1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include <drm/ttm/ttm_bo_driver.h>
7 #include <drm/ttm/ttm_placement.h>
8
9 #include "i915_drv.h"
10 #include "intel_memory_region.h"
11 #include "intel_region_ttm.h"
12
13 #include "gem/i915_gem_object.h"
14 #include "gem/i915_gem_region.h"
15 #include "gem/i915_gem_ttm.h"
16 #include "gem/i915_gem_mman.h"
17
18 #include "gt/intel_migrate.h"
19 #include "gt/intel_engine_pm.h"
20
21 #define I915_PL_LMEM0 TTM_PL_PRIV
22 #define I915_PL_SYSTEM TTM_PL_SYSTEM
23 #define I915_PL_STOLEN TTM_PL_VRAM
24 #define I915_PL_GGTT TTM_PL_TT
25
26 #define I915_TTM_PRIO_PURGE 0
27 #define I915_TTM_PRIO_NO_PAGES 1
28 #define I915_TTM_PRIO_HAS_PAGES 2
29
30 /*
31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
32 */
33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
34
35 /**
36 * struct i915_ttm_tt - TTM page vector with additional private information
37 * @ttm: The base TTM page vector.
38 * @dev: The struct device used for dma mapping and unmapping.
39 * @cached_st: The cached scatter-gather table.
40 *
41 * Note that DMA may be going on right up to the point where the page-
42 * vector is unpopulated in delayed destroy. Hence keep the
43 * scatter-gather table mapped and cached up to that point. This is
44 * different from the cached gem object io scatter-gather table which
45 * doesn't have an associated dma mapping.
46 */
47 struct i915_ttm_tt {
48 struct ttm_tt ttm;
49 struct device *dev;
50 struct sg_table *cached_st;
51 };
52
53 static const struct ttm_place sys_placement_flags = {
54 .fpfn = 0,
55 .lpfn = 0,
56 .mem_type = I915_PL_SYSTEM,
57 .flags = 0,
58 };
59
60 static struct ttm_placement i915_sys_placement = {
61 .num_placement = 1,
62 .placement = &sys_placement_flags,
63 .num_busy_placement = 1,
64 .busy_placement = &sys_placement_flags,
65 };
66
i915_ttm_err_to_gem(int err)67 static int i915_ttm_err_to_gem(int err)
68 {
69 /* Fastpath */
70 if (likely(!err))
71 return 0;
72
73 switch (err) {
74 case -EBUSY:
75 /*
76 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
77 * restart the operation, since we don't record the contending
78 * lock. We use -EAGAIN to restart.
79 */
80 return -EAGAIN;
81 case -ENOSPC:
82 /*
83 * Memory type / region is full, and we can't evict.
84 * Except possibly system, that returns -ENOMEM;
85 */
86 return -ENXIO;
87 default:
88 break;
89 }
90
91 return err;
92 }
93
gpu_binds_iomem(struct ttm_resource * mem)94 static bool gpu_binds_iomem(struct ttm_resource *mem)
95 {
96 return mem->mem_type != TTM_PL_SYSTEM;
97 }
98
cpu_maps_iomem(struct ttm_resource * mem)99 static bool cpu_maps_iomem(struct ttm_resource *mem)
100 {
101 /* Once / if we support GGTT, this is also false for cached ttm_tts */
102 return mem->mem_type != TTM_PL_SYSTEM;
103 }
104
105 static enum i915_cache_level
i915_ttm_cache_level(struct drm_i915_private * i915,struct ttm_resource * res,struct ttm_tt * ttm)106 i915_ttm_cache_level(struct drm_i915_private *i915, struct ttm_resource *res,
107 struct ttm_tt *ttm)
108 {
109 return ((HAS_LLC(i915) || HAS_SNOOP(i915)) && !gpu_binds_iomem(res) &&
110 ttm->caching == ttm_cached) ? I915_CACHE_LLC :
111 I915_CACHE_NONE;
112 }
113
114 static void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj);
115
116 static enum ttm_caching
i915_ttm_select_tt_caching(const struct drm_i915_gem_object * obj)117 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
118 {
119 /*
120 * Objects only allowed in system get cached cpu-mappings.
121 * Other objects get WC mapping for now. Even if in system.
122 */
123 if (obj->mm.region->type == INTEL_MEMORY_SYSTEM &&
124 obj->mm.n_placements <= 1)
125 return ttm_cached;
126
127 return ttm_write_combined;
128 }
129
130 static void
i915_ttm_place_from_region(const struct intel_memory_region * mr,struct ttm_place * place,unsigned int flags)131 i915_ttm_place_from_region(const struct intel_memory_region *mr,
132 struct ttm_place *place,
133 unsigned int flags)
134 {
135 memset(place, 0, sizeof(*place));
136 place->mem_type = intel_region_to_ttm_type(mr);
137
138 if (flags & I915_BO_ALLOC_CONTIGUOUS)
139 place->flags = TTM_PL_FLAG_CONTIGUOUS;
140 }
141
142 static void
i915_ttm_placement_from_obj(const struct drm_i915_gem_object * obj,struct ttm_place * requested,struct ttm_place * busy,struct ttm_placement * placement)143 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
144 struct ttm_place *requested,
145 struct ttm_place *busy,
146 struct ttm_placement *placement)
147 {
148 unsigned int num_allowed = obj->mm.n_placements;
149 unsigned int flags = obj->flags;
150 unsigned int i;
151
152 placement->num_placement = 1;
153 i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
154 obj->mm.region, requested, flags);
155
156 /* Cache this on object? */
157 placement->num_busy_placement = num_allowed;
158 for (i = 0; i < placement->num_busy_placement; ++i)
159 i915_ttm_place_from_region(obj->mm.placements[i], busy + i, flags);
160
161 if (num_allowed == 0) {
162 *busy = *requested;
163 placement->num_busy_placement = 1;
164 }
165
166 placement->placement = requested;
167 placement->busy_placement = busy;
168 }
169
i915_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)170 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
171 uint32_t page_flags)
172 {
173 struct ttm_resource_manager *man =
174 ttm_manager_type(bo->bdev, bo->resource->mem_type);
175 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
176 struct i915_ttm_tt *i915_tt;
177 int ret;
178
179 i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
180 if (!i915_tt)
181 return NULL;
182
183 if (obj->flags & I915_BO_ALLOC_CPU_CLEAR &&
184 man->use_tt)
185 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
186
187 ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags,
188 i915_ttm_select_tt_caching(obj));
189 if (ret) {
190 kfree(i915_tt);
191 return NULL;
192 }
193
194 i915_tt->dev = obj->base.dev->dev;
195
196 return &i915_tt->ttm;
197 }
198
i915_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)199 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
200 {
201 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
202
203 if (i915_tt->cached_st) {
204 dma_unmap_sgtable(i915_tt->dev, i915_tt->cached_st,
205 DMA_BIDIRECTIONAL, 0);
206 sg_free_table(i915_tt->cached_st);
207 kfree(i915_tt->cached_st);
208 i915_tt->cached_st = NULL;
209 }
210 ttm_pool_free(&bdev->pool, ttm);
211 }
212
i915_ttm_tt_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)213 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
214 {
215 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
216
217 ttm_tt_destroy_common(bdev, ttm);
218 ttm_tt_fini(ttm);
219 kfree(i915_tt);
220 }
221
i915_ttm_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)222 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
223 const struct ttm_place *place)
224 {
225 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
226
227 /* Will do for now. Our pinned objects are still on TTM's LRU lists */
228 return i915_gem_object_evictable(obj);
229 }
230
i915_ttm_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)231 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
232 struct ttm_placement *placement)
233 {
234 *placement = i915_sys_placement;
235 }
236
i915_ttm_move_notify(struct ttm_buffer_object * bo)237 static int i915_ttm_move_notify(struct ttm_buffer_object *bo)
238 {
239 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
240 int ret;
241
242 ret = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE);
243 if (ret)
244 return ret;
245
246 ret = __i915_gem_object_put_pages(obj);
247 if (ret)
248 return ret;
249
250 return 0;
251 }
252
i915_ttm_free_cached_io_st(struct drm_i915_gem_object * obj)253 static void i915_ttm_free_cached_io_st(struct drm_i915_gem_object *obj)
254 {
255 struct radix_tree_iter iter;
256 void __rcu **slot;
257
258 if (!obj->ttm.cached_io_st)
259 return;
260
261 rcu_read_lock();
262 radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
263 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
264 rcu_read_unlock();
265
266 sg_free_table(obj->ttm.cached_io_st);
267 kfree(obj->ttm.cached_io_st);
268 obj->ttm.cached_io_st = NULL;
269 }
270
271 static void
i915_ttm_adjust_domains_after_move(struct drm_i915_gem_object * obj)272 i915_ttm_adjust_domains_after_move(struct drm_i915_gem_object *obj)
273 {
274 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
275
276 if (cpu_maps_iomem(bo->resource) || bo->ttm->caching != ttm_cached) {
277 obj->write_domain = I915_GEM_DOMAIN_WC;
278 obj->read_domains = I915_GEM_DOMAIN_WC;
279 } else {
280 obj->write_domain = I915_GEM_DOMAIN_CPU;
281 obj->read_domains = I915_GEM_DOMAIN_CPU;
282 }
283 }
284
i915_ttm_adjust_gem_after_move(struct drm_i915_gem_object * obj)285 static void i915_ttm_adjust_gem_after_move(struct drm_i915_gem_object *obj)
286 {
287 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
288 unsigned int cache_level;
289 unsigned int i;
290
291 /*
292 * If object was moved to an allowable region, update the object
293 * region to consider it migrated. Note that if it's currently not
294 * in an allowable region, it's evicted and we don't update the
295 * object region.
296 */
297 if (intel_region_to_ttm_type(obj->mm.region) != bo->resource->mem_type) {
298 for (i = 0; i < obj->mm.n_placements; ++i) {
299 struct intel_memory_region *mr = obj->mm.placements[i];
300
301 if (intel_region_to_ttm_type(mr) == bo->resource->mem_type &&
302 mr != obj->mm.region) {
303 i915_gem_object_release_memory_region(obj);
304 i915_gem_object_init_memory_region(obj, mr);
305 break;
306 }
307 }
308 }
309
310 obj->mem_flags &= ~(I915_BO_FLAG_STRUCT_PAGE | I915_BO_FLAG_IOMEM);
311
312 obj->mem_flags |= cpu_maps_iomem(bo->resource) ? I915_BO_FLAG_IOMEM :
313 I915_BO_FLAG_STRUCT_PAGE;
314
315 cache_level = i915_ttm_cache_level(to_i915(bo->base.dev), bo->resource,
316 bo->ttm);
317 i915_gem_object_set_cache_coherency(obj, cache_level);
318 }
319
i915_ttm_purge(struct drm_i915_gem_object * obj)320 static void i915_ttm_purge(struct drm_i915_gem_object *obj)
321 {
322 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
323 struct ttm_operation_ctx ctx = {
324 .interruptible = true,
325 .no_wait_gpu = false,
326 };
327 struct ttm_placement place = {};
328 int ret;
329
330 if (obj->mm.madv == __I915_MADV_PURGED)
331 return;
332
333 /* TTM's purge interface. Note that we might be reentering. */
334 ret = ttm_bo_validate(bo, &place, &ctx);
335 if (!ret) {
336 obj->write_domain = 0;
337 obj->read_domains = 0;
338 i915_ttm_adjust_gem_after_move(obj);
339 i915_ttm_free_cached_io_st(obj);
340 obj->mm.madv = __I915_MADV_PURGED;
341 }
342 }
343
i915_ttm_swap_notify(struct ttm_buffer_object * bo)344 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
345 {
346 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
347 int ret = i915_ttm_move_notify(bo);
348
349 GEM_WARN_ON(ret);
350 GEM_WARN_ON(obj->ttm.cached_io_st);
351 if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
352 i915_ttm_purge(obj);
353 }
354
i915_ttm_delete_mem_notify(struct ttm_buffer_object * bo)355 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
356 {
357 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
358
359 if (likely(obj))
360 i915_ttm_free_cached_io_st(obj);
361 }
362
363 static struct intel_memory_region *
i915_ttm_region(struct ttm_device * bdev,int ttm_mem_type)364 i915_ttm_region(struct ttm_device *bdev, int ttm_mem_type)
365 {
366 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
367
368 /* There's some room for optimization here... */
369 GEM_BUG_ON(ttm_mem_type != I915_PL_SYSTEM &&
370 ttm_mem_type < I915_PL_LMEM0);
371 if (ttm_mem_type == I915_PL_SYSTEM)
372 return intel_memory_region_lookup(i915, INTEL_MEMORY_SYSTEM,
373 0);
374
375 return intel_memory_region_lookup(i915, INTEL_MEMORY_LOCAL,
376 ttm_mem_type - I915_PL_LMEM0);
377 }
378
i915_ttm_tt_get_st(struct ttm_tt * ttm)379 static struct sg_table *i915_ttm_tt_get_st(struct ttm_tt *ttm)
380 {
381 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
382 struct sg_table *st;
383 int ret;
384
385 if (i915_tt->cached_st)
386 return i915_tt->cached_st;
387
388 st = kzalloc(sizeof(*st), GFP_KERNEL);
389 if (!st)
390 return ERR_PTR(-ENOMEM);
391
392 ret = sg_alloc_table_from_pages_segment(st,
393 ttm->pages, ttm->num_pages,
394 0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
395 i915_sg_segment_size(), GFP_KERNEL);
396 if (ret) {
397 kfree(st);
398 return ERR_PTR(ret);
399 }
400
401 ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
402 if (ret) {
403 sg_free_table(st);
404 kfree(st);
405 return ERR_PTR(ret);
406 }
407
408 i915_tt->cached_st = st;
409 return st;
410 }
411
412 static struct sg_table *
i915_ttm_resource_get_st(struct drm_i915_gem_object * obj,struct ttm_resource * res)413 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
414 struct ttm_resource *res)
415 {
416 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
417
418 if (!gpu_binds_iomem(res))
419 return i915_ttm_tt_get_st(bo->ttm);
420
421 /*
422 * If CPU mapping differs, we need to add the ttm_tt pages to
423 * the resulting st. Might make sense for GGTT.
424 */
425 GEM_WARN_ON(!cpu_maps_iomem(res));
426 return intel_region_ttm_resource_to_st(obj->mm.region, res);
427 }
428
i915_ttm_accel_move(struct ttm_buffer_object * bo,struct ttm_resource * dst_mem,struct sg_table * dst_st)429 static int i915_ttm_accel_move(struct ttm_buffer_object *bo,
430 struct ttm_resource *dst_mem,
431 struct sg_table *dst_st)
432 {
433 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
434 bdev);
435 struct ttm_resource_manager *src_man =
436 ttm_manager_type(bo->bdev, bo->resource->mem_type);
437 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
438 struct sg_table *src_st;
439 struct i915_request *rq;
440 struct ttm_tt *ttm = bo->ttm;
441 enum i915_cache_level src_level, dst_level;
442 int ret;
443
444 if (!i915->gt.migrate.context)
445 return -EINVAL;
446
447 dst_level = i915_ttm_cache_level(i915, dst_mem, ttm);
448 if (!ttm || !ttm_tt_is_populated(ttm)) {
449 if (bo->type == ttm_bo_type_kernel)
450 return -EINVAL;
451
452 if (ttm && !(ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC))
453 return 0;
454
455 intel_engine_pm_get(i915->gt.migrate.context->engine);
456 ret = intel_context_migrate_clear(i915->gt.migrate.context, NULL,
457 dst_st->sgl, dst_level,
458 gpu_binds_iomem(dst_mem),
459 0, &rq);
460
461 if (!ret && rq) {
462 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
463 i915_request_put(rq);
464 }
465 intel_engine_pm_put(i915->gt.migrate.context->engine);
466 } else {
467 src_st = src_man->use_tt ? i915_ttm_tt_get_st(ttm) :
468 obj->ttm.cached_io_st;
469
470 src_level = i915_ttm_cache_level(i915, bo->resource, ttm);
471 intel_engine_pm_get(i915->gt.migrate.context->engine);
472 ret = intel_context_migrate_copy(i915->gt.migrate.context,
473 NULL, src_st->sgl, src_level,
474 gpu_binds_iomem(bo->resource),
475 dst_st->sgl, dst_level,
476 gpu_binds_iomem(dst_mem),
477 &rq);
478 if (!ret && rq) {
479 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
480 i915_request_put(rq);
481 }
482 intel_engine_pm_put(i915->gt.migrate.context->engine);
483 }
484
485 return ret;
486 }
487
i915_ttm_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * dst_mem,struct ttm_place * hop)488 static int i915_ttm_move(struct ttm_buffer_object *bo, bool evict,
489 struct ttm_operation_ctx *ctx,
490 struct ttm_resource *dst_mem,
491 struct ttm_place *hop)
492 {
493 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
494 struct ttm_resource_manager *dst_man =
495 ttm_manager_type(bo->bdev, dst_mem->mem_type);
496 struct intel_memory_region *dst_reg, *src_reg;
497 union {
498 struct ttm_kmap_iter_tt tt;
499 struct ttm_kmap_iter_iomap io;
500 } _dst_iter, _src_iter;
501 struct ttm_kmap_iter *dst_iter, *src_iter;
502 struct sg_table *dst_st;
503 int ret;
504
505 dst_reg = i915_ttm_region(bo->bdev, dst_mem->mem_type);
506 src_reg = i915_ttm_region(bo->bdev, bo->resource->mem_type);
507 GEM_BUG_ON(!dst_reg || !src_reg);
508
509 /* Sync for now. We could do the actual copy async. */
510 ret = ttm_bo_wait_ctx(bo, ctx);
511 if (ret)
512 return ret;
513
514 ret = i915_ttm_move_notify(bo);
515 if (ret)
516 return ret;
517
518 if (obj->mm.madv != I915_MADV_WILLNEED) {
519 i915_ttm_purge(obj);
520 ttm_resource_free(bo, &dst_mem);
521 return 0;
522 }
523
524 /* Populate ttm with pages if needed. Typically system memory. */
525 if (bo->ttm && (dst_man->use_tt ||
526 (bo->ttm->page_flags & TTM_PAGE_FLAG_SWAPPED))) {
527 ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
528 if (ret)
529 return ret;
530 }
531
532 dst_st = i915_ttm_resource_get_st(obj, dst_mem);
533 if (IS_ERR(dst_st))
534 return PTR_ERR(dst_st);
535
536 ret = i915_ttm_accel_move(bo, dst_mem, dst_st);
537 if (ret) {
538 /* If we start mapping GGTT, we can no longer use man::use_tt here. */
539 dst_iter = !cpu_maps_iomem(dst_mem) ?
540 ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm) :
541 ttm_kmap_iter_iomap_init(&_dst_iter.io, &dst_reg->iomap,
542 dst_st, dst_reg->region.start);
543
544 src_iter = !cpu_maps_iomem(bo->resource) ?
545 ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm) :
546 ttm_kmap_iter_iomap_init(&_src_iter.io, &src_reg->iomap,
547 obj->ttm.cached_io_st,
548 src_reg->region.start);
549
550 ttm_move_memcpy(bo, dst_mem->num_pages, dst_iter, src_iter);
551 }
552 /* Below dst_mem becomes bo->resource. */
553 ttm_bo_move_sync_cleanup(bo, dst_mem);
554 i915_ttm_adjust_domains_after_move(obj);
555 i915_ttm_free_cached_io_st(obj);
556
557 if (gpu_binds_iomem(dst_mem) || cpu_maps_iomem(dst_mem)) {
558 obj->ttm.cached_io_st = dst_st;
559 obj->ttm.get_io_page.sg_pos = dst_st->sgl;
560 obj->ttm.get_io_page.sg_idx = 0;
561 }
562
563 i915_ttm_adjust_gem_after_move(obj);
564 return 0;
565 }
566
i915_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)567 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
568 {
569 if (!cpu_maps_iomem(mem))
570 return 0;
571
572 mem->bus.caching = ttm_write_combined;
573 mem->bus.is_iomem = true;
574
575 return 0;
576 }
577
i915_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)578 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
579 unsigned long page_offset)
580 {
581 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
582 unsigned long base = obj->mm.region->iomap.base - obj->mm.region->region.start;
583 struct scatterlist *sg;
584 unsigned int ofs;
585
586 GEM_WARN_ON(bo->ttm);
587
588 sg = __i915_gem_object_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs, true);
589
590 return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
591 }
592
593 static struct ttm_device_funcs i915_ttm_bo_driver = {
594 .ttm_tt_create = i915_ttm_tt_create,
595 .ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
596 .ttm_tt_destroy = i915_ttm_tt_destroy,
597 .eviction_valuable = i915_ttm_eviction_valuable,
598 .evict_flags = i915_ttm_evict_flags,
599 .move = i915_ttm_move,
600 .swap_notify = i915_ttm_swap_notify,
601 .delete_mem_notify = i915_ttm_delete_mem_notify,
602 .io_mem_reserve = i915_ttm_io_mem_reserve,
603 .io_mem_pfn = i915_ttm_io_mem_pfn,
604 };
605
606 /**
607 * i915_ttm_driver - Return a pointer to the TTM device funcs
608 *
609 * Return: Pointer to statically allocated TTM device funcs.
610 */
i915_ttm_driver(void)611 struct ttm_device_funcs *i915_ttm_driver(void)
612 {
613 return &i915_ttm_bo_driver;
614 }
615
__i915_ttm_get_pages(struct drm_i915_gem_object * obj,struct ttm_placement * placement)616 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
617 struct ttm_placement *placement)
618 {
619 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
620 struct ttm_operation_ctx ctx = {
621 .interruptible = true,
622 .no_wait_gpu = false,
623 };
624 struct sg_table *st;
625 int real_num_busy;
626 int ret;
627
628 /* First try only the requested placement. No eviction. */
629 real_num_busy = fetch_and_zero(&placement->num_busy_placement);
630 ret = ttm_bo_validate(bo, placement, &ctx);
631 if (ret) {
632 ret = i915_ttm_err_to_gem(ret);
633 /*
634 * Anything that wants to restart the operation gets to
635 * do that.
636 */
637 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
638 ret == -EAGAIN)
639 return ret;
640
641 /*
642 * If the initial attempt fails, allow all accepted placements,
643 * evicting if necessary.
644 */
645 placement->num_busy_placement = real_num_busy;
646 ret = ttm_bo_validate(bo, placement, &ctx);
647 if (ret)
648 return i915_ttm_err_to_gem(ret);
649 }
650
651 i915_ttm_adjust_lru(obj);
652 if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
653 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
654 if (ret)
655 return ret;
656
657 i915_ttm_adjust_domains_after_move(obj);
658 i915_ttm_adjust_gem_after_move(obj);
659 }
660
661 if (!i915_gem_object_has_pages(obj)) {
662 /* Object either has a page vector or is an iomem object */
663 st = bo->ttm ? i915_ttm_tt_get_st(bo->ttm) : obj->ttm.cached_io_st;
664 if (IS_ERR(st))
665 return PTR_ERR(st);
666
667 __i915_gem_object_set_pages(obj, st, i915_sg_dma_sizes(st->sgl));
668 }
669
670 return ret;
671 }
672
i915_ttm_get_pages(struct drm_i915_gem_object * obj)673 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
674 {
675 struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
676 struct ttm_placement placement;
677
678 GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
679
680 /* Move to the requested placement. */
681 i915_ttm_placement_from_obj(obj, &requested, busy, &placement);
682
683 return __i915_ttm_get_pages(obj, &placement);
684 }
685
686 /**
687 * DOC: Migration vs eviction
688 *
689 * GEM migration may not be the same as TTM migration / eviction. If
690 * the TTM core decides to evict an object it may be evicted to a
691 * TTM memory type that is not in the object's allowable GEM regions, or
692 * in fact theoretically to a TTM memory type that doesn't correspond to
693 * a GEM memory region. In that case the object's GEM region is not
694 * updated, and the data is migrated back to the GEM region at
695 * get_pages time. TTM may however set up CPU ptes to the object even
696 * when it is evicted.
697 * Gem forced migration using the i915_ttm_migrate() op, is allowed even
698 * to regions that are not in the object's list of allowable placements.
699 */
i915_ttm_migrate(struct drm_i915_gem_object * obj,struct intel_memory_region * mr)700 static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
701 struct intel_memory_region *mr)
702 {
703 struct ttm_place requested;
704 struct ttm_placement placement;
705 int ret;
706
707 i915_ttm_place_from_region(mr, &requested, obj->flags);
708 placement.num_placement = 1;
709 placement.num_busy_placement = 1;
710 placement.placement = &requested;
711 placement.busy_placement = &requested;
712
713 ret = __i915_ttm_get_pages(obj, &placement);
714 if (ret)
715 return ret;
716
717 /*
718 * Reinitialize the region bindings. This is primarily
719 * required for objects where the new region is not in
720 * its allowable placements.
721 */
722 if (obj->mm.region != mr) {
723 i915_gem_object_release_memory_region(obj);
724 i915_gem_object_init_memory_region(obj, mr);
725 }
726
727 return 0;
728 }
729
i915_ttm_put_pages(struct drm_i915_gem_object * obj,struct sg_table * st)730 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
731 struct sg_table *st)
732 {
733 /*
734 * We're currently not called from a shrinker, so put_pages()
735 * typically means the object is about to destroyed, or called
736 * from move_notify(). So just avoid doing much for now.
737 * If the object is not destroyed next, The TTM eviction logic
738 * and shrinkers will move it out if needed.
739 */
740
741 i915_ttm_adjust_lru(obj);
742 }
743
i915_ttm_adjust_lru(struct drm_i915_gem_object * obj)744 static void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
745 {
746 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
747
748 /*
749 * Don't manipulate the TTM LRUs while in TTM bo destruction.
750 * We're called through i915_ttm_delete_mem_notify().
751 */
752 if (!kref_read(&bo->kref))
753 return;
754
755 /*
756 * Put on the correct LRU list depending on the MADV status
757 */
758 spin_lock(&bo->bdev->lru_lock);
759 if (obj->mm.madv != I915_MADV_WILLNEED) {
760 bo->priority = I915_TTM_PRIO_PURGE;
761 } else if (!i915_gem_object_has_pages(obj)) {
762 if (bo->priority < I915_TTM_PRIO_HAS_PAGES)
763 bo->priority = I915_TTM_PRIO_HAS_PAGES;
764 } else {
765 if (bo->priority > I915_TTM_PRIO_NO_PAGES)
766 bo->priority = I915_TTM_PRIO_NO_PAGES;
767 }
768
769 ttm_bo_move_to_lru_tail(bo, bo->resource, NULL);
770 spin_unlock(&bo->bdev->lru_lock);
771 }
772
773 /*
774 * TTM-backed gem object destruction requires some clarification.
775 * Basically we have two possibilities here. We can either rely on the
776 * i915 delayed destruction and put the TTM object when the object
777 * is idle. This would be detected by TTM which would bypass the
778 * TTM delayed destroy handling. The other approach is to put the TTM
779 * object early and rely on the TTM destroyed handling, and then free
780 * the leftover parts of the GEM object once TTM's destroyed list handling is
781 * complete. For now, we rely on the latter for two reasons:
782 * a) TTM can evict an object even when it's on the delayed destroy list,
783 * which in theory allows for complete eviction.
784 * b) There is work going on in TTM to allow freeing an object even when
785 * it's not idle, and using the TTM destroyed list handling could help us
786 * benefit from that.
787 */
i915_ttm_delayed_free(struct drm_i915_gem_object * obj)788 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
789 {
790 if (obj->ttm.created) {
791 ttm_bo_put(i915_gem_to_ttm(obj));
792 } else {
793 __i915_gem_free_object(obj);
794 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
795 }
796 }
797
vm_fault_ttm(struct vm_fault * vmf)798 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
799 {
800 struct vm_area_struct *area = vmf->vma;
801 struct drm_i915_gem_object *obj =
802 i915_ttm_to_gem(area->vm_private_data);
803
804 /* Sanity check that we allow writing into this object */
805 if (unlikely(i915_gem_object_is_readonly(obj) &&
806 area->vm_flags & VM_WRITE))
807 return VM_FAULT_SIGBUS;
808
809 return ttm_bo_vm_fault(vmf);
810 }
811
812 static int
vm_access_ttm(struct vm_area_struct * area,unsigned long addr,void * buf,int len,int write)813 vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
814 void *buf, int len, int write)
815 {
816 struct drm_i915_gem_object *obj =
817 i915_ttm_to_gem(area->vm_private_data);
818
819 if (i915_gem_object_is_readonly(obj) && write)
820 return -EACCES;
821
822 return ttm_bo_vm_access(area, addr, buf, len, write);
823 }
824
ttm_vm_open(struct vm_area_struct * vma)825 static void ttm_vm_open(struct vm_area_struct *vma)
826 {
827 struct drm_i915_gem_object *obj =
828 i915_ttm_to_gem(vma->vm_private_data);
829
830 GEM_BUG_ON(!obj);
831 i915_gem_object_get(obj);
832 }
833
ttm_vm_close(struct vm_area_struct * vma)834 static void ttm_vm_close(struct vm_area_struct *vma)
835 {
836 struct drm_i915_gem_object *obj =
837 i915_ttm_to_gem(vma->vm_private_data);
838
839 GEM_BUG_ON(!obj);
840 i915_gem_object_put(obj);
841 }
842
843 static const struct vm_operations_struct vm_ops_ttm = {
844 .fault = vm_fault_ttm,
845 .access = vm_access_ttm,
846 .open = ttm_vm_open,
847 .close = ttm_vm_close,
848 };
849
i915_ttm_mmap_offset(struct drm_i915_gem_object * obj)850 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
851 {
852 /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
853 GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
854
855 return drm_vma_node_offset_addr(&obj->base.vma_node);
856 }
857
858 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
859 .name = "i915_gem_object_ttm",
860
861 .get_pages = i915_ttm_get_pages,
862 .put_pages = i915_ttm_put_pages,
863 .truncate = i915_ttm_purge,
864 .adjust_lru = i915_ttm_adjust_lru,
865 .delayed_free = i915_ttm_delayed_free,
866 .migrate = i915_ttm_migrate,
867 .mmap_offset = i915_ttm_mmap_offset,
868 .mmap_ops = &vm_ops_ttm,
869 };
870
i915_ttm_bo_destroy(struct ttm_buffer_object * bo)871 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
872 {
873 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
874
875 /* This releases all gem object bindings to the backend. */
876 __i915_gem_free_object(obj);
877
878 i915_gem_object_release_memory_region(obj);
879 mutex_destroy(&obj->ttm.get_io_page.lock);
880
881 if (obj->ttm.created)
882 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
883 }
884
885 /**
886 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
887 * @mem: The initial memory region for the object.
888 * @obj: The gem object.
889 * @size: Object size in bytes.
890 * @flags: gem object flags.
891 *
892 * Return: 0 on success, negative error code on failure.
893 */
__i915_gem_ttm_object_init(struct intel_memory_region * mem,struct drm_i915_gem_object * obj,resource_size_t size,resource_size_t page_size,unsigned int flags)894 int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
895 struct drm_i915_gem_object *obj,
896 resource_size_t size,
897 resource_size_t page_size,
898 unsigned int flags)
899 {
900 static struct lock_class_key lock_class;
901 struct drm_i915_private *i915 = mem->i915;
902 struct ttm_operation_ctx ctx = {
903 .interruptible = true,
904 .no_wait_gpu = false,
905 };
906 enum ttm_bo_type bo_type;
907 int ret;
908
909 drm_gem_private_object_init(&i915->drm, &obj->base, size);
910 i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
911 i915_gem_object_init_memory_region(obj, mem);
912 i915_gem_object_make_unshrinkable(obj);
913 INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
914 mutex_init(&obj->ttm.get_io_page.lock);
915 bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
916 ttm_bo_type_kernel;
917
918 obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
919
920 /* Forcing the page size is kernel internal only */
921 GEM_BUG_ON(page_size && obj->mm.n_placements);
922
923 /*
924 * If this function fails, it will call the destructor, but
925 * our caller still owns the object. So no freeing in the
926 * destructor until obj->ttm.created is true.
927 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
928 * until successful initialization.
929 */
930 ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), size,
931 bo_type, &i915_sys_placement,
932 page_size >> PAGE_SHIFT,
933 &ctx, NULL, NULL, i915_ttm_bo_destroy);
934 if (ret)
935 return i915_ttm_err_to_gem(ret);
936
937 obj->ttm.created = true;
938 i915_ttm_adjust_domains_after_move(obj);
939 i915_ttm_adjust_gem_after_move(obj);
940 i915_gem_object_unlock(obj);
941
942 return 0;
943 }
944
945 static const struct intel_memory_region_ops ttm_system_region_ops = {
946 .init_object = __i915_gem_ttm_object_init,
947 };
948
949 struct intel_memory_region *
i915_gem_ttm_system_setup(struct drm_i915_private * i915,u16 type,u16 instance)950 i915_gem_ttm_system_setup(struct drm_i915_private *i915,
951 u16 type, u16 instance)
952 {
953 struct intel_memory_region *mr;
954
955 mr = intel_memory_region_create(i915, 0,
956 totalram_pages() << PAGE_SHIFT,
957 PAGE_SIZE, 0,
958 type, instance,
959 &ttm_system_region_ops);
960 if (IS_ERR(mr))
961 return mr;
962
963 intel_memory_region_set_name(mr, "system-ttm");
964 return mr;
965 }
966