1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx.h>
39 #include <linux/regmap.h>
40 #include <linux/mfd/syscon.h>
41 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42
43 #include "dmaengine.h"
44 #include "virt-dma.h"
45
46 /* SDMA registers */
47 #define SDMA_H_C0PTR 0x000
48 #define SDMA_H_INTR 0x004
49 #define SDMA_H_STATSTOP 0x008
50 #define SDMA_H_START 0x00c
51 #define SDMA_H_EVTOVR 0x010
52 #define SDMA_H_DSPOVR 0x014
53 #define SDMA_H_HOSTOVR 0x018
54 #define SDMA_H_EVTPEND 0x01c
55 #define SDMA_H_DSPENBL 0x020
56 #define SDMA_H_RESET 0x024
57 #define SDMA_H_EVTERR 0x028
58 #define SDMA_H_INTRMSK 0x02c
59 #define SDMA_H_PSW 0x030
60 #define SDMA_H_EVTERRDBG 0x034
61 #define SDMA_H_CONFIG 0x038
62 #define SDMA_ONCE_ENB 0x040
63 #define SDMA_ONCE_DATA 0x044
64 #define SDMA_ONCE_INSTR 0x048
65 #define SDMA_ONCE_STAT 0x04c
66 #define SDMA_ONCE_CMD 0x050
67 #define SDMA_EVT_MIRROR 0x054
68 #define SDMA_ILLINSTADDR 0x058
69 #define SDMA_CHN0ADDR 0x05c
70 #define SDMA_ONCE_RTB 0x060
71 #define SDMA_XTRIG_CONF1 0x070
72 #define SDMA_XTRIG_CONF2 0x074
73 #define SDMA_CHNENBL0_IMX35 0x200
74 #define SDMA_CHNENBL0_IMX31 0x080
75 #define SDMA_CHNPRI_0 0x100
76
77 /*
78 * Buffer descriptor status values.
79 */
80 #define BD_DONE 0x01
81 #define BD_WRAP 0x02
82 #define BD_CONT 0x04
83 #define BD_INTR 0x08
84 #define BD_RROR 0x10
85 #define BD_LAST 0x20
86 #define BD_EXTD 0x80
87
88 /*
89 * Data Node descriptor status values.
90 */
91 #define DND_END_OF_FRAME 0x80
92 #define DND_END_OF_XFER 0x40
93 #define DND_DONE 0x20
94 #define DND_UNUSED 0x01
95
96 /*
97 * IPCV2 descriptor status values.
98 */
99 #define BD_IPCV2_END_OF_FRAME 0x40
100
101 #define IPCV2_MAX_NODES 50
102 /*
103 * Error bit set in the CCB status field by the SDMA,
104 * in setbd routine, in case of a transfer error
105 */
106 #define DATA_ERROR 0x10000000
107
108 /*
109 * Buffer descriptor commands.
110 */
111 #define C0_ADDR 0x01
112 #define C0_LOAD 0x02
113 #define C0_DUMP 0x03
114 #define C0_SETCTX 0x07
115 #define C0_GETCTX 0x03
116 #define C0_SETDM 0x01
117 #define C0_SETPM 0x04
118 #define C0_GETDM 0x02
119 #define C0_GETPM 0x08
120 /*
121 * Change endianness indicator in the BD command field
122 */
123 #define CHANGE_ENDIANNESS 0x80
124
125 /*
126 * p_2_p watermark_level description
127 * Bits Name Description
128 * 0-7 Lower WML Lower watermark level
129 * 8 PS 1: Pad Swallowing
130 * 0: No Pad Swallowing
131 * 9 PA 1: Pad Adding
132 * 0: No Pad Adding
133 * 10 SPDIF If this bit is set both source
134 * and destination are on SPBA
135 * 11 Source Bit(SP) 1: Source on SPBA
136 * 0: Source on AIPS
137 * 12 Destination Bit(DP) 1: Destination on SPBA
138 * 0: Destination on AIPS
139 * 13-15 --------- MUST BE 0
140 * 16-23 Higher WML HWML
141 * 24-27 N Total number of samples after
142 * which Pad adding/Swallowing
143 * must be done. It must be odd.
144 * 28 Lower WML Event(LWE) SDMA events reg to check for
145 * LWML event mask
146 * 0: LWE in EVENTS register
147 * 1: LWE in EVENTS2 register
148 * 29 Higher WML Event(HWE) SDMA events reg to check for
149 * HWML event mask
150 * 0: HWE in EVENTS register
151 * 1: HWE in EVENTS2 register
152 * 30 --------- MUST BE 0
153 * 31 CONT 1: Amount of samples to be
154 * transferred is unknown and
155 * script will keep on
156 * transferring samples as long as
157 * both events are detected and
158 * script must be manually stopped
159 * by the application
160 * 0: The amount of samples to be
161 * transferred is equal to the
162 * count field of mode word
163 */
164 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
165 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
166 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
167 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
168 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
169 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
170 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
171 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
172 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
173 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
174
175 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
176 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
177 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
178
179 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
180 BIT(DMA_MEM_TO_DEV) | \
181 BIT(DMA_DEV_TO_DEV))
182
183 /**
184 * struct sdma_script_start_addrs - SDMA script start pointers
185 *
186 * start addresses of the different functions in the physical
187 * address space of the SDMA engine.
188 */
189 struct sdma_script_start_addrs {
190 s32 ap_2_ap_addr;
191 s32 ap_2_bp_addr;
192 s32 ap_2_ap_fixed_addr;
193 s32 bp_2_ap_addr;
194 s32 loopback_on_dsp_side_addr;
195 s32 mcu_interrupt_only_addr;
196 s32 firi_2_per_addr;
197 s32 firi_2_mcu_addr;
198 s32 per_2_firi_addr;
199 s32 mcu_2_firi_addr;
200 s32 uart_2_per_addr;
201 s32 uart_2_mcu_ram_addr;
202 s32 per_2_app_addr;
203 s32 mcu_2_app_addr;
204 s32 per_2_per_addr;
205 s32 uartsh_2_per_addr;
206 s32 uartsh_2_mcu_ram_addr;
207 s32 per_2_shp_addr;
208 s32 mcu_2_shp_addr;
209 s32 ata_2_mcu_addr;
210 s32 mcu_2_ata_addr;
211 s32 app_2_per_addr;
212 s32 app_2_mcu_addr;
213 s32 shp_2_per_addr;
214 s32 shp_2_mcu_addr;
215 s32 mshc_2_mcu_addr;
216 s32 mcu_2_mshc_addr;
217 s32 spdif_2_mcu_addr;
218 s32 mcu_2_spdif_addr;
219 s32 asrc_2_mcu_addr;
220 s32 ext_mem_2_ipu_addr;
221 s32 descrambler_addr;
222 s32 dptc_dvfs_addr;
223 s32 utra_addr;
224 s32 ram_code_start_addr;
225 /* End of v1 array */
226 s32 mcu_2_ssish_addr;
227 s32 ssish_2_mcu_addr;
228 s32 hdmi_dma_addr;
229 /* End of v2 array */
230 s32 zcanfd_2_mcu_addr;
231 s32 zqspi_2_mcu_addr;
232 s32 mcu_2_ecspi_addr;
233 s32 mcu_2_sai_addr;
234 s32 sai_2_mcu_addr;
235 s32 uart_2_mcu_addr;
236 s32 uartsh_2_mcu_addr;
237 /* End of v3 array */
238 s32 mcu_2_zqspi_addr;
239 /* End of v4 array */
240 };
241
242 /*
243 * Mode/Count of data node descriptors - IPCv2
244 */
245 struct sdma_mode_count {
246 #define SDMA_BD_MAX_CNT 0xffff
247 u32 count : 16; /* size of the buffer pointed by this BD */
248 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
249 u32 command : 8; /* command mostly used for channel 0 */
250 };
251
252 /*
253 * Buffer descriptor
254 */
255 struct sdma_buffer_descriptor {
256 struct sdma_mode_count mode;
257 u32 buffer_addr; /* address of the buffer described */
258 u32 ext_buffer_addr; /* extended buffer address */
259 } __attribute__ ((packed));
260
261 /**
262 * struct sdma_channel_control - Channel control Block
263 *
264 * @current_bd_ptr: current buffer descriptor processed
265 * @base_bd_ptr: first element of buffer descriptor array
266 * @unused: padding. The SDMA engine expects an array of 128 byte
267 * control blocks
268 */
269 struct sdma_channel_control {
270 u32 current_bd_ptr;
271 u32 base_bd_ptr;
272 u32 unused[2];
273 } __attribute__ ((packed));
274
275 /**
276 * struct sdma_state_registers - SDMA context for a channel
277 *
278 * @pc: program counter
279 * @unused1: unused
280 * @t: test bit: status of arithmetic & test instruction
281 * @rpc: return program counter
282 * @unused0: unused
283 * @sf: source fault while loading data
284 * @spc: loop start program counter
285 * @unused2: unused
286 * @df: destination fault while storing data
287 * @epc: loop end program counter
288 * @lm: loop mode
289 */
290 struct sdma_state_registers {
291 u32 pc :14;
292 u32 unused1: 1;
293 u32 t : 1;
294 u32 rpc :14;
295 u32 unused0: 1;
296 u32 sf : 1;
297 u32 spc :14;
298 u32 unused2: 1;
299 u32 df : 1;
300 u32 epc :14;
301 u32 lm : 2;
302 } __attribute__ ((packed));
303
304 /**
305 * struct sdma_context_data - sdma context specific to a channel
306 *
307 * @channel_state: channel state bits
308 * @gReg: general registers
309 * @mda: burst dma destination address register
310 * @msa: burst dma source address register
311 * @ms: burst dma status register
312 * @md: burst dma data register
313 * @pda: peripheral dma destination address register
314 * @psa: peripheral dma source address register
315 * @ps: peripheral dma status register
316 * @pd: peripheral dma data register
317 * @ca: CRC polynomial register
318 * @cs: CRC accumulator register
319 * @dda: dedicated core destination address register
320 * @dsa: dedicated core source address register
321 * @ds: dedicated core status register
322 * @dd: dedicated core data register
323 * @scratch0: 1st word of dedicated ram for context switch
324 * @scratch1: 2nd word of dedicated ram for context switch
325 * @scratch2: 3rd word of dedicated ram for context switch
326 * @scratch3: 4th word of dedicated ram for context switch
327 * @scratch4: 5th word of dedicated ram for context switch
328 * @scratch5: 6th word of dedicated ram for context switch
329 * @scratch6: 7th word of dedicated ram for context switch
330 * @scratch7: 8th word of dedicated ram for context switch
331 */
332 struct sdma_context_data {
333 struct sdma_state_registers channel_state;
334 u32 gReg[8];
335 u32 mda;
336 u32 msa;
337 u32 ms;
338 u32 md;
339 u32 pda;
340 u32 psa;
341 u32 ps;
342 u32 pd;
343 u32 ca;
344 u32 cs;
345 u32 dda;
346 u32 dsa;
347 u32 ds;
348 u32 dd;
349 u32 scratch0;
350 u32 scratch1;
351 u32 scratch2;
352 u32 scratch3;
353 u32 scratch4;
354 u32 scratch5;
355 u32 scratch6;
356 u32 scratch7;
357 } __attribute__ ((packed));
358
359
360 struct sdma_engine;
361
362 /**
363 * struct sdma_desc - descriptor structor for one transfer
364 * @vd: descriptor for virt dma
365 * @num_bd: number of descriptors currently handling
366 * @bd_phys: physical address of bd
367 * @buf_tail: ID of the buffer that was processed
368 * @buf_ptail: ID of the previous buffer that was processed
369 * @period_len: period length, used in cyclic.
370 * @chn_real_count: the real count updated from bd->mode.count
371 * @chn_count: the transfer count set
372 * @sdmac: sdma_channel pointer
373 * @bd: pointer of allocate bd
374 */
375 struct sdma_desc {
376 struct virt_dma_desc vd;
377 unsigned int num_bd;
378 dma_addr_t bd_phys;
379 unsigned int buf_tail;
380 unsigned int buf_ptail;
381 unsigned int period_len;
382 unsigned int chn_real_count;
383 unsigned int chn_count;
384 struct sdma_channel *sdmac;
385 struct sdma_buffer_descriptor *bd;
386 };
387
388 /**
389 * struct sdma_channel - housekeeping for a SDMA channel
390 *
391 * @vc: virt_dma base structure
392 * @desc: sdma description including vd and other special member
393 * @sdma: pointer to the SDMA engine for this channel
394 * @channel: the channel number, matches dmaengine chan_id + 1
395 * @direction: transfer type. Needed for setting SDMA script
396 * @slave_config: Slave configuration
397 * @peripheral_type: Peripheral type. Needed for setting SDMA script
398 * @event_id0: aka dma request line
399 * @event_id1: for channels that use 2 events
400 * @word_size: peripheral access size
401 * @pc_from_device: script address for those device_2_memory
402 * @pc_to_device: script address for those memory_2_device
403 * @device_to_device: script address for those device_2_device
404 * @pc_to_pc: script address for those memory_2_memory
405 * @flags: loop mode or not
406 * @per_address: peripheral source or destination address in common case
407 * destination address in p_2_p case
408 * @per_address2: peripheral source address in p_2_p case
409 * @event_mask: event mask used in p_2_p script
410 * @watermark_level: value for gReg[7], some script will extend it from
411 * basic watermark such as p_2_p
412 * @shp_addr: value for gReg[6]
413 * @per_addr: value for gReg[2]
414 * @status: status of dma channel
415 * @context_loaded: ensure context is only loaded once
416 * @data: specific sdma interface structure
417 * @bd_pool: dma_pool for bd
418 * @terminate_worker: used to call back into terminate work function
419 */
420 struct sdma_channel {
421 struct virt_dma_chan vc;
422 struct sdma_desc *desc;
423 struct sdma_engine *sdma;
424 unsigned int channel;
425 enum dma_transfer_direction direction;
426 struct dma_slave_config slave_config;
427 enum sdma_peripheral_type peripheral_type;
428 unsigned int event_id0;
429 unsigned int event_id1;
430 enum dma_slave_buswidth word_size;
431 unsigned int pc_from_device, pc_to_device;
432 unsigned int device_to_device;
433 unsigned int pc_to_pc;
434 unsigned long flags;
435 dma_addr_t per_address, per_address2;
436 unsigned long event_mask[2];
437 unsigned long watermark_level;
438 u32 shp_addr, per_addr;
439 enum dma_status status;
440 struct imx_dma_data data;
441 struct work_struct terminate_worker;
442 struct list_head terminated;
443 bool is_ram_script;
444 };
445
446 #define IMX_DMA_SG_LOOP BIT(0)
447
448 #define MAX_DMA_CHANNELS 32
449 #define MXC_SDMA_DEFAULT_PRIORITY 1
450 #define MXC_SDMA_MIN_PRIORITY 1
451 #define MXC_SDMA_MAX_PRIORITY 7
452
453 #define SDMA_FIRMWARE_MAGIC 0x414d4453
454
455 /**
456 * struct sdma_firmware_header - Layout of the firmware image
457 *
458 * @magic: "SDMA"
459 * @version_major: increased whenever layout of struct
460 * sdma_script_start_addrs changes.
461 * @version_minor: firmware minor version (for binary compatible changes)
462 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
463 * @num_script_addrs: Number of script addresses in this image
464 * @ram_code_start: offset of SDMA ram image in this firmware image
465 * @ram_code_size: size of SDMA ram image
466 * @script_addrs: Stores the start address of the SDMA scripts
467 * (in SDMA memory space)
468 */
469 struct sdma_firmware_header {
470 u32 magic;
471 u32 version_major;
472 u32 version_minor;
473 u32 script_addrs_start;
474 u32 num_script_addrs;
475 u32 ram_code_start;
476 u32 ram_code_size;
477 };
478
479 struct sdma_driver_data {
480 int chnenbl0;
481 int num_events;
482 struct sdma_script_start_addrs *script_addrs;
483 bool check_ratio;
484 /*
485 * ecspi ERR009165 fixed should be done in sdma script
486 * and it has been fixed in soc from i.mx6ul.
487 * please get more information from the below link:
488 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
489 */
490 bool ecspi_fixed;
491 };
492
493 struct sdma_engine {
494 struct device *dev;
495 struct sdma_channel channel[MAX_DMA_CHANNELS];
496 struct sdma_channel_control *channel_control;
497 void __iomem *regs;
498 struct sdma_context_data *context;
499 dma_addr_t context_phys;
500 struct dma_device dma_device;
501 struct clk *clk_ipg;
502 struct clk *clk_ahb;
503 spinlock_t channel_0_lock;
504 u32 script_number;
505 struct sdma_script_start_addrs *script_addrs;
506 const struct sdma_driver_data *drvdata;
507 u32 spba_start_addr;
508 u32 spba_end_addr;
509 unsigned int irq;
510 dma_addr_t bd0_phys;
511 struct sdma_buffer_descriptor *bd0;
512 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
513 bool clk_ratio;
514 bool fw_loaded;
515 };
516
517 static int sdma_config_write(struct dma_chan *chan,
518 struct dma_slave_config *dmaengine_cfg,
519 enum dma_transfer_direction direction);
520
521 static struct sdma_driver_data sdma_imx31 = {
522 .chnenbl0 = SDMA_CHNENBL0_IMX31,
523 .num_events = 32,
524 };
525
526 static struct sdma_script_start_addrs sdma_script_imx25 = {
527 .ap_2_ap_addr = 729,
528 .uart_2_mcu_addr = 904,
529 .per_2_app_addr = 1255,
530 .mcu_2_app_addr = 834,
531 .uartsh_2_mcu_addr = 1120,
532 .per_2_shp_addr = 1329,
533 .mcu_2_shp_addr = 1048,
534 .ata_2_mcu_addr = 1560,
535 .mcu_2_ata_addr = 1479,
536 .app_2_per_addr = 1189,
537 .app_2_mcu_addr = 770,
538 .shp_2_per_addr = 1407,
539 .shp_2_mcu_addr = 979,
540 };
541
542 static struct sdma_driver_data sdma_imx25 = {
543 .chnenbl0 = SDMA_CHNENBL0_IMX35,
544 .num_events = 48,
545 .script_addrs = &sdma_script_imx25,
546 };
547
548 static struct sdma_driver_data sdma_imx35 = {
549 .chnenbl0 = SDMA_CHNENBL0_IMX35,
550 .num_events = 48,
551 };
552
553 static struct sdma_script_start_addrs sdma_script_imx51 = {
554 .ap_2_ap_addr = 642,
555 .uart_2_mcu_addr = 817,
556 .mcu_2_app_addr = 747,
557 .mcu_2_shp_addr = 961,
558 .ata_2_mcu_addr = 1473,
559 .mcu_2_ata_addr = 1392,
560 .app_2_per_addr = 1033,
561 .app_2_mcu_addr = 683,
562 .shp_2_per_addr = 1251,
563 .shp_2_mcu_addr = 892,
564 };
565
566 static struct sdma_driver_data sdma_imx51 = {
567 .chnenbl0 = SDMA_CHNENBL0_IMX35,
568 .num_events = 48,
569 .script_addrs = &sdma_script_imx51,
570 };
571
572 static struct sdma_script_start_addrs sdma_script_imx53 = {
573 .ap_2_ap_addr = 642,
574 .app_2_mcu_addr = 683,
575 .mcu_2_app_addr = 747,
576 .uart_2_mcu_addr = 817,
577 .shp_2_mcu_addr = 891,
578 .mcu_2_shp_addr = 960,
579 .uartsh_2_mcu_addr = 1032,
580 .spdif_2_mcu_addr = 1100,
581 .mcu_2_spdif_addr = 1134,
582 .firi_2_mcu_addr = 1193,
583 .mcu_2_firi_addr = 1290,
584 };
585
586 static struct sdma_driver_data sdma_imx53 = {
587 .chnenbl0 = SDMA_CHNENBL0_IMX35,
588 .num_events = 48,
589 .script_addrs = &sdma_script_imx53,
590 };
591
592 static struct sdma_script_start_addrs sdma_script_imx6q = {
593 .ap_2_ap_addr = 642,
594 .uart_2_mcu_addr = 817,
595 .mcu_2_app_addr = 747,
596 .per_2_per_addr = 6331,
597 .uartsh_2_mcu_addr = 1032,
598 .mcu_2_shp_addr = 960,
599 .app_2_mcu_addr = 683,
600 .shp_2_mcu_addr = 891,
601 .spdif_2_mcu_addr = 1100,
602 .mcu_2_spdif_addr = 1134,
603 };
604
605 static struct sdma_driver_data sdma_imx6q = {
606 .chnenbl0 = SDMA_CHNENBL0_IMX35,
607 .num_events = 48,
608 .script_addrs = &sdma_script_imx6q,
609 };
610
611 static struct sdma_driver_data sdma_imx6ul = {
612 .chnenbl0 = SDMA_CHNENBL0_IMX35,
613 .num_events = 48,
614 .script_addrs = &sdma_script_imx6q,
615 .ecspi_fixed = true,
616 };
617
618 static struct sdma_script_start_addrs sdma_script_imx7d = {
619 .ap_2_ap_addr = 644,
620 .uart_2_mcu_addr = 819,
621 .mcu_2_app_addr = 749,
622 .uartsh_2_mcu_addr = 1034,
623 .mcu_2_shp_addr = 962,
624 .app_2_mcu_addr = 685,
625 .shp_2_mcu_addr = 893,
626 .spdif_2_mcu_addr = 1102,
627 .mcu_2_spdif_addr = 1136,
628 };
629
630 static struct sdma_driver_data sdma_imx7d = {
631 .chnenbl0 = SDMA_CHNENBL0_IMX35,
632 .num_events = 48,
633 .script_addrs = &sdma_script_imx7d,
634 };
635
636 static struct sdma_driver_data sdma_imx8mq = {
637 .chnenbl0 = SDMA_CHNENBL0_IMX35,
638 .num_events = 48,
639 .script_addrs = &sdma_script_imx7d,
640 .check_ratio = 1,
641 };
642
643 static const struct of_device_id sdma_dt_ids[] = {
644 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
645 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
646 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
647 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
648 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
649 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
650 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
651 { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
652 { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
653 { /* sentinel */ }
654 };
655 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
656
657 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
658 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
659 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
660 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
661
chnenbl_ofs(struct sdma_engine * sdma,unsigned int event)662 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
663 {
664 u32 chnenbl0 = sdma->drvdata->chnenbl0;
665 return chnenbl0 + event * 4;
666 }
667
sdma_config_ownership(struct sdma_channel * sdmac,bool event_override,bool mcu_override,bool dsp_override)668 static int sdma_config_ownership(struct sdma_channel *sdmac,
669 bool event_override, bool mcu_override, bool dsp_override)
670 {
671 struct sdma_engine *sdma = sdmac->sdma;
672 int channel = sdmac->channel;
673 unsigned long evt, mcu, dsp;
674
675 if (event_override && mcu_override && dsp_override)
676 return -EINVAL;
677
678 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
679 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
680 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
681
682 if (dsp_override)
683 __clear_bit(channel, &dsp);
684 else
685 __set_bit(channel, &dsp);
686
687 if (event_override)
688 __clear_bit(channel, &evt);
689 else
690 __set_bit(channel, &evt);
691
692 if (mcu_override)
693 __clear_bit(channel, &mcu);
694 else
695 __set_bit(channel, &mcu);
696
697 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
698 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
699 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
700
701 return 0;
702 }
703
sdma_enable_channel(struct sdma_engine * sdma,int channel)704 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
705 {
706 writel(BIT(channel), sdma->regs + SDMA_H_START);
707 }
708
709 /*
710 * sdma_run_channel0 - run a channel and wait till it's done
711 */
sdma_run_channel0(struct sdma_engine * sdma)712 static int sdma_run_channel0(struct sdma_engine *sdma)
713 {
714 int ret;
715 u32 reg;
716
717 sdma_enable_channel(sdma, 0);
718
719 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
720 reg, !(reg & 1), 1, 500);
721 if (ret)
722 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
723
724 /* Set bits of CONFIG register with dynamic context switching */
725 reg = readl(sdma->regs + SDMA_H_CONFIG);
726 if ((reg & SDMA_H_CONFIG_CSM) == 0) {
727 reg |= SDMA_H_CONFIG_CSM;
728 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
729 }
730
731 return ret;
732 }
733
sdma_load_script(struct sdma_engine * sdma,void * buf,int size,u32 address)734 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
735 u32 address)
736 {
737 struct sdma_buffer_descriptor *bd0 = sdma->bd0;
738 void *buf_virt;
739 dma_addr_t buf_phys;
740 int ret;
741 unsigned long flags;
742
743 buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
744 if (!buf_virt) {
745 return -ENOMEM;
746 }
747
748 spin_lock_irqsave(&sdma->channel_0_lock, flags);
749
750 bd0->mode.command = C0_SETPM;
751 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
752 bd0->mode.count = size / 2;
753 bd0->buffer_addr = buf_phys;
754 bd0->ext_buffer_addr = address;
755
756 memcpy(buf_virt, buf, size);
757
758 ret = sdma_run_channel0(sdma);
759
760 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
761
762 dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
763
764 return ret;
765 }
766
sdma_event_enable(struct sdma_channel * sdmac,unsigned int event)767 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
768 {
769 struct sdma_engine *sdma = sdmac->sdma;
770 int channel = sdmac->channel;
771 unsigned long val;
772 u32 chnenbl = chnenbl_ofs(sdma, event);
773
774 val = readl_relaxed(sdma->regs + chnenbl);
775 __set_bit(channel, &val);
776 writel_relaxed(val, sdma->regs + chnenbl);
777 }
778
sdma_event_disable(struct sdma_channel * sdmac,unsigned int event)779 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
780 {
781 struct sdma_engine *sdma = sdmac->sdma;
782 int channel = sdmac->channel;
783 u32 chnenbl = chnenbl_ofs(sdma, event);
784 unsigned long val;
785
786 val = readl_relaxed(sdma->regs + chnenbl);
787 __clear_bit(channel, &val);
788 writel_relaxed(val, sdma->regs + chnenbl);
789 }
790
to_sdma_desc(struct dma_async_tx_descriptor * t)791 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
792 {
793 return container_of(t, struct sdma_desc, vd.tx);
794 }
795
sdma_start_desc(struct sdma_channel * sdmac)796 static void sdma_start_desc(struct sdma_channel *sdmac)
797 {
798 struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
799 struct sdma_desc *desc;
800 struct sdma_engine *sdma = sdmac->sdma;
801 int channel = sdmac->channel;
802
803 if (!vd) {
804 sdmac->desc = NULL;
805 return;
806 }
807 sdmac->desc = desc = to_sdma_desc(&vd->tx);
808
809 list_del(&vd->node);
810
811 sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
812 sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
813 sdma_enable_channel(sdma, sdmac->channel);
814 }
815
sdma_update_channel_loop(struct sdma_channel * sdmac)816 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
817 {
818 struct sdma_buffer_descriptor *bd;
819 int error = 0;
820 enum dma_status old_status = sdmac->status;
821
822 /*
823 * loop mode. Iterate over descriptors, re-setup them and
824 * call callback function.
825 */
826 while (sdmac->desc) {
827 struct sdma_desc *desc = sdmac->desc;
828
829 bd = &desc->bd[desc->buf_tail];
830
831 if (bd->mode.status & BD_DONE)
832 break;
833
834 if (bd->mode.status & BD_RROR) {
835 bd->mode.status &= ~BD_RROR;
836 sdmac->status = DMA_ERROR;
837 error = -EIO;
838 }
839
840 /*
841 * We use bd->mode.count to calculate the residue, since contains
842 * the number of bytes present in the current buffer descriptor.
843 */
844
845 desc->chn_real_count = bd->mode.count;
846 bd->mode.status |= BD_DONE;
847 bd->mode.count = desc->period_len;
848 desc->buf_ptail = desc->buf_tail;
849 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
850
851 /*
852 * The callback is called from the interrupt context in order
853 * to reduce latency and to avoid the risk of altering the
854 * SDMA transaction status by the time the client tasklet is
855 * executed.
856 */
857 spin_unlock(&sdmac->vc.lock);
858 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
859 spin_lock(&sdmac->vc.lock);
860
861 if (error)
862 sdmac->status = old_status;
863 }
864 }
865
mxc_sdma_handle_channel_normal(struct sdma_channel * data)866 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
867 {
868 struct sdma_channel *sdmac = (struct sdma_channel *) data;
869 struct sdma_buffer_descriptor *bd;
870 int i, error = 0;
871
872 sdmac->desc->chn_real_count = 0;
873 /*
874 * non loop mode. Iterate over all descriptors, collect
875 * errors and call callback function
876 */
877 for (i = 0; i < sdmac->desc->num_bd; i++) {
878 bd = &sdmac->desc->bd[i];
879
880 if (bd->mode.status & (BD_DONE | BD_RROR))
881 error = -EIO;
882 sdmac->desc->chn_real_count += bd->mode.count;
883 }
884
885 if (error)
886 sdmac->status = DMA_ERROR;
887 else
888 sdmac->status = DMA_COMPLETE;
889 }
890
sdma_int_handler(int irq,void * dev_id)891 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
892 {
893 struct sdma_engine *sdma = dev_id;
894 unsigned long stat;
895
896 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
897 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
898 /* channel 0 is special and not handled here, see run_channel0() */
899 stat &= ~1;
900
901 while (stat) {
902 int channel = fls(stat) - 1;
903 struct sdma_channel *sdmac = &sdma->channel[channel];
904 struct sdma_desc *desc;
905
906 spin_lock(&sdmac->vc.lock);
907 desc = sdmac->desc;
908 if (desc) {
909 if (sdmac->flags & IMX_DMA_SG_LOOP) {
910 sdma_update_channel_loop(sdmac);
911 } else {
912 mxc_sdma_handle_channel_normal(sdmac);
913 vchan_cookie_complete(&desc->vd);
914 sdma_start_desc(sdmac);
915 }
916 }
917
918 spin_unlock(&sdmac->vc.lock);
919 __clear_bit(channel, &stat);
920 }
921
922 return IRQ_HANDLED;
923 }
924
925 /*
926 * sets the pc of SDMA script according to the peripheral type
927 */
sdma_get_pc(struct sdma_channel * sdmac,enum sdma_peripheral_type peripheral_type)928 static void sdma_get_pc(struct sdma_channel *sdmac,
929 enum sdma_peripheral_type peripheral_type)
930 {
931 struct sdma_engine *sdma = sdmac->sdma;
932 int per_2_emi = 0, emi_2_per = 0;
933 /*
934 * These are needed once we start to support transfers between
935 * two peripherals or memory-to-memory transfers
936 */
937 int per_2_per = 0, emi_2_emi = 0;
938
939 sdmac->pc_from_device = 0;
940 sdmac->pc_to_device = 0;
941 sdmac->device_to_device = 0;
942 sdmac->pc_to_pc = 0;
943 sdmac->is_ram_script = false;
944
945 switch (peripheral_type) {
946 case IMX_DMATYPE_MEMORY:
947 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
948 break;
949 case IMX_DMATYPE_DSP:
950 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
951 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
952 break;
953 case IMX_DMATYPE_FIRI:
954 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
955 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
956 break;
957 case IMX_DMATYPE_UART:
958 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
959 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
960 break;
961 case IMX_DMATYPE_UART_SP:
962 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
963 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
964 break;
965 case IMX_DMATYPE_ATA:
966 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
967 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
968 break;
969 case IMX_DMATYPE_CSPI:
970 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
971
972 /* Use rom script mcu_2_app if ERR009165 fixed */
973 if (sdmac->sdma->drvdata->ecspi_fixed) {
974 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
975 } else {
976 emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
977 sdmac->is_ram_script = true;
978 }
979
980 break;
981 case IMX_DMATYPE_EXT:
982 case IMX_DMATYPE_SSI:
983 case IMX_DMATYPE_SAI:
984 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
985 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
986 break;
987 case IMX_DMATYPE_SSI_DUAL:
988 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
989 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
990 sdmac->is_ram_script = true;
991 break;
992 case IMX_DMATYPE_SSI_SP:
993 case IMX_DMATYPE_MMC:
994 case IMX_DMATYPE_SDHC:
995 case IMX_DMATYPE_CSPI_SP:
996 case IMX_DMATYPE_ESAI:
997 case IMX_DMATYPE_MSHC_SP:
998 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
999 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1000 break;
1001 case IMX_DMATYPE_ASRC:
1002 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1003 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1004 per_2_per = sdma->script_addrs->per_2_per_addr;
1005 sdmac->is_ram_script = true;
1006 break;
1007 case IMX_DMATYPE_ASRC_SP:
1008 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1009 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1010 per_2_per = sdma->script_addrs->per_2_per_addr;
1011 break;
1012 case IMX_DMATYPE_MSHC:
1013 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1014 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1015 break;
1016 case IMX_DMATYPE_CCM:
1017 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1018 break;
1019 case IMX_DMATYPE_SPDIF:
1020 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1021 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1022 break;
1023 case IMX_DMATYPE_IPU_MEMORY:
1024 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1025 break;
1026 default:
1027 break;
1028 }
1029
1030 sdmac->pc_from_device = per_2_emi;
1031 sdmac->pc_to_device = emi_2_per;
1032 sdmac->device_to_device = per_2_per;
1033 sdmac->pc_to_pc = emi_2_emi;
1034 }
1035
sdma_load_context(struct sdma_channel * sdmac)1036 static int sdma_load_context(struct sdma_channel *sdmac)
1037 {
1038 struct sdma_engine *sdma = sdmac->sdma;
1039 int channel = sdmac->channel;
1040 int load_address;
1041 struct sdma_context_data *context = sdma->context;
1042 struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1043 int ret;
1044 unsigned long flags;
1045
1046 if (sdmac->direction == DMA_DEV_TO_MEM)
1047 load_address = sdmac->pc_from_device;
1048 else if (sdmac->direction == DMA_DEV_TO_DEV)
1049 load_address = sdmac->device_to_device;
1050 else if (sdmac->direction == DMA_MEM_TO_MEM)
1051 load_address = sdmac->pc_to_pc;
1052 else
1053 load_address = sdmac->pc_to_device;
1054
1055 if (load_address < 0)
1056 return load_address;
1057
1058 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1059 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1060 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1061 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1062 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1063 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1064
1065 spin_lock_irqsave(&sdma->channel_0_lock, flags);
1066
1067 memset(context, 0, sizeof(*context));
1068 context->channel_state.pc = load_address;
1069
1070 /* Send by context the event mask,base address for peripheral
1071 * and watermark level
1072 */
1073 context->gReg[0] = sdmac->event_mask[1];
1074 context->gReg[1] = sdmac->event_mask[0];
1075 context->gReg[2] = sdmac->per_addr;
1076 context->gReg[6] = sdmac->shp_addr;
1077 context->gReg[7] = sdmac->watermark_level;
1078
1079 bd0->mode.command = C0_SETDM;
1080 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1081 bd0->mode.count = sizeof(*context) / 4;
1082 bd0->buffer_addr = sdma->context_phys;
1083 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1084 ret = sdma_run_channel0(sdma);
1085
1086 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1087
1088 return ret;
1089 }
1090
to_sdma_chan(struct dma_chan * chan)1091 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1092 {
1093 return container_of(chan, struct sdma_channel, vc.chan);
1094 }
1095
sdma_disable_channel(struct dma_chan * chan)1096 static int sdma_disable_channel(struct dma_chan *chan)
1097 {
1098 struct sdma_channel *sdmac = to_sdma_chan(chan);
1099 struct sdma_engine *sdma = sdmac->sdma;
1100 int channel = sdmac->channel;
1101
1102 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1103 sdmac->status = DMA_ERROR;
1104
1105 return 0;
1106 }
sdma_channel_terminate_work(struct work_struct * work)1107 static void sdma_channel_terminate_work(struct work_struct *work)
1108 {
1109 struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1110 terminate_worker);
1111 /*
1112 * According to NXP R&D team a delay of one BD SDMA cost time
1113 * (maximum is 1ms) should be added after disable of the channel
1114 * bit, to ensure SDMA core has really been stopped after SDMA
1115 * clients call .device_terminate_all.
1116 */
1117 usleep_range(1000, 2000);
1118
1119 vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1120 }
1121
sdma_terminate_all(struct dma_chan * chan)1122 static int sdma_terminate_all(struct dma_chan *chan)
1123 {
1124 struct sdma_channel *sdmac = to_sdma_chan(chan);
1125 unsigned long flags;
1126
1127 spin_lock_irqsave(&sdmac->vc.lock, flags);
1128
1129 sdma_disable_channel(chan);
1130
1131 if (sdmac->desc) {
1132 vchan_terminate_vdesc(&sdmac->desc->vd);
1133 /*
1134 * move out current descriptor into terminated list so that
1135 * it could be free in sdma_channel_terminate_work alone
1136 * later without potential involving next descriptor raised
1137 * up before the last descriptor terminated.
1138 */
1139 vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1140 sdmac->desc = NULL;
1141 schedule_work(&sdmac->terminate_worker);
1142 }
1143
1144 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1145
1146 return 0;
1147 }
1148
sdma_channel_synchronize(struct dma_chan * chan)1149 static void sdma_channel_synchronize(struct dma_chan *chan)
1150 {
1151 struct sdma_channel *sdmac = to_sdma_chan(chan);
1152
1153 vchan_synchronize(&sdmac->vc);
1154
1155 flush_work(&sdmac->terminate_worker);
1156 }
1157
sdma_set_watermarklevel_for_p2p(struct sdma_channel * sdmac)1158 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1159 {
1160 struct sdma_engine *sdma = sdmac->sdma;
1161
1162 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1163 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1164
1165 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1166 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1167
1168 if (sdmac->event_id0 > 31)
1169 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1170
1171 if (sdmac->event_id1 > 31)
1172 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1173
1174 /*
1175 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1176 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1177 * r0(event_mask[1]) and r1(event_mask[0]).
1178 */
1179 if (lwml > hwml) {
1180 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1181 SDMA_WATERMARK_LEVEL_HWML);
1182 sdmac->watermark_level |= hwml;
1183 sdmac->watermark_level |= lwml << 16;
1184 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1185 }
1186
1187 if (sdmac->per_address2 >= sdma->spba_start_addr &&
1188 sdmac->per_address2 <= sdma->spba_end_addr)
1189 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1190
1191 if (sdmac->per_address >= sdma->spba_start_addr &&
1192 sdmac->per_address <= sdma->spba_end_addr)
1193 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1194
1195 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1196 }
1197
sdma_config_channel(struct dma_chan * chan)1198 static int sdma_config_channel(struct dma_chan *chan)
1199 {
1200 struct sdma_channel *sdmac = to_sdma_chan(chan);
1201
1202 sdma_disable_channel(chan);
1203
1204 sdmac->event_mask[0] = 0;
1205 sdmac->event_mask[1] = 0;
1206 sdmac->shp_addr = 0;
1207 sdmac->per_addr = 0;
1208
1209 switch (sdmac->peripheral_type) {
1210 case IMX_DMATYPE_DSP:
1211 sdma_config_ownership(sdmac, false, true, true);
1212 break;
1213 case IMX_DMATYPE_MEMORY:
1214 sdma_config_ownership(sdmac, false, true, false);
1215 break;
1216 default:
1217 sdma_config_ownership(sdmac, true, true, false);
1218 break;
1219 }
1220
1221 sdma_get_pc(sdmac, sdmac->peripheral_type);
1222
1223 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1224 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1225 /* Handle multiple event channels differently */
1226 if (sdmac->event_id1) {
1227 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1228 sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1229 sdma_set_watermarklevel_for_p2p(sdmac);
1230 } else
1231 __set_bit(sdmac->event_id0, sdmac->event_mask);
1232
1233 /* Address */
1234 sdmac->shp_addr = sdmac->per_address;
1235 sdmac->per_addr = sdmac->per_address2;
1236 } else {
1237 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1238 }
1239
1240 return 0;
1241 }
1242
sdma_set_channel_priority(struct sdma_channel * sdmac,unsigned int priority)1243 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1244 unsigned int priority)
1245 {
1246 struct sdma_engine *sdma = sdmac->sdma;
1247 int channel = sdmac->channel;
1248
1249 if (priority < MXC_SDMA_MIN_PRIORITY
1250 || priority > MXC_SDMA_MAX_PRIORITY) {
1251 return -EINVAL;
1252 }
1253
1254 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1255
1256 return 0;
1257 }
1258
sdma_request_channel0(struct sdma_engine * sdma)1259 static int sdma_request_channel0(struct sdma_engine *sdma)
1260 {
1261 int ret = -EBUSY;
1262
1263 sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1264 GFP_NOWAIT);
1265 if (!sdma->bd0) {
1266 ret = -ENOMEM;
1267 goto out;
1268 }
1269
1270 sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1271 sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1272
1273 sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1274 return 0;
1275 out:
1276
1277 return ret;
1278 }
1279
1280
sdma_alloc_bd(struct sdma_desc * desc)1281 static int sdma_alloc_bd(struct sdma_desc *desc)
1282 {
1283 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1284 int ret = 0;
1285
1286 desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1287 &desc->bd_phys, GFP_NOWAIT);
1288 if (!desc->bd) {
1289 ret = -ENOMEM;
1290 goto out;
1291 }
1292 out:
1293 return ret;
1294 }
1295
sdma_free_bd(struct sdma_desc * desc)1296 static void sdma_free_bd(struct sdma_desc *desc)
1297 {
1298 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1299
1300 dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1301 desc->bd_phys);
1302 }
1303
sdma_desc_free(struct virt_dma_desc * vd)1304 static void sdma_desc_free(struct virt_dma_desc *vd)
1305 {
1306 struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1307
1308 sdma_free_bd(desc);
1309 kfree(desc);
1310 }
1311
sdma_alloc_chan_resources(struct dma_chan * chan)1312 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1313 {
1314 struct sdma_channel *sdmac = to_sdma_chan(chan);
1315 struct imx_dma_data *data = chan->private;
1316 struct imx_dma_data mem_data;
1317 int prio, ret;
1318
1319 /*
1320 * MEMCPY may never setup chan->private by filter function such as
1321 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1322 * Please note in any other slave case, you have to setup chan->private
1323 * with 'struct imx_dma_data' in your own filter function if you want to
1324 * request dma channel by dma_request_channel() rather than
1325 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1326 * to warn you to correct your filter function.
1327 */
1328 if (!data) {
1329 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1330 mem_data.priority = 2;
1331 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1332 mem_data.dma_request = 0;
1333 mem_data.dma_request2 = 0;
1334 data = &mem_data;
1335
1336 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1337 }
1338
1339 switch (data->priority) {
1340 case DMA_PRIO_HIGH:
1341 prio = 3;
1342 break;
1343 case DMA_PRIO_MEDIUM:
1344 prio = 2;
1345 break;
1346 case DMA_PRIO_LOW:
1347 default:
1348 prio = 1;
1349 break;
1350 }
1351
1352 sdmac->peripheral_type = data->peripheral_type;
1353 sdmac->event_id0 = data->dma_request;
1354 sdmac->event_id1 = data->dma_request2;
1355
1356 ret = clk_enable(sdmac->sdma->clk_ipg);
1357 if (ret)
1358 return ret;
1359 ret = clk_enable(sdmac->sdma->clk_ahb);
1360 if (ret)
1361 goto disable_clk_ipg;
1362
1363 ret = sdma_set_channel_priority(sdmac, prio);
1364 if (ret)
1365 goto disable_clk_ahb;
1366
1367 return 0;
1368
1369 disable_clk_ahb:
1370 clk_disable(sdmac->sdma->clk_ahb);
1371 disable_clk_ipg:
1372 clk_disable(sdmac->sdma->clk_ipg);
1373 return ret;
1374 }
1375
sdma_free_chan_resources(struct dma_chan * chan)1376 static void sdma_free_chan_resources(struct dma_chan *chan)
1377 {
1378 struct sdma_channel *sdmac = to_sdma_chan(chan);
1379 struct sdma_engine *sdma = sdmac->sdma;
1380
1381 sdma_terminate_all(chan);
1382
1383 sdma_channel_synchronize(chan);
1384
1385 sdma_event_disable(sdmac, sdmac->event_id0);
1386 if (sdmac->event_id1)
1387 sdma_event_disable(sdmac, sdmac->event_id1);
1388
1389 sdmac->event_id0 = 0;
1390 sdmac->event_id1 = 0;
1391
1392 sdma_set_channel_priority(sdmac, 0);
1393
1394 clk_disable(sdma->clk_ipg);
1395 clk_disable(sdma->clk_ahb);
1396 }
1397
sdma_transfer_init(struct sdma_channel * sdmac,enum dma_transfer_direction direction,u32 bds)1398 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1399 enum dma_transfer_direction direction, u32 bds)
1400 {
1401 struct sdma_desc *desc;
1402
1403 if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1404 dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1405 goto err_out;
1406 }
1407
1408 desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1409 if (!desc)
1410 goto err_out;
1411
1412 sdmac->status = DMA_IN_PROGRESS;
1413 sdmac->direction = direction;
1414 sdmac->flags = 0;
1415
1416 desc->chn_count = 0;
1417 desc->chn_real_count = 0;
1418 desc->buf_tail = 0;
1419 desc->buf_ptail = 0;
1420 desc->sdmac = sdmac;
1421 desc->num_bd = bds;
1422
1423 if (sdma_alloc_bd(desc))
1424 goto err_desc_out;
1425
1426 /* No slave_config called in MEMCPY case, so do here */
1427 if (direction == DMA_MEM_TO_MEM)
1428 sdma_config_ownership(sdmac, false, true, false);
1429
1430 if (sdma_load_context(sdmac))
1431 goto err_desc_out;
1432
1433 return desc;
1434
1435 err_desc_out:
1436 kfree(desc);
1437 err_out:
1438 return NULL;
1439 }
1440
sdma_prep_memcpy(struct dma_chan * chan,dma_addr_t dma_dst,dma_addr_t dma_src,size_t len,unsigned long flags)1441 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1442 struct dma_chan *chan, dma_addr_t dma_dst,
1443 dma_addr_t dma_src, size_t len, unsigned long flags)
1444 {
1445 struct sdma_channel *sdmac = to_sdma_chan(chan);
1446 struct sdma_engine *sdma = sdmac->sdma;
1447 int channel = sdmac->channel;
1448 size_t count;
1449 int i = 0, param;
1450 struct sdma_buffer_descriptor *bd;
1451 struct sdma_desc *desc;
1452
1453 if (!chan || !len)
1454 return NULL;
1455
1456 dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1457 &dma_src, &dma_dst, len, channel);
1458
1459 desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1460 len / SDMA_BD_MAX_CNT + 1);
1461 if (!desc)
1462 return NULL;
1463
1464 do {
1465 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1466 bd = &desc->bd[i];
1467 bd->buffer_addr = dma_src;
1468 bd->ext_buffer_addr = dma_dst;
1469 bd->mode.count = count;
1470 desc->chn_count += count;
1471 bd->mode.command = 0;
1472
1473 dma_src += count;
1474 dma_dst += count;
1475 len -= count;
1476 i++;
1477
1478 param = BD_DONE | BD_EXTD | BD_CONT;
1479 /* last bd */
1480 if (!len) {
1481 param |= BD_INTR;
1482 param |= BD_LAST;
1483 param &= ~BD_CONT;
1484 }
1485
1486 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1487 i, count, bd->buffer_addr,
1488 param & BD_WRAP ? "wrap" : "",
1489 param & BD_INTR ? " intr" : "");
1490
1491 bd->mode.status = param;
1492 } while (len);
1493
1494 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1495 }
1496
sdma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1497 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1498 struct dma_chan *chan, struct scatterlist *sgl,
1499 unsigned int sg_len, enum dma_transfer_direction direction,
1500 unsigned long flags, void *context)
1501 {
1502 struct sdma_channel *sdmac = to_sdma_chan(chan);
1503 struct sdma_engine *sdma = sdmac->sdma;
1504 int i, count;
1505 int channel = sdmac->channel;
1506 struct scatterlist *sg;
1507 struct sdma_desc *desc;
1508
1509 sdma_config_write(chan, &sdmac->slave_config, direction);
1510
1511 desc = sdma_transfer_init(sdmac, direction, sg_len);
1512 if (!desc)
1513 goto err_out;
1514
1515 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1516 sg_len, channel);
1517
1518 for_each_sg(sgl, sg, sg_len, i) {
1519 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1520 int param;
1521
1522 bd->buffer_addr = sg->dma_address;
1523
1524 count = sg_dma_len(sg);
1525
1526 if (count > SDMA_BD_MAX_CNT) {
1527 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1528 channel, count, SDMA_BD_MAX_CNT);
1529 goto err_bd_out;
1530 }
1531
1532 bd->mode.count = count;
1533 desc->chn_count += count;
1534
1535 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1536 goto err_bd_out;
1537
1538 switch (sdmac->word_size) {
1539 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1540 bd->mode.command = 0;
1541 if (count & 3 || sg->dma_address & 3)
1542 goto err_bd_out;
1543 break;
1544 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1545 bd->mode.command = 2;
1546 if (count & 1 || sg->dma_address & 1)
1547 goto err_bd_out;
1548 break;
1549 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1550 bd->mode.command = 1;
1551 break;
1552 default:
1553 goto err_bd_out;
1554 }
1555
1556 param = BD_DONE | BD_EXTD | BD_CONT;
1557
1558 if (i + 1 == sg_len) {
1559 param |= BD_INTR;
1560 param |= BD_LAST;
1561 param &= ~BD_CONT;
1562 }
1563
1564 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1565 i, count, (u64)sg->dma_address,
1566 param & BD_WRAP ? "wrap" : "",
1567 param & BD_INTR ? " intr" : "");
1568
1569 bd->mode.status = param;
1570 }
1571
1572 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1573 err_bd_out:
1574 sdma_free_bd(desc);
1575 kfree(desc);
1576 err_out:
1577 sdmac->status = DMA_ERROR;
1578 return NULL;
1579 }
1580
sdma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1581 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1582 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1583 size_t period_len, enum dma_transfer_direction direction,
1584 unsigned long flags)
1585 {
1586 struct sdma_channel *sdmac = to_sdma_chan(chan);
1587 struct sdma_engine *sdma = sdmac->sdma;
1588 int num_periods = buf_len / period_len;
1589 int channel = sdmac->channel;
1590 int i = 0, buf = 0;
1591 struct sdma_desc *desc;
1592
1593 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1594
1595 sdma_config_write(chan, &sdmac->slave_config, direction);
1596
1597 desc = sdma_transfer_init(sdmac, direction, num_periods);
1598 if (!desc)
1599 goto err_out;
1600
1601 desc->period_len = period_len;
1602
1603 sdmac->flags |= IMX_DMA_SG_LOOP;
1604
1605 if (period_len > SDMA_BD_MAX_CNT) {
1606 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1607 channel, period_len, SDMA_BD_MAX_CNT);
1608 goto err_bd_out;
1609 }
1610
1611 while (buf < buf_len) {
1612 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1613 int param;
1614
1615 bd->buffer_addr = dma_addr;
1616
1617 bd->mode.count = period_len;
1618
1619 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1620 goto err_bd_out;
1621 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1622 bd->mode.command = 0;
1623 else
1624 bd->mode.command = sdmac->word_size;
1625
1626 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1627 if (i + 1 == num_periods)
1628 param |= BD_WRAP;
1629
1630 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1631 i, period_len, (u64)dma_addr,
1632 param & BD_WRAP ? "wrap" : "",
1633 param & BD_INTR ? " intr" : "");
1634
1635 bd->mode.status = param;
1636
1637 dma_addr += period_len;
1638 buf += period_len;
1639
1640 i++;
1641 }
1642
1643 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1644 err_bd_out:
1645 sdma_free_bd(desc);
1646 kfree(desc);
1647 err_out:
1648 sdmac->status = DMA_ERROR;
1649 return NULL;
1650 }
1651
sdma_config_write(struct dma_chan * chan,struct dma_slave_config * dmaengine_cfg,enum dma_transfer_direction direction)1652 static int sdma_config_write(struct dma_chan *chan,
1653 struct dma_slave_config *dmaengine_cfg,
1654 enum dma_transfer_direction direction)
1655 {
1656 struct sdma_channel *sdmac = to_sdma_chan(chan);
1657
1658 if (direction == DMA_DEV_TO_MEM) {
1659 sdmac->per_address = dmaengine_cfg->src_addr;
1660 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1661 dmaengine_cfg->src_addr_width;
1662 sdmac->word_size = dmaengine_cfg->src_addr_width;
1663 } else if (direction == DMA_DEV_TO_DEV) {
1664 sdmac->per_address2 = dmaengine_cfg->src_addr;
1665 sdmac->per_address = dmaengine_cfg->dst_addr;
1666 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1667 SDMA_WATERMARK_LEVEL_LWML;
1668 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1669 SDMA_WATERMARK_LEVEL_HWML;
1670 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1671 } else {
1672 sdmac->per_address = dmaengine_cfg->dst_addr;
1673 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1674 dmaengine_cfg->dst_addr_width;
1675 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1676 }
1677 sdmac->direction = direction;
1678 return sdma_config_channel(chan);
1679 }
1680
sdma_config(struct dma_chan * chan,struct dma_slave_config * dmaengine_cfg)1681 static int sdma_config(struct dma_chan *chan,
1682 struct dma_slave_config *dmaengine_cfg)
1683 {
1684 struct sdma_channel *sdmac = to_sdma_chan(chan);
1685
1686 memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1687
1688 /* Set ENBLn earlier to make sure dma request triggered after that */
1689 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1690 return -EINVAL;
1691 sdma_event_enable(sdmac, sdmac->event_id0);
1692
1693 if (sdmac->event_id1) {
1694 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1695 return -EINVAL;
1696 sdma_event_enable(sdmac, sdmac->event_id1);
1697 }
1698
1699 return 0;
1700 }
1701
sdma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1702 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1703 dma_cookie_t cookie,
1704 struct dma_tx_state *txstate)
1705 {
1706 struct sdma_channel *sdmac = to_sdma_chan(chan);
1707 struct sdma_desc *desc = NULL;
1708 u32 residue;
1709 struct virt_dma_desc *vd;
1710 enum dma_status ret;
1711 unsigned long flags;
1712
1713 ret = dma_cookie_status(chan, cookie, txstate);
1714 if (ret == DMA_COMPLETE || !txstate)
1715 return ret;
1716
1717 spin_lock_irqsave(&sdmac->vc.lock, flags);
1718
1719 vd = vchan_find_desc(&sdmac->vc, cookie);
1720 if (vd)
1721 desc = to_sdma_desc(&vd->tx);
1722 else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1723 desc = sdmac->desc;
1724
1725 if (desc) {
1726 if (sdmac->flags & IMX_DMA_SG_LOOP)
1727 residue = (desc->num_bd - desc->buf_ptail) *
1728 desc->period_len - desc->chn_real_count;
1729 else
1730 residue = desc->chn_count - desc->chn_real_count;
1731 } else {
1732 residue = 0;
1733 }
1734
1735 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1736
1737 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1738 residue);
1739
1740 return sdmac->status;
1741 }
1742
sdma_issue_pending(struct dma_chan * chan)1743 static void sdma_issue_pending(struct dma_chan *chan)
1744 {
1745 struct sdma_channel *sdmac = to_sdma_chan(chan);
1746 unsigned long flags;
1747
1748 spin_lock_irqsave(&sdmac->vc.lock, flags);
1749 if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1750 sdma_start_desc(sdmac);
1751 spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1752 }
1753
1754 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1755 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1756 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 45
1757 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 46
1758
sdma_add_scripts(struct sdma_engine * sdma,const struct sdma_script_start_addrs * addr)1759 static void sdma_add_scripts(struct sdma_engine *sdma,
1760 const struct sdma_script_start_addrs *addr)
1761 {
1762 s32 *addr_arr = (u32 *)addr;
1763 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1764 int i;
1765
1766 /* use the default firmware in ROM if missing external firmware */
1767 if (!sdma->script_number)
1768 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1769
1770 if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1771 / sizeof(s32)) {
1772 dev_err(sdma->dev,
1773 "SDMA script number %d not match with firmware.\n",
1774 sdma->script_number);
1775 return;
1776 }
1777
1778 for (i = 0; i < sdma->script_number; i++)
1779 if (addr_arr[i] > 0)
1780 saddr_arr[i] = addr_arr[i];
1781
1782 /*
1783 * get uart_2_mcu_addr/uartsh_2_mcu_addr rom script specially because
1784 * they are now replaced by uart_2_mcu_ram_addr/uartsh_2_mcu_ram_addr
1785 * to be compatible with legacy freescale/nxp sdma firmware, and they
1786 * are located in the bottom part of sdma_script_start_addrs which are
1787 * beyond the SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1.
1788 */
1789 if (addr->uart_2_mcu_addr)
1790 sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_addr;
1791 if (addr->uartsh_2_mcu_addr)
1792 sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_addr;
1793
1794 }
1795
sdma_load_firmware(const struct firmware * fw,void * context)1796 static void sdma_load_firmware(const struct firmware *fw, void *context)
1797 {
1798 struct sdma_engine *sdma = context;
1799 const struct sdma_firmware_header *header;
1800 const struct sdma_script_start_addrs *addr;
1801 unsigned short *ram_code;
1802
1803 if (!fw) {
1804 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1805 /* In this case we just use the ROM firmware. */
1806 return;
1807 }
1808
1809 if (fw->size < sizeof(*header))
1810 goto err_firmware;
1811
1812 header = (struct sdma_firmware_header *)fw->data;
1813
1814 if (header->magic != SDMA_FIRMWARE_MAGIC)
1815 goto err_firmware;
1816 if (header->ram_code_start + header->ram_code_size > fw->size)
1817 goto err_firmware;
1818 switch (header->version_major) {
1819 case 1:
1820 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1821 break;
1822 case 2:
1823 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1824 break;
1825 case 3:
1826 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1827 break;
1828 case 4:
1829 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1830 break;
1831 default:
1832 dev_err(sdma->dev, "unknown firmware version\n");
1833 goto err_firmware;
1834 }
1835
1836 addr = (void *)header + header->script_addrs_start;
1837 ram_code = (void *)header + header->ram_code_start;
1838
1839 clk_enable(sdma->clk_ipg);
1840 clk_enable(sdma->clk_ahb);
1841 /* download the RAM image for SDMA */
1842 sdma_load_script(sdma, ram_code,
1843 header->ram_code_size,
1844 addr->ram_code_start_addr);
1845 clk_disable(sdma->clk_ipg);
1846 clk_disable(sdma->clk_ahb);
1847
1848 sdma_add_scripts(sdma, addr);
1849
1850 sdma->fw_loaded = true;
1851
1852 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1853 header->version_major,
1854 header->version_minor);
1855
1856 err_firmware:
1857 release_firmware(fw);
1858 }
1859
1860 #define EVENT_REMAP_CELLS 3
1861
sdma_event_remap(struct sdma_engine * sdma)1862 static int sdma_event_remap(struct sdma_engine *sdma)
1863 {
1864 struct device_node *np = sdma->dev->of_node;
1865 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1866 struct property *event_remap;
1867 struct regmap *gpr;
1868 char propname[] = "fsl,sdma-event-remap";
1869 u32 reg, val, shift, num_map, i;
1870 int ret = 0;
1871
1872 if (IS_ERR(np) || IS_ERR(gpr_np))
1873 goto out;
1874
1875 event_remap = of_find_property(np, propname, NULL);
1876 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1877 if (!num_map) {
1878 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1879 goto out;
1880 } else if (num_map % EVENT_REMAP_CELLS) {
1881 dev_err(sdma->dev, "the property %s must modulo %d\n",
1882 propname, EVENT_REMAP_CELLS);
1883 ret = -EINVAL;
1884 goto out;
1885 }
1886
1887 gpr = syscon_node_to_regmap(gpr_np);
1888 if (IS_ERR(gpr)) {
1889 dev_err(sdma->dev, "failed to get gpr regmap\n");
1890 ret = PTR_ERR(gpr);
1891 goto out;
1892 }
1893
1894 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1895 ret = of_property_read_u32_index(np, propname, i, ®);
1896 if (ret) {
1897 dev_err(sdma->dev, "failed to read property %s index %d\n",
1898 propname, i);
1899 goto out;
1900 }
1901
1902 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1903 if (ret) {
1904 dev_err(sdma->dev, "failed to read property %s index %d\n",
1905 propname, i + 1);
1906 goto out;
1907 }
1908
1909 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1910 if (ret) {
1911 dev_err(sdma->dev, "failed to read property %s index %d\n",
1912 propname, i + 2);
1913 goto out;
1914 }
1915
1916 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1917 }
1918
1919 out:
1920 if (!IS_ERR(gpr_np))
1921 of_node_put(gpr_np);
1922
1923 return ret;
1924 }
1925
sdma_get_firmware(struct sdma_engine * sdma,const char * fw_name)1926 static int sdma_get_firmware(struct sdma_engine *sdma,
1927 const char *fw_name)
1928 {
1929 int ret;
1930
1931 ret = request_firmware_nowait(THIS_MODULE,
1932 FW_ACTION_UEVENT, fw_name, sdma->dev,
1933 GFP_KERNEL, sdma, sdma_load_firmware);
1934
1935 return ret;
1936 }
1937
sdma_init(struct sdma_engine * sdma)1938 static int sdma_init(struct sdma_engine *sdma)
1939 {
1940 int i, ret;
1941 dma_addr_t ccb_phys;
1942
1943 ret = clk_enable(sdma->clk_ipg);
1944 if (ret)
1945 return ret;
1946 ret = clk_enable(sdma->clk_ahb);
1947 if (ret)
1948 goto disable_clk_ipg;
1949
1950 if (sdma->drvdata->check_ratio &&
1951 (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1952 sdma->clk_ratio = 1;
1953
1954 /* Be sure SDMA has not started yet */
1955 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1956
1957 sdma->channel_control = dma_alloc_coherent(sdma->dev,
1958 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1959 sizeof(struct sdma_context_data),
1960 &ccb_phys, GFP_KERNEL);
1961
1962 if (!sdma->channel_control) {
1963 ret = -ENOMEM;
1964 goto err_dma_alloc;
1965 }
1966
1967 sdma->context = (void *)sdma->channel_control +
1968 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1969 sdma->context_phys = ccb_phys +
1970 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1971
1972 /* disable all channels */
1973 for (i = 0; i < sdma->drvdata->num_events; i++)
1974 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1975
1976 /* All channels have priority 0 */
1977 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1978 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1979
1980 ret = sdma_request_channel0(sdma);
1981 if (ret)
1982 goto err_dma_alloc;
1983
1984 sdma_config_ownership(&sdma->channel[0], false, true, false);
1985
1986 /* Set Command Channel (Channel Zero) */
1987 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1988
1989 /* Set bits of CONFIG register but with static context switching */
1990 if (sdma->clk_ratio)
1991 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1992 else
1993 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1994
1995 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1996
1997 /* Initializes channel's priorities */
1998 sdma_set_channel_priority(&sdma->channel[0], 7);
1999
2000 clk_disable(sdma->clk_ipg);
2001 clk_disable(sdma->clk_ahb);
2002
2003 return 0;
2004
2005 err_dma_alloc:
2006 clk_disable(sdma->clk_ahb);
2007 disable_clk_ipg:
2008 clk_disable(sdma->clk_ipg);
2009 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2010 return ret;
2011 }
2012
sdma_filter_fn(struct dma_chan * chan,void * fn_param)2013 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2014 {
2015 struct sdma_channel *sdmac = to_sdma_chan(chan);
2016 struct imx_dma_data *data = fn_param;
2017
2018 if (!imx_dma_is_general_purpose(chan))
2019 return false;
2020
2021 sdmac->data = *data;
2022 chan->private = &sdmac->data;
2023
2024 return true;
2025 }
2026
sdma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2027 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2028 struct of_dma *ofdma)
2029 {
2030 struct sdma_engine *sdma = ofdma->of_dma_data;
2031 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2032 struct imx_dma_data data;
2033
2034 if (dma_spec->args_count != 3)
2035 return NULL;
2036
2037 data.dma_request = dma_spec->args[0];
2038 data.peripheral_type = dma_spec->args[1];
2039 data.priority = dma_spec->args[2];
2040 /*
2041 * init dma_request2 to zero, which is not used by the dts.
2042 * For P2P, dma_request2 is init from dma_request_channel(),
2043 * chan->private will point to the imx_dma_data, and in
2044 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2045 * be set to sdmac->event_id1.
2046 */
2047 data.dma_request2 = 0;
2048
2049 return __dma_request_channel(&mask, sdma_filter_fn, &data,
2050 ofdma->of_node);
2051 }
2052
sdma_probe(struct platform_device * pdev)2053 static int sdma_probe(struct platform_device *pdev)
2054 {
2055 struct device_node *np = pdev->dev.of_node;
2056 struct device_node *spba_bus;
2057 const char *fw_name;
2058 int ret;
2059 int irq;
2060 struct resource *iores;
2061 struct resource spba_res;
2062 int i;
2063 struct sdma_engine *sdma;
2064 s32 *saddr_arr;
2065
2066 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2067 if (ret)
2068 return ret;
2069
2070 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2071 if (!sdma)
2072 return -ENOMEM;
2073
2074 spin_lock_init(&sdma->channel_0_lock);
2075
2076 sdma->dev = &pdev->dev;
2077 sdma->drvdata = of_device_get_match_data(sdma->dev);
2078
2079 irq = platform_get_irq(pdev, 0);
2080 if (irq < 0)
2081 return irq;
2082
2083 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2084 sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2085 if (IS_ERR(sdma->regs))
2086 return PTR_ERR(sdma->regs);
2087
2088 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2089 if (IS_ERR(sdma->clk_ipg))
2090 return PTR_ERR(sdma->clk_ipg);
2091
2092 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2093 if (IS_ERR(sdma->clk_ahb))
2094 return PTR_ERR(sdma->clk_ahb);
2095
2096 ret = clk_prepare(sdma->clk_ipg);
2097 if (ret)
2098 return ret;
2099
2100 ret = clk_prepare(sdma->clk_ahb);
2101 if (ret)
2102 goto err_clk;
2103
2104 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2105 sdma);
2106 if (ret)
2107 goto err_irq;
2108
2109 sdma->irq = irq;
2110
2111 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2112 if (!sdma->script_addrs) {
2113 ret = -ENOMEM;
2114 goto err_irq;
2115 }
2116
2117 /* initially no scripts available */
2118 saddr_arr = (s32 *)sdma->script_addrs;
2119 for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2120 saddr_arr[i] = -EINVAL;
2121
2122 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2123 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2124 dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2125
2126 INIT_LIST_HEAD(&sdma->dma_device.channels);
2127 /* Initialize channel parameters */
2128 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2129 struct sdma_channel *sdmac = &sdma->channel[i];
2130
2131 sdmac->sdma = sdma;
2132
2133 sdmac->channel = i;
2134 sdmac->vc.desc_free = sdma_desc_free;
2135 INIT_LIST_HEAD(&sdmac->terminated);
2136 INIT_WORK(&sdmac->terminate_worker,
2137 sdma_channel_terminate_work);
2138 /*
2139 * Add the channel to the DMAC list. Do not add channel 0 though
2140 * because we need it internally in the SDMA driver. This also means
2141 * that channel 0 in dmaengine counting matches sdma channel 1.
2142 */
2143 if (i)
2144 vchan_init(&sdmac->vc, &sdma->dma_device);
2145 }
2146
2147 ret = sdma_init(sdma);
2148 if (ret)
2149 goto err_init;
2150
2151 ret = sdma_event_remap(sdma);
2152 if (ret)
2153 goto err_init;
2154
2155 if (sdma->drvdata->script_addrs)
2156 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2157
2158 sdma->dma_device.dev = &pdev->dev;
2159
2160 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2161 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2162 sdma->dma_device.device_tx_status = sdma_tx_status;
2163 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2164 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2165 sdma->dma_device.device_config = sdma_config;
2166 sdma->dma_device.device_terminate_all = sdma_terminate_all;
2167 sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2168 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2169 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2170 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2171 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2172 sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2173 sdma->dma_device.device_issue_pending = sdma_issue_pending;
2174 sdma->dma_device.copy_align = 2;
2175 dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2176
2177 platform_set_drvdata(pdev, sdma);
2178
2179 ret = dma_async_device_register(&sdma->dma_device);
2180 if (ret) {
2181 dev_err(&pdev->dev, "unable to register\n");
2182 goto err_init;
2183 }
2184
2185 if (np) {
2186 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2187 if (ret) {
2188 dev_err(&pdev->dev, "failed to register controller\n");
2189 goto err_register;
2190 }
2191
2192 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2193 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2194 if (!ret) {
2195 sdma->spba_start_addr = spba_res.start;
2196 sdma->spba_end_addr = spba_res.end;
2197 }
2198 of_node_put(spba_bus);
2199 }
2200
2201 /*
2202 * Because that device tree does not encode ROM script address,
2203 * the RAM script in firmware is mandatory for device tree
2204 * probe, otherwise it fails.
2205 */
2206 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2207 &fw_name);
2208 if (ret) {
2209 dev_warn(&pdev->dev, "failed to get firmware name\n");
2210 } else {
2211 ret = sdma_get_firmware(sdma, fw_name);
2212 if (ret)
2213 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2214 }
2215
2216 return 0;
2217
2218 err_register:
2219 dma_async_device_unregister(&sdma->dma_device);
2220 err_init:
2221 kfree(sdma->script_addrs);
2222 err_irq:
2223 clk_unprepare(sdma->clk_ahb);
2224 err_clk:
2225 clk_unprepare(sdma->clk_ipg);
2226 return ret;
2227 }
2228
sdma_remove(struct platform_device * pdev)2229 static int sdma_remove(struct platform_device *pdev)
2230 {
2231 struct sdma_engine *sdma = platform_get_drvdata(pdev);
2232 int i;
2233
2234 devm_free_irq(&pdev->dev, sdma->irq, sdma);
2235 dma_async_device_unregister(&sdma->dma_device);
2236 kfree(sdma->script_addrs);
2237 clk_unprepare(sdma->clk_ahb);
2238 clk_unprepare(sdma->clk_ipg);
2239 /* Kill the tasklet */
2240 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2241 struct sdma_channel *sdmac = &sdma->channel[i];
2242
2243 tasklet_kill(&sdmac->vc.task);
2244 sdma_free_chan_resources(&sdmac->vc.chan);
2245 }
2246
2247 platform_set_drvdata(pdev, NULL);
2248 return 0;
2249 }
2250
2251 static struct platform_driver sdma_driver = {
2252 .driver = {
2253 .name = "imx-sdma",
2254 .of_match_table = sdma_dt_ids,
2255 },
2256 .remove = sdma_remove,
2257 .probe = sdma_probe,
2258 };
2259
2260 module_platform_driver(sdma_driver);
2261
2262 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2263 MODULE_DESCRIPTION("i.MX SDMA driver");
2264 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2265 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2266 #endif
2267 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2268 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2269 #endif
2270 MODULE_LICENSE("GPL");
2271