine->name);
184 return -EINVAL;
185 }
186
187 return 0;
188 }
189
live_engine_timestamps(void * arg)190 static int live_engine_timestamps(void *arg)
191 {
192 struct intel_gt *gt = arg;
193 struct intel_engine_cs *engine;
194 enum intel_engine_id id;
195
196 /*
197 * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share
198 * the same CS clock.
199 */
200
201 if (GRAPHICS_VER(gt->i915) < 8)
202 return 0;
203
204 for_each_engine(engine, gt, id) {
205 int err;
206
207 st_engine_heartbeat_disable(engine);
208 err = __live_engine_timestamps(engine);
209 st_engine_heartbeat_enable(engine);
210 if (err)
211 return err;
212 }
213
214 return 0;
215 }
216
live_engine_busy_stats(void * arg)217 static int live_engine_busy_stats(void *arg)
218 {
219 struct intel_gt *gt = arg;
220 struct intel_engine_cs *engine;
221 enum intel_engine_id id;
222 struct igt_spinner spin;
223 int err = 0;
224
225 /*
226 * Check that if an engine supports busy-stats, they tell the truth.
227 */
228
229 if (igt_spinner_init(&spin, gt))
230 return -ENOMEM;
231
232 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
233 for_each_engine(engine, gt, id) {
234 struct i915_request *rq;
235 ktime_t de, dt;
236 ktime_t t[2];
237
238 if (!intel_engine_supports_stats(engine))
239 continue;
240
241 if (!intel_engine_can_store_dword(engine))
242 continue;
243
244 if (intel_gt_pm_wait_for_idle(gt)) {
245 err = -EBUSY;
246 break;
247 }
248
249 st_engine_heartbeat_disable(engine);
250
251 ENGINE_TRACE(engine, "measuring idle time\n");
252 preempt_disable();
253 de = intel_engine_get_busy_time(engine, &t[0]);
254 udelay(100);
255 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
256 preempt_enable();
257 dt = ktime_sub(t[1], t[0]);
258 if (de < 0 || de > 10) {
259 pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n",
260 engine->name,
261 de, (int)div64_u64(100 * de, dt), dt);
262 GEM_TRACE_DUMP();
263 err = -EINVAL;
264 goto end;
265 }
266
267 /* 100% busy */
268 rq = igt_spinner_create_request(&spin,
269 engine->kernel_context,
270 MI_NOOP);
271 if (IS_ERR(rq)) {
272 err = PTR_ERR(rq);
273 goto end;
274 }
275 i915_request_add(rq);
276
277 if (!igt_wait_for_spinner(&spin, rq)) {
278 intel_gt_set_wedged(engine->gt);
279 err = -ETIME;
280 goto end;
281 }
282
283 ENGINE_TRACE(engine, "measuring busy time\n");
284 preempt_disable();
285 de = intel_engine_get_busy_time(engine, &t[0]);
286 udelay(100);
287 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
288 preempt_enable();
289 dt = ktime_sub(t[1], t[0]);
290 if (100 * de < 95 * dt || 95 * de > 100 * dt) {
291 pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n",
292 engine->name,
293 de, (int)div64_u64(100 * de, dt), dt);
294 GEM_TRACE_DUMP();
295 err = -EINVAL;
296 goto end;
297 }
298
299 end:
300 st_engine_heartbeat_enable(engine);
301 igt_spinner_end(&spin);
302 if (igt_flush_test(gt->i915))
303 err = -EIO;
304 if (err)
305 break;
306 }
307
308 igt_spinner_fini(&spin);
309 if (igt_flush_test(gt->i915))
310 err = -EIO;
311 return err;
312 }
313
live_engine_pm(void * arg)314 static int live_engine_pm(void *arg)
315 {
316 struct intel_gt *gt = arg;
317 struct intel_engine_cs *engine;
318 enum intel_engine_id id;
319
320 /*
321 * Check we can call intel_engine_pm_put from any context. No
322 * failures are reported directly, but if we mess up lockdep should
323 * tell us.
324 */
325 if (intel_gt_pm_wait_for_idle(gt)) {
326 pr_err("Unable to flush GT pm before test\n");
327 return -EBUSY;
328 }
329
330 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
331 for_each_engine(engine, gt, id) {
332 const typeof(*igt_atomic_phases) *p;
333
334 for (p = igt_atomic_phases; p->name; p++) {
335 /*
336 * Acquisition is always synchronous, except if we
337 * know that the engine is already awake, in which
338 * case we should use intel_engine_pm_get_if_awake()
339 * to atomically grab the wakeref.
340 *
341 * In practice,
342 * intel_engine_pm_get();
343 * intel_engine_pm_put();
344 * occurs in one thread, while simultaneously
345 * intel_engine_pm_get_if_awake();
346 * intel_engine_pm_put();
347 * occurs from atomic context in another.
348 */
349 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
350 intel_engine_pm_get(engine);
351
352 p->critical_section_begin();
353 if (!intel_engine_pm_get_if_awake(engine))
354 pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n",
355 engine->name, p->name);
356 else
357 intel_engine_pm_put_async(engine);
358 intel_engine_pm_put_async(engine);
359 p->critical_section_end();
360
361 intel_engine_pm_flush(engine);
362
363 if (intel_engine_pm_is_awake(engine)) {
364 pr_err("%s is still awake after flushing pm\n",
365 engine->name);
366 return -EINVAL;
367 }
368
369 /* gt wakeref is async (deferred to workqueue) */
370 if (intel_gt_pm_wait_for_idle(gt)) {
371 pr_err("GT failed to idle\n");
372 return -EINVAL;
373 }
374 }
375 }
376
377 return 0;
378 }
379
live_engine_pm_selftests(struct intel_gt * gt)380 int live_engine_pm_selftests(struct intel_gt *gt)
381 {
382 static const struct i915_subtest tests[] = {
383 SUBTEST(live_engine_timestamps),
384 SUBTEST(live_engine_busy_stats),
385 SUBTEST(live_engine_pm),
386 };
387
388 return intel_gt_live_subtests(tests, gt);
389 }
390