1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/drm_atomic_state_helper.h>
7 
8 #include "intel_atomic.h"
9 #include "intel_bw.h"
10 #include "intel_cdclk.h"
11 #include "intel_display_types.h"
12 #include "intel_pm.h"
13 #include "intel_sideband.h"
14 
15 /* Parameters for Qclk Geyserville (QGV) */
16 struct intel_qgv_point {
17 	u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
18 };
19 
20 struct intel_psf_gv_point {
21 	u8 clk; /* clock in multiples of 16.6666 MHz */
22 };
23 
24 struct intel_qgv_info {
25 	struct intel_qgv_point points[I915_NUM_QGV_POINTS];
26 	struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
27 	u8 num_points;
28 	u8 num_psf_points;
29 	u8 t_bl;
30 };
31 
dg1_mchbar_read_qgv_point_info(struct drm_i915_private * dev_priv,struct intel_qgv_point * sp,int point)32 static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
33 					  struct intel_qgv_point *sp,
34 					  int point)
35 {
36 	u32 dclk_ratio, dclk_reference;
37 	u32 val;
38 
39 	val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
40 	dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
41 	if (val & DG1_QCLK_REFERENCE)
42 		dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
43 	else
44 		dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
45 	sp->dclk = dclk_ratio * dclk_reference;
46 
47 	val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
48 	if (val & DG1_GEAR_TYPE)
49 		sp->dclk *= 2;
50 
51 	if (sp->dclk == 0)
52 		return -EINVAL;
53 
54 	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
55 	sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
56 	sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);
57 
58 	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
59 	sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
60 	sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);
61 
62 	sp->t_rc = sp->t_rp + sp->t_ras;
63 
64 	return 0;
65 }
66 
icl_pcode_read_qgv_point_info(struct drm_i915_private * dev_priv,struct intel_qgv_point * sp,int point)67 static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
68 					 struct intel_qgv_point *sp,
69 					 int point)
70 {
71 	u32 val = 0, val2 = 0;
72 	int ret;
73 
74 	ret = sandybridge_pcode_read(dev_priv,
75 				     ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
76 				     ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
77 				     &val, &val2);
78 	if (ret)
79 		return ret;
80 
81 	sp->dclk = val & 0xffff;
82 	sp->t_rp = (val & 0xff0000) >> 16;
83 	sp->t_rcd = (val & 0xff000000) >> 24;
84 
85 	sp->t_rdpre = val2 & 0xff;
86 	sp->t_ras = (val2 & 0xff00) >> 8;
87 
88 	sp->t_rc = sp->t_rp + sp->t_ras;
89 
90 	return 0;
91 }
92 
adls_pcode_read_psf_gv_point_info(struct drm_i915_private * dev_priv,struct intel_psf_gv_point * points)93 static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
94 					    struct intel_psf_gv_point *points)
95 {
96 	u32 val = 0;
97 	int ret;
98 	int i;
99 
100 	ret = sandybridge_pcode_read(dev_priv,
101 				     ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
102 				     ADL_PCODE_MEM_SS_READ_PSF_GV_INFO,
103 				     &val, NULL);
104 	if (ret)
105 		return ret;
106 
107 	for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
108 		points[i].clk = val & 0xff;
109 		val >>= 8;
110 	}
111 
112 	return 0;
113 }
114 
icl_pcode_restrict_qgv_points(struct drm_i915_private * dev_priv,u32 points_mask)115 int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
116 				  u32 points_mask)
117 {
118 	int ret;
119 
120 	/* bspec says to keep retrying for at least 1 ms */
121 	ret = skl_pcode_request(dev_priv, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
122 				points_mask,
123 				ICL_PCODE_POINTS_RESTRICTED_MASK,
124 				ICL_PCODE_POINTS_RESTRICTED,
125 				1);
126 
127 	if (ret < 0) {
128 		drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask);
129 		return ret;
130 	}
131 
132 	return 0;
133 }
134 
icl_get_qgv_points(struct drm_i915_private * dev_priv,struct intel_qgv_info * qi)135 static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
136 			      struct intel_qgv_info *qi)
137 {
138 	const struct dram_info *dram_info = &dev_priv->dram_info;
139 	int i, ret;
140 
141 	qi->num_points = dram_info->num_qgv_points;
142 	qi->num_psf_points = dram_info->num_psf_gv_points;
143 
144 	if (DISPLAY_VER(dev_priv) == 12)
145 		switch (dram_info->type) {
146 		case INTEL_DRAM_DDR4:
147 			qi->t_bl = 4;
148 			break;
149 		case INTEL_DRAM_DDR5:
150 			qi->t_bl = 8;
151 			break;
152 		default:
153 			qi->t_bl = 16;
154 			break;
155 		}
156 	else if (DISPLAY_VER(dev_priv) == 11)
157 		qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
158 
159 	if (drm_WARN_ON(&dev_priv->drm,
160 			qi->num_points > ARRAY_SIZE(qi->points)))
161 		qi->num_points = ARRAY_SIZE(qi->points);
162 
163 	for (i = 0; i < qi->num_points; i++) {
164 		struct intel_qgv_point *sp = &qi->points[i];
165 
166 		if (IS_DG1(dev_priv))
167 			ret = dg1_mchbar_read_qgv_point_info(dev_priv, sp, i);
168 		else
169 			ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);
170 
171 		if (ret)
172 			return ret;
173 
174 		drm_dbg_kms(&dev_priv->drm,
175 			    "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
176 			    i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
177 			    sp->t_rcd, sp->t_rc);
178 	}
179 
180 	if (qi->num_psf_points > 0) {
181 		ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
182 		if (ret) {
183 			drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
184 			qi->num_psf_points = 0;
185 		}
186 
187 		for (i = 0; i < qi->num_psf_points; i++)
188 			drm_dbg_kms(&dev_priv->drm,
189 				    "PSF GV %d: CLK=%d \n",
190 				    i, qi->psf_points[i].clk);
191 	}
192 
193 	return 0;
194 }
195 
icl_calc_bw(int dclk,int num,int den)196 static int icl_calc_bw(int dclk, int num, int den)
197 {
198 	/* multiples of 16.666MHz (100/6) */
199 	return DIV_ROUND_CLOSEST(num * dclk * 100, den * 6);
200 }
201 
adl_calc_psf_bw(int clk)202 static int adl_calc_psf_bw(int clk)
203 {
204 	/*
205 	 * clk is multiples of 16.666MHz (100/6)
206 	 * According to BSpec PSF GV bandwidth is
207 	 * calculated as BW = 64 * clk * 16.666Mhz
208 	 */
209 	return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
210 }
211 
icl_sagv_max_dclk(const struct intel_qgv_info * qi)212 static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
213 {
214 	u16 dclk = 0;
215 	int i;
216 
217 	for (i = 0; i < qi->num_points; i++)
218 		dclk = max(dclk, qi->points[i].dclk);
219 
220 	return dclk;
221 }
222 
223 struct intel_sa_info {
224 	u16 displayrtids;
225 	u8 deburst, deprogbwlimit, derating;
226 };
227 
228 static const struct intel_sa_info icl_sa_info = {
229 	.deburst = 8,
230 	.deprogbwlimit = 25, /* GB/s */
231 	.displayrtids = 128,
232 	.derating = 10,
233 };
234 
235 static const struct intel_sa_info tgl_sa_info = {
236 	.deburst = 16,
237 	.deprogbwlimit = 34, /* GB/s */
238 	.displayrtids = 256,
239 	.derating = 10,
240 };
241 
242 static const struct intel_sa_info rkl_sa_info = {
243 	.deburst = 16,
244 	.deprogbwlimit = 20, /* GB/s */
245 	.displayrtids = 128,
246 	.derating = 10,
247 };
248 
249 static const struct intel_sa_info adls_sa_info = {
250 	.deburst = 16,
251 	.deprogbwlimit = 38, /* GB/s */
252 	.displayrtids = 256,
253 	.derating = 10,
254 };
255 
256 static const struct intel_sa_info adlp_sa_info = {
257 	.deburst = 16,
258 	.deprogbwlimit = 38, /* GB/s */
259 	.displayrtids = 256,
260 	.derating = 20,
261 };
262 
icl_get_bw_info(struct drm_i915_private * dev_priv,const struct intel_sa_info * sa)263 static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
264 {
265 	struct intel_qgv_info qi = {};
266 	bool is_y_tile = true; /* assume y tile may be used */
267 	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
268 	int deinterleave;
269 	int ipqdepth, ipqdepthpch;
270 	int dclk_max;
271 	int maxdebw;
272 	int i, ret;
273 
274 	ret = icl_get_qgv_points(dev_priv, &qi);
275 	if (ret) {
276 		drm_dbg_kms(&dev_priv->drm,
277 			    "Failed to get memory subsystem information, ignoring bandwidth limits");
278 		return ret;
279 	}
280 
281 	deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
282 	dclk_max = icl_sagv_max_dclk(&qi);
283 
284 	ipqdepthpch = 16;
285 
286 	maxdebw = min(sa->deprogbwlimit * 1000,
287 		      icl_calc_bw(dclk_max, 16, 1) * 6 / 10); /* 60% */
288 	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
289 
290 	for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
291 		struct intel_bw_info *bi = &dev_priv->max_bw[i];
292 		int clpchgroup;
293 		int j;
294 
295 		clpchgroup = (sa->deburst * deinterleave / num_channels) << i;
296 		bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
297 
298 		bi->num_qgv_points = qi.num_points;
299 		bi->num_psf_gv_points = qi.num_psf_points;
300 
301 		for (j = 0; j < qi.num_points; j++) {
302 			const struct intel_qgv_point *sp = &qi.points[j];
303 			int ct, bw;
304 
305 			/*
306 			 * Max row cycle time
307 			 *
308 			 * FIXME what is the logic behind the
309 			 * assumed burst length?
310 			 */
311 			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
312 				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
313 			bw = icl_calc_bw(sp->dclk, clpchgroup * 32 * num_channels, ct);
314 
315 			bi->deratedbw[j] = min(maxdebw,
316 					       bw * (100 - sa->derating) / 100);
317 
318 			drm_dbg_kms(&dev_priv->drm,
319 				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
320 				    i, j, bi->num_planes, bi->deratedbw[j]);
321 		}
322 
323 		for (j = 0; j < qi.num_psf_points; j++) {
324 			const struct intel_psf_gv_point *sp = &qi.psf_points[j];
325 
326 			bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);
327 
328 			drm_dbg_kms(&dev_priv->drm,
329 				    "BW%d / PSF GV %d: num_planes=%d bw=%u\n",
330 				    i, j, bi->num_planes, bi->psf_bw[j]);
331 		}
332 
333 		if (bi->num_planes == 1)
334 			break;
335 	}
336 
337 	/*
338 	 * In case if SAGV is disabled in BIOS, we always get 1
339 	 * SAGV point, but we can't send PCode commands to restrict it
340 	 * as it will fail and pointless anyway.
341 	 */
342 	if (qi.num_points == 1)
343 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
344 	else
345 		dev_priv->sagv_status = I915_SAGV_ENABLED;
346 
347 	return 0;
348 }
349 
dg2_get_bw_info(struct drm_i915_private * i915)350 static void dg2_get_bw_info(struct drm_i915_private *i915)
351 {
352 	struct intel_bw_info *bi = &i915->max_bw[0];
353 
354 	/*
355 	 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
356 	 * that doesn't depend on the number of planes enabled.  Create a
357 	 * single dummy QGV point to reflect that.  DG2-G10 platforms have a
358 	 * constant 50 GB/s bandwidth, whereas DG2-G11 platforms have 38 GB/s.
359 	 */
360 	bi->num_planes = 1;
361 	bi->num_qgv_points = 1;
362 	if (IS_DG2_G11(i915))
363 		bi->deratedbw[0] = 38000;
364 	else
365 		bi->deratedbw[0] = 50000;
366 
367 	i915->sagv_status = I915_SAGV_NOT_CONTROLLED;
368 }
369 
icl_max_bw(struct drm_i915_private * dev_priv,int num_planes,int qgv_point)370 static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
371 			       int num_planes, int qgv_point)
372 {
373 	int i;
374 
375 	/*
376 	 * Let's return max bw for 0 planes
377 	 */
378 	num_planes = max(1, num_planes);
379 
380 	for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
381 		const struct intel_bw_info *bi =
382 			&dev_priv->max_bw[i];
383 
384 		/*
385 		 * Pcode will not expose all QGV points when
386 		 * SAGV is forced to off/min/med/max.
387 		 */
388 		if (qgv_point >= bi->num_qgv_points)
389 			return UINT_MAX;
390 
391 		if (num_planes >= bi->num_planes)
392 			return bi->deratedbw[qgv_point];
393 	}
394 
395 	return 0;
396 }
397 
adl_psf_bw(struct drm_i915_private * dev_priv,int psf_gv_point)398 static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
399 			       int psf_gv_point)
400 {
401 	const struct intel_bw_info *bi =
402 			&dev_priv->max_bw[0];
403 
404 	return bi->psf_bw[psf_gv_point];
405 }
406 
intel_bw_init_hw(struct drm_i915_private * dev_priv)407 void intel_bw_init_hw(struct drm_i915_private *dev_priv)
408 {
409 	if (!HAS_DISPLAY(dev_priv))
410 		return;
411 
412 	if (IS_DG2(dev_priv))
413 		dg2_get_bw_info(dev_priv);
414 	else if (IS_ALDERLAKE_P(dev_priv))
415 		icl_get_bw_info(dev_priv, &adlp_sa_info);
416 	else if (IS_ALDERLAKE_S(dev_priv))
417 		icl_get_bw_info(dev_priv, &adls_sa_info);
418 	else if (IS_ROCKETLAKE(dev_priv))
419 		icl_get_bw_info(dev_priv, &rkl_sa_info);
420 	else if (DISPLAY_VER(dev_priv) == 12)
421 		icl_get_bw_info(dev_priv, &tgl_sa_info);
422 	else if (DISPLAY_VER(dev_priv) == 11)
423 		icl_get_bw_info(dev_priv, &icl_sa_info);
424 }
425 
intel_bw_crtc_num_active_planes(const struct intel_crtc_state * crtc_state)426 static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
427 {
428 	/*
429 	 * We assume cursors are small enough
430 	 * to not not cause bandwidth problems.
431 	 */
432 	return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
433 }
434 
intel_bw_crtc_data_rate(const struct intel_crtc_state * crtc_state)435 static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
436 {
437 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
438 	unsigned int data_rate = 0;
439 	enum plane_id plane_id;
440 
441 	for_each_plane_id_on_crtc(crtc, plane_id) {
442 		/*
443 		 * We assume cursors are small enough
444 		 * to not not cause bandwidth problems.
445 		 */
446 		if (plane_id == PLANE_CURSOR)
447 			continue;
448 
449 		data_rate += crtc_state->data_rate[plane_id];
450 	}
451 
452 	return data_rate;
453 }
454 
intel_bw_crtc_update(struct intel_bw_state * bw_state,const struct intel_crtc_state * crtc_state)455 void intel_bw_crtc_update(struct intel_bw_state *bw_state,
456 			  const struct intel_crtc_state *crtc_state)
457 {
458 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
459 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
460 
461 	bw_state->data_rate[crtc->pipe] =
462 		intel_bw_crtc_data_rate(crtc_state);
463 	bw_state->num_active_planes[crtc->pipe] =
464 		intel_bw_crtc_num_active_planes(crtc_state);
465 
466 	drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
467 		    pipe_name(crtc->pipe),
468 		    bw_state->data_rate[crtc->pipe],
469 		    bw_state->num_active_planes[crtc->pipe]);
470 }
471 
intel_bw_num_active_planes(struct drm_i915_private * dev_priv,const struct intel_bw_state * bw_state)472 static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
473 					       const struct intel_bw_state *bw_state)
474 {
475 	unsigned int num_active_planes = 0;
476 	enum pipe pipe;
477 
478 	for_each_pipe(dev_priv, pipe)
479 		num_active_planes += bw_state->num_active_planes[pipe];
480 
481 	return num_active_planes;
482 }
483 
intel_bw_data_rate(struct drm_i915_private * dev_priv,const struct intel_bw_state * bw_state)484 static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
485 				       const struct intel_bw_state *bw_state)
486 {
487 	unsigned int data_rate = 0;
488 	enum pipe pipe;
489 
490 	for_each_pipe(dev_priv, pipe)
491 		data_rate += bw_state->data_rate[pipe];
492 
493 	if (DISPLAY_VER(dev_priv) >= 13 && intel_vtd_active())
494 		data_rate = data_rate * 105 / 100;
495 
496 	return data_rate;
497 }
498 
499 struct intel_bw_state *
intel_atomic_get_old_bw_state(struct intel_atomic_state * state)500 intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
501 {
502 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
503 	struct intel_global_state *bw_state;
504 
505 	bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->bw_obj);
506 
507 	return to_intel_bw_state(bw_state);
508 }
509 
510 struct intel_bw_state *
intel_atomic_get_new_bw_state(struct intel_atomic_state * state)511 intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
512 {
513 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
514 	struct intel_global_state *bw_state;
515 
516 	bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->bw_obj);
517 
518 	return to_intel_bw_state(bw_state);
519 }
520 
521 struct intel_bw_state *
intel_atomic_get_bw_state(struct intel_atomic_state * state)522 intel_atomic_get_bw_state(struct intel_atomic_state *state)
523 {
524 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
525 	struct intel_global_state *bw_state;
526 
527 	bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->bw_obj);
528 	if (IS_ERR(bw_state))
529 		return ERR_CAST(bw_state);
530 
531 	return to_intel_bw_state(bw_state);
532 }
533 
skl_bw_calc_min_cdclk(struct intel_atomic_state * state)534 int skl_bw_calc_min_cdclk(struct intel_atomic_state *state)
535 {
536 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
537 	struct intel_bw_state *new_bw_state = NULL;
538 	struct intel_bw_state *old_bw_state = NULL;
539 	const struct intel_crtc_state *crtc_state;
540 	struct intel_crtc *crtc;
541 	int max_bw = 0;
542 	enum pipe pipe;
543 	int i;
544 
545 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
546 		enum plane_id plane_id;
547 		struct intel_dbuf_bw *crtc_bw;
548 
549 		new_bw_state = intel_atomic_get_bw_state(state);
550 		if (IS_ERR(new_bw_state))
551 			return PTR_ERR(new_bw_state);
552 
553 		old_bw_state = intel_atomic_get_old_bw_state(state);
554 
555 		crtc_bw = &new_bw_state->dbuf_bw[crtc->pipe];
556 
557 		memset(&crtc_bw->used_bw, 0, sizeof(crtc_bw->used_bw));
558 
559 		if (!crtc_state->hw.active)
560 			continue;
561 
562 		for_each_plane_id_on_crtc(crtc, plane_id) {
563 			const struct skl_ddb_entry *plane_alloc =
564 				&crtc_state->wm.skl.plane_ddb_y[plane_id];
565 			const struct skl_ddb_entry *uv_plane_alloc =
566 				&crtc_state->wm.skl.plane_ddb_uv[plane_id];
567 			unsigned int data_rate = crtc_state->data_rate[plane_id];
568 			unsigned int dbuf_mask = 0;
569 			enum dbuf_slice slice;
570 
571 			dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, plane_alloc);
572 			dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, uv_plane_alloc);
573 
574 			/*
575 			 * FIXME: To calculate that more properly we probably
576 			 * need to to split per plane data_rate into data_rate_y
577 			 * and data_rate_uv for multiplanar formats in order not
578 			 * to get accounted those twice if they happen to reside
579 			 * on different slices.
580 			 * However for pre-icl this would work anyway because
581 			 * we have only single slice and for icl+ uv plane has
582 			 * non-zero data rate.
583 			 * So in worst case those calculation are a bit
584 			 * pessimistic, which shouldn't pose any significant
585 			 * problem anyway.
586 			 */
587 			for_each_dbuf_slice_in_mask(dev_priv, slice, dbuf_mask)
588 				crtc_bw->used_bw[slice] += data_rate;
589 		}
590 	}
591 
592 	if (!old_bw_state)
593 		return 0;
594 
595 	for_each_pipe(dev_priv, pipe) {
596 		struct intel_dbuf_bw *crtc_bw;
597 		enum dbuf_slice slice;
598 
599 		crtc_bw = &new_bw_state->dbuf_bw[pipe];
600 
601 		for_each_dbuf_slice(dev_priv, slice) {
602 			/*
603 			 * Current experimental observations show that contrary
604 			 * to BSpec we get underruns once we exceed 64 * CDCLK
605 			 * for slices in total.
606 			 * As a temporary measure in order not to keep CDCLK
607 			 * bumped up all the time we calculate CDCLK according
608 			 * to this formula for  overall bw consumed by slices.
609 			 */
610 			max_bw += crtc_bw->used_bw[slice];
611 		}
612 	}
613 
614 	new_bw_state->min_cdclk = max_bw / 64;
615 
616 	if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
617 		int ret = intel_atomic_lock_global_state(&new_bw_state->base);
618 
619 		if (ret)
620 			return ret;
621 	}
622 
623 	return 0;
624 }
625 
intel_bw_calc_min_cdclk(struct intel_atomic_state * state)626 int intel_bw_calc_min_cdclk(struct intel_atomic_state *state)
627 {
628 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
629 	struct intel_bw_state *new_bw_state = NULL;
630 	struct intel_bw_state *old_bw_state = NULL;
631 	const struct intel_crtc_state *crtc_state;
632 	struct intel_crtc *crtc;
633 	int min_cdclk = 0;
634 	enum pipe pipe;
635 	int i;
636 
637 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
638 		new_bw_state = intel_atomic_get_bw_state(state);
639 		if (IS_ERR(new_bw_state))
640 			return PTR_ERR(new_bw_state);
641 
642 		old_bw_state = intel_atomic_get_old_bw_state(state);
643 	}
644 
645 	if (!old_bw_state)
646 		return 0;
647 
648 	for_each_pipe(dev_priv, pipe) {
649 		struct intel_cdclk_state *cdclk_state;
650 
651 		cdclk_state = intel_atomic_get_new_cdclk_state(state);
652 		if (!cdclk_state)
653 			return 0;
654 
655 		min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
656 	}
657 
658 	new_bw_state->min_cdclk = min_cdclk;
659 
660 	if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
661 		int ret = intel_atomic_lock_global_state(&new_bw_state->base);
662 
663 		if (ret)
664 			return ret;
665 	}
666 
667 	return 0;
668 }
669 
intel_bw_atomic_check(struct intel_atomic_state * state)670 int intel_bw_atomic_check(struct intel_atomic_state *state)
671 {
672 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
673 	struct intel_crtc_state *new_crtc_state, *old_crtc_state;
674 	struct intel_bw_state *new_bw_state = NULL;
675 	const struct intel_bw_state *old_bw_state = NULL;
676 	unsigned int data_rate;
677 	unsigned int num_active_planes;
678 	struct intel_crtc *crtc;
679 	int i, ret;
680 	u32 allowed_points = 0;
681 	unsigned int max_bw_point = 0, max_bw = 0;
682 	unsigned int num_qgv_points = dev_priv->max_bw[0].num_qgv_points;
683 	unsigned int num_psf_gv_points = dev_priv->max_bw[0].num_psf_gv_points;
684 	u32 mask = 0;
685 
686 	/* FIXME earlier gens need some checks too */
687 	if (DISPLAY_VER(dev_priv) < 11)
688 		return 0;
689 
690 	/*
691 	 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
692 	 * it with failure if we try masking any unadvertised points.
693 	 * So need to operate only with those returned from PCode.
694 	 */
695 	if (num_qgv_points > 0)
696 		mask |= REG_GENMASK(num_qgv_points - 1, 0);
697 
698 	if (num_psf_gv_points > 0)
699 		mask |= REG_GENMASK(num_psf_gv_points - 1, 0) << ADLS_PSF_PT_SHIFT;
700 
701 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
702 					    new_crtc_state, i) {
703 		unsigned int old_data_rate =
704 			intel_bw_crtc_data_rate(old_crtc_state);
705 		unsigned int new_data_rate =
706 			intel_bw_crtc_data_rate(new_crtc_state);
707 		unsigned int old_active_planes =
708 			intel_bw_crtc_num_active_planes(old_crtc_state);
709 		unsigned int new_active_planes =
710 			intel_bw_crtc_num_active_planes(new_crtc_state);
711 
712 		/*
713 		 * Avoid locking the bw state when
714 		 * nothing significant has changed.
715 		 */
716 		if (old_data_rate == new_data_rate &&
717 		    old_active_planes == new_active_planes)
718 			continue;
719 
720 		new_bw_state = intel_atomic_get_bw_state(state);
721 		if (IS_ERR(new_bw_state))
722 			return PTR_ERR(new_bw_state);
723 
724 		new_bw_state->data_rate[crtc->pipe] = new_data_rate;
725 		new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
726 
727 		drm_dbg_kms(&dev_priv->drm,
728 			    "pipe %c data rate %u num active planes %u\n",
729 			    pipe_name(crtc->pipe),
730 			    new_bw_state->data_rate[crtc->pipe],
731 			    new_bw_state->num_active_planes[crtc->pipe]);
732 	}
733 
734 	if (!new_bw_state)
735 		return 0;
736 
737 	ret = intel_atomic_lock_global_state(&new_bw_state->base);
738 	if (ret)
739 		return ret;
740 
741 	data_rate = intel_bw_data_rate(dev_priv, new_bw_state);
742 	data_rate = DIV_ROUND_UP(data_rate, 1000);
743 
744 	num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state);
745 
746 	for (i = 0; i < num_qgv_points; i++) {
747 		unsigned int max_data_rate;
748 
749 		max_data_rate = icl_max_bw(dev_priv, num_active_planes, i);
750 		/*
751 		 * We need to know which qgv point gives us
752 		 * maximum bandwidth in order to disable SAGV
753 		 * if we find that we exceed SAGV block time
754 		 * with watermarks. By that moment we already
755 		 * have those, as it is calculated earlier in
756 		 * intel_atomic_check,
757 		 */
758 		if (max_data_rate > max_bw) {
759 			max_bw_point = i;
760 			max_bw = max_data_rate;
761 		}
762 		if (max_data_rate >= data_rate)
763 			allowed_points |= REG_FIELD_PREP(ADLS_QGV_PT_MASK, BIT(i));
764 
765 		drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n",
766 			    i, max_data_rate, data_rate);
767 	}
768 
769 	for (i = 0; i < num_psf_gv_points; i++) {
770 		unsigned int max_data_rate = adl_psf_bw(dev_priv, i);
771 
772 		if (max_data_rate >= data_rate)
773 			allowed_points |= REG_FIELD_PREP(ADLS_PSF_PT_MASK, BIT(i));
774 
775 		drm_dbg_kms(&dev_priv->drm, "PSF GV point %d: max bw %d"
776 			    " required %d\n",
777 			    i, max_data_rate, data_rate);
778 	}
779 
780 	/*
781 	 * BSpec states that we always should have at least one allowed point
782 	 * left, so if we couldn't - simply reject the configuration for obvious
783 	 * reasons.
784 	 */
785 	if ((allowed_points & ADLS_QGV_PT_MASK) == 0) {
786 		drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory"
787 			    " bandwidth %d for display configuration(%d active planes).\n",
788 			    data_rate, num_active_planes);
789 		return -EINVAL;
790 	}
791 
792 	if (num_psf_gv_points > 0) {
793 		if ((allowed_points & ADLS_PSF_PT_MASK) == 0) {
794 			drm_dbg_kms(&dev_priv->drm, "No PSF GV points provide sufficient memory"
795 				    " bandwidth %d for display configuration(%d active planes).\n",
796 				    data_rate, num_active_planes);
797 			return -EINVAL;
798 		}
799 	}
800 
801 	/*
802 	 * Leave only single point with highest bandwidth, if
803 	 * we can't enable SAGV due to the increased memory latency it may
804 	 * cause.
805 	 */
806 	if (!intel_can_enable_sagv(dev_priv, new_bw_state)) {
807 		allowed_points = BIT(max_bw_point);
808 		drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n",
809 			    max_bw_point);
810 	}
811 	/*
812 	 * We store the ones which need to be masked as that is what PCode
813 	 * actually accepts as a parameter.
814 	 */
815 	new_bw_state->qgv_points_mask = ~allowed_points & mask;
816 
817 	old_bw_state = intel_atomic_get_old_bw_state(state);
818 	/*
819 	 * If the actual mask had changed we need to make sure that
820 	 * the commits are serialized(in case this is a nomodeset, nonblocking)
821 	 */
822 	if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
823 		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
824 		if (ret)
825 			return ret;
826 	}
827 
828 	return 0;
829 }
830 
831 static struct intel_global_state *
intel_bw_duplicate_state(struct intel_global_obj * obj)832 intel_bw_duplicate_state(struct intel_global_obj *obj)
833 {
834 	struct intel_bw_state *state;
835 
836 	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
837 	if (!state)
838 		return NULL;
839 
840 	return &state->base;
841 }
842 
intel_bw_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)843 static void intel_bw_destroy_state(struct intel_global_obj *obj,
844 				   struct intel_global_state *state)
845 {
846 	kfree(state);
847 }
848 
849 static const struct intel_global_state_funcs intel_bw_funcs = {
850 	.atomic_duplicate_state = intel_bw_duplicate_state,
851 	.atomic_destroy_state = intel_bw_destroy_state,
852 };
853 
intel_bw_init(struct drm_i915_private * dev_priv)854 int intel_bw_init(struct drm_i915_private *dev_priv)
855 {
856 	struct intel_bw_state *state;
857 
858 	state = kzalloc(sizeof(*state), GFP_KERNEL);
859 	if (!state)
860 		return -ENOMEM;
861 
862 	intel_atomic_global_obj_init(dev_priv, &dev_priv->bw_obj,
863 				     &state->base, &intel_bw_funcs);
864 
865 	return 0;
866 }
867