1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/dma-buf.h>
37 #include <asm/processor.h>
38 #include "kfd_priv.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_dbgmgr.h"
41 #include "kfd_svm.h"
42 #include "amdgpu_amdkfd.h"
43 #include "kfd_smi_events.h"
44
45 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
46 static int kfd_open(struct inode *, struct file *);
47 static int kfd_release(struct inode *, struct file *);
48 static int kfd_mmap(struct file *, struct vm_area_struct *);
49
50 static const char kfd_dev_name[] = "kfd";
51
52 static const struct file_operations kfd_fops = {
53 .owner = THIS_MODULE,
54 .unlocked_ioctl = kfd_ioctl,
55 .compat_ioctl = compat_ptr_ioctl,
56 .open = kfd_open,
57 .release = kfd_release,
58 .mmap = kfd_mmap,
59 };
60
61 static int kfd_char_dev_major = -1;
62 static struct class *kfd_class;
63 struct device *kfd_device;
64
kfd_chardev_init(void)65 int kfd_chardev_init(void)
66 {
67 int err = 0;
68
69 kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
70 err = kfd_char_dev_major;
71 if (err < 0)
72 goto err_register_chrdev;
73
74 kfd_class = class_create(THIS_MODULE, kfd_dev_name);
75 err = PTR_ERR(kfd_class);
76 if (IS_ERR(kfd_class))
77 goto err_class_create;
78
79 kfd_device = device_create(kfd_class, NULL,
80 MKDEV(kfd_char_dev_major, 0),
81 NULL, kfd_dev_name);
82 err = PTR_ERR(kfd_device);
83 if (IS_ERR(kfd_device))
84 goto err_device_create;
85
86 return 0;
87
88 err_device_create:
89 class_destroy(kfd_class);
90 err_class_create:
91 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
92 err_register_chrdev:
93 return err;
94 }
95
kfd_chardev_exit(void)96 void kfd_chardev_exit(void)
97 {
98 device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
99 class_destroy(kfd_class);
100 unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
101 kfd_device = NULL;
102 }
103
kfd_chardev(void)104 struct device *kfd_chardev(void)
105 {
106 return kfd_device;
107 }
108
109
kfd_open(struct inode * inode,struct file * filep)110 static int kfd_open(struct inode *inode, struct file *filep)
111 {
112 struct kfd_process *process;
113 bool is_32bit_user_mode;
114
115 if (iminor(inode) != 0)
116 return -ENODEV;
117
118 is_32bit_user_mode = in_compat_syscall();
119
120 if (is_32bit_user_mode) {
121 dev_warn(kfd_device,
122 "Process %d (32-bit) failed to open /dev/kfd\n"
123 "32-bit processes are not supported by amdkfd\n",
124 current->pid);
125 return -EPERM;
126 }
127
128 process = kfd_create_process(filep);
129 if (IS_ERR(process))
130 return PTR_ERR(process);
131
132 if (kfd_is_locked()) {
133 dev_dbg(kfd_device, "kfd is locked!\n"
134 "process %d unreferenced", process->pasid);
135 kfd_unref_process(process);
136 return -EAGAIN;
137 }
138
139 /* filep now owns the reference returned by kfd_create_process */
140 filep->private_data = process;
141
142 dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
143 process->pasid, process->is_32bit_user_mode);
144
145 return 0;
146 }
147
kfd_release(struct inode * inode,struct file * filep)148 static int kfd_release(struct inode *inode, struct file *filep)
149 {
150 struct kfd_process *process = filep->private_data;
151
152 if (process)
153 kfd_unref_process(process);
154
155 return 0;
156 }
157
kfd_ioctl_get_version(struct file * filep,struct kfd_process * p,void * data)158 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
159 void *data)
160 {
161 struct kfd_ioctl_get_version_args *args = data;
162
163 args->major_version = KFD_IOCTL_MAJOR_VERSION;
164 args->minor_version = KFD_IOCTL_MINOR_VERSION;
165
166 return 0;
167 }
168
set_queue_properties_from_user(struct queue_properties * q_properties,struct kfd_ioctl_create_queue_args * args)169 static int set_queue_properties_from_user(struct queue_properties *q_properties,
170 struct kfd_ioctl_create_queue_args *args)
171 {
172 if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
173 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
174 return -EINVAL;
175 }
176
177 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
178 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
179 return -EINVAL;
180 }
181
182 if ((args->ring_base_address) &&
183 (!access_ok((const void __user *) args->ring_base_address,
184 sizeof(uint64_t)))) {
185 pr_err("Can't access ring base address\n");
186 return -EFAULT;
187 }
188
189 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
190 pr_err("Ring size must be a power of 2 or 0\n");
191 return -EINVAL;
192 }
193
194 if (!access_ok((const void __user *) args->read_pointer_address,
195 sizeof(uint32_t))) {
196 pr_err("Can't access read pointer\n");
197 return -EFAULT;
198 }
199
200 if (!access_ok((const void __user *) args->write_pointer_address,
201 sizeof(uint32_t))) {
202 pr_err("Can't access write pointer\n");
203 return -EFAULT;
204 }
205
206 if (args->eop_buffer_address &&
207 !access_ok((const void __user *) args->eop_buffer_address,
208 sizeof(uint32_t))) {
209 pr_debug("Can't access eop buffer");
210 return -EFAULT;
211 }
212
213 if (args->ctx_save_restore_address &&
214 !access_ok((const void __user *) args->ctx_save_restore_address,
215 sizeof(uint32_t))) {
216 pr_debug("Can't access ctx save restore buffer");
217 return -EFAULT;
218 }
219
220 q_properties->is_interop = false;
221 q_properties->is_gws = false;
222 q_properties->queue_percent = args->queue_percentage;
223 q_properties->priority = args->queue_priority;
224 q_properties->queue_address = args->ring_base_address;
225 q_properties->queue_size = args->ring_size;
226 q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
227 q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
228 q_properties->eop_ring_buffer_address = args->eop_buffer_address;
229 q_properties->eop_ring_buffer_size = args->eop_buffer_size;
230 q_properties->ctx_save_restore_area_address =
231 args->ctx_save_restore_address;
232 q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
233 q_properties->ctl_stack_size = args->ctl_stack_size;
234 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
235 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
236 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
237 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
238 q_properties->type = KFD_QUEUE_TYPE_SDMA;
239 else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
240 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
241 else
242 return -ENOTSUPP;
243
244 if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
245 q_properties->format = KFD_QUEUE_FORMAT_AQL;
246 else
247 q_properties->format = KFD_QUEUE_FORMAT_PM4;
248
249 pr_debug("Queue Percentage: %d, %d\n",
250 q_properties->queue_percent, args->queue_percentage);
251
252 pr_debug("Queue Priority: %d, %d\n",
253 q_properties->priority, args->queue_priority);
254
255 pr_debug("Queue Address: 0x%llX, 0x%llX\n",
256 q_properties->queue_address, args->ring_base_address);
257
258 pr_debug("Queue Size: 0x%llX, %u\n",
259 q_properties->queue_size, args->ring_size);
260
261 pr_debug("Queue r/w Pointers: %px, %px\n",
262 q_properties->read_ptr,
263 q_properties->write_ptr);
264
265 pr_debug("Queue Format: %d\n", q_properties->format);
266
267 pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
268
269 pr_debug("Queue CTX save area: 0x%llX\n",
270 q_properties->ctx_save_restore_area_address);
271
272 return 0;
273 }
274
kfd_ioctl_create_queue(struct file * filep,struct kfd_process * p,void * data)275 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
276 void *data)
277 {
278 struct kfd_ioctl_create_queue_args *args = data;
279 struct kfd_dev *dev;
280 int err = 0;
281 unsigned int queue_id;
282 struct kfd_process_device *pdd;
283 struct queue_properties q_properties;
284 uint32_t doorbell_offset_in_process = 0;
285
286 memset(&q_properties, 0, sizeof(struct queue_properties));
287
288 pr_debug("Creating queue ioctl\n");
289
290 err = set_queue_properties_from_user(&q_properties, args);
291 if (err)
292 return err;
293
294 pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
295 dev = kfd_device_by_id(args->gpu_id);
296 if (!dev) {
297 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
298 return -EINVAL;
299 }
300
301 mutex_lock(&p->mutex);
302
303 pdd = kfd_bind_process_to_device(dev, p);
304 if (IS_ERR(pdd)) {
305 err = -ESRCH;
306 goto err_bind_process;
307 }
308
309 pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
310 p->pasid,
311 dev->id);
312
313 err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id,
314 &doorbell_offset_in_process);
315 if (err != 0)
316 goto err_create_queue;
317
318 args->queue_id = queue_id;
319
320
321 /* Return gpu_id as doorbell offset for mmap usage */
322 args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
323 args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
324 if (KFD_IS_SOC15(dev->device_info->asic_family))
325 /* On SOC15 ASICs, include the doorbell offset within the
326 * process doorbell frame, which is 2 pages.
327 */
328 args->doorbell_offset |= doorbell_offset_in_process;
329
330 mutex_unlock(&p->mutex);
331
332 pr_debug("Queue id %d was created successfully\n", args->queue_id);
333
334 pr_debug("Ring buffer address == 0x%016llX\n",
335 args->ring_base_address);
336
337 pr_debug("Read ptr address == 0x%016llX\n",
338 args->read_pointer_address);
339
340 pr_debug("Write ptr address == 0x%016llX\n",
341 args->write_pointer_address);
342
343 return 0;
344
345 err_create_queue:
346 err_bind_process:
347 mutex_unlock(&p->mutex);
348 return err;
349 }
350
kfd_ioctl_destroy_queue(struct file * filp,struct kfd_process * p,void * data)351 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
352 void *data)
353 {
354 int retval;
355 struct kfd_ioctl_destroy_queue_args *args = data;
356
357 pr_debug("Destroying queue id %d for pasid 0x%x\n",
358 args->queue_id,
359 p->pasid);
360
361 mutex_lock(&p->mutex);
362
363 retval = pqm_destroy_queue(&p->pqm, args->queue_id);
364
365 mutex_unlock(&p->mutex);
366 return retval;
367 }
368
kfd_ioctl_update_queue(struct file * filp,struct kfd_process * p,void * data)369 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
370 void *data)
371 {
372 int retval;
373 struct kfd_ioctl_update_queue_args *args = data;
374 struct queue_properties properties;
375
376 if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
377 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
378 return -EINVAL;
379 }
380
381 if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
382 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
383 return -EINVAL;
384 }
385
386 if ((args->ring_base_address) &&
387 (!access_ok((const void __user *) args->ring_base_address,
388 sizeof(uint64_t)))) {
389 pr_err("Can't access ring base address\n");
390 return -EFAULT;
391 }
392
393 if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
394 pr_err("Ring size must be a power of 2 or 0\n");
395 return -EINVAL;
396 }
397
398 properties.queue_address = args->ring_base_address;
399 properties.queue_size = args->ring_size;
400 properties.queue_percent = args->queue_percentage;
401 properties.priority = args->queue_priority;
402
403 pr_debug("Updating queue id %d for pasid 0x%x\n",
404 args->queue_id, p->pasid);
405
406 mutex_lock(&p->mutex);
407
408 retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
409
410 mutex_unlock(&p->mutex);
411
412 return retval;
413 }
414
kfd_ioctl_set_cu_mask(struct file * filp,struct kfd_process * p,void * data)415 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
416 void *data)
417 {
418 int retval;
419 const int max_num_cus = 1024;
420 struct kfd_ioctl_set_cu_mask_args *args = data;
421 struct queue_properties properties;
422 uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
423 size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
424
425 if ((args->num_cu_mask % 32) != 0) {
426 pr_debug("num_cu_mask 0x%x must be a multiple of 32",
427 args->num_cu_mask);
428 return -EINVAL;
429 }
430
431 properties.cu_mask_count = args->num_cu_mask;
432 if (properties.cu_mask_count == 0) {
433 pr_debug("CU mask cannot be 0");
434 return -EINVAL;
435 }
436
437 /* To prevent an unreasonably large CU mask size, set an arbitrary
438 * limit of max_num_cus bits. We can then just drop any CU mask bits
439 * past max_num_cus bits and just use the first max_num_cus bits.
440 */
441 if (properties.cu_mask_count > max_num_cus) {
442 pr_debug("CU mask cannot be greater than 1024 bits");
443 properties.cu_mask_count = max_num_cus;
444 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
445 }
446
447 properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
448 if (!properties.cu_mask)
449 return -ENOMEM;
450
451 retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
452 if (retval) {
453 pr_debug("Could not copy CU mask from userspace");
454 kfree(properties.cu_mask);
455 return -EFAULT;
456 }
457
458 mutex_lock(&p->mutex);
459
460 retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
461
462 mutex_unlock(&p->mutex);
463
464 if (retval)
465 kfree(properties.cu_mask);
466
467 return retval;
468 }
469
kfd_ioctl_get_queue_wave_state(struct file * filep,struct kfd_process * p,void * data)470 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
471 struct kfd_process *p, void *data)
472 {
473 struct kfd_ioctl_get_queue_wave_state_args *args = data;
474 int r;
475
476 mutex_lock(&p->mutex);
477
478 r = pqm_get_wave_state(&p->pqm, args->queue_id,
479 (void __user *)args->ctl_stack_address,
480 &args->ctl_stack_used_size,
481 &args->save_area_used_size);
482
483 mutex_unlock(&p->mutex);
484
485 return r;
486 }
487
kfd_ioctl_set_memory_policy(struct file * filep,struct kfd_process * p,void * data)488 static int kfd_ioctl_set_memory_policy(struct file *filep,
489 struct kfd_process *p, void *data)
490 {
491 struct kfd_ioctl_set_memory_policy_args *args = data;
492 struct kfd_dev *dev;
493 int err = 0;
494 struct kfd_process_device *pdd;
495 enum cache_policy default_policy, alternate_policy;
496
497 if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
498 && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
499 return -EINVAL;
500 }
501
502 if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
503 && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
504 return -EINVAL;
505 }
506
507 dev = kfd_device_by_id(args->gpu_id);
508 if (!dev)
509 return -EINVAL;
510
511 mutex_lock(&p->mutex);
512
513 pdd = kfd_bind_process_to_device(dev, p);
514 if (IS_ERR(pdd)) {
515 err = -ESRCH;
516 goto out;
517 }
518
519 default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
520 ? cache_policy_coherent : cache_policy_noncoherent;
521
522 alternate_policy =
523 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
524 ? cache_policy_coherent : cache_policy_noncoherent;
525
526 if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
527 &pdd->qpd,
528 default_policy,
529 alternate_policy,
530 (void __user *)args->alternate_aperture_base,
531 args->alternate_aperture_size))
532 err = -EINVAL;
533
534 out:
535 mutex_unlock(&p->mutex);
536
537 return err;
538 }
539
kfd_ioctl_set_trap_handler(struct file * filep,struct kfd_process * p,void * data)540 static int kfd_ioctl_set_trap_handler(struct file *filep,
541 struct kfd_process *p, void *data)
542 {
543 struct kfd_ioctl_set_trap_handler_args *args = data;
544 struct kfd_dev *dev;
545 int err = 0;
546 struct kfd_process_device *pdd;
547
548 dev = kfd_device_by_id(args->gpu_id);
549 if (!dev)
550 return -EINVAL;
551
552 mutex_lock(&p->mutex);
553
554 pdd = kfd_bind_process_to_device(dev, p);
555 if (IS_ERR(pdd)) {
556 err = -ESRCH;
557 goto out;
558 }
559
560 kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
561
562 out:
563 mutex_unlock(&p->mutex);
564
565 return err;
566 }
567
kfd_ioctl_dbg_register(struct file * filep,struct kfd_process * p,void * data)568 static int kfd_ioctl_dbg_register(struct file *filep,
569 struct kfd_process *p, void *data)
570 {
571 struct kfd_ioctl_dbg_register_args *args = data;
572 struct kfd_dev *dev;
573 struct kfd_dbgmgr *dbgmgr_ptr;
574 struct kfd_process_device *pdd;
575 bool create_ok;
576 long status = 0;
577
578 dev = kfd_device_by_id(args->gpu_id);
579 if (!dev)
580 return -EINVAL;
581
582 if (dev->device_info->asic_family == CHIP_CARRIZO) {
583 pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
584 return -EINVAL;
585 }
586
587 mutex_lock(&p->mutex);
588 mutex_lock(kfd_get_dbgmgr_mutex());
589
590 /*
591 * make sure that we have pdd, if this the first queue created for
592 * this process
593 */
594 pdd = kfd_bind_process_to_device(dev, p);
595 if (IS_ERR(pdd)) {
596 status = PTR_ERR(pdd);
597 goto out;
598 }
599
600 if (!dev->dbgmgr) {
601 /* In case of a legal call, we have no dbgmgr yet */
602 create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
603 if (create_ok) {
604 status = kfd_dbgmgr_register(dbgmgr_ptr, p);
605 if (status != 0)
606 kfd_dbgmgr_destroy(dbgmgr_ptr);
607 else
608 dev->dbgmgr = dbgmgr_ptr;
609 }
610 } else {
611 pr_debug("debugger already registered\n");
612 status = -EINVAL;
613 }
614
615 out:
616 mutex_unlock(kfd_get_dbgmgr_mutex());
617 mutex_unlock(&p->mutex);
618
619 return status;
620 }
621
kfd_ioctl_dbg_unregister(struct file * filep,struct kfd_process * p,void * data)622 static int kfd_ioctl_dbg_unregister(struct file *filep,
623 struct kfd_process *p, void *data)
624 {
625 struct kfd_ioctl_dbg_unregister_args *args = data;
626 struct kfd_dev *dev;
627 long status;
628
629 dev = kfd_device_by_id(args->gpu_id);
630 if (!dev || !dev->dbgmgr)
631 return -EINVAL;
632
633 if (dev->device_info->asic_family == CHIP_CARRIZO) {
634 pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
635 return -EINVAL;
636 }
637
638 mutex_lock(kfd_get_dbgmgr_mutex());
639
640 status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
641 if (!status) {
642 kfd_dbgmgr_destroy(dev->dbgmgr);
643 dev->dbgmgr = NULL;
644 }
645
646 mutex_unlock(kfd_get_dbgmgr_mutex());
647
648 return status;
649 }
650
651 /*
652 * Parse and generate variable size data structure for address watch.
653 * Total size of the buffer and # watch points is limited in order
654 * to prevent kernel abuse. (no bearing to the much smaller HW limitation
655 * which is enforced by dbgdev module)
656 * please also note that the watch address itself are not "copied from user",
657 * since it be set into the HW in user mode values.
658 *
659 */
kfd_ioctl_dbg_address_watch(struct file * filep,struct kfd_process * p,void * data)660 static int kfd_ioctl_dbg_address_watch(struct file *filep,
661 struct kfd_process *p, void *data)
662 {
663 struct kfd_ioctl_dbg_address_watch_args *args = data;
664 struct kfd_dev *dev;
665 struct dbg_address_watch_info aw_info;
666 unsigned char *args_buff;
667 long status;
668 void __user *cmd_from_user;
669 uint64_t watch_mask_value = 0;
670 unsigned int args_idx = 0;
671
672 memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
673
674 dev = kfd_device_by_id(args->gpu_id);
675 if (!dev)
676 return -EINVAL;
677
678 if (dev->device_info->asic_family == CHIP_CARRIZO) {
679 pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
680 return -EINVAL;
681 }
682
683 cmd_from_user = (void __user *) args->content_ptr;
684
685 /* Validate arguments */
686
687 if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
688 (args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
689 (cmd_from_user == NULL))
690 return -EINVAL;
691
692 /* this is the actual buffer to work with */
693 args_buff = memdup_user(cmd_from_user,
694 args->buf_size_in_bytes - sizeof(*args));
695 if (IS_ERR(args_buff))
696 return PTR_ERR(args_buff);
697
698 aw_info.process = p;
699
700 aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
701 args_idx += sizeof(aw_info.num_watch_points);
702
703 aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
704 args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
705
706 /*
707 * set watch address base pointer to point on the array base
708 * within args_buff
709 */
710 aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
711
712 /* skip over the addresses buffer */
713 args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
714
715 if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
716 status = -EINVAL;
717 goto out;
718 }
719
720 watch_mask_value = (uint64_t) args_buff[args_idx];
721
722 if (watch_mask_value > 0) {
723 /*
724 * There is an array of masks.
725 * set watch mask base pointer to point on the array base
726 * within args_buff
727 */
728 aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
729
730 /* skip over the masks buffer */
731 args_idx += sizeof(aw_info.watch_mask) *
732 aw_info.num_watch_points;
733 } else {
734 /* just the NULL mask, set to NULL and skip over it */
735 aw_info.watch_mask = NULL;
736 args_idx += sizeof(aw_info.watch_mask);
737 }
738
739 if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
740 status = -EINVAL;
741 goto out;
742 }
743
744 /* Currently HSA Event is not supported for DBG */
745 aw_info.watch_event = NULL;
746
747 mutex_lock(kfd_get_dbgmgr_mutex());
748
749 status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
750
751 mutex_unlock(kfd_get_dbgmgr_mutex());
752
753 out:
754 kfree(args_buff);
755
756 return status;
757 }
758
759 /* Parse and generate fixed size data structure for wave control */
kfd_ioctl_dbg_wave_control(struct file * filep,struct kfd_process * p,void * data)760 static int kfd_ioctl_dbg_wave_control(struct file *filep,
761 struct kfd_process *p, void *data)
762 {
763 struct kfd_ioctl_dbg_wave_control_args *args = data;
764 struct kfd_dev *dev;
765 struct dbg_wave_control_info wac_info;
766 unsigned char *args_buff;
767 uint32_t computed_buff_size;
768 long status;
769 void __user *cmd_from_user;
770 unsigned int args_idx = 0;
771
772 memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
773
774 /* we use compact form, independent of the packing attribute value */
775 computed_buff_size = sizeof(*args) +
776 sizeof(wac_info.mode) +
777 sizeof(wac_info.operand) +
778 sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
779 sizeof(wac_info.dbgWave_msg.MemoryVA) +
780 sizeof(wac_info.trapId);
781
782 dev = kfd_device_by_id(args->gpu_id);
783 if (!dev)
784 return -EINVAL;
785
786 if (dev->device_info->asic_family == CHIP_CARRIZO) {
787 pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
788 return -EINVAL;
789 }
790
791 /* input size must match the computed "compact" size */
792 if (args->buf_size_in_bytes != computed_buff_size) {
793 pr_debug("size mismatch, computed : actual %u : %u\n",
794 args->buf_size_in_bytes, computed_buff_size);
795 return -EINVAL;
796 }
797
798 cmd_from_user = (void __user *) args->content_ptr;
799
800 if (cmd_from_user == NULL)
801 return -EINVAL;
802
803 /* copy the entire buffer from user */
804
805 args_buff = memdup_user(cmd_from_user,
806 args->buf_size_in_bytes - sizeof(*args));
807 if (IS_ERR(args_buff))
808 return PTR_ERR(args_buff);
809
810 /* move ptr to the start of the "pay-load" area */
811 wac_info.process = p;
812
813 wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
814 args_idx += sizeof(wac_info.operand);
815
816 wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
817 args_idx += sizeof(wac_info.mode);
818
819 wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
820 args_idx += sizeof(wac_info.trapId);
821
822 wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
823 *((uint32_t *)(&args_buff[args_idx]));
824 wac_info.dbgWave_msg.MemoryVA = NULL;
825
826 mutex_lock(kfd_get_dbgmgr_mutex());
827
828 pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
829 wac_info.process, wac_info.operand,
830 wac_info.mode, wac_info.trapId,
831 wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
832
833 status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
834
835 pr_debug("Returned status of dbg manager is %ld\n", status);
836
837 mutex_unlock(kfd_get_dbgmgr_mutex());
838
839 kfree(args_buff);
840
841 return status;
842 }
843
kfd_ioctl_get_clock_counters(struct file * filep,struct kfd_process * p,void * data)844 static int kfd_ioctl_get_clock_counters(struct file *filep,
845 struct kfd_process *p, void *data)
846 {
847 struct kfd_ioctl_get_clock_counters_args *args = data;
848 struct kfd_dev *dev;
849
850 dev = kfd_device_by_id(args->gpu_id);
851 if (dev)
852 /* Reading GPU clock counter from KGD */
853 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
854 else
855 /* Node without GPU resource */
856 args->gpu_clock_counter = 0;
857
858 /* No access to rdtsc. Using raw monotonic time */
859 args->cpu_clock_counter = ktime_get_raw_ns();
860 args->system_clock_counter = ktime_get_boottime_ns();
861
862 /* Since the counter is in nano-seconds we use 1GHz frequency */
863 args->system_clock_freq = 1000000000;
864
865 return 0;
866 }
867
868
kfd_ioctl_get_process_apertures(struct file * filp,struct kfd_process * p,void * data)869 static int kfd_ioctl_get_process_apertures(struct file *filp,
870 struct kfd_process *p, void *data)
871 {
872 struct kfd_ioctl_get_process_apertures_args *args = data;
873 struct kfd_process_device_apertures *pAperture;
874 int i;
875
876 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
877
878 args->num_of_nodes = 0;
879
880 mutex_lock(&p->mutex);
881 /* Run over all pdd of the process */
882 for (i = 0; i < p->n_pdds; i++) {
883 struct kfd_process_device *pdd = p->pdds[i];
884
885 pAperture =
886 &args->process_apertures[args->num_of_nodes];
887 pAperture->gpu_id = pdd->dev->id;
888 pAperture->lds_base = pdd->lds_base;
889 pAperture->lds_limit = pdd->lds_limit;
890 pAperture->gpuvm_base = pdd->gpuvm_base;
891 pAperture->gpuvm_limit = pdd->gpuvm_limit;
892 pAperture->scratch_base = pdd->scratch_base;
893 pAperture->scratch_limit = pdd->scratch_limit;
894
895 dev_dbg(kfd_device,
896 "node id %u\n", args->num_of_nodes);
897 dev_dbg(kfd_device,
898 "gpu id %u\n", pdd->dev->id);
899 dev_dbg(kfd_device,
900 "lds_base %llX\n", pdd->lds_base);
901 dev_dbg(kfd_device,
902 "lds_limit %llX\n", pdd->lds_limit);
903 dev_dbg(kfd_device,
904 "gpuvm_base %llX\n", pdd->gpuvm_base);
905 dev_dbg(kfd_device,
906 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
907 dev_dbg(kfd_device,
908 "scratch_base %llX\n", pdd->scratch_base);
909 dev_dbg(kfd_device,
910 "scratch_limit %llX\n", pdd->scratch_limit);
911
912 if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
913 break;
914 }
915 mutex_unlock(&p->mutex);
916
917 return 0;
918 }
919
kfd_ioctl_get_process_apertures_new(struct file * filp,struct kfd_process * p,void * data)920 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
921 struct kfd_process *p, void *data)
922 {
923 struct kfd_ioctl_get_process_apertures_new_args *args = data;
924 struct kfd_process_device_apertures *pa;
925 int ret;
926 int i;
927
928 dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
929
930 if (args->num_of_nodes == 0) {
931 /* Return number of nodes, so that user space can alloacate
932 * sufficient memory
933 */
934 mutex_lock(&p->mutex);
935 args->num_of_nodes = p->n_pdds;
936 goto out_unlock;
937 }
938
939 /* Fill in process-aperture information for all available
940 * nodes, but not more than args->num_of_nodes as that is
941 * the amount of memory allocated by user
942 */
943 pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
944 args->num_of_nodes), GFP_KERNEL);
945 if (!pa)
946 return -ENOMEM;
947
948 mutex_lock(&p->mutex);
949
950 if (!p->n_pdds) {
951 args->num_of_nodes = 0;
952 kfree(pa);
953 goto out_unlock;
954 }
955
956 /* Run over all pdd of the process */
957 for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
958 struct kfd_process_device *pdd = p->pdds[i];
959
960 pa[i].gpu_id = pdd->dev->id;
961 pa[i].lds_base = pdd->lds_base;
962 pa[i].lds_limit = pdd->lds_limit;
963 pa[i].gpuvm_base = pdd->gpuvm_base;
964 pa[i].gpuvm_limit = pdd->gpuvm_limit;
965 pa[i].scratch_base = pdd->scratch_base;
966 pa[i].scratch_limit = pdd->scratch_limit;
967
968 dev_dbg(kfd_device,
969 "gpu id %u\n", pdd->dev->id);
970 dev_dbg(kfd_device,
971 "lds_base %llX\n", pdd->lds_base);
972 dev_dbg(kfd_device,
973 "lds_limit %llX\n", pdd->lds_limit);
974 dev_dbg(kfd_device,
975 "gpuvm_base %llX\n", pdd->gpuvm_base);
976 dev_dbg(kfd_device,
977 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
978 dev_dbg(kfd_device,
979 "scratch_base %llX\n", pdd->scratch_base);
980 dev_dbg(kfd_device,
981 "scratch_limit %llX\n", pdd->scratch_limit);
982 }
983 mutex_unlock(&p->mutex);
984
985 args->num_of_nodes = i;
986 ret = copy_to_user(
987 (void __user *)args->kfd_process_device_apertures_ptr,
988 pa,
989 (i * sizeof(struct kfd_process_device_apertures)));
990 kfree(pa);
991 return ret ? -EFAULT : 0;
992
993 out_unlock:
994 mutex_unlock(&p->mutex);
995 return 0;
996 }
997
kfd_ioctl_create_event(struct file * filp,struct kfd_process * p,void * data)998 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
999 void *data)
1000 {
1001 struct kfd_ioctl_create_event_args *args = data;
1002 int err;
1003
1004 /* For dGPUs the event page is allocated in user mode. The
1005 * handle is passed to KFD with the first call to this IOCTL
1006 * through the event_page_offset field.
1007 */
1008 if (args->event_page_offset) {
1009 struct kfd_dev *kfd;
1010 struct kfd_process_device *pdd;
1011 void *mem, *kern_addr;
1012 uint64_t size;
1013
1014 if (p->signal_page) {
1015 pr_err("Event page is already set\n");
1016 return -EINVAL;
1017 }
1018
1019 kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1020 if (!kfd) {
1021 pr_err("Getting device by id failed in %s\n", __func__);
1022 return -EINVAL;
1023 }
1024
1025 mutex_lock(&p->mutex);
1026 pdd = kfd_bind_process_to_device(kfd, p);
1027 if (IS_ERR(pdd)) {
1028 err = PTR_ERR(pdd);
1029 goto out_unlock;
1030 }
1031
1032 mem = kfd_process_device_translate_handle(pdd,
1033 GET_IDR_HANDLE(args->event_page_offset));
1034 if (!mem) {
1035 pr_err("Can't find BO, offset is 0x%llx\n",
1036 args->event_page_offset);
1037 err = -EINVAL;
1038 goto out_unlock;
1039 }
1040 mutex_unlock(&p->mutex);
1041
1042 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1043 mem, &kern_addr, &size);
1044 if (err) {
1045 pr_err("Failed to map event page to kernel\n");
1046 return err;
1047 }
1048
1049 err = kfd_event_page_set(p, kern_addr, size);
1050 if (err) {
1051 pr_err("Failed to set event page\n");
1052 return err;
1053 }
1054 }
1055
1056 err = kfd_event_create(filp, p, args->event_type,
1057 args->auto_reset != 0, args->node_id,
1058 &args->event_id, &args->event_trigger_data,
1059 &args->event_page_offset,
1060 &args->event_slot_index);
1061
1062 return err;
1063
1064 out_unlock:
1065 mutex_unlock(&p->mutex);
1066 return err;
1067 }
1068
kfd_ioctl_destroy_event(struct file * filp,struct kfd_process * p,void * data)1069 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1070 void *data)
1071 {
1072 struct kfd_ioctl_destroy_event_args *args = data;
1073
1074 return kfd_event_destroy(p, args->event_id);
1075 }
1076
kfd_ioctl_set_event(struct file * filp,struct kfd_process * p,void * data)1077 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1078 void *data)
1079 {
1080 struct kfd_ioctl_set_event_args *args = data;
1081
1082 return kfd_set_event(p, args->event_id);
1083 }
1084
kfd_ioctl_reset_event(struct file * filp,struct kfd_process * p,void * data)1085 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1086 void *data)
1087 {
1088 struct kfd_ioctl_reset_event_args *args = data;
1089
1090 return kfd_reset_event(p, args->event_id);
1091 }
1092
kfd_ioctl_wait_events(struct file * filp,struct kfd_process * p,void * data)1093 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1094 void *data)
1095 {
1096 struct kfd_ioctl_wait_events_args *args = data;
1097 int err;
1098
1099 err = kfd_wait_on_events(p, args->num_events,
1100 (void __user *)args->events_ptr,
1101 (args->wait_for_all != 0),
1102 args->timeout, &args->wait_result);
1103
1104 return err;
1105 }
kfd_ioctl_set_scratch_backing_va(struct file * filep,struct kfd_process * p,void * data)1106 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1107 struct kfd_process *p, void *data)
1108 {
1109 struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1110 struct kfd_process_device *pdd;
1111 struct kfd_dev *dev;
1112 long err;
1113
1114 dev = kfd_device_by_id(args->gpu_id);
1115 if (!dev)
1116 return -EINVAL;
1117
1118 mutex_lock(&p->mutex);
1119
1120 pdd = kfd_bind_process_to_device(dev, p);
1121 if (IS_ERR(pdd)) {
1122 err = PTR_ERR(pdd);
1123 goto bind_process_to_device_fail;
1124 }
1125
1126 pdd->qpd.sh_hidden_private_base = args->va_addr;
1127
1128 mutex_unlock(&p->mutex);
1129
1130 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1131 pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
1132 dev->kfd2kgd->set_scratch_backing_va(
1133 dev->kgd, args->va_addr, pdd->qpd.vmid);
1134
1135 return 0;
1136
1137 bind_process_to_device_fail:
1138 mutex_unlock(&p->mutex);
1139 return err;
1140 }
1141
kfd_ioctl_get_tile_config(struct file * filep,struct kfd_process * p,void * data)1142 static int kfd_ioctl_get_tile_config(struct file *filep,
1143 struct kfd_process *p, void *data)
1144 {
1145 struct kfd_ioctl_get_tile_config_args *args = data;
1146 struct kfd_dev *dev;
1147 struct tile_config config;
1148 int err = 0;
1149
1150 dev = kfd_device_by_id(args->gpu_id);
1151 if (!dev)
1152 return -EINVAL;
1153
1154 amdgpu_amdkfd_get_tile_config(dev->kgd, &config);
1155
1156 args->gb_addr_config = config.gb_addr_config;
1157 args->num_banks = config.num_banks;
1158 args->num_ranks = config.num_ranks;
1159
1160 if (args->num_tile_configs > config.num_tile_configs)
1161 args->num_tile_configs = config.num_tile_configs;
1162 err = copy_to_user((void __user *)args->tile_config_ptr,
1163 config.tile_config_ptr,
1164 args->num_tile_configs * sizeof(uint32_t));
1165 if (err) {
1166 args->num_tile_configs = 0;
1167 return -EFAULT;
1168 }
1169
1170 if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1171 args->num_macro_tile_configs =
1172 config.num_macro_tile_configs;
1173 err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1174 config.macro_tile_config_ptr,
1175 args->num_macro_tile_configs * sizeof(uint32_t));
1176 if (err) {
1177 args->num_macro_tile_configs = 0;
1178 return -EFAULT;
1179 }
1180
1181 return 0;
1182 }
1183
kfd_ioctl_acquire_vm(struct file * filep,struct kfd_process * p,void * data)1184 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1185 void *data)
1186 {
1187 struct kfd_ioctl_acquire_vm_args *args = data;
1188 struct kfd_process_device *pdd;
1189 struct kfd_dev *dev;
1190 struct file *drm_file;
1191 int ret;
1192
1193 dev = kfd_device_by_id(args->gpu_id);
1194 if (!dev)
1195 return -EINVAL;
1196
1197 drm_file = fget(args->drm_fd);
1198 if (!drm_file)
1199 return -EINVAL;
1200
1201 mutex_lock(&p->mutex);
1202
1203 pdd = kfd_get_process_device_data(dev, p);
1204 if (!pdd) {
1205 ret = -EINVAL;
1206 goto err_unlock;
1207 }
1208
1209 if (pdd->drm_file) {
1210 ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1211 goto err_unlock;
1212 }
1213
1214 ret = kfd_process_device_init_vm(pdd, drm_file);
1215 if (ret)
1216 goto err_unlock;
1217 /* On success, the PDD keeps the drm_file reference */
1218 mutex_unlock(&p->mutex);
1219
1220 return 0;
1221
1222 err_unlock:
1223 mutex_unlock(&p->mutex);
1224 fput(drm_file);
1225 return ret;
1226 }
1227
kfd_dev_is_large_bar(struct kfd_dev * dev)1228 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1229 {
1230 struct kfd_local_mem_info mem_info;
1231
1232 if (debug_largebar) {
1233 pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1234 return true;
1235 }
1236
1237 if (dev->use_iommu_v2)
1238 return false;
1239
1240 amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1241 if (mem_info.local_mem_size_private == 0 &&
1242 mem_info.local_mem_size_public > 0)
1243 return true;
1244 return false;
1245 }
1246
kfd_ioctl_alloc_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1247 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1248 struct kfd_process *p, void *data)
1249 {
1250 struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1251 struct kfd_process_device *pdd;
1252 void *mem;
1253 struct kfd_dev *dev;
1254 int idr_handle;
1255 long err;
1256 uint64_t offset = args->mmap_offset;
1257 uint32_t flags = args->flags;
1258
1259 if (args->size == 0)
1260 return -EINVAL;
1261
1262 dev = kfd_device_by_id(args->gpu_id);
1263 if (!dev)
1264 return -EINVAL;
1265
1266 if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1267 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1268 !kfd_dev_is_large_bar(dev)) {
1269 pr_err("Alloc host visible vram on small bar is not allowed\n");
1270 return -EINVAL;
1271 }
1272
1273 mutex_lock(&p->mutex);
1274
1275 pdd = kfd_bind_process_to_device(dev, p);
1276 if (IS_ERR(pdd)) {
1277 err = PTR_ERR(pdd);
1278 goto err_unlock;
1279 }
1280
1281 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1282 if (args->size != kfd_doorbell_process_slice(dev)) {
1283 err = -EINVAL;
1284 goto err_unlock;
1285 }
1286 offset = kfd_get_process_doorbells(pdd);
1287 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1288 if (args->size != PAGE_SIZE) {
1289 err = -EINVAL;
1290 goto err_unlock;
1291 }
1292 offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1293 if (!offset) {
1294 err = -ENOMEM;
1295 goto err_unlock;
1296 }
1297 }
1298
1299 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1300 dev->kgd, args->va_addr, args->size,
1301 pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1302 flags);
1303
1304 if (err)
1305 goto err_unlock;
1306
1307 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1308 if (idr_handle < 0) {
1309 err = -EFAULT;
1310 goto err_free;
1311 }
1312
1313 /* Update the VRAM usage count */
1314 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)
1315 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + args->size);
1316
1317 mutex_unlock(&p->mutex);
1318
1319 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1320 args->mmap_offset = offset;
1321
1322 /* MMIO is mapped through kfd device
1323 * Generate a kfd mmap offset
1324 */
1325 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1326 args->mmap_offset = KFD_MMAP_TYPE_MMIO
1327 | KFD_MMAP_GPU_ID(args->gpu_id);
1328
1329 return 0;
1330
1331 err_free:
1332 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem,
1333 pdd->drm_priv, NULL);
1334 err_unlock:
1335 mutex_unlock(&p->mutex);
1336 return err;
1337 }
1338
kfd_ioctl_free_memory_of_gpu(struct file * filep,struct kfd_process * p,void * data)1339 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1340 struct kfd_process *p, void *data)
1341 {
1342 struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1343 struct kfd_process_device *pdd;
1344 void *mem;
1345 struct kfd_dev *dev;
1346 int ret;
1347 uint64_t size = 0;
1348
1349 dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1350 if (!dev)
1351 return -EINVAL;
1352
1353 mutex_lock(&p->mutex);
1354
1355 pdd = kfd_get_process_device_data(dev, p);
1356 if (!pdd) {
1357 pr_err("Process device data doesn't exist\n");
1358 ret = -EINVAL;
1359 goto err_unlock;
1360 }
1361
1362 mem = kfd_process_device_translate_handle(
1363 pdd, GET_IDR_HANDLE(args->handle));
1364 if (!mem) {
1365 ret = -EINVAL;
1366 goto err_unlock;
1367 }
1368
1369 ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1370 (struct kgd_mem *)mem, pdd->drm_priv, &size);
1371
1372 /* If freeing the buffer failed, leave the handle in place for
1373 * clean-up during process tear-down.
1374 */
1375 if (!ret)
1376 kfd_process_device_remove_obj_handle(
1377 pdd, GET_IDR_HANDLE(args->handle));
1378
1379 WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
1380
1381 err_unlock:
1382 mutex_unlock(&p->mutex);
1383 return ret;
1384 }
1385
kfd_ioctl_map_memory_to_gpu(struct file * filep,struct kfd_process * p,void * data)1386 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1387 struct kfd_process *p, void *data)
1388 {
1389 struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1390 struct kfd_process_device *pdd, *peer_pdd;
1391 void *mem;
1392 struct kfd_dev *dev, *peer;
1393 long err = 0;
1394 int i;
1395 uint32_t *devices_arr = NULL;
1396 bool table_freed = false;
1397
1398 dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1399 if (!dev)
1400 return -EINVAL;
1401
1402 if (!args->n_devices) {
1403 pr_debug("Device IDs array empty\n");
1404 return -EINVAL;
1405 }
1406 if (args->n_success > args->n_devices) {
1407 pr_debug("n_success exceeds n_devices\n");
1408 return -EINVAL;
1409 }
1410
1411 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1412 GFP_KERNEL);
1413 if (!devices_arr)
1414 return -ENOMEM;
1415
1416 err = copy_from_user(devices_arr,
1417 (void __user *)args->device_ids_array_ptr,
1418 args->n_devices * sizeof(*devices_arr));
1419 if (err != 0) {
1420 err = -EFAULT;
1421 goto copy_from_user_failed;
1422 }
1423
1424 mutex_lock(&p->mutex);
1425
1426 pdd = kfd_bind_process_to_device(dev, p);
1427 if (IS_ERR(pdd)) {
1428 err = PTR_ERR(pdd);
1429 goto bind_process_to_device_failed;
1430 }
1431
1432 mem = kfd_process_device_translate_handle(pdd,
1433 GET_IDR_HANDLE(args->handle));
1434 if (!mem) {
1435 err = -ENOMEM;
1436 goto get_mem_obj_from_handle_failed;
1437 }
1438
1439 for (i = args->n_success; i < args->n_devices; i++) {
1440 peer = kfd_device_by_id(devices_arr[i]);
1441 if (!peer) {
1442 pr_debug("Getting device by id failed for 0x%x\n",
1443 devices_arr[i]);
1444 err = -EINVAL;
1445 goto get_mem_obj_from_handle_failed;
1446 }
1447
1448 peer_pdd = kfd_bind_process_to_device(peer, p);
1449 if (IS_ERR(peer_pdd)) {
1450 err = PTR_ERR(peer_pdd);
1451 goto get_mem_obj_from_handle_failed;
1452 }
1453 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1454 peer->kgd, (struct kgd_mem *)mem,
1455 peer_pdd->drm_priv, &table_freed);
1456 if (err) {
1457 pr_err("Failed to map to gpu %d/%d\n",
1458 i, args->n_devices);
1459 goto map_memory_to_gpu_failed;
1460 }
1461 args->n_success = i+1;
1462 }
1463
1464 mutex_unlock(&p->mutex);
1465
1466 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1467 if (err) {
1468 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1469 goto sync_memory_failed;
1470 }
1471
1472 /* Flush TLBs after waiting for the page table updates to complete */
1473 if (table_freed) {
1474 for (i = 0; i < args->n_devices; i++) {
1475 peer = kfd_device_by_id(devices_arr[i]);
1476 if (WARN_ON_ONCE(!peer))
1477 continue;
1478 peer_pdd = kfd_get_process_device_data(peer, p);
1479 if (WARN_ON_ONCE(!peer_pdd))
1480 continue;
1481 kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1482 }
1483 }
1484 kfree(devices_arr);
1485
1486 return err;
1487
1488 bind_process_to_device_failed:
1489 get_mem_obj_from_handle_failed:
1490 map_memory_to_gpu_failed:
1491 mutex_unlock(&p->mutex);
1492 copy_from_user_failed:
1493 sync_memory_failed:
1494 kfree(devices_arr);
1495
1496 return err;
1497 }
1498
kfd_ioctl_unmap_memory_from_gpu(struct file * filep,struct kfd_process * p,void * data)1499 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1500 struct kfd_process *p, void *data)
1501 {
1502 struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1503 struct kfd_process_device *pdd, *peer_pdd;
1504 void *mem;
1505 struct kfd_dev *dev, *peer;
1506 long err = 0;
1507 uint32_t *devices_arr = NULL, i;
1508
1509 dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1510 if (!dev)
1511 return -EINVAL;
1512
1513 if (!args->n_devices) {
1514 pr_debug("Device IDs array empty\n");
1515 return -EINVAL;
1516 }
1517 if (args->n_success > args->n_devices) {
1518 pr_debug("n_success exceeds n_devices\n");
1519 return -EINVAL;
1520 }
1521
1522 devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1523 GFP_KERNEL);
1524 if (!devices_arr)
1525 return -ENOMEM;
1526
1527 err = copy_from_user(devices_arr,
1528 (void __user *)args->device_ids_array_ptr,
1529 args->n_devices * sizeof(*devices_arr));
1530 if (err != 0) {
1531 err = -EFAULT;
1532 goto copy_from_user_failed;
1533 }
1534
1535 mutex_lock(&p->mutex);
1536
1537 pdd = kfd_get_process_device_data(dev, p);
1538 if (!pdd) {
1539 err = -EINVAL;
1540 goto bind_process_to_device_failed;
1541 }
1542
1543 mem = kfd_process_device_translate_handle(pdd,
1544 GET_IDR_HANDLE(args->handle));
1545 if (!mem) {
1546 err = -ENOMEM;
1547 goto get_mem_obj_from_handle_failed;
1548 }
1549
1550 for (i = args->n_success; i < args->n_devices; i++) {
1551 peer = kfd_device_by_id(devices_arr[i]);
1552 if (!peer) {
1553 err = -EINVAL;
1554 goto get_mem_obj_from_handle_failed;
1555 }
1556
1557 peer_pdd = kfd_get_process_device_data(peer, p);
1558 if (!peer_pdd) {
1559 err = -ENODEV;
1560 goto get_mem_obj_from_handle_failed;
1561 }
1562 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1563 peer->kgd, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1564 if (err) {
1565 pr_err("Failed to unmap from gpu %d/%d\n",
1566 i, args->n_devices);
1567 goto unmap_memory_from_gpu_failed;
1568 }
1569 args->n_success = i+1;
1570 }
1571 mutex_unlock(&p->mutex);
1572
1573 if (dev->device_info->asic_family == CHIP_ALDEBARAN) {
1574 err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd,
1575 (struct kgd_mem *) mem, true);
1576 if (err) {
1577 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1578 goto sync_memory_failed;
1579 }
1580
1581 /* Flush TLBs after waiting for the page table updates to complete */
1582 for (i = 0; i < args->n_devices; i++) {
1583 peer = kfd_device_by_id(devices_arr[i]);
1584 if (WARN_ON_ONCE(!peer))
1585 continue;
1586 peer_pdd = kfd_get_process_device_data(peer, p);
1587 if (WARN_ON_ONCE(!peer_pdd))
1588 continue;
1589 kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1590 }
1591 }
1592 kfree(devices_arr);
1593
1594 return 0;
1595
1596 bind_process_to_device_failed:
1597 get_mem_obj_from_handle_failed:
1598 unmap_memory_from_gpu_failed:
1599 mutex_unlock(&p->mutex);
1600 copy_from_user_failed:
1601 sync_memory_failed:
1602 kfree(devices_arr);
1603 return err;
1604 }
1605
kfd_ioctl_alloc_queue_gws(struct file * filep,struct kfd_process * p,void * data)1606 static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1607 struct kfd_process *p, void *data)
1608 {
1609 int retval;
1610 struct kfd_ioctl_alloc_queue_gws_args *args = data;
1611 struct queue *q;
1612 struct kfd_dev *dev;
1613
1614 mutex_lock(&p->mutex);
1615 q = pqm_get_user_queue(&p->pqm, args->queue_id);
1616
1617 if (q) {
1618 dev = q->device;
1619 } else {
1620 retval = -EINVAL;
1621 goto out_unlock;
1622 }
1623
1624 if (!dev->gws) {
1625 retval = -ENODEV;
1626 goto out_unlock;
1627 }
1628
1629 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1630 retval = -ENODEV;
1631 goto out_unlock;
1632 }
1633
1634 retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1635 mutex_unlock(&p->mutex);
1636
1637 args->first_gws = 0;
1638 return retval;
1639
1640 out_unlock:
1641 mutex_unlock(&p->mutex);
1642 return retval;
1643 }
1644
kfd_ioctl_get_dmabuf_info(struct file * filep,struct kfd_process * p,void * data)1645 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1646 struct kfd_process *p, void *data)
1647 {
1648 struct kfd_ioctl_get_dmabuf_info_args *args = data;
1649 struct kfd_dev *dev = NULL;
1650 struct kgd_dev *dma_buf_kgd;
1651 void *metadata_buffer = NULL;
1652 uint32_t flags;
1653 unsigned int i;
1654 int r;
1655
1656 /* Find a KFD GPU device that supports the get_dmabuf_info query */
1657 for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1658 if (dev)
1659 break;
1660 if (!dev)
1661 return -EINVAL;
1662
1663 if (args->metadata_ptr) {
1664 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1665 if (!metadata_buffer)
1666 return -ENOMEM;
1667 }
1668
1669 /* Get dmabuf info from KGD */
1670 r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
1671 &dma_buf_kgd, &args->size,
1672 metadata_buffer, args->metadata_size,
1673 &args->metadata_size, &flags);
1674 if (r)
1675 goto exit;
1676
1677 /* Reverse-lookup gpu_id from kgd pointer */
1678 dev = kfd_device_by_kgd(dma_buf_kgd);
1679 if (!dev) {
1680 r = -EINVAL;
1681 goto exit;
1682 }
1683 args->gpu_id = dev->id;
1684 args->flags = flags;
1685
1686 /* Copy metadata buffer to user mode */
1687 if (metadata_buffer) {
1688 r = copy_to_user((void __user *)args->metadata_ptr,
1689 metadata_buffer, args->metadata_size);
1690 if (r != 0)
1691 r = -EFAULT;
1692 }
1693
1694 exit:
1695 kfree(metadata_buffer);
1696
1697 return r;
1698 }
1699
kfd_ioctl_import_dmabuf(struct file * filep,struct kfd_process * p,void * data)1700 static int kfd_ioctl_import_dmabuf(struct file *filep,
1701 struct kfd_process *p, void *data)
1702 {
1703 struct kfd_ioctl_import_dmabuf_args *args = data;
1704 struct kfd_process_device *pdd;
1705 struct dma_buf *dmabuf;
1706 struct kfd_dev *dev;
1707 int idr_handle;
1708 uint64_t size;
1709 void *mem;
1710 int r;
1711
1712 dev = kfd_device_by_id(args->gpu_id);
1713 if (!dev)
1714 return -EINVAL;
1715
1716 dmabuf = dma_buf_get(args->dmabuf_fd);
1717 if (IS_ERR(dmabuf))
1718 return PTR_ERR(dmabuf);
1719
1720 mutex_lock(&p->mutex);
1721
1722 pdd = kfd_bind_process_to_device(dev, p);
1723 if (IS_ERR(pdd)) {
1724 r = PTR_ERR(pdd);
1725 goto err_unlock;
1726 }
1727
1728 r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
1729 args->va_addr, pdd->drm_priv,
1730 (struct kgd_mem **)&mem, &size,
1731 NULL);
1732 if (r)
1733 goto err_unlock;
1734
1735 idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1736 if (idr_handle < 0) {
1737 r = -EFAULT;
1738 goto err_free;
1739 }
1740
1741 mutex_unlock(&p->mutex);
1742 dma_buf_put(dmabuf);
1743
1744 args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1745
1746 return 0;
1747
1748 err_free:
1749 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem,
1750 pdd->drm_priv, NULL);
1751 err_unlock:
1752 mutex_unlock(&p->mutex);
1753 dma_buf_put(dmabuf);
1754 return r;
1755 }
1756
1757 /* Handle requests for watching SMI events */
kfd_ioctl_smi_events(struct file * filep,struct kfd_process * p,void * data)1758 static int kfd_ioctl_smi_events(struct file *filep,
1759 struct kfd_process *p, void *data)
1760 {
1761 struct kfd_ioctl_smi_events_args *args = data;
1762 struct kfd_dev *dev;
1763
1764 dev = kfd_device_by_id(args->gpuid);
1765 if (!dev)
1766 return -EINVAL;
1767
1768 return kfd_smi_event_open(dev, &args->anon_fd);
1769 }
1770
kfd_ioctl_set_xnack_mode(struct file * filep,struct kfd_process * p,void * data)1771 static int kfd_ioctl_set_xnack_mode(struct file *filep,
1772 struct kfd_process *p, void *data)
1773 {
1774 struct kfd_ioctl_set_xnack_mode_args *args = data;
1775 int r = 0;
1776
1777 mutex_lock(&p->mutex);
1778 if (args->xnack_enabled >= 0) {
1779 if (!list_empty(&p->pqm.queues)) {
1780 pr_debug("Process has user queues running\n");
1781 mutex_unlock(&p->mutex);
1782 return -EBUSY;
1783 }
1784 if (args->xnack_enabled && !kfd_process_xnack_mode(p, true))
1785 r = -EPERM;
1786 else
1787 p->xnack_enabled = args->xnack_enabled;
1788 } else {
1789 args->xnack_enabled = p->xnack_enabled;
1790 }
1791 mutex_unlock(&p->mutex);
1792
1793 return r;
1794 }
1795
1796 #if IS_ENABLED(CONFIG_HSA_AMD_SVM)
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1797 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1798 {
1799 struct kfd_ioctl_svm_args *args = data;
1800 int r = 0;
1801
1802 pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1803 args->start_addr, args->size, args->op, args->nattr);
1804
1805 if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1806 return -EINVAL;
1807 if (!args->start_addr || !args->size)
1808 return -EINVAL;
1809
1810 mutex_lock(&p->mutex);
1811
1812 r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1813 args->attrs);
1814
1815 mutex_unlock(&p->mutex);
1816
1817 return r;
1818 }
1819 #else
kfd_ioctl_svm(struct file * filep,struct kfd_process * p,void * data)1820 static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1821 {
1822 return -EPERM;
1823 }
1824 #endif
1825
1826 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1827 [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1828 .cmd_drv = 0, .name = #ioctl}
1829
1830 /** Ioctl table */
1831 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1832 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1833 kfd_ioctl_get_version, 0),
1834
1835 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1836 kfd_ioctl_create_queue, 0),
1837
1838 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1839 kfd_ioctl_destroy_queue, 0),
1840
1841 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1842 kfd_ioctl_set_memory_policy, 0),
1843
1844 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1845 kfd_ioctl_get_clock_counters, 0),
1846
1847 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1848 kfd_ioctl_get_process_apertures, 0),
1849
1850 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1851 kfd_ioctl_update_queue, 0),
1852
1853 AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1854 kfd_ioctl_create_event, 0),
1855
1856 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1857 kfd_ioctl_destroy_event, 0),
1858
1859 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1860 kfd_ioctl_set_event, 0),
1861
1862 AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1863 kfd_ioctl_reset_event, 0),
1864
1865 AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1866 kfd_ioctl_wait_events, 0),
1867
1868 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1869 kfd_ioctl_dbg_register, 0),
1870
1871 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1872 kfd_ioctl_dbg_unregister, 0),
1873
1874 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1875 kfd_ioctl_dbg_address_watch, 0),
1876
1877 AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1878 kfd_ioctl_dbg_wave_control, 0),
1879
1880 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1881 kfd_ioctl_set_scratch_backing_va, 0),
1882
1883 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1884 kfd_ioctl_get_tile_config, 0),
1885
1886 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1887 kfd_ioctl_set_trap_handler, 0),
1888
1889 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1890 kfd_ioctl_get_process_apertures_new, 0),
1891
1892 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1893 kfd_ioctl_acquire_vm, 0),
1894
1895 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1896 kfd_ioctl_alloc_memory_of_gpu, 0),
1897
1898 AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1899 kfd_ioctl_free_memory_of_gpu, 0),
1900
1901 AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1902 kfd_ioctl_map_memory_to_gpu, 0),
1903
1904 AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1905 kfd_ioctl_unmap_memory_from_gpu, 0),
1906
1907 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1908 kfd_ioctl_set_cu_mask, 0),
1909
1910 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1911 kfd_ioctl_get_queue_wave_state, 0),
1912
1913 AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
1914 kfd_ioctl_get_dmabuf_info, 0),
1915
1916 AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
1917 kfd_ioctl_import_dmabuf, 0),
1918
1919 AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
1920 kfd_ioctl_alloc_queue_gws, 0),
1921
1922 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
1923 kfd_ioctl_smi_events, 0),
1924
1925 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
1926
1927 AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
1928 kfd_ioctl_set_xnack_mode, 0),
1929 };
1930
1931 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
1932
kfd_ioctl(struct file * filep,unsigned int cmd,unsigned long arg)1933 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1934 {
1935 struct kfd_process *process;
1936 amdkfd_ioctl_t *func;
1937 const struct amdkfd_ioctl_desc *ioctl = NULL;
1938 unsigned int nr = _IOC_NR(cmd);
1939 char stack_kdata[128];
1940 char *kdata = NULL;
1941 unsigned int usize, asize;
1942 int retcode = -EINVAL;
1943
1944 if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1945 goto err_i1;
1946
1947 if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1948 u32 amdkfd_size;
1949
1950 ioctl = &amdkfd_ioctls[nr];
1951
1952 amdkfd_size = _IOC_SIZE(ioctl->cmd);
1953 usize = asize = _IOC_SIZE(cmd);
1954 if (amdkfd_size > asize)
1955 asize = amdkfd_size;
1956
1957 cmd = ioctl->cmd;
1958 } else
1959 goto err_i1;
1960
1961 dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
1962
1963 /* Get the process struct from the filep. Only the process
1964 * that opened /dev/kfd can use the file descriptor. Child
1965 * processes need to create their own KFD device context.
1966 */
1967 process = filep->private_data;
1968 if (process->lead_thread != current->group_leader) {
1969 dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
1970 retcode = -EBADF;
1971 goto err_i1;
1972 }
1973
1974 /* Do not trust userspace, use our own definition */
1975 func = ioctl->func;
1976
1977 if (unlikely(!func)) {
1978 dev_dbg(kfd_device, "no function\n");
1979 retcode = -EINVAL;
1980 goto err_i1;
1981 }
1982
1983 if (cmd & (IOC_IN | IOC_OUT)) {
1984 if (asize <= sizeof(stack_kdata)) {
1985 kdata = stack_kdata;
1986 } else {
1987 kdata = kmalloc(asize, GFP_KERNEL);
1988 if (!kdata) {
1989 retcode = -ENOMEM;
1990 goto err_i1;
1991 }
1992 }
1993 if (asize > usize)
1994 memset(kdata + usize, 0, asize - usize);
1995 }
1996
1997 if (cmd & IOC_IN) {
1998 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1999 retcode = -EFAULT;
2000 goto err_i1;
2001 }
2002 } else if (cmd & IOC_OUT) {
2003 memset(kdata, 0, usize);
2004 }
2005
2006 retcode = func(filep, process, kdata);
2007
2008 if (cmd & IOC_OUT)
2009 if (copy_to_user((void __user *)arg, kdata, usize) != 0)
2010 retcode = -EFAULT;
2011
2012 err_i1:
2013 if (!ioctl)
2014 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
2015 task_pid_nr(current), cmd, nr);
2016
2017 if (kdata != stack_kdata)
2018 kfree(kdata);
2019
2020 if (retcode)
2021 dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
2022 nr, arg, retcode);
2023
2024 return retcode;
2025 }
2026
kfd_mmio_mmap(struct kfd_dev * dev,struct kfd_process * process,struct vm_area_struct * vma)2027 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
2028 struct vm_area_struct *vma)
2029 {
2030 phys_addr_t address;
2031 int ret;
2032
2033 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
2034 return -EINVAL;
2035
2036 address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
2037
2038 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
2039 VM_DONTDUMP | VM_PFNMAP;
2040
2041 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
2042
2043 pr_debug("pasid 0x%x mapping mmio page\n"
2044 " target user address == 0x%08llX\n"
2045 " physical address == 0x%08llX\n"
2046 " vm_flags == 0x%04lX\n"
2047 " size == 0x%04lX\n",
2048 process->pasid, (unsigned long long) vma->vm_start,
2049 address, vma->vm_flags, PAGE_SIZE);
2050
2051 ret = io_remap_pfn_range(vma,
2052 vma->vm_start,
2053 address >> PAGE_SHIFT,
2054 PAGE_SIZE,
2055 vma->vm_page_prot);
2056 return ret;
2057 }
2058
2059
kfd_mmap(struct file * filp,struct vm_area_struct * vma)2060 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
2061 {
2062 struct kfd_process *process;
2063 struct kfd_dev *dev = NULL;
2064 unsigned long mmap_offset;
2065 unsigned int gpu_id;
2066
2067 process = kfd_get_process(current);
2068 if (IS_ERR(process))
2069 return PTR_ERR(process);
2070
2071 mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
2072 gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
2073 if (gpu_id)
2074 dev = kfd_device_by_id(gpu_id);
2075
2076 switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
2077 case KFD_MMAP_TYPE_DOORBELL:
2078 if (!dev)
2079 return -ENODEV;
2080 return kfd_doorbell_mmap(dev, process, vma);
2081
2082 case KFD_MMAP_TYPE_EVENTS:
2083 return kfd_event_mmap(process, vma);
2084
2085 case KFD_MMAP_TYPE_RESERVED_MEM:
2086 if (!dev)
2087 return -ENODEV;
2088 return kfd_reserved_mem_mmap(dev, process, vma);
2089 case KFD_MMAP_TYPE_MMIO:
2090 if (!dev)
2091 return -ENODEV;
2092 return kfd_mmio_mmap(dev, process, vma);
2093 }
2094
2095 return -EFAULT;
2096 }
2097