1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "reg_helper.h"
27 #include "dcn20_optc.h"
28 #include "dc.h"
29
30 #define REG(reg)\
31 optc1->tg_regs->reg
32
33 #define CTX \
34 optc1->base.ctx
35
36 #undef FN
37 #define FN(reg_name, field_name) \
38 optc1->tg_shift->field_name, optc1->tg_mask->field_name
39
40 /**
41 * Enable CRTC
42 * Enable CRTC - call ASIC Control Object to enable Timing generator.
43 */
optc2_enable_crtc(struct timing_generator * optc)44 bool optc2_enable_crtc(struct timing_generator *optc)
45 {
46 /* TODO FPGA wait for answer
47 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
48 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
49 */
50 struct optc *optc1 = DCN10TG_FROM_TG(optc);
51
52 /* opp instance for OTG. For DCN1.0, ODM is remoed.
53 * OPP and OPTC should 1:1 mapping
54 */
55 REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
56 OPTC_SEG0_SRC_SEL, optc->inst);
57
58 /* VTG enable first is for HW workaround */
59 REG_UPDATE(CONTROL,
60 VTG0_ENABLE, 1);
61
62 REG_SEQ_START();
63
64 /* Enable CRTC */
65 REG_UPDATE_2(OTG_CONTROL,
66 OTG_DISABLE_POINT_CNTL, 3,
67 OTG_MASTER_EN, 1);
68
69 REG_SEQ_SUBMIT();
70 REG_SEQ_WAIT_DONE();
71
72 return true;
73 }
74
75 /**
76 * DRR double buffering control to select buffer point
77 * for V_TOTAL, H_TOTAL, VTOTAL_MIN, VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers
78 * Options: anytime, start of frame, dp start of frame (range timing)
79 */
optc2_set_timing_db_mode(struct timing_generator * optc,bool enable)80 void optc2_set_timing_db_mode(struct timing_generator *optc, bool enable)
81 {
82 struct optc *optc1 = DCN10TG_FROM_TG(optc);
83
84 uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
85
86 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
87 OTG_RANGE_TIMING_DBUF_UPDATE_MODE, blank_data_double_buffer_enable);
88 }
89
90 /**
91 *For the below, I'm not sure how your GSL parameters are stored in your env,
92 * so I will assume a gsl_params struct for now
93 */
optc2_set_gsl(struct timing_generator * optc,const struct gsl_params * params)94 void optc2_set_gsl(struct timing_generator *optc,
95 const struct gsl_params *params)
96 {
97 struct optc *optc1 = DCN10TG_FROM_TG(optc);
98
99 /**
100 * There are (MAX_OPTC+1)/2 gsl groups available for use.
101 * In each group (assign an OTG to a group by setting OTG_GSLX_EN = 1,
102 * set one of the OTGs to be the master (OTG_GSL_MASTER_EN = 1) and the rest are slaves.
103 */
104 REG_UPDATE_5(OTG_GSL_CONTROL,
105 OTG_GSL0_EN, params->gsl0_en,
106 OTG_GSL1_EN, params->gsl1_en,
107 OTG_GSL2_EN, params->gsl2_en,
108 OTG_GSL_MASTER_EN, params->gsl_master_en,
109 OTG_GSL_MASTER_MODE, params->gsl_master_mode);
110 }
111
112
113 /* Use the gsl allow flip as the master update lock */
optc2_use_gsl_as_master_update_lock(struct timing_generator * optc,const struct gsl_params * params)114 void optc2_use_gsl_as_master_update_lock(struct timing_generator *optc,
115 const struct gsl_params *params)
116 {
117 struct optc *optc1 = DCN10TG_FROM_TG(optc);
118
119 REG_UPDATE(OTG_GSL_CONTROL,
120 OTG_MASTER_UPDATE_LOCK_GSL_EN, params->master_update_lock_gsl_en);
121 }
122
123 /* You can control the GSL timing by limiting GSL to a window (X,Y) */
optc2_set_gsl_window(struct timing_generator * optc,const struct gsl_params * params)124 void optc2_set_gsl_window(struct timing_generator *optc,
125 const struct gsl_params *params)
126 {
127 struct optc *optc1 = DCN10TG_FROM_TG(optc);
128
129 REG_SET_2(OTG_GSL_WINDOW_X, 0,
130 OTG_GSL_WINDOW_START_X, params->gsl_window_start_x,
131 OTG_GSL_WINDOW_END_X, params->gsl_window_end_x);
132 REG_SET_2(OTG_GSL_WINDOW_Y, 0,
133 OTG_GSL_WINDOW_START_Y, params->gsl_window_start_y,
134 OTG_GSL_WINDOW_END_Y, params->gsl_window_end_y);
135 }
136
optc2_set_gsl_source_select(struct timing_generator * optc,int group_idx,uint32_t gsl_ready_signal)137 void optc2_set_gsl_source_select(
138 struct timing_generator *optc,
139 int group_idx,
140 uint32_t gsl_ready_signal)
141 {
142 struct optc *optc1 = DCN10TG_FROM_TG(optc);
143
144 switch (group_idx) {
145 case 1:
146 REG_UPDATE(GSL_SOURCE_SELECT, GSL0_READY_SOURCE_SEL, gsl_ready_signal);
147 break;
148 case 2:
149 REG_UPDATE(GSL_SOURCE_SELECT, GSL1_READY_SOURCE_SEL, gsl_ready_signal);
150 break;
151 case 3:
152 REG_UPDATE(GSL_SOURCE_SELECT, GSL2_READY_SOURCE_SEL, gsl_ready_signal);
153 break;
154 default:
155 break;
156 }
157 }
158
159 /* DSC encoder frame start controls: x = h position, line_num = # of lines from vstartup */
optc2_set_dsc_encoder_frame_start(struct timing_generator * optc,int x_position,int line_num)160 void optc2_set_dsc_encoder_frame_start(struct timing_generator *optc,
161 int x_position,
162 int line_num)
163 {
164 struct optc *optc1 = DCN10TG_FROM_TG(optc);
165
166 REG_SET_2(OTG_DSC_START_POSITION, 0,
167 OTG_DSC_START_POSITION_X, x_position,
168 OTG_DSC_START_POSITION_LINE_NUM, line_num);
169 }
170
171 /* Set DSC-related configuration.
172 * dsc_mode: 0 disables DSC, other values enable DSC in specified format
173 * sc_bytes_per_pixel: Bytes per pixel in u3.28 format
174 * dsc_slice_width: Slice width in pixels
175 */
optc2_set_dsc_config(struct timing_generator * optc,enum optc_dsc_mode dsc_mode,uint32_t dsc_bytes_per_pixel,uint32_t dsc_slice_width)176 void optc2_set_dsc_config(struct timing_generator *optc,
177 enum optc_dsc_mode dsc_mode,
178 uint32_t dsc_bytes_per_pixel,
179 uint32_t dsc_slice_width)
180 {
181 struct optc *optc1 = DCN10TG_FROM_TG(optc);
182
183 REG_UPDATE(OPTC_DATA_FORMAT_CONTROL,
184 OPTC_DSC_MODE, dsc_mode);
185
186 REG_SET(OPTC_BYTES_PER_PIXEL, 0,
187 OPTC_DSC_BYTES_PER_PIXEL, dsc_bytes_per_pixel);
188
189 REG_UPDATE(OPTC_WIDTH_CONTROL,
190 OPTC_DSC_SLICE_WIDTH, dsc_slice_width);
191 }
192
193 /*TEMP: Need to figure out inheritance model here.*/
optc2_is_two_pixels_per_containter(const struct dc_crtc_timing * timing)194 bool optc2_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
195 {
196 return optc1_is_two_pixels_per_containter(timing);
197 }
198
optc2_set_odm_bypass(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing)199 void optc2_set_odm_bypass(struct timing_generator *optc,
200 const struct dc_crtc_timing *dc_crtc_timing)
201 {
202 struct optc *optc1 = DCN10TG_FROM_TG(optc);
203 uint32_t h_div_2 = 0;
204
205 REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0,
206 OPTC_NUM_OF_INPUT_SEGMENT, 0,
207 OPTC_SEG0_SRC_SEL, optc->inst,
208 OPTC_SEG1_SRC_SEL, 0xf);
209 REG_WRITE(OTG_H_TIMING_CNTL, 0);
210
211 h_div_2 = optc2_is_two_pixels_per_containter(dc_crtc_timing);
212 REG_UPDATE(OTG_H_TIMING_CNTL,
213 OTG_H_TIMING_DIV_BY2, h_div_2);
214 REG_SET(OPTC_MEMORY_CONFIG, 0,
215 OPTC_MEM_SEL, 0);
216 optc1->opp_count = 1;
217 }
218
optc2_set_odm_combine(struct timing_generator * optc,int * opp_id,int opp_cnt,struct dc_crtc_timing * timing)219 void optc2_set_odm_combine(struct timing_generator *optc, int *opp_id, int opp_cnt,
220 struct dc_crtc_timing *timing)
221 {
222 struct optc *optc1 = DCN10TG_FROM_TG(optc);
223 int mpcc_hactive = (timing->h_addressable + timing->h_border_left + timing->h_border_right)
224 / opp_cnt;
225 uint32_t memory_mask;
226
227 ASSERT(opp_cnt == 2);
228
229 /* TODO: In pseudocode but does not affect maximus, delete comment if we dont need on asic
230 * REG_SET(OTG_GLOBAL_CONTROL2, 0, GLOBAL_UPDATE_LOCK_EN, 1);
231 * Program OTG register MASTER_UPDATE_LOCK_DB_X/Y to the position before DP frame start
232 * REG_SET_2(OTG_GLOBAL_CONTROL1, 0,
233 * MASTER_UPDATE_LOCK_DB_X, 160,
234 * MASTER_UPDATE_LOCK_DB_Y, 240);
235 */
236
237 /* 2 pieces of memory required for up to 5120 displays, 4 for up to 8192,
238 * however, for ODM combine we can simplify by always using 4.
239 * To make sure there's no overlap, each instance "reserves" 2 memories and
240 * they are uniquely combined here.
241 */
242 memory_mask = 0x3 << (opp_id[0] * 2) | 0x3 << (opp_id[1] * 2);
243
244 if (REG(OPTC_MEMORY_CONFIG))
245 REG_SET(OPTC_MEMORY_CONFIG, 0,
246 OPTC_MEM_SEL, memory_mask);
247
248 REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0,
249 OPTC_NUM_OF_INPUT_SEGMENT, 1,
250 OPTC_SEG0_SRC_SEL, opp_id[0],
251 OPTC_SEG1_SRC_SEL, opp_id[1]);
252
253 REG_UPDATE(OPTC_WIDTH_CONTROL,
254 OPTC_SEGMENT_WIDTH, mpcc_hactive);
255
256 REG_SET(OTG_H_TIMING_CNTL, 0, OTG_H_TIMING_DIV_BY2, 1);
257 optc1->opp_count = opp_cnt;
258 }
259
optc2_get_optc_source(struct timing_generator * optc,uint32_t * num_of_src_opp,uint32_t * src_opp_id_0,uint32_t * src_opp_id_1)260 void optc2_get_optc_source(struct timing_generator *optc,
261 uint32_t *num_of_src_opp,
262 uint32_t *src_opp_id_0,
263 uint32_t *src_opp_id_1)
264 {
265 uint32_t num_of_input_segments;
266 struct optc *optc1 = DCN10TG_FROM_TG(optc);
267
268 REG_GET_3(OPTC_DATA_SOURCE_SELECT,
269 OPTC_NUM_OF_INPUT_SEGMENT, &num_of_input_segments,
270 OPTC_SEG0_SRC_SEL, src_opp_id_0,
271 OPTC_SEG1_SRC_SEL, src_opp_id_1);
272
273 if (num_of_input_segments == 1)
274 *num_of_src_opp = 2;
275 else
276 *num_of_src_opp = 1;
277
278 /* Work around VBIOS not updating OPTC_NUM_OF_INPUT_SEGMENT */
279 if (*src_opp_id_1 == 0xf)
280 *num_of_src_opp = 1;
281 }
282
optc2_set_dwb_source(struct timing_generator * optc,uint32_t dwb_pipe_inst)283 void optc2_set_dwb_source(struct timing_generator *optc,
284 uint32_t dwb_pipe_inst)
285 {
286 struct optc *optc1 = DCN10TG_FROM_TG(optc);
287
288 if (dwb_pipe_inst == 0)
289 REG_UPDATE(DWB_SOURCE_SELECT,
290 OPTC_DWB0_SOURCE_SELECT, optc->inst);
291 else if (dwb_pipe_inst == 1)
292 REG_UPDATE(DWB_SOURCE_SELECT,
293 OPTC_DWB1_SOURCE_SELECT, optc->inst);
294 }
295
optc2_align_vblanks(struct timing_generator * optc_master,struct timing_generator * optc_slave,uint32_t master_pixel_clock_100Hz,uint32_t slave_pixel_clock_100Hz,uint8_t master_clock_divider,uint8_t slave_clock_divider)296 void optc2_align_vblanks(
297 struct timing_generator *optc_master,
298 struct timing_generator *optc_slave,
299 uint32_t master_pixel_clock_100Hz,
300 uint32_t slave_pixel_clock_100Hz,
301 uint8_t master_clock_divider,
302 uint8_t slave_clock_divider)
303 {
304 /* accessing slave OTG registers */
305 struct optc *optc1 = DCN10TG_FROM_TG(optc_slave);
306
307 uint32_t master_v_active = 0;
308 uint32_t master_h_total = 0;
309 uint32_t slave_h_total = 0;
310 uint64_t L, XY;
311 uint32_t X, Y, p = 10000;
312 uint32_t master_update_lock;
313
314 /* disable slave OTG */
315 REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0);
316 /* wait until disabled */
317 REG_WAIT(OTG_CONTROL,
318 OTG_CURRENT_MASTER_EN_STATE,
319 0, 10, 5000);
320
321 REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &slave_h_total);
322
323 /* assign slave OTG to be controlled by master update lock */
324 REG_SET(OTG_GLOBAL_CONTROL0, 0,
325 OTG_MASTER_UPDATE_LOCK_SEL, optc_master->inst);
326
327 /* accessing master OTG registers */
328 optc1 = DCN10TG_FROM_TG(optc_master);
329
330 /* saving update lock state, not sure if it's needed */
331 REG_GET(OTG_MASTER_UPDATE_LOCK,
332 OTG_MASTER_UPDATE_LOCK, &master_update_lock);
333 /* unlocking master OTG */
334 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
335 OTG_MASTER_UPDATE_LOCK, 0);
336
337 REG_GET(OTG_V_BLANK_START_END,
338 OTG_V_BLANK_START, &master_v_active);
339 REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &master_h_total);
340
341 /* calculate when to enable slave OTG */
342 L = (uint64_t)p * slave_h_total * master_pixel_clock_100Hz;
343 L = div_u64(L, master_h_total);
344 L = div_u64(L, slave_pixel_clock_100Hz);
345 XY = div_u64(L, p);
346 Y = master_v_active - XY - 1;
347 X = div_u64(((XY + 1) * p - L) * master_h_total, p * master_clock_divider);
348
349 /*
350 * set master OTG to unlock when V/H
351 * counters reach calculated values
352 */
353 REG_UPDATE(OTG_GLOBAL_CONTROL1,
354 MASTER_UPDATE_LOCK_DB_EN, 1);
355 REG_UPDATE_2(OTG_GLOBAL_CONTROL1,
356 MASTER_UPDATE_LOCK_DB_X,
357 X,
358 MASTER_UPDATE_LOCK_DB_Y,
359 Y);
360
361 /* lock master OTG */
362 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
363 OTG_MASTER_UPDATE_LOCK, 1);
364 REG_WAIT(OTG_MASTER_UPDATE_LOCK,
365 UPDATE_LOCK_STATUS, 1, 1, 10);
366
367 /* accessing slave OTG registers */
368 optc1 = DCN10TG_FROM_TG(optc_slave);
369
370 /*
371 * enable slave OTG, the OTG is locked with
372 * master's update lock, so it will not run
373 */
374 REG_UPDATE(OTG_CONTROL,
375 OTG_MASTER_EN, 1);
376
377 /* accessing master OTG registers */
378 optc1 = DCN10TG_FROM_TG(optc_master);
379
380 /*
381 * unlock master OTG. When master H/V counters reach
382 * DB_XY point, slave OTG will start
383 */
384 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
385 OTG_MASTER_UPDATE_LOCK, 0);
386
387 /* accessing slave OTG registers */
388 optc1 = DCN10TG_FROM_TG(optc_slave);
389
390 /* wait for slave OTG to start running*/
391 REG_WAIT(OTG_CONTROL,
392 OTG_CURRENT_MASTER_EN_STATE,
393 1, 10, 5000);
394
395 /* accessing master OTG registers */
396 optc1 = DCN10TG_FROM_TG(optc_master);
397
398 /* disable the XY point*/
399 REG_UPDATE(OTG_GLOBAL_CONTROL1,
400 MASTER_UPDATE_LOCK_DB_EN, 0);
401 REG_UPDATE_2(OTG_GLOBAL_CONTROL1,
402 MASTER_UPDATE_LOCK_DB_X,
403 0,
404 MASTER_UPDATE_LOCK_DB_Y,
405 0);
406
407 /*restore master update lock*/
408 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
409 OTG_MASTER_UPDATE_LOCK, master_update_lock);
410
411 /* accessing slave OTG registers */
412 optc1 = DCN10TG_FROM_TG(optc_slave);
413 /* restore slave to be controlled by it's own */
414 REG_SET(OTG_GLOBAL_CONTROL0, 0,
415 OTG_MASTER_UPDATE_LOCK_SEL, optc_slave->inst);
416
417 }
418
optc2_triplebuffer_lock(struct timing_generator * optc)419 void optc2_triplebuffer_lock(struct timing_generator *optc)
420 {
421 struct optc *optc1 = DCN10TG_FROM_TG(optc);
422
423 REG_SET(OTG_GLOBAL_CONTROL0, 0,
424 OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
425
426 REG_SET(OTG_VUPDATE_KEEPOUT, 0,
427 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 1);
428
429 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
430 OTG_MASTER_UPDATE_LOCK, 1);
431
432 if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
433 REG_WAIT(OTG_MASTER_UPDATE_LOCK,
434 UPDATE_LOCK_STATUS, 1,
435 1, 10);
436 }
437
optc2_triplebuffer_unlock(struct timing_generator * optc)438 void optc2_triplebuffer_unlock(struct timing_generator *optc)
439 {
440 struct optc *optc1 = DCN10TG_FROM_TG(optc);
441
442 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
443 OTG_MASTER_UPDATE_LOCK, 0);
444
445 REG_SET(OTG_VUPDATE_KEEPOUT, 0,
446 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 0);
447
448 }
449
optc2_lock_doublebuffer_enable(struct timing_generator * optc)450 void optc2_lock_doublebuffer_enable(struct timing_generator *optc)
451 {
452 struct optc *optc1 = DCN10TG_FROM_TG(optc);
453 uint32_t v_blank_start = 0;
454 uint32_t h_blank_start = 0;
455
456 REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 1);
457
458 REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 1,
459 DIG_UPDATE_LOCATION, 20);
460
461 REG_GET(OTG_V_BLANK_START_END, OTG_V_BLANK_START, &v_blank_start);
462
463 REG_GET(OTG_H_BLANK_START_END, OTG_H_BLANK_START, &h_blank_start);
464
465 REG_UPDATE_2(OTG_GLOBAL_CONTROL1,
466 MASTER_UPDATE_LOCK_DB_X,
467 (h_blank_start - 200 - 1) / optc1->opp_count,
468 MASTER_UPDATE_LOCK_DB_Y,
469 v_blank_start - 1);
470 }
471
optc2_lock_doublebuffer_disable(struct timing_generator * optc)472 void optc2_lock_doublebuffer_disable(struct timing_generator *optc)
473 {
474 struct optc *optc1 = DCN10TG_FROM_TG(optc);
475
476 REG_UPDATE_2(OTG_GLOBAL_CONTROL1,
477 MASTER_UPDATE_LOCK_DB_X,
478 0,
479 MASTER_UPDATE_LOCK_DB_Y,
480 0);
481
482 REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 0,
483 DIG_UPDATE_LOCATION, 0);
484
485 REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 0);
486 }
487
optc2_setup_manual_trigger(struct timing_generator * optc)488 void optc2_setup_manual_trigger(struct timing_generator *optc)
489 {
490 struct optc *optc1 = DCN10TG_FROM_TG(optc);
491
492 REG_SET_8(OTG_TRIGA_CNTL, 0,
493 OTG_TRIGA_SOURCE_SELECT, 21,
494 OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
495 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
496 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
497 OTG_TRIGA_POLARITY_SELECT, 0,
498 OTG_TRIGA_FREQUENCY_SELECT, 0,
499 OTG_TRIGA_DELAY, 0,
500 OTG_TRIGA_CLEAR, 1);
501 }
502
optc2_program_manual_trigger(struct timing_generator * optc)503 void optc2_program_manual_trigger(struct timing_generator *optc)
504 {
505 struct optc *optc1 = DCN10TG_FROM_TG(optc);
506
507 REG_SET(OTG_TRIGA_MANUAL_TRIG, 0,
508 OTG_TRIGA_MANUAL_TRIG, 1);
509 }
510
optc2_configure_crc(struct timing_generator * optc,const struct crc_params * params)511 bool optc2_configure_crc(struct timing_generator *optc,
512 const struct crc_params *params)
513 {
514 struct optc *optc1 = DCN10TG_FROM_TG(optc);
515
516 REG_SET_2(OTG_CRC_CNTL2, 0,
517 OTG_CRC_DSC_MODE, params->dsc_mode,
518 OTG_CRC_DATA_STREAM_COMBINE_MODE, params->odm_mode);
519
520 return optc1_configure_crc(optc, params);
521 }
522
523
optc2_get_last_used_drr_vtotal(struct timing_generator * optc,uint32_t * refresh_rate)524 void optc2_get_last_used_drr_vtotal(struct timing_generator *optc, uint32_t *refresh_rate)
525 {
526 struct optc *optc1 = DCN10TG_FROM_TG(optc);
527
528 REG_GET(OTG_DRR_CONTROL, OTG_V_TOTAL_LAST_USED_BY_DRR, refresh_rate);
529 }
530
531 static struct timing_generator_funcs dcn20_tg_funcs = {
532 .validate_timing = optc1_validate_timing,
533 .program_timing = optc1_program_timing,
534 .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
535 .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
536 .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
537 .program_global_sync = optc1_program_global_sync,
538 .enable_crtc = optc2_enable_crtc,
539 .disable_crtc = optc1_disable_crtc,
540 /* used by enable_timing_synchronization. Not need for FPGA */
541 .is_counter_moving = optc1_is_counter_moving,
542 .get_position = optc1_get_position,
543 .get_frame_count = optc1_get_vblank_counter,
544 .get_scanoutpos = optc1_get_crtc_scanoutpos,
545 .get_otg_active_size = optc1_get_otg_active_size,
546 .set_early_control = optc1_set_early_control,
547 /* used by enable_timing_synchronization. Not need for FPGA */
548 .wait_for_state = optc1_wait_for_state,
549 .set_blank = optc1_set_blank,
550 .is_blanked = optc1_is_blanked,
551 .set_blank_color = optc1_program_blank_color,
552 .enable_reset_trigger = optc1_enable_reset_trigger,
553 .enable_crtc_reset = optc1_enable_crtc_reset,
554 .did_triggered_reset_occur = optc1_did_triggered_reset_occur,
555 .triplebuffer_lock = optc2_triplebuffer_lock,
556 .triplebuffer_unlock = optc2_triplebuffer_unlock,
557 .disable_reset_trigger = optc1_disable_reset_trigger,
558 .lock = optc1_lock,
559 .unlock = optc1_unlock,
560 .lock_doublebuffer_enable = optc2_lock_doublebuffer_enable,
561 .lock_doublebuffer_disable = optc2_lock_doublebuffer_disable,
562 .enable_optc_clock = optc1_enable_optc_clock,
563 .set_drr = optc1_set_drr,
564 .get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal,
565 .set_static_screen_control = optc1_set_static_screen_control,
566 .program_stereo = optc1_program_stereo,
567 .is_stereo_left_eye = optc1_is_stereo_left_eye,
568 .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
569 .tg_init = optc1_tg_init,
570 .is_tg_enabled = optc1_is_tg_enabled,
571 .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
572 .clear_optc_underflow = optc1_clear_optc_underflow,
573 .setup_global_swap_lock = NULL,
574 .get_crc = optc1_get_crc,
575 .configure_crc = optc2_configure_crc,
576 .set_dsc_config = optc2_set_dsc_config,
577 .set_dwb_source = optc2_set_dwb_source,
578 .set_odm_bypass = optc2_set_odm_bypass,
579 .set_odm_combine = optc2_set_odm_combine,
580 .get_optc_source = optc2_get_optc_source,
581 .set_gsl = optc2_set_gsl,
582 .set_gsl_source_select = optc2_set_gsl_source_select,
583 .set_vtg_params = optc1_set_vtg_params,
584 .program_manual_trigger = optc2_program_manual_trigger,
585 .setup_manual_trigger = optc2_setup_manual_trigger,
586 .get_hw_timing = optc1_get_hw_timing,
587 .align_vblanks = optc2_align_vblanks,
588 };
589
dcn20_timing_generator_init(struct optc * optc1)590 void dcn20_timing_generator_init(struct optc *optc1)
591 {
592 optc1->base.funcs = &dcn20_tg_funcs;
593
594 optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
595 optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
596
597 optc1->min_h_blank = 32;
598 optc1->min_v_blank = 3;
599 optc1->min_v_blank_interlace = 5;
600 optc1->min_h_sync_width = 4;// Minimum HSYNC = 8 pixels asked By HW in the first place for no actual reason. Oculus Rift S will not light up with 8 as it's hsyncWidth is 6. Changing it to 4 to fix that issue.
601 optc1->min_v_sync_width = 1;
602 }
603