1 /*
2 * Copyright 2020 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26
27 #include "dm_services.h"
28 #include "dc.h"
29
30 #include "dcn30_init.h"
31
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn20/dcn20_resource.h"
35
36 #include "dcn30_resource.h"
37
38 #include "dcn10/dcn10_ipp.h"
39 #include "dcn30/dcn30_hubbub.h"
40 #include "dcn30/dcn30_mpc.h"
41 #include "dcn30/dcn30_hubp.h"
42 #include "irq/dcn30/irq_service_dcn30.h"
43 #include "dcn30/dcn30_dpp.h"
44 #include "dcn30/dcn30_optc.h"
45 #include "dcn20/dcn20_hwseq.h"
46 #include "dcn30/dcn30_hwseq.h"
47 #include "dce110/dce110_hw_sequencer.h"
48 #include "dcn30/dcn30_opp.h"
49 #include "dcn20/dcn20_dsc.h"
50 #include "dcn30/dcn30_vpg.h"
51 #include "dcn30/dcn30_afmt.h"
52 #include "dcn30/dcn30_dio_stream_encoder.h"
53 #include "dcn30/dcn30_dio_link_encoder.h"
54 #include "dce/dce_clock_source.h"
55 #include "dce/dce_audio.h"
56 #include "dce/dce_hwseq.h"
57 #include "clk_mgr.h"
58 #include "virtual/virtual_stream_encoder.h"
59 #include "dce110/dce110_resource.h"
60 #include "dml/display_mode_vba.h"
61 #include "dcn30/dcn30_dccg.h"
62 #include "dcn10/dcn10_resource.h"
63 #include "dc_link_ddc.h"
64 #include "dce/dce_panel_cntl.h"
65
66 #include "dcn30/dcn30_dwb.h"
67 #include "dcn30/dcn30_mmhubbub.h"
68
69 #include "sienna_cichlid_ip_offset.h"
70 #include "dcn/dcn_3_0_0_offset.h"
71 #include "dcn/dcn_3_0_0_sh_mask.h"
72
73 #include "nbio/nbio_7_4_offset.h"
74
75 #include "dcn/dpcs_3_0_0_offset.h"
76 #include "dcn/dpcs_3_0_0_sh_mask.h"
77
78 #include "mmhub/mmhub_2_0_0_offset.h"
79 #include "mmhub/mmhub_2_0_0_sh_mask.h"
80
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86
87 #include "dml/dcn30/display_mode_vba_30.h"
88 #include "vm_helper.h"
89 #include "dcn20/dcn20_vmid.h"
90 #include "amdgpu_socbb.h"
91
92 #define DC_LOGGER_INIT(logger)
93
94 struct _vcs_dpi_ip_params_st dcn3_0_ip = {
95 .use_min_dcfclk = 0,
96 .clamp_min_dcfclk = 0,
97 .odm_capable = 1,
98 .gpuvm_enable = 0,
99 .hostvm_enable = 0,
100 .gpuvm_max_page_table_levels = 4,
101 .hostvm_max_page_table_levels = 4,
102 .hostvm_cached_page_table_levels = 0,
103 .pte_group_size_bytes = 2048,
104 .num_dsc = 6,
105 .rob_buffer_size_kbytes = 184,
106 .det_buffer_size_kbytes = 184,
107 .dpte_buffer_size_in_pte_reqs_luma = 84,
108 .pde_proc_buffer_size_64k_reqs = 48,
109 .dpp_output_buffer_pixels = 2560,
110 .opp_output_buffer_lines = 1,
111 .pixel_chunk_size_kbytes = 8,
112 .pte_enable = 1,
113 .max_page_table_levels = 2,
114 .pte_chunk_size_kbytes = 2, // ?
115 .meta_chunk_size_kbytes = 2,
116 .writeback_chunk_size_kbytes = 8,
117 .line_buffer_size_bits = 789504,
118 .is_line_buffer_bpp_fixed = 0, // ?
119 .line_buffer_fixed_bpp = 0, // ?
120 .dcc_supported = true,
121 .writeback_interface_buffer_size_kbytes = 90,
122 .writeback_line_buffer_buffer_size = 0,
123 .max_line_buffer_lines = 12,
124 .writeback_luma_buffer_size_kbytes = 12, // writeback_line_buffer_buffer_size = 656640
125 .writeback_chroma_buffer_size_kbytes = 8,
126 .writeback_chroma_line_buffer_width_pixels = 4,
127 .writeback_max_hscl_ratio = 1,
128 .writeback_max_vscl_ratio = 1,
129 .writeback_min_hscl_ratio = 1,
130 .writeback_min_vscl_ratio = 1,
131 .writeback_max_hscl_taps = 1,
132 .writeback_max_vscl_taps = 1,
133 .writeback_line_buffer_luma_buffer_size = 0,
134 .writeback_line_buffer_chroma_buffer_size = 14643,
135 .cursor_buffer_size = 8,
136 .cursor_chunk_size = 2,
137 .max_num_otg = 6,
138 .max_num_dpp = 6,
139 .max_num_wb = 1,
140 .max_dchub_pscl_bw_pix_per_clk = 4,
141 .max_pscl_lb_bw_pix_per_clk = 2,
142 .max_lb_vscl_bw_pix_per_clk = 4,
143 .max_vscl_hscl_bw_pix_per_clk = 4,
144 .max_hscl_ratio = 6,
145 .max_vscl_ratio = 6,
146 .hscl_mults = 4,
147 .vscl_mults = 4,
148 .max_hscl_taps = 8,
149 .max_vscl_taps = 8,
150 .dispclk_ramp_margin_percent = 1,
151 .underscan_factor = 1.11,
152 .min_vblank_lines = 32,
153 .dppclk_delay_subtotal = 46,
154 .dynamic_metadata_vm_enabled = true,
155 .dppclk_delay_scl_lb_only = 16,
156 .dppclk_delay_scl = 50,
157 .dppclk_delay_cnvc_formatter = 27,
158 .dppclk_delay_cnvc_cursor = 6,
159 .dispclk_delay_subtotal = 119,
160 .dcfclk_cstate_latency = 5.2, // SRExitTime
161 .max_inter_dcn_tile_repeaters = 8,
162 .odm_combine_4to1_supported = true,
163
164 .xfc_supported = false,
165 .xfc_fill_bw_overhead_percent = 10.0,
166 .xfc_fill_constant_bytes = 0,
167 .gfx7_compat_tiling_supported = 0,
168 .number_of_cursors = 1,
169 };
170
171 struct _vcs_dpi_soc_bounding_box_st dcn3_0_soc = {
172 .clock_limits = {
173 {
174 .state = 0,
175 .dispclk_mhz = 562.0,
176 .dppclk_mhz = 300.0,
177 .phyclk_mhz = 300.0,
178 .phyclk_d18_mhz = 667.0,
179 .dscclk_mhz = 405.6,
180 },
181 },
182 .min_dcfclk = 500.0, /* TODO: set this to actual min DCFCLK */
183 .num_states = 1,
184 .sr_exit_time_us = 15.5,
185 .sr_enter_plus_exit_time_us = 20,
186 .urgent_latency_us = 4.0,
187 .urgent_latency_pixel_data_only_us = 4.0,
188 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
189 .urgent_latency_vm_data_only_us = 4.0,
190 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
191 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
192 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
193 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 80.0,
194 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0,
195 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 40.0,
196 .max_avg_sdp_bw_use_normal_percent = 60.0,
197 .max_avg_dram_bw_use_normal_percent = 40.0,
198 .writeback_latency_us = 12.0,
199 .max_request_size_bytes = 256,
200 .fabric_datapath_to_dcn_data_return_bytes = 64,
201 .dcn_downspread_percent = 0.5,
202 .downspread_percent = 0.38,
203 .dram_page_open_time_ns = 50.0,
204 .dram_rw_turnaround_time_ns = 17.5,
205 .dram_return_buffer_per_channel_bytes = 8192,
206 .round_trip_ping_latency_dcfclk_cycles = 191,
207 .urgent_out_of_order_return_per_channel_bytes = 4096,
208 .channel_interleave_bytes = 256,
209 .num_banks = 8,
210 .gpuvm_min_page_size_bytes = 4096,
211 .hostvm_min_page_size_bytes = 4096,
212 .dram_clock_change_latency_us = 404,
213 .dummy_pstate_latency_us = 5,
214 .writeback_dram_clock_change_latency_us = 23.0,
215 .return_bus_width_bytes = 64,
216 .dispclk_dppclk_vco_speed_mhz = 3650,
217 .xfc_bus_transport_time_us = 20, // ?
218 .xfc_xbuf_latency_tolerance_us = 4, // ?
219 .use_urgent_burst_bw = 1, // ?
220 .do_urgent_latency_adjustment = true,
221 .urgent_latency_adjustment_fabric_clock_component_us = 1.0,
222 .urgent_latency_adjustment_fabric_clock_reference_mhz = 1000,
223 };
224
225 enum dcn30_clk_src_array_id {
226 DCN30_CLK_SRC_PLL0,
227 DCN30_CLK_SRC_PLL1,
228 DCN30_CLK_SRC_PLL2,
229 DCN30_CLK_SRC_PLL3,
230 DCN30_CLK_SRC_PLL4,
231 DCN30_CLK_SRC_PLL5,
232 DCN30_CLK_SRC_TOTAL
233 };
234
235 /* begin *********************
236 * macros to expend register list macro defined in HW object header file
237 */
238
239 /* DCN */
240 /* TODO awful hack. fixup dcn20_dwb.h */
241 #undef BASE_INNER
242 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
243
244 #define BASE(seg) BASE_INNER(seg)
245
246 #define SR(reg_name)\
247 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
248 mm ## reg_name
249
250 #define SRI(reg_name, block, id)\
251 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
252 mm ## block ## id ## _ ## reg_name
253
254 #define SRI2(reg_name, block, id)\
255 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
256 mm ## reg_name
257
258 #define SRIR(var_name, reg_name, block, id)\
259 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
260 mm ## block ## id ## _ ## reg_name
261
262 #define SRII(reg_name, block, id)\
263 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
264 mm ## block ## id ## _ ## reg_name
265
266 #define SRII_MPC_RMU(reg_name, block, id)\
267 .RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
268 mm ## block ## id ## _ ## reg_name
269
270 #define SRII_DWB(reg_name, temp_name, block, id)\
271 .reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
272 mm ## block ## id ## _ ## temp_name
273
274 #define DCCG_SRII(reg_name, block, id)\
275 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
276 mm ## block ## id ## _ ## reg_name
277
278 #define VUPDATE_SRII(reg_name, block, id)\
279 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
280 mm ## reg_name ## _ ## block ## id
281
282 /* NBIO */
283 #define NBIO_BASE_INNER(seg) \
284 NBIO_BASE__INST0_SEG ## seg
285
286 #define NBIO_BASE(seg) \
287 NBIO_BASE_INNER(seg)
288
289 #define NBIO_SR(reg_name)\
290 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
291 mm ## reg_name
292
293 /* MMHUB */
294 #define MMHUB_BASE_INNER(seg) \
295 MMHUB_BASE__INST0_SEG ## seg
296
297 #define MMHUB_BASE(seg) \
298 MMHUB_BASE_INNER(seg)
299
300 #define MMHUB_SR(reg_name)\
301 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
302 mmMM ## reg_name
303
304 /* CLOCK */
305 #define CLK_BASE_INNER(seg) \
306 CLK_BASE__INST0_SEG ## seg
307
308 #define CLK_BASE(seg) \
309 CLK_BASE_INNER(seg)
310
311 #define CLK_SRI(reg_name, block, inst)\
312 .reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \
313 mm ## block ## _ ## inst ## _ ## reg_name
314
315
316 static const struct bios_registers bios_regs = {
317 NBIO_SR(BIOS_SCRATCH_3),
318 NBIO_SR(BIOS_SCRATCH_6)
319 };
320
321 #define clk_src_regs(index, pllid)\
322 [index] = {\
323 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
324 }
325
326 static const struct dce110_clk_src_regs clk_src_regs[] = {
327 clk_src_regs(0, A),
328 clk_src_regs(1, B),
329 clk_src_regs(2, C),
330 clk_src_regs(3, D),
331 clk_src_regs(4, E),
332 clk_src_regs(5, F)
333 };
334
335 static const struct dce110_clk_src_shift cs_shift = {
336 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
337 };
338
339 static const struct dce110_clk_src_mask cs_mask = {
340 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
341 };
342
343 #define abm_regs(id)\
344 [id] = {\
345 ABM_DCN30_REG_LIST(id)\
346 }
347
348 static const struct dce_abm_registers abm_regs[] = {
349 abm_regs(0),
350 abm_regs(1),
351 abm_regs(2),
352 abm_regs(3),
353 abm_regs(4),
354 abm_regs(5),
355 };
356
357 static const struct dce_abm_shift abm_shift = {
358 ABM_MASK_SH_LIST_DCN30(__SHIFT)
359 };
360
361 static const struct dce_abm_mask abm_mask = {
362 ABM_MASK_SH_LIST_DCN30(_MASK)
363 };
364
365
366
367 #define audio_regs(id)\
368 [id] = {\
369 AUD_COMMON_REG_LIST(id)\
370 }
371
372 static const struct dce_audio_registers audio_regs[] = {
373 audio_regs(0),
374 audio_regs(1),
375 audio_regs(2),
376 audio_regs(3),
377 audio_regs(4),
378 audio_regs(5),
379 audio_regs(6)
380 };
381
382 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
383 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
384 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
385 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
386
387 static const struct dce_audio_shift audio_shift = {
388 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
389 };
390
391 static const struct dce_audio_mask audio_mask = {
392 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
393 };
394
395 #define vpg_regs(id)\
396 [id] = {\
397 VPG_DCN3_REG_LIST(id)\
398 }
399
400 static const struct dcn30_vpg_registers vpg_regs[] = {
401 vpg_regs(0),
402 vpg_regs(1),
403 vpg_regs(2),
404 vpg_regs(3),
405 vpg_regs(4),
406 vpg_regs(5),
407 vpg_regs(6),
408 };
409
410 static const struct dcn30_vpg_shift vpg_shift = {
411 DCN3_VPG_MASK_SH_LIST(__SHIFT)
412 };
413
414 static const struct dcn30_vpg_mask vpg_mask = {
415 DCN3_VPG_MASK_SH_LIST(_MASK)
416 };
417
418 #define afmt_regs(id)\
419 [id] = {\
420 AFMT_DCN3_REG_LIST(id)\
421 }
422
423 static const struct dcn30_afmt_registers afmt_regs[] = {
424 afmt_regs(0),
425 afmt_regs(1),
426 afmt_regs(2),
427 afmt_regs(3),
428 afmt_regs(4),
429 afmt_regs(5),
430 afmt_regs(6),
431 };
432
433 static const struct dcn30_afmt_shift afmt_shift = {
434 DCN3_AFMT_MASK_SH_LIST(__SHIFT)
435 };
436
437 static const struct dcn30_afmt_mask afmt_mask = {
438 DCN3_AFMT_MASK_SH_LIST(_MASK)
439 };
440
441 #define stream_enc_regs(id)\
442 [id] = {\
443 SE_DCN3_REG_LIST(id)\
444 }
445
446 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
447 stream_enc_regs(0),
448 stream_enc_regs(1),
449 stream_enc_regs(2),
450 stream_enc_regs(3),
451 stream_enc_regs(4),
452 stream_enc_regs(5)
453 };
454
455 static const struct dcn10_stream_encoder_shift se_shift = {
456 SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
457 };
458
459 static const struct dcn10_stream_encoder_mask se_mask = {
460 SE_COMMON_MASK_SH_LIST_DCN30(_MASK)
461 };
462
463
464 #define aux_regs(id)\
465 [id] = {\
466 DCN2_AUX_REG_LIST(id)\
467 }
468
469 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
470 aux_regs(0),
471 aux_regs(1),
472 aux_regs(2),
473 aux_regs(3),
474 aux_regs(4),
475 aux_regs(5)
476 };
477
478 #define hpd_regs(id)\
479 [id] = {\
480 HPD_REG_LIST(id)\
481 }
482
483 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
484 hpd_regs(0),
485 hpd_regs(1),
486 hpd_regs(2),
487 hpd_regs(3),
488 hpd_regs(4),
489 hpd_regs(5)
490 };
491
492 #define link_regs(id, phyid)\
493 [id] = {\
494 LE_DCN3_REG_LIST(id), \
495 UNIPHY_DCN2_REG_LIST(phyid), \
496 DPCS_DCN2_REG_LIST(id), \
497 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
498 }
499
500 static const struct dce110_aux_registers_shift aux_shift = {
501 DCN_AUX_MASK_SH_LIST(__SHIFT)
502 };
503
504 static const struct dce110_aux_registers_mask aux_mask = {
505 DCN_AUX_MASK_SH_LIST(_MASK)
506 };
507
508 static const struct dcn10_link_enc_registers link_enc_regs[] = {
509 link_regs(0, A),
510 link_regs(1, B),
511 link_regs(2, C),
512 link_regs(3, D),
513 link_regs(4, E),
514 link_regs(5, F)
515 };
516
517 static const struct dcn10_link_enc_shift le_shift = {
518 LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\
519 DPCS_DCN2_MASK_SH_LIST(__SHIFT)
520 };
521
522 static const struct dcn10_link_enc_mask le_mask = {
523 LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\
524 DPCS_DCN2_MASK_SH_LIST(_MASK)
525 };
526
527
528 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
529 { DCN_PANEL_CNTL_REG_LIST() }
530 };
531
532 static const struct dce_panel_cntl_shift panel_cntl_shift = {
533 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
534 };
535
536 static const struct dce_panel_cntl_mask panel_cntl_mask = {
537 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
538 };
539
540 #define dpp_regs(id)\
541 [id] = {\
542 DPP_REG_LIST_DCN30(id),\
543 }
544
545 static const struct dcn3_dpp_registers dpp_regs[] = {
546 dpp_regs(0),
547 dpp_regs(1),
548 dpp_regs(2),
549 dpp_regs(3),
550 dpp_regs(4),
551 dpp_regs(5),
552 };
553
554 static const struct dcn3_dpp_shift tf_shift = {
555 DPP_REG_LIST_SH_MASK_DCN30(__SHIFT)
556 };
557
558 static const struct dcn3_dpp_mask tf_mask = {
559 DPP_REG_LIST_SH_MASK_DCN30(_MASK)
560 };
561
562 #define opp_regs(id)\
563 [id] = {\
564 OPP_REG_LIST_DCN30(id),\
565 }
566
567 static const struct dcn20_opp_registers opp_regs[] = {
568 opp_regs(0),
569 opp_regs(1),
570 opp_regs(2),
571 opp_regs(3),
572 opp_regs(4),
573 opp_regs(5)
574 };
575
576 static const struct dcn20_opp_shift opp_shift = {
577 OPP_MASK_SH_LIST_DCN20(__SHIFT)
578 };
579
580 static const struct dcn20_opp_mask opp_mask = {
581 OPP_MASK_SH_LIST_DCN20(_MASK)
582 };
583
584 #define aux_engine_regs(id)\
585 [id] = {\
586 AUX_COMMON_REG_LIST0(id), \
587 .AUXN_IMPCAL = 0, \
588 .AUXP_IMPCAL = 0, \
589 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
590 }
591
592 static const struct dce110_aux_registers aux_engine_regs[] = {
593 aux_engine_regs(0),
594 aux_engine_regs(1),
595 aux_engine_regs(2),
596 aux_engine_regs(3),
597 aux_engine_regs(4),
598 aux_engine_regs(5)
599 };
600
601 #define dwbc_regs_dcn3(id)\
602 [id] = {\
603 DWBC_COMMON_REG_LIST_DCN30(id),\
604 }
605
606 static const struct dcn30_dwbc_registers dwbc30_regs[] = {
607 dwbc_regs_dcn3(0),
608 };
609
610 static const struct dcn30_dwbc_shift dwbc30_shift = {
611 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
612 };
613
614 static const struct dcn30_dwbc_mask dwbc30_mask = {
615 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
616 };
617
618 #define mcif_wb_regs_dcn3(id)\
619 [id] = {\
620 MCIF_WB_COMMON_REG_LIST_DCN30(id),\
621 }
622
623 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
624 mcif_wb_regs_dcn3(0)
625 };
626
627 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
628 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
629 };
630
631 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
632 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK)
633 };
634
635 #define dsc_regsDCN20(id)\
636 [id] = {\
637 DSC_REG_LIST_DCN20(id)\
638 }
639
640 static const struct dcn20_dsc_registers dsc_regs[] = {
641 dsc_regsDCN20(0),
642 dsc_regsDCN20(1),
643 dsc_regsDCN20(2),
644 dsc_regsDCN20(3),
645 dsc_regsDCN20(4),
646 dsc_regsDCN20(5)
647 };
648
649 static const struct dcn20_dsc_shift dsc_shift = {
650 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
651 };
652
653 static const struct dcn20_dsc_mask dsc_mask = {
654 DSC_REG_LIST_SH_MASK_DCN20(_MASK)
655 };
656
657 static const struct dcn30_mpc_registers mpc_regs = {
658 MPC_REG_LIST_DCN3_0(0),
659 MPC_REG_LIST_DCN3_0(1),
660 MPC_REG_LIST_DCN3_0(2),
661 MPC_REG_LIST_DCN3_0(3),
662 MPC_REG_LIST_DCN3_0(4),
663 MPC_REG_LIST_DCN3_0(5),
664 MPC_OUT_MUX_REG_LIST_DCN3_0(0),
665 MPC_OUT_MUX_REG_LIST_DCN3_0(1),
666 MPC_OUT_MUX_REG_LIST_DCN3_0(2),
667 MPC_OUT_MUX_REG_LIST_DCN3_0(3),
668 MPC_OUT_MUX_REG_LIST_DCN3_0(4),
669 MPC_OUT_MUX_REG_LIST_DCN3_0(5),
670 MPC_RMU_GLOBAL_REG_LIST_DCN3AG,
671 MPC_RMU_REG_LIST_DCN3AG(0),
672 MPC_RMU_REG_LIST_DCN3AG(1),
673 MPC_RMU_REG_LIST_DCN3AG(2),
674 MPC_DWB_MUX_REG_LIST_DCN3_0(0),
675 };
676
677 static const struct dcn30_mpc_shift mpc_shift = {
678 MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
679 };
680
681 static const struct dcn30_mpc_mask mpc_mask = {
682 MPC_COMMON_MASK_SH_LIST_DCN30(_MASK)
683 };
684
685 #define optc_regs(id)\
686 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)}
687
688
689 static const struct dcn_optc_registers optc_regs[] = {
690 optc_regs(0),
691 optc_regs(1),
692 optc_regs(2),
693 optc_regs(3),
694 optc_regs(4),
695 optc_regs(5)
696 };
697
698 static const struct dcn_optc_shift optc_shift = {
699 OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
700 };
701
702 static const struct dcn_optc_mask optc_mask = {
703 OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK)
704 };
705
706 #define hubp_regs(id)\
707 [id] = {\
708 HUBP_REG_LIST_DCN30(id)\
709 }
710
711 static const struct dcn_hubp2_registers hubp_regs[] = {
712 hubp_regs(0),
713 hubp_regs(1),
714 hubp_regs(2),
715 hubp_regs(3),
716 hubp_regs(4),
717 hubp_regs(5)
718 };
719
720 static const struct dcn_hubp2_shift hubp_shift = {
721 HUBP_MASK_SH_LIST_DCN30(__SHIFT)
722 };
723
724 static const struct dcn_hubp2_mask hubp_mask = {
725 HUBP_MASK_SH_LIST_DCN30(_MASK)
726 };
727
728 static const struct dcn_hubbub_registers hubbub_reg = {
729 HUBBUB_REG_LIST_DCN30(0)
730 };
731
732 static const struct dcn_hubbub_shift hubbub_shift = {
733 HUBBUB_MASK_SH_LIST_DCN30(__SHIFT)
734 };
735
736 static const struct dcn_hubbub_mask hubbub_mask = {
737 HUBBUB_MASK_SH_LIST_DCN30(_MASK)
738 };
739
740 static const struct dccg_registers dccg_regs = {
741 DCCG_REG_LIST_DCN30()
742 };
743
744 static const struct dccg_shift dccg_shift = {
745 DCCG_MASK_SH_LIST_DCN3(__SHIFT)
746 };
747
748 static const struct dccg_mask dccg_mask = {
749 DCCG_MASK_SH_LIST_DCN3(_MASK)
750 };
751
752 static const struct dce_hwseq_registers hwseq_reg = {
753 HWSEQ_DCN30_REG_LIST()
754 };
755
756 static const struct dce_hwseq_shift hwseq_shift = {
757 HWSEQ_DCN30_MASK_SH_LIST(__SHIFT)
758 };
759
760 static const struct dce_hwseq_mask hwseq_mask = {
761 HWSEQ_DCN30_MASK_SH_LIST(_MASK)
762 };
763 #define vmid_regs(id)\
764 [id] = {\
765 DCN20_VMID_REG_LIST(id)\
766 }
767
768 static const struct dcn_vmid_registers vmid_regs[] = {
769 vmid_regs(0),
770 vmid_regs(1),
771 vmid_regs(2),
772 vmid_regs(3),
773 vmid_regs(4),
774 vmid_regs(5),
775 vmid_regs(6),
776 vmid_regs(7),
777 vmid_regs(8),
778 vmid_regs(9),
779 vmid_regs(10),
780 vmid_regs(11),
781 vmid_regs(12),
782 vmid_regs(13),
783 vmid_regs(14),
784 vmid_regs(15)
785 };
786
787 static const struct dcn20_vmid_shift vmid_shifts = {
788 DCN20_VMID_MASK_SH_LIST(__SHIFT)
789 };
790
791 static const struct dcn20_vmid_mask vmid_masks = {
792 DCN20_VMID_MASK_SH_LIST(_MASK)
793 };
794
795 static const struct resource_caps res_cap_dcn3 = {
796 .num_timing_generator = 6,
797 .num_opp = 6,
798 .num_video_plane = 6,
799 .num_audio = 6,
800 .num_stream_encoder = 6,
801 .num_pll = 6,
802 .num_dwb = 1,
803 .num_ddc = 6,
804 .num_vmid = 16,
805 .num_mpc_3dlut = 3,
806 .num_dsc = 6,
807 };
808
809 static const struct dc_plane_cap plane_cap = {
810 .type = DC_PLANE_TYPE_DCN_UNIVERSAL,
811 .blends_with_above = true,
812 .blends_with_below = true,
813 .per_pixel_alpha = true,
814
815 .pixel_format_support = {
816 .argb8888 = true,
817 .nv12 = true,
818 .fp16 = true,
819 .p010 = false,
820 .ayuv = false,
821 },
822
823 .max_upscale_factor = {
824 .argb8888 = 16000,
825 .nv12 = 16000,
826 .fp16 = 16000
827 },
828
829 /* 6:1 downscaling ratio: 1000/6 = 166.666 */
830 .max_downscale_factor = {
831 .argb8888 = 167,
832 .nv12 = 167,
833 .fp16 = 167
834 }
835 };
836
837 static const struct dc_debug_options debug_defaults_drv = {
838 .disable_dmcu = true, //No DMCU on DCN30
839 .force_abm_enable = false,
840 .timing_trace = false,
841 .clock_trace = true,
842 .disable_pplib_clock_request = true,
843 .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP,
844 .force_single_disp_pipe_split = false,
845 .disable_dcc = DCC_ENABLE,
846 .vsr_support = true,
847 .performance_trace = false,
848 .max_downscale_src_width = 7680,/*upto 8K*/
849 .disable_pplib_wm_range = false,
850 .scl_reset_length10 = true,
851 .sanity_checks = false,
852 .underflow_assert_delay_us = 0xFFFFFFFF,
853 .dwb_fi_phase = -1, // -1 = disable,
854 .dmub_command_table = true,
855 .disable_psr = false,
856 .use_max_lb = true
857 };
858
859 static const struct dc_debug_options debug_defaults_diags = {
860 .disable_dmcu = true, //No dmcu on DCN30
861 .force_abm_enable = false,
862 .timing_trace = true,
863 .clock_trace = true,
864 .disable_dpp_power_gate = true,
865 .disable_hubp_power_gate = true,
866 .disable_clock_gate = true,
867 .disable_pplib_clock_request = true,
868 .disable_pplib_wm_range = true,
869 .disable_stutter = false,
870 .scl_reset_length10 = true,
871 .dwb_fi_phase = -1, // -1 = disable
872 .dmub_command_table = true,
873 .disable_psr = true,
874 .enable_tri_buf = true,
875 .use_max_lb = true
876 };
877
dcn30_dpp_destroy(struct dpp ** dpp)878 void dcn30_dpp_destroy(struct dpp **dpp)
879 {
880 kfree(TO_DCN20_DPP(*dpp));
881 *dpp = NULL;
882 }
883
dcn30_dpp_create(struct dc_context * ctx,uint32_t inst)884 static struct dpp *dcn30_dpp_create(
885 struct dc_context *ctx,
886 uint32_t inst)
887 {
888 struct dcn3_dpp *dpp =
889 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
890
891 if (!dpp)
892 return NULL;
893
894 if (dpp3_construct(dpp, ctx, inst,
895 &dpp_regs[inst], &tf_shift, &tf_mask))
896 return &dpp->base;
897
898 BREAK_TO_DEBUGGER();
899 kfree(dpp);
900 return NULL;
901 }
902
dcn30_opp_create(struct dc_context * ctx,uint32_t inst)903 static struct output_pixel_processor *dcn30_opp_create(
904 struct dc_context *ctx, uint32_t inst)
905 {
906 struct dcn20_opp *opp =
907 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
908
909 if (!opp) {
910 BREAK_TO_DEBUGGER();
911 return NULL;
912 }
913
914 dcn20_opp_construct(opp, ctx, inst,
915 &opp_regs[inst], &opp_shift, &opp_mask);
916 return &opp->base;
917 }
918
dcn30_aux_engine_create(struct dc_context * ctx,uint32_t inst)919 static struct dce_aux *dcn30_aux_engine_create(
920 struct dc_context *ctx,
921 uint32_t inst)
922 {
923 struct aux_engine_dce110 *aux_engine =
924 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
925
926 if (!aux_engine)
927 return NULL;
928
929 dce110_aux_engine_construct(aux_engine, ctx, inst,
930 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
931 &aux_engine_regs[inst],
932 &aux_mask,
933 &aux_shift,
934 ctx->dc->caps.extended_aux_timeout_support);
935
936 return &aux_engine->base;
937 }
938
939 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) }
940
941 static const struct dce_i2c_registers i2c_hw_regs[] = {
942 i2c_inst_regs(1),
943 i2c_inst_regs(2),
944 i2c_inst_regs(3),
945 i2c_inst_regs(4),
946 i2c_inst_regs(5),
947 i2c_inst_regs(6),
948 };
949
950 static const struct dce_i2c_shift i2c_shifts = {
951 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
952 };
953
954 static const struct dce_i2c_mask i2c_masks = {
955 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
956 };
957
dcn30_i2c_hw_create(struct dc_context * ctx,uint32_t inst)958 static struct dce_i2c_hw *dcn30_i2c_hw_create(
959 struct dc_context *ctx,
960 uint32_t inst)
961 {
962 struct dce_i2c_hw *dce_i2c_hw =
963 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
964
965 if (!dce_i2c_hw)
966 return NULL;
967
968 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
969 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
970
971 return dce_i2c_hw;
972 }
973
dcn30_mpc_create(struct dc_context * ctx,int num_mpcc,int num_rmu)974 static struct mpc *dcn30_mpc_create(
975 struct dc_context *ctx,
976 int num_mpcc,
977 int num_rmu)
978 {
979 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
980 GFP_KERNEL);
981
982 if (!mpc30)
983 return NULL;
984
985 dcn30_mpc_construct(mpc30, ctx,
986 &mpc_regs,
987 &mpc_shift,
988 &mpc_mask,
989 num_mpcc,
990 num_rmu);
991
992 return &mpc30->base;
993 }
994
dcn30_hubbub_create(struct dc_context * ctx)995 struct hubbub *dcn30_hubbub_create(struct dc_context *ctx)
996 {
997 int i;
998
999 struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub),
1000 GFP_KERNEL);
1001
1002 if (!hubbub3)
1003 return NULL;
1004
1005 hubbub3_construct(hubbub3, ctx,
1006 &hubbub_reg,
1007 &hubbub_shift,
1008 &hubbub_mask);
1009
1010
1011 for (i = 0; i < res_cap_dcn3.num_vmid; i++) {
1012 struct dcn20_vmid *vmid = &hubbub3->vmid[i];
1013
1014 vmid->ctx = ctx;
1015
1016 vmid->regs = &vmid_regs[i];
1017 vmid->shifts = &vmid_shifts;
1018 vmid->masks = &vmid_masks;
1019 }
1020
1021 return &hubbub3->base;
1022 }
1023
dcn30_timing_generator_create(struct dc_context * ctx,uint32_t instance)1024 static struct timing_generator *dcn30_timing_generator_create(
1025 struct dc_context *ctx,
1026 uint32_t instance)
1027 {
1028 struct optc *tgn10 =
1029 kzalloc(sizeof(struct optc), GFP_KERNEL);
1030
1031 if (!tgn10)
1032 return NULL;
1033
1034 tgn10->base.inst = instance;
1035 tgn10->base.ctx = ctx;
1036
1037 tgn10->tg_regs = &optc_regs[instance];
1038 tgn10->tg_shift = &optc_shift;
1039 tgn10->tg_mask = &optc_mask;
1040
1041 dcn30_timing_generator_init(tgn10);
1042
1043 return &tgn10->base;
1044 }
1045
1046 static const struct encoder_feature_support link_enc_feature = {
1047 .max_hdmi_deep_color = COLOR_DEPTH_121212,
1048 .max_hdmi_pixel_clock = 600000,
1049 .hdmi_ycbcr420_supported = true,
1050 .dp_ycbcr420_supported = true,
1051 .fec_supported = true,
1052 .flags.bits.IS_HBR2_CAPABLE = true,
1053 .flags.bits.IS_HBR3_CAPABLE = true,
1054 .flags.bits.IS_TPS3_CAPABLE = true,
1055 .flags.bits.IS_TPS4_CAPABLE = true
1056 };
1057
dcn30_link_encoder_create(const struct encoder_init_data * enc_init_data)1058 static struct link_encoder *dcn30_link_encoder_create(
1059 const struct encoder_init_data *enc_init_data)
1060 {
1061 struct dcn20_link_encoder *enc20 =
1062 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1063
1064 if (!enc20)
1065 return NULL;
1066
1067 dcn30_link_encoder_construct(enc20,
1068 enc_init_data,
1069 &link_enc_feature,
1070 &link_enc_regs[enc_init_data->transmitter],
1071 &link_enc_aux_regs[enc_init_data->channel - 1],
1072 &link_enc_hpd_regs[enc_init_data->hpd_source],
1073 &le_shift,
1074 &le_mask);
1075
1076 return &enc20->enc10.base;
1077 }
1078
dcn30_panel_cntl_create(const struct panel_cntl_init_data * init_data)1079 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1080 {
1081 struct dce_panel_cntl *panel_cntl =
1082 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
1083
1084 if (!panel_cntl)
1085 return NULL;
1086
1087 dce_panel_cntl_construct(panel_cntl,
1088 init_data,
1089 &panel_cntl_regs[init_data->inst],
1090 &panel_cntl_shift,
1091 &panel_cntl_mask);
1092
1093 return &panel_cntl->base;
1094 }
1095
read_dce_straps(struct dc_context * ctx,struct resource_straps * straps)1096 static void read_dce_straps(
1097 struct dc_context *ctx,
1098 struct resource_straps *straps)
1099 {
1100 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
1101 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1102
1103 }
1104
dcn30_create_audio(struct dc_context * ctx,unsigned int inst)1105 static struct audio *dcn30_create_audio(
1106 struct dc_context *ctx, unsigned int inst)
1107 {
1108 return dce_audio_create(ctx, inst,
1109 &audio_regs[inst], &audio_shift, &audio_mask);
1110 }
1111
dcn30_vpg_create(struct dc_context * ctx,uint32_t inst)1112 static struct vpg *dcn30_vpg_create(
1113 struct dc_context *ctx,
1114 uint32_t inst)
1115 {
1116 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1117
1118 if (!vpg3)
1119 return NULL;
1120
1121 vpg3_construct(vpg3, ctx, inst,
1122 &vpg_regs[inst],
1123 &vpg_shift,
1124 &vpg_mask);
1125
1126 return &vpg3->base;
1127 }
1128
dcn30_afmt_create(struct dc_context * ctx,uint32_t inst)1129 static struct afmt *dcn30_afmt_create(
1130 struct dc_context *ctx,
1131 uint32_t inst)
1132 {
1133 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1134
1135 if (!afmt3)
1136 return NULL;
1137
1138 afmt3_construct(afmt3, ctx, inst,
1139 &afmt_regs[inst],
1140 &afmt_shift,
1141 &afmt_mask);
1142
1143 return &afmt3->base;
1144 }
1145
dcn30_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)1146 struct stream_encoder *dcn30_stream_encoder_create(
1147 enum engine_id eng_id,
1148 struct dc_context *ctx)
1149 {
1150 struct dcn10_stream_encoder *enc1;
1151 struct vpg *vpg;
1152 struct afmt *afmt;
1153 int vpg_inst;
1154 int afmt_inst;
1155
1156 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1157 if (eng_id <= ENGINE_ID_DIGF) {
1158 vpg_inst = eng_id;
1159 afmt_inst = eng_id;
1160 } else
1161 return NULL;
1162
1163 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1164 vpg = dcn30_vpg_create(ctx, vpg_inst);
1165 afmt = dcn30_afmt_create(ctx, afmt_inst);
1166
1167 if (!enc1 || !vpg || !afmt)
1168 return NULL;
1169
1170 dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1171 eng_id, vpg, afmt,
1172 &stream_enc_regs[eng_id],
1173 &se_shift, &se_mask);
1174
1175 return &enc1->base;
1176 }
1177
dcn30_hwseq_create(struct dc_context * ctx)1178 struct dce_hwseq *dcn30_hwseq_create(
1179 struct dc_context *ctx)
1180 {
1181 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1182
1183 if (hws) {
1184 hws->ctx = ctx;
1185 hws->regs = &hwseq_reg;
1186 hws->shifts = &hwseq_shift;
1187 hws->masks = &hwseq_mask;
1188 }
1189 return hws;
1190 }
1191 static const struct resource_create_funcs res_create_funcs = {
1192 .read_dce_straps = read_dce_straps,
1193 .create_audio = dcn30_create_audio,
1194 .create_stream_encoder = dcn30_stream_encoder_create,
1195 .create_hwseq = dcn30_hwseq_create,
1196 };
1197
1198 static const struct resource_create_funcs res_create_maximus_funcs = {
1199 .read_dce_straps = NULL,
1200 .create_audio = NULL,
1201 .create_stream_encoder = NULL,
1202 .create_hwseq = dcn30_hwseq_create,
1203 };
1204
dcn30_resource_destruct(struct dcn30_resource_pool * pool)1205 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool)
1206 {
1207 unsigned int i;
1208
1209 for (i = 0; i < pool->base.stream_enc_count; i++) {
1210 if (pool->base.stream_enc[i] != NULL) {
1211 if (pool->base.stream_enc[i]->vpg != NULL) {
1212 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1213 pool->base.stream_enc[i]->vpg = NULL;
1214 }
1215 if (pool->base.stream_enc[i]->afmt != NULL) {
1216 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1217 pool->base.stream_enc[i]->afmt = NULL;
1218 }
1219 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1220 pool->base.stream_enc[i] = NULL;
1221 }
1222 }
1223
1224 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1225 if (pool->base.dscs[i] != NULL)
1226 dcn20_dsc_destroy(&pool->base.dscs[i]);
1227 }
1228
1229 if (pool->base.mpc != NULL) {
1230 kfree(TO_DCN20_MPC(pool->base.mpc));
1231 pool->base.mpc = NULL;
1232 }
1233 if (pool->base.hubbub != NULL) {
1234 kfree(pool->base.hubbub);
1235 pool->base.hubbub = NULL;
1236 }
1237 for (i = 0; i < pool->base.pipe_count; i++) {
1238 if (pool->base.dpps[i] != NULL)
1239 dcn30_dpp_destroy(&pool->base.dpps[i]);
1240
1241 if (pool->base.ipps[i] != NULL)
1242 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1243
1244 if (pool->base.hubps[i] != NULL) {
1245 kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1246 pool->base.hubps[i] = NULL;
1247 }
1248
1249 if (pool->base.irqs != NULL) {
1250 dal_irq_service_destroy(&pool->base.irqs);
1251 }
1252 }
1253
1254 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1255 if (pool->base.engines[i] != NULL)
1256 dce110_engine_destroy(&pool->base.engines[i]);
1257 if (pool->base.hw_i2cs[i] != NULL) {
1258 kfree(pool->base.hw_i2cs[i]);
1259 pool->base.hw_i2cs[i] = NULL;
1260 }
1261 if (pool->base.sw_i2cs[i] != NULL) {
1262 kfree(pool->base.sw_i2cs[i]);
1263 pool->base.sw_i2cs[i] = NULL;
1264 }
1265 }
1266
1267 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1268 if (pool->base.opps[i] != NULL)
1269 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1270 }
1271
1272 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1273 if (pool->base.timing_generators[i] != NULL) {
1274 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1275 pool->base.timing_generators[i] = NULL;
1276 }
1277 }
1278
1279 for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1280 if (pool->base.dwbc[i] != NULL) {
1281 kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1282 pool->base.dwbc[i] = NULL;
1283 }
1284 if (pool->base.mcif_wb[i] != NULL) {
1285 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1286 pool->base.mcif_wb[i] = NULL;
1287 }
1288 }
1289
1290 for (i = 0; i < pool->base.audio_count; i++) {
1291 if (pool->base.audios[i])
1292 dce_aud_destroy(&pool->base.audios[i]);
1293 }
1294
1295 for (i = 0; i < pool->base.clk_src_count; i++) {
1296 if (pool->base.clock_sources[i] != NULL) {
1297 dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1298 pool->base.clock_sources[i] = NULL;
1299 }
1300 }
1301
1302 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1303 if (pool->base.mpc_lut[i] != NULL) {
1304 dc_3dlut_func_release(pool->base.mpc_lut[i]);
1305 pool->base.mpc_lut[i] = NULL;
1306 }
1307 if (pool->base.mpc_shaper[i] != NULL) {
1308 dc_transfer_func_release(pool->base.mpc_shaper[i]);
1309 pool->base.mpc_shaper[i] = NULL;
1310 }
1311 }
1312
1313 if (pool->base.dp_clock_source != NULL) {
1314 dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1315 pool->base.dp_clock_source = NULL;
1316 }
1317
1318 for (i = 0; i < pool->base.pipe_count; i++) {
1319 if (pool->base.multiple_abms[i] != NULL)
1320 dce_abm_destroy(&pool->base.multiple_abms[i]);
1321 }
1322
1323 if (pool->base.psr != NULL)
1324 dmub_psr_destroy(&pool->base.psr);
1325
1326 if (pool->base.dccg != NULL)
1327 dcn_dccg_destroy(&pool->base.dccg);
1328
1329 if (pool->base.oem_device != NULL)
1330 dal_ddc_service_destroy(&pool->base.oem_device);
1331 }
1332
dcn30_hubp_create(struct dc_context * ctx,uint32_t inst)1333 static struct hubp *dcn30_hubp_create(
1334 struct dc_context *ctx,
1335 uint32_t inst)
1336 {
1337 struct dcn20_hubp *hubp2 =
1338 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
1339
1340 if (!hubp2)
1341 return NULL;
1342
1343 if (hubp3_construct(hubp2, ctx, inst,
1344 &hubp_regs[inst], &hubp_shift, &hubp_mask))
1345 return &hubp2->base;
1346
1347 BREAK_TO_DEBUGGER();
1348 kfree(hubp2);
1349 return NULL;
1350 }
1351
dcn30_dwbc_create(struct dc_context * ctx,struct resource_pool * pool)1352 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1353 {
1354 int i;
1355 uint32_t pipe_count = pool->res_cap->num_dwb;
1356
1357 for (i = 0; i < pipe_count; i++) {
1358 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1359 GFP_KERNEL);
1360
1361 if (!dwbc30) {
1362 dm_error("DC: failed to create dwbc30!\n");
1363 return false;
1364 }
1365
1366 dcn30_dwbc_construct(dwbc30, ctx,
1367 &dwbc30_regs[i],
1368 &dwbc30_shift,
1369 &dwbc30_mask,
1370 i);
1371
1372 pool->dwbc[i] = &dwbc30->base;
1373 }
1374 return true;
1375 }
1376
dcn30_mmhubbub_create(struct dc_context * ctx,struct resource_pool * pool)1377 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1378 {
1379 int i;
1380 uint32_t pipe_count = pool->res_cap->num_dwb;
1381
1382 for (i = 0; i < pipe_count; i++) {
1383 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1384 GFP_KERNEL);
1385
1386 if (!mcif_wb30) {
1387 dm_error("DC: failed to create mcif_wb30!\n");
1388 return false;
1389 }
1390
1391 dcn30_mmhubbub_construct(mcif_wb30, ctx,
1392 &mcif_wb30_regs[i],
1393 &mcif_wb30_shift,
1394 &mcif_wb30_mask,
1395 i);
1396
1397 pool->mcif_wb[i] = &mcif_wb30->base;
1398 }
1399 return true;
1400 }
1401
dcn30_dsc_create(struct dc_context * ctx,uint32_t inst)1402 static struct display_stream_compressor *dcn30_dsc_create(
1403 struct dc_context *ctx, uint32_t inst)
1404 {
1405 struct dcn20_dsc *dsc =
1406 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1407
1408 if (!dsc) {
1409 BREAK_TO_DEBUGGER();
1410 return NULL;
1411 }
1412
1413 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1414 return &dsc->base;
1415 }
1416
dcn30_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * dc_stream)1417 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1418 {
1419
1420 return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream);
1421 }
1422
dcn30_destroy_resource_pool(struct resource_pool ** pool)1423 static void dcn30_destroy_resource_pool(struct resource_pool **pool)
1424 {
1425 struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool);
1426
1427 dcn30_resource_destruct(dcn30_pool);
1428 kfree(dcn30_pool);
1429 *pool = NULL;
1430 }
1431
dcn30_clock_source_create(struct dc_context * ctx,struct dc_bios * bios,enum clock_source_id id,const struct dce110_clk_src_regs * regs,bool dp_clk_src)1432 static struct clock_source *dcn30_clock_source_create(
1433 struct dc_context *ctx,
1434 struct dc_bios *bios,
1435 enum clock_source_id id,
1436 const struct dce110_clk_src_regs *regs,
1437 bool dp_clk_src)
1438 {
1439 struct dce110_clk_src *clk_src =
1440 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
1441
1442 if (!clk_src)
1443 return NULL;
1444
1445 if (dcn3_clk_src_construct(clk_src, ctx, bios, id,
1446 regs, &cs_shift, &cs_mask)) {
1447 clk_src->base.dp_clk_src = dp_clk_src;
1448 return &clk_src->base;
1449 }
1450
1451 BREAK_TO_DEBUGGER();
1452 return NULL;
1453 }
1454
dcn30_populate_dml_pipes_from_context(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,bool fast_validate)1455 int dcn30_populate_dml_pipes_from_context(
1456 struct dc *dc, struct dc_state *context,
1457 display_e2e_pipe_params_st *pipes,
1458 bool fast_validate)
1459 {
1460 int i, pipe_cnt;
1461 struct resource_context *res_ctx = &context->res_ctx;
1462
1463 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1464
1465 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1466 if (!res_ctx->pipe_ctx[i].stream)
1467 continue;
1468
1469 pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth =
1470 dm_lb_16;
1471 }
1472
1473 return pipe_cnt;
1474 }
1475
dcn30_populate_dml_writeback_from_context(struct dc * dc,struct resource_context * res_ctx,display_e2e_pipe_params_st * pipes)1476 void dcn30_populate_dml_writeback_from_context(
1477 struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes)
1478 {
1479 int pipe_cnt, i, j;
1480 double max_calc_writeback_dispclk;
1481 double writeback_dispclk;
1482 struct writeback_st dout_wb;
1483
1484 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1485 struct dc_stream_state *stream = res_ctx->pipe_ctx[i].stream;
1486
1487 if (!stream)
1488 continue;
1489 max_calc_writeback_dispclk = 0;
1490
1491 /* Set writeback information */
1492 pipes[pipe_cnt].dout.wb_enable = 0;
1493 pipes[pipe_cnt].dout.num_active_wb = 0;
1494 for (j = 0; j < stream->num_wb_info; j++) {
1495 struct dc_writeback_info *wb_info = &stream->writeback_info[j];
1496
1497 if (wb_info->wb_enabled && wb_info->writeback_source_plane &&
1498 (wb_info->writeback_source_plane == res_ctx->pipe_ctx[i].plane_state)) {
1499 pipes[pipe_cnt].dout.wb_enable = 1;
1500 pipes[pipe_cnt].dout.num_active_wb++;
1501 dout_wb.wb_src_height = wb_info->dwb_params.cnv_params.crop_en ?
1502 wb_info->dwb_params.cnv_params.crop_height :
1503 wb_info->dwb_params.cnv_params.src_height;
1504 dout_wb.wb_src_width = wb_info->dwb_params.cnv_params.crop_en ?
1505 wb_info->dwb_params.cnv_params.crop_width :
1506 wb_info->dwb_params.cnv_params.src_width;
1507 dout_wb.wb_dst_width = wb_info->dwb_params.dest_width;
1508 dout_wb.wb_dst_height = wb_info->dwb_params.dest_height;
1509
1510 /* For IP that doesn't support WB scaling, set h/v taps to 1 to avoid DML validation failure */
1511 if (dc->dml.ip.writeback_max_hscl_taps > 1) {
1512 dout_wb.wb_htaps_luma = wb_info->dwb_params.scaler_taps.h_taps;
1513 dout_wb.wb_vtaps_luma = wb_info->dwb_params.scaler_taps.v_taps;
1514 } else {
1515 dout_wb.wb_htaps_luma = 1;
1516 dout_wb.wb_vtaps_luma = 1;
1517 }
1518 dout_wb.wb_htaps_chroma = 0;
1519 dout_wb.wb_vtaps_chroma = 0;
1520 dout_wb.wb_hratio = wb_info->dwb_params.cnv_params.crop_en ?
1521 (double)wb_info->dwb_params.cnv_params.crop_width /
1522 (double)wb_info->dwb_params.dest_width :
1523 (double)wb_info->dwb_params.cnv_params.src_width /
1524 (double)wb_info->dwb_params.dest_width;
1525 dout_wb.wb_vratio = wb_info->dwb_params.cnv_params.crop_en ?
1526 (double)wb_info->dwb_params.cnv_params.crop_height /
1527 (double)wb_info->dwb_params.dest_height :
1528 (double)wb_info->dwb_params.cnv_params.src_height /
1529 (double)wb_info->dwb_params.dest_height;
1530 if (wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
1531 wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
1532 dout_wb.wb_pixel_format = dm_444_64;
1533 else
1534 dout_wb.wb_pixel_format = dm_444_32;
1535
1536 /* Workaround for cases where multiple writebacks are connected to same plane
1537 * In which case, need to compute worst case and set the associated writeback parameters
1538 * This workaround is necessary due to DML computation assuming only 1 set of writeback
1539 * parameters per pipe
1540 */
1541 writeback_dispclk = dml30_CalculateWriteBackDISPCLK(
1542 dout_wb.wb_pixel_format,
1543 pipes[pipe_cnt].pipe.dest.pixel_rate_mhz,
1544 dout_wb.wb_hratio,
1545 dout_wb.wb_vratio,
1546 dout_wb.wb_htaps_luma,
1547 dout_wb.wb_vtaps_luma,
1548 dout_wb.wb_src_width,
1549 dout_wb.wb_dst_width,
1550 pipes[pipe_cnt].pipe.dest.htotal,
1551 dc->current_state->bw_ctx.dml.ip.writeback_line_buffer_buffer_size);
1552
1553 if (writeback_dispclk > max_calc_writeback_dispclk) {
1554 max_calc_writeback_dispclk = writeback_dispclk;
1555 pipes[pipe_cnt].dout.wb = dout_wb;
1556 }
1557 }
1558 }
1559
1560 pipe_cnt++;
1561 }
1562
1563 }
1564
dcn30_calc_max_scaled_time(unsigned int time_per_pixel,enum mmhubbub_wbif_mode mode,unsigned int urgent_watermark)1565 unsigned int dcn30_calc_max_scaled_time(
1566 unsigned int time_per_pixel,
1567 enum mmhubbub_wbif_mode mode,
1568 unsigned int urgent_watermark)
1569 {
1570 unsigned int time_per_byte = 0;
1571 unsigned int total_free_entry = 0xb40;
1572 unsigned int buf_lh_capability;
1573 unsigned int max_scaled_time;
1574
1575 if (mode == PACKED_444) /* packed mode 32 bpp */
1576 time_per_byte = time_per_pixel/4;
1577 else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */
1578 time_per_byte = time_per_pixel/8;
1579
1580 if (time_per_byte == 0)
1581 time_per_byte = 1;
1582
1583 buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/
1584 max_scaled_time = buf_lh_capability - urgent_watermark;
1585 return max_scaled_time;
1586 }
1587
dcn30_set_mcif_arb_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)1588 void dcn30_set_mcif_arb_params(
1589 struct dc *dc,
1590 struct dc_state *context,
1591 display_e2e_pipe_params_st *pipes,
1592 int pipe_cnt)
1593 {
1594 enum mmhubbub_wbif_mode wbif_mode;
1595 struct display_mode_lib *dml = &context->bw_ctx.dml;
1596 struct mcif_arb_params *wb_arb_params;
1597 int i, j, k, dwb_pipe;
1598
1599 /* Writeback MCIF_WB arbitration parameters */
1600 dwb_pipe = 0;
1601 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1602
1603 if (!context->res_ctx.pipe_ctx[i].stream)
1604 continue;
1605
1606 for (j = 0; j < MAX_DWB_PIPES; j++) {
1607 struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j];
1608
1609 if (writeback_info->wb_enabled == false)
1610 continue;
1611
1612 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1613 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1614
1615 if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
1616 writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
1617 wbif_mode = PACKED_444_FP16;
1618 else
1619 wbif_mode = PACKED_444;
1620
1621 for (k = 0; k < sizeof(wb_arb_params->cli_watermark)/sizeof(wb_arb_params->cli_watermark[0]); k++) {
1622 wb_arb_params->cli_watermark[k] = get_wm_writeback_urgent(dml, pipes, pipe_cnt) * 1000;
1623 wb_arb_params->pstate_watermark[k] = get_wm_writeback_dram_clock_change(dml, pipes, pipe_cnt) * 1000;
1624 }
1625 wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */
1626 wb_arb_params->slice_lines = 32;
1627 wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */
1628 wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1629 wbif_mode,
1630 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1631 wb_arb_params->dram_speed_change_duration = dml->vba.WritebackAllowDRAMClockChangeEndPosition[j] * pipes[0].clks_cfg.refclk_mhz; /* num_clock_cycles = us * MHz */
1632
1633 dwb_pipe++;
1634
1635 if (dwb_pipe >= MAX_DWB_PIPES)
1636 return;
1637 }
1638 if (dwb_pipe >= MAX_DWB_PIPES)
1639 return;
1640 }
1641
1642 }
1643
1644 static struct dc_cap_funcs cap_funcs = {
1645 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap
1646 };
1647
dcn30_acquire_post_bldn_3dlut(struct resource_context * res_ctx,const struct resource_pool * pool,int mpcc_id,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1648 bool dcn30_acquire_post_bldn_3dlut(
1649 struct resource_context *res_ctx,
1650 const struct resource_pool *pool,
1651 int mpcc_id,
1652 struct dc_3dlut **lut,
1653 struct dc_transfer_func **shaper)
1654 {
1655 int i;
1656 bool ret = false;
1657 union dc_3dlut_state *state;
1658
1659 ASSERT(*lut == NULL && *shaper == NULL);
1660 *lut = NULL;
1661 *shaper = NULL;
1662
1663 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1664 if (!res_ctx->is_mpc_3dlut_acquired[i]) {
1665 *lut = pool->mpc_lut[i];
1666 *shaper = pool->mpc_shaper[i];
1667 state = &pool->mpc_lut[i]->state;
1668 res_ctx->is_mpc_3dlut_acquired[i] = true;
1669 state->bits.rmu_idx_valid = 1;
1670 state->bits.rmu_mux_num = i;
1671 if (state->bits.rmu_mux_num == 0)
1672 state->bits.mpc_rmu0_mux = mpcc_id;
1673 else if (state->bits.rmu_mux_num == 1)
1674 state->bits.mpc_rmu1_mux = mpcc_id;
1675 else if (state->bits.rmu_mux_num == 2)
1676 state->bits.mpc_rmu2_mux = mpcc_id;
1677 ret = true;
1678 break;
1679 }
1680 }
1681 return ret;
1682 }
1683
dcn30_release_post_bldn_3dlut(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1684 bool dcn30_release_post_bldn_3dlut(
1685 struct resource_context *res_ctx,
1686 const struct resource_pool *pool,
1687 struct dc_3dlut **lut,
1688 struct dc_transfer_func **shaper)
1689 {
1690 int i;
1691 bool ret = false;
1692
1693 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1694 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1695 res_ctx->is_mpc_3dlut_acquired[i] = false;
1696 pool->mpc_lut[i]->state.raw = 0;
1697 *lut = NULL;
1698 *shaper = NULL;
1699 ret = true;
1700 break;
1701 }
1702 }
1703 return ret;
1704 }
1705
1706 #define fixed16_to_double(x) (((double) x) / ((double) (1 << 16)))
1707 #define fixed16_to_double_to_cpu(x) fixed16_to_double(le32_to_cpu(x))
1708
is_soc_bounding_box_valid(struct dc * dc)1709 static bool is_soc_bounding_box_valid(struct dc *dc)
1710 {
1711 uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
1712
1713 if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev))
1714 return true;
1715
1716 return false;
1717 }
1718
init_soc_bounding_box(struct dc * dc,struct dcn30_resource_pool * pool)1719 static bool init_soc_bounding_box(struct dc *dc,
1720 struct dcn30_resource_pool *pool)
1721 {
1722 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc;
1723 struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip;
1724
1725 DC_LOGGER_INIT(dc->ctx->logger);
1726
1727 if (!is_soc_bounding_box_valid(dc)) {
1728 DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__);
1729 return false;
1730 }
1731
1732 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
1733 loaded_ip->max_num_dpp = pool->base.pipe_count;
1734 loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
1735 dcn20_patch_bounding_box(dc, loaded_bb);
1736
1737 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
1738 struct bp_soc_bb_info bb_info = {0};
1739
1740 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
1741 if (bb_info.dram_clock_change_latency_100ns > 0)
1742 dcn3_0_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10;
1743
1744 if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
1745 dcn3_0_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10;
1746
1747 if (bb_info.dram_sr_exit_latency_100ns > 0)
1748 dcn3_0_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10;
1749 }
1750 }
1751
1752 return true;
1753 }
1754
dcn30_split_stream_for_mpc_or_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)1755 static bool dcn30_split_stream_for_mpc_or_odm(
1756 const struct dc *dc,
1757 struct resource_context *res_ctx,
1758 struct pipe_ctx *pri_pipe,
1759 struct pipe_ctx *sec_pipe,
1760 bool odm)
1761 {
1762 int pipe_idx = sec_pipe->pipe_idx;
1763 const struct resource_pool *pool = dc->res_pool;
1764
1765 *sec_pipe = *pri_pipe;
1766
1767 sec_pipe->pipe_idx = pipe_idx;
1768 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1769 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1770 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1771 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1772 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1773 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1774 sec_pipe->stream_res.dsc = NULL;
1775 if (odm) {
1776 if (pri_pipe->next_odm_pipe) {
1777 ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1778 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1779 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1780 }
1781 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1782 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1783 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1784 }
1785 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1786 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1787 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1788 }
1789 pri_pipe->next_odm_pipe = sec_pipe;
1790 sec_pipe->prev_odm_pipe = pri_pipe;
1791
1792 if (!sec_pipe->top_pipe)
1793 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1794 else
1795 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1796 if (sec_pipe->stream->timing.flags.DSC == 1) {
1797 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1798 ASSERT(sec_pipe->stream_res.dsc);
1799 if (sec_pipe->stream_res.dsc == NULL)
1800 return false;
1801 }
1802 } else {
1803 if (pri_pipe->bottom_pipe) {
1804 ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1805 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1806 sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1807 }
1808 pri_pipe->bottom_pipe = sec_pipe;
1809 sec_pipe->top_pipe = pri_pipe;
1810
1811 ASSERT(pri_pipe->plane_state);
1812 }
1813
1814 return true;
1815 }
1816
dcn30_find_split_pipe(struct dc * dc,struct dc_state * context,int old_index)1817 static struct pipe_ctx *dcn30_find_split_pipe(
1818 struct dc *dc,
1819 struct dc_state *context,
1820 int old_index)
1821 {
1822 struct pipe_ctx *pipe = NULL;
1823 int i;
1824
1825 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1826 pipe = &context->res_ctx.pipe_ctx[old_index];
1827 pipe->pipe_idx = old_index;
1828 }
1829
1830 if (!pipe)
1831 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1832 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1833 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1834 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1835 pipe = &context->res_ctx.pipe_ctx[i];
1836 pipe->pipe_idx = i;
1837 break;
1838 }
1839 }
1840 }
1841
1842 /*
1843 * May need to fix pipes getting tossed from 1 opp to another on flip
1844 * Add for debugging transient underflow during topology updates:
1845 * ASSERT(pipe);
1846 */
1847 if (!pipe)
1848 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1849 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1850 pipe = &context->res_ctx.pipe_ctx[i];
1851 pipe->pipe_idx = i;
1852 break;
1853 }
1854 }
1855
1856 return pipe;
1857 }
1858
dcn30_internal_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * vlevel_out,bool fast_validate)1859 static noinline bool dcn30_internal_validate_bw(
1860 struct dc *dc,
1861 struct dc_state *context,
1862 display_e2e_pipe_params_st *pipes,
1863 int *pipe_cnt_out,
1864 int *vlevel_out,
1865 bool fast_validate)
1866 {
1867 bool out = false;
1868 bool repopulate_pipes = false;
1869 int split[MAX_PIPES] = { 0 };
1870 bool merge[MAX_PIPES] = { false };
1871 bool newly_split[MAX_PIPES] = { false };
1872 int pipe_cnt, i, pipe_idx, vlevel;
1873 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1874
1875 ASSERT(pipes);
1876 if (!pipes)
1877 return false;
1878
1879 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1880 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1881
1882 DC_FP_START();
1883 if (!pipe_cnt) {
1884 out = true;
1885 goto validate_out;
1886 }
1887
1888 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1889
1890 if (!fast_validate) {
1891 /*
1892 * DML favors voltage over p-state, but we're more interested in
1893 * supporting p-state over voltage. We can't support p-state in
1894 * prefetch mode > 0 so try capping the prefetch mode to start.
1895 */
1896 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1897 dm_allow_self_refresh_and_mclk_switch;
1898 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1899 /* This may adjust vlevel and maxMpcComb */
1900 if (vlevel < context->bw_ctx.dml.soc.num_states)
1901 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1902 }
1903 if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
1904 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
1905 /*
1906 * If mode is unsupported or there's still no p-state support then
1907 * fall back to favoring voltage.
1908 *
1909 * We don't actually support prefetch mode 2, so require that we
1910 * at least support prefetch mode 1.
1911 */
1912 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1913 dm_allow_self_refresh;
1914
1915 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1916 if (vlevel < context->bw_ctx.dml.soc.num_states) {
1917 memset(split, 0, sizeof(split));
1918 memset(merge, 0, sizeof(merge));
1919 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1920 }
1921 }
1922
1923 dml_log_mode_support_params(&context->bw_ctx.dml);
1924
1925 if (vlevel == context->bw_ctx.dml.soc.num_states)
1926 goto validate_fail;
1927
1928 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1929 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1930 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1931
1932 if (!pipe->stream)
1933 continue;
1934
1935 /* We only support full screen mpo with ODM */
1936 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1937 && pipe->plane_state && mpo_pipe
1938 && memcmp(&mpo_pipe->plane_res.scl_data.recout,
1939 &pipe->plane_res.scl_data.recout,
1940 sizeof(struct rect)) != 0) {
1941 ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1942 goto validate_fail;
1943 }
1944 pipe_idx++;
1945 }
1946
1947 /* merge pipes if necessary */
1948 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1949 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1950
1951 /*skip pipes that don't need merging*/
1952 if (!merge[i])
1953 continue;
1954
1955 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1956 if (pipe->prev_odm_pipe) {
1957 /*split off odm pipe*/
1958 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1959 if (pipe->next_odm_pipe)
1960 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1961
1962 pipe->bottom_pipe = NULL;
1963 pipe->next_odm_pipe = NULL;
1964 pipe->plane_state = NULL;
1965 pipe->stream = NULL;
1966 pipe->top_pipe = NULL;
1967 pipe->prev_odm_pipe = NULL;
1968 if (pipe->stream_res.dsc)
1969 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1970 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1971 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1972 repopulate_pipes = true;
1973 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1974 struct pipe_ctx *top_pipe = pipe->top_pipe;
1975 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1976
1977 top_pipe->bottom_pipe = bottom_pipe;
1978 if (bottom_pipe)
1979 bottom_pipe->top_pipe = top_pipe;
1980
1981 pipe->top_pipe = NULL;
1982 pipe->bottom_pipe = NULL;
1983 pipe->plane_state = NULL;
1984 pipe->stream = NULL;
1985 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1986 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1987 repopulate_pipes = true;
1988 } else
1989 ASSERT(0); /* Should never try to merge master pipe */
1990
1991 }
1992
1993 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1994 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1995 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1996 struct pipe_ctx *hsplit_pipe = NULL;
1997 bool odm;
1998 int old_index = -1;
1999
2000 if (!pipe->stream || newly_split[i])
2001 continue;
2002
2003 pipe_idx++;
2004 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2005
2006 if (!pipe->plane_state && !odm)
2007 continue;
2008
2009 if (split[i]) {
2010 if (odm) {
2011 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2012 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2013 else if (old_pipe->next_odm_pipe)
2014 old_index = old_pipe->next_odm_pipe->pipe_idx;
2015 } else {
2016 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2017 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2018 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2019 else if (old_pipe->bottom_pipe &&
2020 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2021 old_index = old_pipe->bottom_pipe->pipe_idx;
2022 }
2023 hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index);
2024 ASSERT(hsplit_pipe);
2025 if (!hsplit_pipe)
2026 goto validate_fail;
2027
2028 if (!dcn30_split_stream_for_mpc_or_odm(
2029 dc, &context->res_ctx,
2030 pipe, hsplit_pipe, odm))
2031 goto validate_fail;
2032
2033 newly_split[hsplit_pipe->pipe_idx] = true;
2034 repopulate_pipes = true;
2035 }
2036 if (split[i] == 4) {
2037 struct pipe_ctx *pipe_4to1;
2038
2039 if (odm && old_pipe->next_odm_pipe)
2040 old_index = old_pipe->next_odm_pipe->pipe_idx;
2041 else if (!odm && old_pipe->bottom_pipe &&
2042 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2043 old_index = old_pipe->bottom_pipe->pipe_idx;
2044 else
2045 old_index = -1;
2046 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
2047 ASSERT(pipe_4to1);
2048 if (!pipe_4to1)
2049 goto validate_fail;
2050 if (!dcn30_split_stream_for_mpc_or_odm(
2051 dc, &context->res_ctx,
2052 pipe, pipe_4to1, odm))
2053 goto validate_fail;
2054 newly_split[pipe_4to1->pipe_idx] = true;
2055
2056 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2057 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2058 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2059 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2060 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2061 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2062 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2063 else
2064 old_index = -1;
2065 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
2066 ASSERT(pipe_4to1);
2067 if (!pipe_4to1)
2068 goto validate_fail;
2069 if (!dcn30_split_stream_for_mpc_or_odm(
2070 dc, &context->res_ctx,
2071 hsplit_pipe, pipe_4to1, odm))
2072 goto validate_fail;
2073 newly_split[pipe_4to1->pipe_idx] = true;
2074 }
2075 if (odm)
2076 dcn20_build_mapped_resource(dc, context, pipe->stream);
2077 }
2078
2079 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2080 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2081
2082 if (pipe->plane_state) {
2083 if (!resource_build_scaling_params(pipe))
2084 goto validate_fail;
2085 }
2086 }
2087
2088 /* Actual dsc count per stream dsc validation*/
2089 if (!dcn20_validate_dsc(dc, context)) {
2090 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2091 goto validate_fail;
2092 }
2093
2094 if (repopulate_pipes)
2095 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2096 *vlevel_out = vlevel;
2097 *pipe_cnt_out = pipe_cnt;
2098
2099 out = true;
2100 goto validate_out;
2101
2102 validate_fail:
2103 out = false;
2104
2105 validate_out:
2106 DC_FP_END();
2107 return out;
2108 }
2109
2110 /*
2111 * This must be noinline to ensure anything that deals with FP registers
2112 * is contained within this call; previously our compiling with hard-float
2113 * would result in fp instructions being emitted outside of the boundaries
2114 * of the DC_FP_START/END macros, which makes sense as the compiler has no
2115 * idea about what is wrapped and what is not
2116 *
2117 * This is largely just a workaround to avoid breakage introduced with 5.6,
2118 * ideally all fp-using code should be moved into its own file, only that
2119 * should be compiled with hard-float, and all code exported from there
2120 * should be strictly wrapped with DC_FP_START/END
2121 */
dcn30_calculate_wm_and_dlg_fp(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)2122 static noinline void dcn30_calculate_wm_and_dlg_fp(
2123 struct dc *dc, struct dc_state *context,
2124 display_e2e_pipe_params_st *pipes,
2125 int pipe_cnt,
2126 int vlevel)
2127 {
2128 int i, pipe_idx;
2129 double dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2130 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
2131 dm_dram_clock_change_unsupported;
2132
2133 if (context->bw_ctx.dml.soc.min_dcfclk > dcfclk)
2134 dcfclk = context->bw_ctx.dml.soc.min_dcfclk;
2135
2136 pipes[0].clks_cfg.voltage = vlevel;
2137 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2138 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2139
2140 /* Set B:
2141 * DCFCLK: 1GHz or min required above 1GHz
2142 * FCLK/UCLK: Max
2143 */
2144 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2145 if (vlevel == 0) {
2146 pipes[0].clks_cfg.voltage = 1;
2147 pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dcfclk_mhz;
2148 }
2149 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2150 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2151 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2152 }
2153 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2154 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2155 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2156 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2157 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2158 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2159 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2160 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2161
2162 pipes[0].clks_cfg.voltage = vlevel;
2163 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2164
2165 /* Set D:
2166 * DCFCLK: Min Required
2167 * FCLK(proportional to UCLK): 1GHz or Max
2168 * MALL stutter, sr_enter_exit = 4, sr_exit = 2us
2169 */
2170 /*
2171 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2172 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2173 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2174 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2175 }
2176 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2177 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2178 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2179 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2180 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2181 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2182 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2183 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2184 */
2185
2186 /* Set C:
2187 * DCFCLK: Min Required
2188 * FCLK(proportional to UCLK): 1GHz or Max
2189 * pstate latency overridden to 5us
2190 */
2191 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2192 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2193 unsigned int min_dram_speed_mts_margin = 160;
2194
2195 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_dram_clock_change_unsupported)
2196 min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz * 16;
2197
2198 /* find largest table entry that is lower than dram speed, but lower than DPM0 still uses DPM0 */
2199 for (i = 3; i > 0; i--)
2200 if (min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts)
2201 break;
2202
2203 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us;
2204 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2205 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2206 }
2207 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2208 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2209 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2210 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2211 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2212 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2213 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2214 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2215
2216 if (!pstate_en) {
2217 /* The only difference between A and C is p-state latency, if p-state is not supported we want to
2218 * calculate DLG based on dummy p-state latency, and max out the set A p-state watermark
2219 */
2220 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2221 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2222 } else {
2223 /* Set A:
2224 * DCFCLK: Min Required
2225 * FCLK(proportional to UCLK): 1GHz or Max
2226 *
2227 * Set A calculated last so that following calculations are based on Set A
2228 */
2229 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
2230 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2231 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2232 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2233 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2234 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2235 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2236 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2237 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2238 }
2239
2240 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2241
2242 /* Make set D = set A until set D is enabled */
2243 context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2244
2245 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2246 if (!context->res_ctx.pipe_ctx[i].stream)
2247 continue;
2248
2249 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2250 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2251
2252 if (dc->config.forced_clocks) {
2253 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2254 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2255 }
2256 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2257 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2258 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2259 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2260
2261 pipe_idx++;
2262 }
2263
2264 dcn20_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2265
2266 if (!pstate_en)
2267 /* Restore full p-state latency */
2268 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2269 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2270 }
2271
dcn30_update_soc_for_wm_a(struct dc * dc,struct dc_state * context)2272 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context)
2273 {
2274 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].valid) {
2275 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2276 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2277 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2278 }
2279 }
2280
dcn30_calculate_wm_and_dlg(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)2281 void dcn30_calculate_wm_and_dlg(
2282 struct dc *dc, struct dc_state *context,
2283 display_e2e_pipe_params_st *pipes,
2284 int pipe_cnt,
2285 int vlevel)
2286 {
2287 DC_FP_START();
2288 dcn30_calculate_wm_and_dlg_fp(dc, context, pipes, pipe_cnt, vlevel);
2289 DC_FP_END();
2290 }
2291
dcn30_validate_bandwidth(struct dc * dc,struct dc_state * context,bool fast_validate)2292 bool dcn30_validate_bandwidth(struct dc *dc,
2293 struct dc_state *context,
2294 bool fast_validate)
2295 {
2296 bool out = false;
2297
2298 BW_VAL_TRACE_SETUP();
2299
2300 int vlevel = 0;
2301 int pipe_cnt = 0;
2302 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2303 DC_LOGGER_INIT(dc->ctx->logger);
2304
2305 BW_VAL_TRACE_COUNT();
2306
2307 out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
2308
2309 if (pipe_cnt == 0)
2310 goto validate_out;
2311
2312 if (!out)
2313 goto validate_fail;
2314
2315 BW_VAL_TRACE_END_VOLTAGE_LEVEL();
2316
2317 if (fast_validate) {
2318 BW_VAL_TRACE_SKIP(fast);
2319 goto validate_out;
2320 }
2321
2322 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2323
2324 BW_VAL_TRACE_END_WATERMARKS();
2325
2326 goto validate_out;
2327
2328 validate_fail:
2329 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
2330 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
2331
2332 BW_VAL_TRACE_SKIP(fail);
2333 out = false;
2334
2335 validate_out:
2336 kfree(pipes);
2337
2338 BW_VAL_TRACE_FINISH();
2339
2340 return out;
2341 }
2342
2343 /*
2344 * This must be noinline to ensure anything that deals with FP registers
2345 * is contained within this call; previously our compiling with hard-float
2346 * would result in fp instructions being emitted outside of the boundaries
2347 * of the DC_FP_START/END macros, which makes sense as the compiler has no
2348 * idea about what is wrapped and what is not
2349 *
2350 * This is largely just a workaround to avoid breakage introduced with 5.6,
2351 * ideally all fp-using code should be moved into its own file, only that
2352 * should be compiled with hard-float, and all code exported from there
2353 * should be strictly wrapped with DC_FP_START/END
2354 */
dcn30_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,unsigned int * optimal_dcfclk,unsigned int * optimal_fclk)2355 static noinline void dcn30_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2356 unsigned int *optimal_dcfclk,
2357 unsigned int *optimal_fclk)
2358 {
2359 double bw_from_dram, bw_from_dram1, bw_from_dram2;
2360
2361 bw_from_dram1 = uclk_mts * dcn3_0_soc.num_chans *
2362 dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_dram_bw_use_normal_percent / 100);
2363 bw_from_dram2 = uclk_mts * dcn3_0_soc.num_chans *
2364 dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100);
2365
2366 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2367
2368 if (optimal_fclk)
2369 *optimal_fclk = bw_from_dram /
2370 (dcn3_0_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100));
2371
2372 if (optimal_dcfclk)
2373 *optimal_dcfclk = bw_from_dram /
2374 (dcn3_0_soc.return_bus_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100));
2375 }
2376
dcn30_update_bw_bounding_box(struct dc * dc,struct clk_bw_params * bw_params)2377 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2378 {
2379 unsigned int i, j;
2380 unsigned int num_states = 0;
2381
2382 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2383 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2384 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2385 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2386
2387 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200};
2388 unsigned int num_dcfclk_sta_targets = 4;
2389 unsigned int num_uclk_states;
2390
2391 if (dc->ctx->dc_bios->vram_info.num_chans)
2392 dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2393
2394 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2395 dcn3_0_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2396
2397 dcn3_0_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2398 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2399
2400 if (bw_params->clk_table.entries[0].memclk_mhz) {
2401 int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2402
2403 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2404 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2405 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2406 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2407 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2408 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2409 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2410 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2411 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2412 }
2413
2414 if (!max_dcfclk_mhz)
2415 max_dcfclk_mhz = dcn3_0_soc.clock_limits[0].dcfclk_mhz;
2416 if (!max_dispclk_mhz)
2417 max_dispclk_mhz = dcn3_0_soc.clock_limits[0].dispclk_mhz;
2418 if (!max_dppclk_mhz)
2419 max_dppclk_mhz = dcn3_0_soc.clock_limits[0].dppclk_mhz;
2420 if (!max_phyclk_mhz)
2421 max_phyclk_mhz = dcn3_0_soc.clock_limits[0].phyclk_mhz;
2422
2423 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2424 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2425 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2426 num_dcfclk_sta_targets++;
2427 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2428 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2429 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2430 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2431 dcfclk_sta_targets[i] = max_dcfclk_mhz;
2432 break;
2433 }
2434 }
2435 // Update size of array since we "removed" duplicates
2436 num_dcfclk_sta_targets = i + 1;
2437 }
2438
2439 num_uclk_states = bw_params->clk_table.num_entries;
2440
2441 // Calculate optimal dcfclk for each uclk
2442 for (i = 0; i < num_uclk_states; i++) {
2443 DC_FP_START();
2444 dcn30_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2445 &optimal_dcfclk_for_uclk[i], NULL);
2446 DC_FP_END();
2447 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2448 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2449 }
2450 }
2451
2452 // Calculate optimal uclk for each dcfclk sta target
2453 for (i = 0; i < num_dcfclk_sta_targets; i++) {
2454 for (j = 0; j < num_uclk_states; j++) {
2455 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2456 optimal_uclk_for_dcfclk_sta_targets[i] =
2457 bw_params->clk_table.entries[j].memclk_mhz * 16;
2458 break;
2459 }
2460 }
2461 }
2462
2463 i = 0;
2464 j = 0;
2465 // create the final dcfclk and uclk table
2466 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2467 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2468 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2469 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2470 } else {
2471 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2472 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2473 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2474 } else {
2475 j = num_uclk_states;
2476 }
2477 }
2478 }
2479
2480 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2481 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2482 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2483 }
2484
2485 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2486 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2487 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2488 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2489 }
2490
2491 dcn3_0_soc.num_states = num_states;
2492 for (i = 0; i < dcn3_0_soc.num_states; i++) {
2493 dcn3_0_soc.clock_limits[i].state = i;
2494 dcn3_0_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2495 dcn3_0_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2496 dcn3_0_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2497
2498 /* Fill all states with max values of all other clocks */
2499 dcn3_0_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2500 dcn3_0_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz;
2501 dcn3_0_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz;
2502 dcn3_0_soc.clock_limits[i].dtbclk_mhz = dcn3_0_soc.clock_limits[0].dtbclk_mhz;
2503 /* These clocks cannot come from bw_params, always fill from dcn3_0_soc[1] */
2504 /* FCLK, PHYCLK_D18, SOCCLK, DSCCLK */
2505 dcn3_0_soc.clock_limits[i].phyclk_d18_mhz = dcn3_0_soc.clock_limits[0].phyclk_d18_mhz;
2506 dcn3_0_soc.clock_limits[i].socclk_mhz = dcn3_0_soc.clock_limits[0].socclk_mhz;
2507 dcn3_0_soc.clock_limits[i].dscclk_mhz = dcn3_0_soc.clock_limits[0].dscclk_mhz;
2508 }
2509 /* re-init DML with updated bb */
2510 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2511 if (dc->current_state)
2512 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2513 }
2514 }
2515
2516 static const struct resource_funcs dcn30_res_pool_funcs = {
2517 .destroy = dcn30_destroy_resource_pool,
2518 .link_enc_create = dcn30_link_encoder_create,
2519 .panel_cntl_create = dcn30_panel_cntl_create,
2520 .validate_bandwidth = dcn30_validate_bandwidth,
2521 .calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg,
2522 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2523 .populate_dml_pipes = dcn30_populate_dml_pipes_from_context,
2524 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
2525 .add_stream_to_ctx = dcn30_add_stream_to_ctx,
2526 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2527 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2528 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2529 .set_mcif_arb_params = dcn30_set_mcif_arb_params,
2530 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2531 .acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut,
2532 .release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut,
2533 .update_bw_bounding_box = dcn30_update_bw_bounding_box,
2534 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2535 };
2536
2537 #define CTX ctx
2538
2539 #define REG(reg_name) \
2540 (DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
2541
read_pipe_fuses(struct dc_context * ctx)2542 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2543 {
2544 uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2545 /* Support for max 6 pipes */
2546 value = value & 0x3f;
2547 return value;
2548 }
2549
dcn30_resource_construct(uint8_t num_virtual_links,struct dc * dc,struct dcn30_resource_pool * pool)2550 static bool dcn30_resource_construct(
2551 uint8_t num_virtual_links,
2552 struct dc *dc,
2553 struct dcn30_resource_pool *pool)
2554 {
2555 int i;
2556 struct dc_context *ctx = dc->ctx;
2557 struct irq_service_init_data init_data;
2558 struct ddc_service_init_data ddc_init_data = {0};
2559 uint32_t pipe_fuses = read_pipe_fuses(ctx);
2560 uint32_t num_pipes = 0;
2561
2562 if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) {
2563 BREAK_TO_DEBUGGER();
2564 dm_error("DC: Unexpected fuse recipe for navi2x !\n");
2565 /* fault to single pipe */
2566 pipe_fuses = 0x3e;
2567 }
2568
2569 DC_FP_START();
2570
2571 ctx->dc_bios->regs = &bios_regs;
2572
2573 pool->base.res_cap = &res_cap_dcn3;
2574
2575 pool->base.funcs = &dcn30_res_pool_funcs;
2576
2577 /*************************************************
2578 * Resource + asic cap harcoding *
2579 *************************************************/
2580 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2581 pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
2582 pool->base.mpcc_count = pool->base.res_cap->num_timing_generator;
2583 dc->caps.max_downscale_ratio = 600;
2584 dc->caps.i2c_speed_in_khz = 100;
2585 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2586 dc->caps.max_cursor_size = 256;
2587 dc->caps.min_horizontal_blanking_period = 80;
2588 dc->caps.dmdata_alloc_size = 2048;
2589 dc->caps.mall_size_per_mem_channel = 8;
2590 /* total size = mall per channel * num channels * 1024 * 1024 */
2591 dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576;
2592 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2593
2594 dc->caps.max_slave_planes = 1;
2595 dc->caps.max_slave_yuv_planes = 1;
2596 dc->caps.max_slave_rgb_planes = 1;
2597 dc->caps.post_blend_color_processing = true;
2598 dc->caps.force_dp_tps4_for_cp2520 = true;
2599 dc->caps.extended_aux_timeout_support = true;
2600 dc->caps.dmcub_support = true;
2601
2602 /* Color pipeline capabilities */
2603 dc->caps.color.dpp.dcn_arch = 1;
2604 dc->caps.color.dpp.input_lut_shared = 0;
2605 dc->caps.color.dpp.icsc = 1;
2606 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2607 dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2608 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2609 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2610 dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2611 dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2612 dc->caps.color.dpp.post_csc = 1;
2613 dc->caps.color.dpp.gamma_corr = 1;
2614 dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2615
2616 dc->caps.color.dpp.hw_3d_lut = 1;
2617 dc->caps.color.dpp.ogam_ram = 1;
2618 // no OGAM ROM on DCN3
2619 dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2620 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2621 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2622 dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2623 dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2624 dc->caps.color.dpp.ocsc = 0;
2625
2626 dc->caps.color.mpc.gamut_remap = 1;
2627 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3
2628 dc->caps.color.mpc.ogam_ram = 1;
2629 dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2630 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2631 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2632 dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2633 dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2634 dc->caps.color.mpc.ocsc = 1;
2635
2636 /* read VBIOS LTTPR caps */
2637 {
2638 if (ctx->dc_bios->funcs->get_lttpr_caps) {
2639 enum bp_result bp_query_result;
2640 uint8_t is_vbios_lttpr_enable = 0;
2641
2642 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2643 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2644 }
2645
2646 if (ctx->dc_bios->funcs->get_lttpr_interop) {
2647 enum bp_result bp_query_result;
2648 uint8_t is_vbios_interop_enabled = 0;
2649
2650 bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios,
2651 &is_vbios_interop_enabled);
2652 dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled;
2653 }
2654 }
2655
2656 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2657 dc->debug = debug_defaults_drv;
2658 else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
2659 dc->debug = debug_defaults_diags;
2660 } else
2661 dc->debug = debug_defaults_diags;
2662 // Init the vm_helper
2663 if (dc->vm_helper)
2664 vm_helper_init(dc->vm_helper, 16);
2665
2666 /*************************************************
2667 * Create resources *
2668 *************************************************/
2669
2670 /* Clock Sources for Pixel Clock*/
2671 pool->base.clock_sources[DCN30_CLK_SRC_PLL0] =
2672 dcn30_clock_source_create(ctx, ctx->dc_bios,
2673 CLOCK_SOURCE_COMBO_PHY_PLL0,
2674 &clk_src_regs[0], false);
2675 pool->base.clock_sources[DCN30_CLK_SRC_PLL1] =
2676 dcn30_clock_source_create(ctx, ctx->dc_bios,
2677 CLOCK_SOURCE_COMBO_PHY_PLL1,
2678 &clk_src_regs[1], false);
2679 pool->base.clock_sources[DCN30_CLK_SRC_PLL2] =
2680 dcn30_clock_source_create(ctx, ctx->dc_bios,
2681 CLOCK_SOURCE_COMBO_PHY_PLL2,
2682 &clk_src_regs[2], false);
2683 pool->base.clock_sources[DCN30_CLK_SRC_PLL3] =
2684 dcn30_clock_source_create(ctx, ctx->dc_bios,
2685 CLOCK_SOURCE_COMBO_PHY_PLL3,
2686 &clk_src_regs[3], false);
2687 pool->base.clock_sources[DCN30_CLK_SRC_PLL4] =
2688 dcn30_clock_source_create(ctx, ctx->dc_bios,
2689 CLOCK_SOURCE_COMBO_PHY_PLL4,
2690 &clk_src_regs[4], false);
2691 pool->base.clock_sources[DCN30_CLK_SRC_PLL5] =
2692 dcn30_clock_source_create(ctx, ctx->dc_bios,
2693 CLOCK_SOURCE_COMBO_PHY_PLL5,
2694 &clk_src_regs[5], false);
2695
2696 pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL;
2697
2698 /* todo: not reuse phy_pll registers */
2699 pool->base.dp_clock_source =
2700 dcn30_clock_source_create(ctx, ctx->dc_bios,
2701 CLOCK_SOURCE_ID_DP_DTO,
2702 &clk_src_regs[0], true);
2703
2704 for (i = 0; i < pool->base.clk_src_count; i++) {
2705 if (pool->base.clock_sources[i] == NULL) {
2706 dm_error("DC: failed to create clock sources!\n");
2707 BREAK_TO_DEBUGGER();
2708 goto create_fail;
2709 }
2710 }
2711
2712 /* DCCG */
2713 pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2714 if (pool->base.dccg == NULL) {
2715 dm_error("DC: failed to create dccg!\n");
2716 BREAK_TO_DEBUGGER();
2717 goto create_fail;
2718 }
2719
2720 /* PP Lib and SMU interfaces */
2721 init_soc_bounding_box(dc, pool);
2722
2723 num_pipes = dcn3_0_ip.max_num_dpp;
2724
2725 for (i = 0; i < dcn3_0_ip.max_num_dpp; i++)
2726 if (pipe_fuses & 1 << i)
2727 num_pipes--;
2728
2729 dcn3_0_ip.max_num_dpp = num_pipes;
2730 dcn3_0_ip.max_num_otg = num_pipes;
2731
2732 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2733
2734 /* IRQ */
2735 init_data.ctx = dc->ctx;
2736 pool->base.irqs = dal_irq_service_dcn30_create(&init_data);
2737 if (!pool->base.irqs)
2738 goto create_fail;
2739
2740 /* HUBBUB */
2741 pool->base.hubbub = dcn30_hubbub_create(ctx);
2742 if (pool->base.hubbub == NULL) {
2743 BREAK_TO_DEBUGGER();
2744 dm_error("DC: failed to create hubbub!\n");
2745 goto create_fail;
2746 }
2747
2748 /* HUBPs, DPPs, OPPs and TGs */
2749 for (i = 0; i < pool->base.pipe_count; i++) {
2750 pool->base.hubps[i] = dcn30_hubp_create(ctx, i);
2751 if (pool->base.hubps[i] == NULL) {
2752 BREAK_TO_DEBUGGER();
2753 dm_error(
2754 "DC: failed to create hubps!\n");
2755 goto create_fail;
2756 }
2757
2758 pool->base.dpps[i] = dcn30_dpp_create(ctx, i);
2759 if (pool->base.dpps[i] == NULL) {
2760 BREAK_TO_DEBUGGER();
2761 dm_error(
2762 "DC: failed to create dpps!\n");
2763 goto create_fail;
2764 }
2765 }
2766
2767 for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2768 pool->base.opps[i] = dcn30_opp_create(ctx, i);
2769 if (pool->base.opps[i] == NULL) {
2770 BREAK_TO_DEBUGGER();
2771 dm_error(
2772 "DC: failed to create output pixel processor!\n");
2773 goto create_fail;
2774 }
2775 }
2776
2777 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2778 pool->base.timing_generators[i] = dcn30_timing_generator_create(
2779 ctx, i);
2780 if (pool->base.timing_generators[i] == NULL) {
2781 BREAK_TO_DEBUGGER();
2782 dm_error("DC: failed to create tg!\n");
2783 goto create_fail;
2784 }
2785 }
2786 pool->base.timing_generator_count = i;
2787 /* PSR */
2788 pool->base.psr = dmub_psr_create(ctx);
2789
2790 if (pool->base.psr == NULL) {
2791 dm_error("DC: failed to create PSR obj!\n");
2792 BREAK_TO_DEBUGGER();
2793 goto create_fail;
2794 }
2795
2796 /* ABM */
2797 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2798 pool->base.multiple_abms[i] = dmub_abm_create(ctx,
2799 &abm_regs[i],
2800 &abm_shift,
2801 &abm_mask);
2802 if (pool->base.multiple_abms[i] == NULL) {
2803 dm_error("DC: failed to create abm for pipe %d!\n", i);
2804 BREAK_TO_DEBUGGER();
2805 goto create_fail;
2806 }
2807 }
2808 /* MPC and DSC */
2809 pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut);
2810 if (pool->base.mpc == NULL) {
2811 BREAK_TO_DEBUGGER();
2812 dm_error("DC: failed to create mpc!\n");
2813 goto create_fail;
2814 }
2815
2816 for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2817 pool->base.dscs[i] = dcn30_dsc_create(ctx, i);
2818 if (pool->base.dscs[i] == NULL) {
2819 BREAK_TO_DEBUGGER();
2820 dm_error("DC: failed to create display stream compressor %d!\n", i);
2821 goto create_fail;
2822 }
2823 }
2824
2825 /* DWB and MMHUBBUB */
2826 if (!dcn30_dwbc_create(ctx, &pool->base)) {
2827 BREAK_TO_DEBUGGER();
2828 dm_error("DC: failed to create dwbc!\n");
2829 goto create_fail;
2830 }
2831
2832 if (!dcn30_mmhubbub_create(ctx, &pool->base)) {
2833 BREAK_TO_DEBUGGER();
2834 dm_error("DC: failed to create mcif_wb!\n");
2835 goto create_fail;
2836 }
2837
2838 /* AUX and I2C */
2839 for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2840 pool->base.engines[i] = dcn30_aux_engine_create(ctx, i);
2841 if (pool->base.engines[i] == NULL) {
2842 BREAK_TO_DEBUGGER();
2843 dm_error(
2844 "DC:failed to create aux engine!!\n");
2845 goto create_fail;
2846 }
2847 pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i);
2848 if (pool->base.hw_i2cs[i] == NULL) {
2849 BREAK_TO_DEBUGGER();
2850 dm_error(
2851 "DC:failed to create hw i2c!!\n");
2852 goto create_fail;
2853 }
2854 pool->base.sw_i2cs[i] = NULL;
2855 }
2856
2857 /* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */
2858 if (!resource_construct(num_virtual_links, dc, &pool->base,
2859 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
2860 &res_create_funcs : &res_create_maximus_funcs)))
2861 goto create_fail;
2862
2863 /* HW Sequencer and Plane caps */
2864 dcn30_hw_sequencer_construct(dc);
2865
2866 dc->caps.max_planes = pool->base.pipe_count;
2867
2868 for (i = 0; i < dc->caps.max_planes; ++i)
2869 dc->caps.planes[i] = plane_cap;
2870
2871 dc->cap_funcs = cap_funcs;
2872
2873 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2874 ddc_init_data.ctx = dc->ctx;
2875 ddc_init_data.link = NULL;
2876 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2877 ddc_init_data.id.enum_id = 0;
2878 ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2879 pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
2880 } else {
2881 pool->base.oem_device = NULL;
2882 }
2883
2884 DC_FP_END();
2885
2886 return true;
2887
2888 create_fail:
2889
2890 DC_FP_END();
2891 dcn30_resource_destruct(pool);
2892
2893 return false;
2894 }
2895
dcn30_create_resource_pool(const struct dc_init_data * init_data,struct dc * dc)2896 struct resource_pool *dcn30_create_resource_pool(
2897 const struct dc_init_data *init_data,
2898 struct dc *dc)
2899 {
2900 struct dcn30_resource_pool *pool =
2901 kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL);
2902
2903 if (!pool)
2904 return NULL;
2905
2906 if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool))
2907 return &pool->base;
2908
2909 BREAK_TO_DEBUGGER();
2910 kfree(pool);
2911 return NULL;
2912 }
2913