1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
4 *
5 * Copyright (C) 2014 Atmel Corporation
6 *
7 * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
8 */
9
10 #include <asm/barrier.h>
11 #include <dt-bindings/dma/at91.h>
12 #include <linux/clk.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24
25 #include "dmaengine.h"
26
27 /* Global registers */
28 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */
29 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */
30 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */
31 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */
32 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */
33 #define AT_XDMAC_WRHP(i) (((i) & 0xF) << 4)
34 #define AT_XDMAC_WRMP(i) (((i) & 0xF) << 8)
35 #define AT_XDMAC_WRLP(i) (((i) & 0xF) << 12)
36 #define AT_XDMAC_RDHP(i) (((i) & 0xF) << 16)
37 #define AT_XDMAC_RDMP(i) (((i) & 0xF) << 20)
38 #define AT_XDMAC_RDLP(i) (((i) & 0xF) << 24)
39 #define AT_XDMAC_RDSG(i) (((i) & 0xF) << 28)
40 #define AT_XDMAC_GCFG_M2M (AT_XDMAC_RDLP(0xF) | AT_XDMAC_WRLP(0xF))
41 #define AT_XDMAC_GCFG_P2M (AT_XDMAC_RDSG(0x1) | AT_XDMAC_RDHP(0x3) | \
42 AT_XDMAC_WRHP(0x5))
43 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */
44 #define AT_XDMAC_PW0(i) (((i) & 0xF) << 0)
45 #define AT_XDMAC_PW1(i) (((i) & 0xF) << 4)
46 #define AT_XDMAC_PW2(i) (((i) & 0xF) << 8)
47 #define AT_XDMAC_PW3(i) (((i) & 0xF) << 12)
48 #define AT_XDMAC_GWAC_M2M 0
49 #define AT_XDMAC_GWAC_P2M (AT_XDMAC_PW0(0xF) | AT_XDMAC_PW2(0xF))
50
51 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */
52 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */
53 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */
54 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */
55 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */
56 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */
57 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */
58 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */
59
60 /* Channel relative registers offsets */
61 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */
62 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */
63 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */
64 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */
65 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */
66 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */
67 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */
68 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */
69 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */
70 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */
71 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */
72 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */
73 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */
74 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */
75 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */
76 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */
77 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */
78 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */
79 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */
80 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */
81 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */
82 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */
83 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */
84 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */
85 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */
86 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */
87 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */
88 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */
89 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */
90 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */
91 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */
92 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */
93 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */
94 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */
95 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */
96 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */
97 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */
98 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */
99 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */
100 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */
101 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */
102 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */
103 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */
104 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */
105 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */
106 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */
107 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */
108 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */
109 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */
110 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */
111 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */
112 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1)
113 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1)
114 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1)
115 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1)
116 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1)
117 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */
118 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4)
119 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4)
120 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */
121 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5)
122 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5)
123 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */
124 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6)
125 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6)
126 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */
127 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7)
128 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7)
129 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */
130 #define AT_XDMAC_CC_DWIDTH_OFFSET 11
131 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
132 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */
133 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0
134 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1
135 #define AT_XDMAC_CC_DWIDTH_WORD 0x2
136 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3
137 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */
138 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */
139 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */
140 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16)
141 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16)
142 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16)
143 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16)
144 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */
145 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18)
146 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18)
147 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18)
148 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18)
149 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */
150 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21)
151 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21)
152 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */
153 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22)
154 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22)
155 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */
156 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23)
157 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23)
158 #define AT_XDMAC_CC_PERID(i) (0x7f & (i) << 24) /* Channel Peripheral Identifier */
159 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */
160 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */
161 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */
162
163 /* Microblock control members */
164 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */
165 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */
166 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */
167 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */
168 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */
169 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */
170 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */
171 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */
172
173 #define AT_XDMAC_MAX_CHAN 0x20
174 #define AT_XDMAC_MAX_CSIZE 16 /* 16 data */
175 #define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */
176 #define AT_XDMAC_RESIDUE_MAX_RETRIES 5
177
178 #define AT_XDMAC_DMA_BUSWIDTHS\
179 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
180 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
181 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
182 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
183 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
184
185 enum atc_status {
186 AT_XDMAC_CHAN_IS_CYCLIC = 0,
187 AT_XDMAC_CHAN_IS_PAUSED,
188 };
189
190 struct at_xdmac_layout {
191 /* Global Channel Read Suspend Register */
192 u8 grs;
193 /* Global Write Suspend Register */
194 u8 gws;
195 /* Global Channel Read Write Suspend Register */
196 u8 grws;
197 /* Global Channel Read Write Resume Register */
198 u8 grwr;
199 /* Global Channel Software Request Register */
200 u8 gswr;
201 /* Global channel Software Request Status Register */
202 u8 gsws;
203 /* Global Channel Software Flush Request Register */
204 u8 gswf;
205 /* Channel reg base */
206 u8 chan_cc_reg_base;
207 /* Source/Destination Interface must be specified or not */
208 bool sdif;
209 /* AXI queue priority configuration supported */
210 bool axi_config;
211 };
212
213 /* ----- Channels ----- */
214 struct at_xdmac_chan {
215 struct dma_chan chan;
216 void __iomem *ch_regs;
217 u32 mask; /* Channel Mask */
218 u32 cfg; /* Channel Configuration Register */
219 u8 perid; /* Peripheral ID */
220 u8 perif; /* Peripheral Interface */
221 u8 memif; /* Memory Interface */
222 u32 save_cc;
223 u32 save_cim;
224 u32 save_cnda;
225 u32 save_cndc;
226 u32 irq_status;
227 unsigned long status;
228 struct tasklet_struct tasklet;
229 struct dma_slave_config sconfig;
230
231 spinlock_t lock;
232
233 struct list_head xfers_list;
234 struct list_head free_descs_list;
235 };
236
237
238 /* ----- Controller ----- */
239 struct at_xdmac {
240 struct dma_device dma;
241 void __iomem *regs;
242 int irq;
243 struct clk *clk;
244 u32 save_gim;
245 struct dma_pool *at_xdmac_desc_pool;
246 const struct at_xdmac_layout *layout;
247 struct at_xdmac_chan chan[];
248 };
249
250
251 /* ----- Descriptors ----- */
252
253 /* Linked List Descriptor */
254 struct at_xdmac_lld {
255 dma_addr_t mbr_nda; /* Next Descriptor Member */
256 u32 mbr_ubc; /* Microblock Control Member */
257 dma_addr_t mbr_sa; /* Source Address Member */
258 dma_addr_t mbr_da; /* Destination Address Member */
259 u32 mbr_cfg; /* Configuration Register */
260 u32 mbr_bc; /* Block Control Register */
261 u32 mbr_ds; /* Data Stride Register */
262 u32 mbr_sus; /* Source Microblock Stride Register */
263 u32 mbr_dus; /* Destination Microblock Stride Register */
264 };
265
266 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
267 struct at_xdmac_desc {
268 struct at_xdmac_lld lld;
269 enum dma_transfer_direction direction;
270 struct dma_async_tx_descriptor tx_dma_desc;
271 struct list_head desc_node;
272 /* Following members are only used by the first descriptor */
273 bool active_xfer;
274 unsigned int xfer_size;
275 struct list_head descs_list;
276 struct list_head xfer_node;
277 } __aligned(sizeof(u64));
278
279 static const struct at_xdmac_layout at_xdmac_sama5d4_layout = {
280 .grs = 0x28,
281 .gws = 0x2C,
282 .grws = 0x30,
283 .grwr = 0x34,
284 .gswr = 0x38,
285 .gsws = 0x3C,
286 .gswf = 0x40,
287 .chan_cc_reg_base = 0x50,
288 .sdif = true,
289 .axi_config = false,
290 };
291
292 static const struct at_xdmac_layout at_xdmac_sama7g5_layout = {
293 .grs = 0x30,
294 .gws = 0x38,
295 .grws = 0x40,
296 .grwr = 0x44,
297 .gswr = 0x48,
298 .gsws = 0x4C,
299 .gswf = 0x50,
300 .chan_cc_reg_base = 0x60,
301 .sdif = false,
302 .axi_config = true,
303 };
304
at_xdmac_chan_reg_base(struct at_xdmac * atxdmac,unsigned int chan_nb)305 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
306 {
307 return atxdmac->regs + (atxdmac->layout->chan_cc_reg_base + chan_nb * 0x40);
308 }
309
310 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
311 #define at_xdmac_write(atxdmac, reg, value) \
312 writel_relaxed((value), (atxdmac)->regs + (reg))
313
314 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
315 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
316
to_at_xdmac_chan(struct dma_chan * dchan)317 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
318 {
319 return container_of(dchan, struct at_xdmac_chan, chan);
320 }
321
chan2dev(struct dma_chan * chan)322 static struct device *chan2dev(struct dma_chan *chan)
323 {
324 return &chan->dev->device;
325 }
326
to_at_xdmac(struct dma_device * ddev)327 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
328 {
329 return container_of(ddev, struct at_xdmac, dma);
330 }
331
txd_to_at_desc(struct dma_async_tx_descriptor * txd)332 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
333 {
334 return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
335 }
336
at_xdmac_chan_is_cyclic(struct at_xdmac_chan * atchan)337 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
338 {
339 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
340 }
341
at_xdmac_chan_is_paused(struct at_xdmac_chan * atchan)342 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
343 {
344 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
345 }
346
at_xdmac_chan_is_peripheral_xfer(u32 cfg)347 static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg)
348 {
349 return cfg & AT_XDMAC_CC_TYPE_PER_TRAN;
350 }
351
at_xdmac_get_dwidth(u32 cfg)352 static inline u8 at_xdmac_get_dwidth(u32 cfg)
353 {
354 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
355 };
356
357 static unsigned int init_nr_desc_per_channel = 64;
358 module_param(init_nr_desc_per_channel, uint, 0644);
359 MODULE_PARM_DESC(init_nr_desc_per_channel,
360 "initial descriptors per channel (default: 64)");
361
362
at_xdmac_chan_is_enabled(struct at_xdmac_chan * atchan)363 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
364 {
365 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
366 }
367
at_xdmac_off(struct at_xdmac * atxdmac)368 static void at_xdmac_off(struct at_xdmac *atxdmac)
369 {
370 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
371
372 /* Wait that all chans are disabled. */
373 while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
374 cpu_relax();
375
376 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
377 }
378
379 /* Call with lock hold. */
at_xdmac_start_xfer(struct at_xdmac_chan * atchan,struct at_xdmac_desc * first)380 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
381 struct at_xdmac_desc *first)
382 {
383 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
384 u32 reg;
385
386 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
387
388 if (at_xdmac_chan_is_enabled(atchan))
389 return;
390
391 /* Set transfer as active to not try to start it again. */
392 first->active_xfer = true;
393
394 /* Tell xdmac where to get the first descriptor. */
395 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys);
396 if (atxdmac->layout->sdif)
397 reg |= AT_XDMAC_CNDA_NDAIF(atchan->memif);
398
399 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
400
401 /*
402 * When doing non cyclic transfer we need to use the next
403 * descriptor view 2 since some fields of the configuration register
404 * depend on transfer size and src/dest addresses.
405 */
406 if (at_xdmac_chan_is_cyclic(atchan))
407 reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
408 else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
409 reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
410 else
411 reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
412 /*
413 * Even if the register will be updated from the configuration in the
414 * descriptor when using view 2 or higher, the PROT bit won't be set
415 * properly. This bit can be modified only by using the channel
416 * configuration register.
417 */
418 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
419
420 reg |= AT_XDMAC_CNDC_NDDUP
421 | AT_XDMAC_CNDC_NDSUP
422 | AT_XDMAC_CNDC_NDE;
423 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
424
425 dev_vdbg(chan2dev(&atchan->chan),
426 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
427 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
428 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
429 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
430 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
431 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
432 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
433
434 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
435 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE;
436 /*
437 * Request Overflow Error is only for peripheral synchronized transfers
438 */
439 if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg))
440 reg |= AT_XDMAC_CIE_ROIE;
441
442 /*
443 * There is no end of list when doing cyclic dma, we need to get
444 * an interrupt after each periods.
445 */
446 if (at_xdmac_chan_is_cyclic(atchan))
447 at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
448 reg | AT_XDMAC_CIE_BIE);
449 else
450 at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
451 reg | AT_XDMAC_CIE_LIE);
452 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
453 dev_vdbg(chan2dev(&atchan->chan),
454 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
455 wmb();
456 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
457
458 dev_vdbg(chan2dev(&atchan->chan),
459 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
460 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
461 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
462 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
463 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
464 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
465 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
466
467 }
468
at_xdmac_tx_submit(struct dma_async_tx_descriptor * tx)469 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
470 {
471 struct at_xdmac_desc *desc = txd_to_at_desc(tx);
472 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan);
473 dma_cookie_t cookie;
474 unsigned long irqflags;
475
476 spin_lock_irqsave(&atchan->lock, irqflags);
477 cookie = dma_cookie_assign(tx);
478
479 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
480 __func__, atchan, desc);
481 list_add_tail(&desc->xfer_node, &atchan->xfers_list);
482 if (list_is_singular(&atchan->xfers_list))
483 at_xdmac_start_xfer(atchan, desc);
484
485 spin_unlock_irqrestore(&atchan->lock, irqflags);
486 return cookie;
487 }
488
at_xdmac_alloc_desc(struct dma_chan * chan,gfp_t gfp_flags)489 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
490 gfp_t gfp_flags)
491 {
492 struct at_xdmac_desc *desc;
493 struct at_xdmac *atxdmac = to_at_xdmac(chan->device);
494 dma_addr_t phys;
495
496 desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
497 if (desc) {
498 INIT_LIST_HEAD(&desc->descs_list);
499 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
500 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
501 desc->tx_dma_desc.phys = phys;
502 }
503
504 return desc;
505 }
506
at_xdmac_init_used_desc(struct at_xdmac_desc * desc)507 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
508 {
509 memset(&desc->lld, 0, sizeof(desc->lld));
510 INIT_LIST_HEAD(&desc->descs_list);
511 desc->direction = DMA_TRANS_NONE;
512 desc->xfer_size = 0;
513 desc->active_xfer = false;
514 }
515
516 /* Call must be protected by lock. */
at_xdmac_get_desc(struct at_xdmac_chan * atchan)517 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
518 {
519 struct at_xdmac_desc *desc;
520
521 if (list_empty(&atchan->free_descs_list)) {
522 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
523 } else {
524 desc = list_first_entry(&atchan->free_descs_list,
525 struct at_xdmac_desc, desc_node);
526 list_del(&desc->desc_node);
527 at_xdmac_init_used_desc(desc);
528 }
529
530 return desc;
531 }
532
at_xdmac_queue_desc(struct dma_chan * chan,struct at_xdmac_desc * prev,struct at_xdmac_desc * desc)533 static void at_xdmac_queue_desc(struct dma_chan *chan,
534 struct at_xdmac_desc *prev,
535 struct at_xdmac_desc *desc)
536 {
537 if (!prev || !desc)
538 return;
539
540 prev->lld.mbr_nda = desc->tx_dma_desc.phys;
541 prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
542
543 dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
544 __func__, prev, &prev->lld.mbr_nda);
545 }
546
at_xdmac_increment_block_count(struct dma_chan * chan,struct at_xdmac_desc * desc)547 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
548 struct at_xdmac_desc *desc)
549 {
550 if (!desc)
551 return;
552
553 desc->lld.mbr_bc++;
554
555 dev_dbg(chan2dev(chan),
556 "%s: incrementing the block count of the desc 0x%p\n",
557 __func__, desc);
558 }
559
at_xdmac_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)560 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
561 struct of_dma *of_dma)
562 {
563 struct at_xdmac *atxdmac = of_dma->of_dma_data;
564 struct at_xdmac_chan *atchan;
565 struct dma_chan *chan;
566 struct device *dev = atxdmac->dma.dev;
567
568 if (dma_spec->args_count != 1) {
569 dev_err(dev, "dma phandler args: bad number of args\n");
570 return NULL;
571 }
572
573 chan = dma_get_any_slave_channel(&atxdmac->dma);
574 if (!chan) {
575 dev_err(dev, "can't get a dma channel\n");
576 return NULL;
577 }
578
579 atchan = to_at_xdmac_chan(chan);
580 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
581 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
582 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
583 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
584 atchan->memif, atchan->perif, atchan->perid);
585
586 return chan;
587 }
588
at_xdmac_compute_chan_conf(struct dma_chan * chan,enum dma_transfer_direction direction)589 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
590 enum dma_transfer_direction direction)
591 {
592 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
593 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
594 int csize, dwidth;
595
596 if (direction == DMA_DEV_TO_MEM) {
597 atchan->cfg =
598 AT91_XDMAC_DT_PERID(atchan->perid)
599 | AT_XDMAC_CC_DAM_INCREMENTED_AM
600 | AT_XDMAC_CC_SAM_FIXED_AM
601 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED
602 | AT_XDMAC_CC_DSYNC_PER2MEM
603 | AT_XDMAC_CC_MBSIZE_SIXTEEN
604 | AT_XDMAC_CC_TYPE_PER_TRAN;
605 if (atxdmac->layout->sdif)
606 atchan->cfg |= AT_XDMAC_CC_DIF(atchan->memif) |
607 AT_XDMAC_CC_SIF(atchan->perif);
608
609 csize = ffs(atchan->sconfig.src_maxburst) - 1;
610 if (csize < 0) {
611 dev_err(chan2dev(chan), "invalid src maxburst value\n");
612 return -EINVAL;
613 }
614 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
615 dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
616 if (dwidth < 0) {
617 dev_err(chan2dev(chan), "invalid src addr width value\n");
618 return -EINVAL;
619 }
620 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
621 } else if (direction == DMA_MEM_TO_DEV) {
622 atchan->cfg =
623 AT91_XDMAC_DT_PERID(atchan->perid)
624 | AT_XDMAC_CC_DAM_FIXED_AM
625 | AT_XDMAC_CC_SAM_INCREMENTED_AM
626 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED
627 | AT_XDMAC_CC_DSYNC_MEM2PER
628 | AT_XDMAC_CC_MBSIZE_SIXTEEN
629 | AT_XDMAC_CC_TYPE_PER_TRAN;
630 if (atxdmac->layout->sdif)
631 atchan->cfg |= AT_XDMAC_CC_DIF(atchan->perif) |
632 AT_XDMAC_CC_SIF(atchan->memif);
633
634 csize = ffs(atchan->sconfig.dst_maxburst) - 1;
635 if (csize < 0) {
636 dev_err(chan2dev(chan), "invalid src maxburst value\n");
637 return -EINVAL;
638 }
639 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
640 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
641 if (dwidth < 0) {
642 dev_err(chan2dev(chan), "invalid dst addr width value\n");
643 return -EINVAL;
644 }
645 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
646 }
647
648 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg);
649
650 return 0;
651 }
652
653 /*
654 * Only check that maxburst and addr width values are supported by the
655 * the controller but not that the configuration is good to perform the
656 * transfer since we don't know the direction at this stage.
657 */
at_xdmac_check_slave_config(struct dma_slave_config * sconfig)658 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
659 {
660 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
661 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
662 return -EINVAL;
663
664 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
665 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
666 return -EINVAL;
667
668 return 0;
669 }
670
at_xdmac_set_slave_config(struct dma_chan * chan,struct dma_slave_config * sconfig)671 static int at_xdmac_set_slave_config(struct dma_chan *chan,
672 struct dma_slave_config *sconfig)
673 {
674 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
675
676 if (at_xdmac_check_slave_config(sconfig)) {
677 dev_err(chan2dev(chan), "invalid slave configuration\n");
678 return -EINVAL;
679 }
680
681 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
682
683 return 0;
684 }
685
686 static struct dma_async_tx_descriptor *
at_xdmac_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)687 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
688 unsigned int sg_len, enum dma_transfer_direction direction,
689 unsigned long flags, void *context)
690 {
691 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
692 struct at_xdmac_desc *first = NULL, *prev = NULL;
693 struct scatterlist *sg;
694 int i;
695 unsigned int xfer_size = 0;
696 unsigned long irqflags;
697 struct dma_async_tx_descriptor *ret = NULL;
698
699 if (!sgl)
700 return NULL;
701
702 if (!is_slave_direction(direction)) {
703 dev_err(chan2dev(chan), "invalid DMA direction\n");
704 return NULL;
705 }
706
707 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
708 __func__, sg_len,
709 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
710 flags);
711
712 /* Protect dma_sconfig field that can be modified by set_slave_conf. */
713 spin_lock_irqsave(&atchan->lock, irqflags);
714
715 if (at_xdmac_compute_chan_conf(chan, direction))
716 goto spin_unlock;
717
718 /* Prepare descriptors. */
719 for_each_sg(sgl, sg, sg_len, i) {
720 struct at_xdmac_desc *desc = NULL;
721 u32 len, mem, dwidth, fixed_dwidth;
722
723 len = sg_dma_len(sg);
724 mem = sg_dma_address(sg);
725 if (unlikely(!len)) {
726 dev_err(chan2dev(chan), "sg data length is zero\n");
727 goto spin_unlock;
728 }
729 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
730 __func__, i, len, mem);
731
732 desc = at_xdmac_get_desc(atchan);
733 if (!desc) {
734 dev_err(chan2dev(chan), "can't get descriptor\n");
735 if (first)
736 list_splice_init(&first->descs_list, &atchan->free_descs_list);
737 goto spin_unlock;
738 }
739
740 /* Linked list descriptor setup. */
741 if (direction == DMA_DEV_TO_MEM) {
742 desc->lld.mbr_sa = atchan->sconfig.src_addr;
743 desc->lld.mbr_da = mem;
744 } else {
745 desc->lld.mbr_sa = mem;
746 desc->lld.mbr_da = atchan->sconfig.dst_addr;
747 }
748 dwidth = at_xdmac_get_dwidth(atchan->cfg);
749 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
750 ? dwidth
751 : AT_XDMAC_CC_DWIDTH_BYTE;
752 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */
753 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */
754 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */
755 | (len >> fixed_dwidth); /* microblock length */
756 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
757 AT_XDMAC_CC_DWIDTH(fixed_dwidth);
758 dev_dbg(chan2dev(chan),
759 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
760 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
761
762 /* Chain lld. */
763 if (prev)
764 at_xdmac_queue_desc(chan, prev, desc);
765
766 prev = desc;
767 if (!first)
768 first = desc;
769
770 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
771 __func__, desc, first);
772 list_add_tail(&desc->desc_node, &first->descs_list);
773 xfer_size += len;
774 }
775
776
777 first->tx_dma_desc.flags = flags;
778 first->xfer_size = xfer_size;
779 first->direction = direction;
780 ret = &first->tx_dma_desc;
781
782 spin_unlock:
783 spin_unlock_irqrestore(&atchan->lock, irqflags);
784 return ret;
785 }
786
787 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)788 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
789 size_t buf_len, size_t period_len,
790 enum dma_transfer_direction direction,
791 unsigned long flags)
792 {
793 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
794 struct at_xdmac_desc *first = NULL, *prev = NULL;
795 unsigned int periods = buf_len / period_len;
796 int i;
797 unsigned long irqflags;
798
799 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
800 __func__, &buf_addr, buf_len, period_len,
801 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
802
803 if (!is_slave_direction(direction)) {
804 dev_err(chan2dev(chan), "invalid DMA direction\n");
805 return NULL;
806 }
807
808 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
809 dev_err(chan2dev(chan), "channel currently used\n");
810 return NULL;
811 }
812
813 if (at_xdmac_compute_chan_conf(chan, direction))
814 return NULL;
815
816 for (i = 0; i < periods; i++) {
817 struct at_xdmac_desc *desc = NULL;
818
819 spin_lock_irqsave(&atchan->lock, irqflags);
820 desc = at_xdmac_get_desc(atchan);
821 if (!desc) {
822 dev_err(chan2dev(chan), "can't get descriptor\n");
823 if (first)
824 list_splice_init(&first->descs_list, &atchan->free_descs_list);
825 spin_unlock_irqrestore(&atchan->lock, irqflags);
826 return NULL;
827 }
828 spin_unlock_irqrestore(&atchan->lock, irqflags);
829 dev_dbg(chan2dev(chan),
830 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
831 __func__, desc, &desc->tx_dma_desc.phys);
832
833 if (direction == DMA_DEV_TO_MEM) {
834 desc->lld.mbr_sa = atchan->sconfig.src_addr;
835 desc->lld.mbr_da = buf_addr + i * period_len;
836 } else {
837 desc->lld.mbr_sa = buf_addr + i * period_len;
838 desc->lld.mbr_da = atchan->sconfig.dst_addr;
839 }
840 desc->lld.mbr_cfg = atchan->cfg;
841 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
842 | AT_XDMAC_MBR_UBC_NDEN
843 | AT_XDMAC_MBR_UBC_NSEN
844 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
845
846 dev_dbg(chan2dev(chan),
847 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
848 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
849
850 /* Chain lld. */
851 if (prev)
852 at_xdmac_queue_desc(chan, prev, desc);
853
854 prev = desc;
855 if (!first)
856 first = desc;
857
858 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
859 __func__, desc, first);
860 list_add_tail(&desc->desc_node, &first->descs_list);
861 }
862
863 at_xdmac_queue_desc(chan, prev, first);
864 first->tx_dma_desc.flags = flags;
865 first->xfer_size = buf_len;
866 first->direction = direction;
867
868 return &first->tx_dma_desc;
869 }
870
at_xdmac_align_width(struct dma_chan * chan,dma_addr_t addr)871 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
872 {
873 u32 width;
874
875 /*
876 * Check address alignment to select the greater data width we
877 * can use.
878 *
879 * Some XDMAC implementations don't provide dword transfer, in
880 * this case selecting dword has the same behavior as
881 * selecting word transfers.
882 */
883 if (!(addr & 7)) {
884 width = AT_XDMAC_CC_DWIDTH_DWORD;
885 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
886 } else if (!(addr & 3)) {
887 width = AT_XDMAC_CC_DWIDTH_WORD;
888 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
889 } else if (!(addr & 1)) {
890 width = AT_XDMAC_CC_DWIDTH_HALFWORD;
891 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
892 } else {
893 width = AT_XDMAC_CC_DWIDTH_BYTE;
894 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
895 }
896
897 return width;
898 }
899
900 static struct at_xdmac_desc *
at_xdmac_interleaved_queue_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,struct at_xdmac_desc * prev,dma_addr_t src,dma_addr_t dst,struct dma_interleaved_template * xt,struct data_chunk * chunk)901 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
902 struct at_xdmac_chan *atchan,
903 struct at_xdmac_desc *prev,
904 dma_addr_t src, dma_addr_t dst,
905 struct dma_interleaved_template *xt,
906 struct data_chunk *chunk)
907 {
908 struct at_xdmac_desc *desc;
909 u32 dwidth;
910 unsigned long flags;
911 size_t ublen;
912 /*
913 * WARNING: The channel configuration is set here since there is no
914 * dmaengine_slave_config call in this case. Moreover we don't know the
915 * direction, it involves we can't dynamically set the source and dest
916 * interface so we have to use the same one. Only interface 0 allows EBI
917 * access. Hopefully we can access DDR through both ports (at least on
918 * SAMA5D4x), so we can use the same interface for source and dest,
919 * that solves the fact we don't know the direction.
920 * ERRATA: Even if useless for memory transfers, the PERID has to not
921 * match the one of another channel. If not, it could lead to spurious
922 * flag status.
923 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
924 * Thus, no need to have the SIF/DIF interfaces here.
925 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
926 * zero.
927 */
928 u32 chan_cc = AT_XDMAC_CC_PERID(0x7f)
929 | AT_XDMAC_CC_MBSIZE_SIXTEEN
930 | AT_XDMAC_CC_TYPE_MEM_TRAN;
931
932 dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
933 if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
934 dev_dbg(chan2dev(chan),
935 "%s: chunk too big (%zu, max size %lu)...\n",
936 __func__, chunk->size,
937 AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
938 return NULL;
939 }
940
941 if (prev)
942 dev_dbg(chan2dev(chan),
943 "Adding items at the end of desc 0x%p\n", prev);
944
945 if (xt->src_inc) {
946 if (xt->src_sgl)
947 chan_cc |= AT_XDMAC_CC_SAM_UBS_AM;
948 else
949 chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM;
950 }
951
952 if (xt->dst_inc) {
953 if (xt->dst_sgl)
954 chan_cc |= AT_XDMAC_CC_DAM_UBS_AM;
955 else
956 chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM;
957 }
958
959 spin_lock_irqsave(&atchan->lock, flags);
960 desc = at_xdmac_get_desc(atchan);
961 spin_unlock_irqrestore(&atchan->lock, flags);
962 if (!desc) {
963 dev_err(chan2dev(chan), "can't get descriptor\n");
964 return NULL;
965 }
966
967 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
968
969 ublen = chunk->size >> dwidth;
970
971 desc->lld.mbr_sa = src;
972 desc->lld.mbr_da = dst;
973 desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
974 desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
975
976 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
977 | AT_XDMAC_MBR_UBC_NDEN
978 | AT_XDMAC_MBR_UBC_NSEN
979 | ublen;
980 desc->lld.mbr_cfg = chan_cc;
981
982 dev_dbg(chan2dev(chan),
983 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
984 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
985 desc->lld.mbr_ubc, desc->lld.mbr_cfg);
986
987 /* Chain lld. */
988 if (prev)
989 at_xdmac_queue_desc(chan, prev, desc);
990
991 return desc;
992 }
993
994 static struct dma_async_tx_descriptor *
at_xdmac_prep_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)995 at_xdmac_prep_interleaved(struct dma_chan *chan,
996 struct dma_interleaved_template *xt,
997 unsigned long flags)
998 {
999 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1000 struct at_xdmac_desc *prev = NULL, *first = NULL;
1001 dma_addr_t dst_addr, src_addr;
1002 size_t src_skip = 0, dst_skip = 0, len = 0;
1003 struct data_chunk *chunk;
1004 int i;
1005
1006 if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
1007 return NULL;
1008
1009 /*
1010 * TODO: Handle the case where we have to repeat a chain of
1011 * descriptors...
1012 */
1013 if ((xt->numf > 1) && (xt->frame_size > 1))
1014 return NULL;
1015
1016 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
1017 __func__, &xt->src_start, &xt->dst_start, xt->numf,
1018 xt->frame_size, flags);
1019
1020 src_addr = xt->src_start;
1021 dst_addr = xt->dst_start;
1022
1023 if (xt->numf > 1) {
1024 first = at_xdmac_interleaved_queue_desc(chan, atchan,
1025 NULL,
1026 src_addr, dst_addr,
1027 xt, xt->sgl);
1028
1029 /* Length of the block is (BLEN+1) microblocks. */
1030 for (i = 0; i < xt->numf - 1; i++)
1031 at_xdmac_increment_block_count(chan, first);
1032
1033 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1034 __func__, first, first);
1035 list_add_tail(&first->desc_node, &first->descs_list);
1036 } else {
1037 for (i = 0; i < xt->frame_size; i++) {
1038 size_t src_icg = 0, dst_icg = 0;
1039 struct at_xdmac_desc *desc;
1040
1041 chunk = xt->sgl + i;
1042
1043 dst_icg = dmaengine_get_dst_icg(xt, chunk);
1044 src_icg = dmaengine_get_src_icg(xt, chunk);
1045
1046 src_skip = chunk->size + src_icg;
1047 dst_skip = chunk->size + dst_icg;
1048
1049 dev_dbg(chan2dev(chan),
1050 "%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
1051 __func__, chunk->size, src_icg, dst_icg);
1052
1053 desc = at_xdmac_interleaved_queue_desc(chan, atchan,
1054 prev,
1055 src_addr, dst_addr,
1056 xt, chunk);
1057 if (!desc) {
1058 list_splice_init(&first->descs_list,
1059 &atchan->free_descs_list);
1060 return NULL;
1061 }
1062
1063 if (!first)
1064 first = desc;
1065
1066 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1067 __func__, desc, first);
1068 list_add_tail(&desc->desc_node, &first->descs_list);
1069
1070 if (xt->src_sgl)
1071 src_addr += src_skip;
1072
1073 if (xt->dst_sgl)
1074 dst_addr += dst_skip;
1075
1076 len += chunk->size;
1077 prev = desc;
1078 }
1079 }
1080
1081 first->tx_dma_desc.cookie = -EBUSY;
1082 first->tx_dma_desc.flags = flags;
1083 first->xfer_size = len;
1084
1085 return &first->tx_dma_desc;
1086 }
1087
1088 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1089 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1090 size_t len, unsigned long flags)
1091 {
1092 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1093 struct at_xdmac_desc *first = NULL, *prev = NULL;
1094 size_t remaining_size = len, xfer_size = 0, ublen;
1095 dma_addr_t src_addr = src, dst_addr = dest;
1096 u32 dwidth;
1097 /*
1098 * WARNING: We don't know the direction, it involves we can't
1099 * dynamically set the source and dest interface so we have to use the
1100 * same one. Only interface 0 allows EBI access. Hopefully we can
1101 * access DDR through both ports (at least on SAMA5D4x), so we can use
1102 * the same interface for source and dest, that solves the fact we
1103 * don't know the direction.
1104 * ERRATA: Even if useless for memory transfers, the PERID has to not
1105 * match the one of another channel. If not, it could lead to spurious
1106 * flag status.
1107 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1108 * Thus, no need to have the SIF/DIF interfaces here.
1109 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1110 * zero.
1111 */
1112 u32 chan_cc = AT_XDMAC_CC_PERID(0x7f)
1113 | AT_XDMAC_CC_DAM_INCREMENTED_AM
1114 | AT_XDMAC_CC_SAM_INCREMENTED_AM
1115 | AT_XDMAC_CC_MBSIZE_SIXTEEN
1116 | AT_XDMAC_CC_TYPE_MEM_TRAN;
1117 unsigned long irqflags;
1118
1119 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1120 __func__, &src, &dest, len, flags);
1121
1122 if (unlikely(!len))
1123 return NULL;
1124
1125 dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1126
1127 /* Prepare descriptors. */
1128 while (remaining_size) {
1129 struct at_xdmac_desc *desc = NULL;
1130
1131 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1132
1133 spin_lock_irqsave(&atchan->lock, irqflags);
1134 desc = at_xdmac_get_desc(atchan);
1135 spin_unlock_irqrestore(&atchan->lock, irqflags);
1136 if (!desc) {
1137 dev_err(chan2dev(chan), "can't get descriptor\n");
1138 if (first)
1139 list_splice_init(&first->descs_list, &atchan->free_descs_list);
1140 return NULL;
1141 }
1142
1143 /* Update src and dest addresses. */
1144 src_addr += xfer_size;
1145 dst_addr += xfer_size;
1146
1147 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1148 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1149 else
1150 xfer_size = remaining_size;
1151
1152 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1153
1154 /* Check remaining length and change data width if needed. */
1155 dwidth = at_xdmac_align_width(chan,
1156 src_addr | dst_addr | xfer_size);
1157 chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1158 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1159
1160 ublen = xfer_size >> dwidth;
1161 remaining_size -= xfer_size;
1162
1163 desc->lld.mbr_sa = src_addr;
1164 desc->lld.mbr_da = dst_addr;
1165 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1166 | AT_XDMAC_MBR_UBC_NDEN
1167 | AT_XDMAC_MBR_UBC_NSEN
1168 | ublen;
1169 desc->lld.mbr_cfg = chan_cc;
1170
1171 dev_dbg(chan2dev(chan),
1172 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1173 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1174
1175 /* Chain lld. */
1176 if (prev)
1177 at_xdmac_queue_desc(chan, prev, desc);
1178
1179 prev = desc;
1180 if (!first)
1181 first = desc;
1182
1183 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1184 __func__, desc, first);
1185 list_add_tail(&desc->desc_node, &first->descs_list);
1186 }
1187
1188 first->tx_dma_desc.flags = flags;
1189 first->xfer_size = len;
1190
1191 return &first->tx_dma_desc;
1192 }
1193
at_xdmac_memset_create_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,dma_addr_t dst_addr,size_t len,int value)1194 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1195 struct at_xdmac_chan *atchan,
1196 dma_addr_t dst_addr,
1197 size_t len,
1198 int value)
1199 {
1200 struct at_xdmac_desc *desc;
1201 unsigned long flags;
1202 size_t ublen;
1203 u32 dwidth;
1204 /*
1205 * WARNING: The channel configuration is set here since there is no
1206 * dmaengine_slave_config call in this case. Moreover we don't know the
1207 * direction, it involves we can't dynamically set the source and dest
1208 * interface so we have to use the same one. Only interface 0 allows EBI
1209 * access. Hopefully we can access DDR through both ports (at least on
1210 * SAMA5D4x), so we can use the same interface for source and dest,
1211 * that solves the fact we don't know the direction.
1212 * ERRATA: Even if useless for memory transfers, the PERID has to not
1213 * match the one of another channel. If not, it could lead to spurious
1214 * flag status.
1215 * For SAMA7G5x case, the SIF and DIF fields are no longer used.
1216 * Thus, no need to have the SIF/DIF interfaces here.
1217 * For SAMA5D4x and SAMA5D2x the SIF and DIF are already configured as
1218 * zero.
1219 */
1220 u32 chan_cc = AT_XDMAC_CC_PERID(0x7f)
1221 | AT_XDMAC_CC_DAM_UBS_AM
1222 | AT_XDMAC_CC_SAM_INCREMENTED_AM
1223 | AT_XDMAC_CC_MBSIZE_SIXTEEN
1224 | AT_XDMAC_CC_MEMSET_HW_MODE
1225 | AT_XDMAC_CC_TYPE_MEM_TRAN;
1226
1227 dwidth = at_xdmac_align_width(chan, dst_addr);
1228
1229 if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1230 dev_err(chan2dev(chan),
1231 "%s: Transfer too large, aborting...\n",
1232 __func__);
1233 return NULL;
1234 }
1235
1236 spin_lock_irqsave(&atchan->lock, flags);
1237 desc = at_xdmac_get_desc(atchan);
1238 spin_unlock_irqrestore(&atchan->lock, flags);
1239 if (!desc) {
1240 dev_err(chan2dev(chan), "can't get descriptor\n");
1241 return NULL;
1242 }
1243
1244 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1245
1246 ublen = len >> dwidth;
1247
1248 desc->lld.mbr_da = dst_addr;
1249 desc->lld.mbr_ds = value;
1250 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1251 | AT_XDMAC_MBR_UBC_NDEN
1252 | AT_XDMAC_MBR_UBC_NSEN
1253 | ublen;
1254 desc->lld.mbr_cfg = chan_cc;
1255
1256 dev_dbg(chan2dev(chan),
1257 "%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1258 __func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1259 desc->lld.mbr_cfg);
1260
1261 return desc;
1262 }
1263
1264 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1265 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1266 size_t len, unsigned long flags)
1267 {
1268 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1269 struct at_xdmac_desc *desc;
1270
1271 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1272 __func__, &dest, len, value, flags);
1273
1274 if (unlikely(!len))
1275 return NULL;
1276
1277 desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1278 list_add_tail(&desc->desc_node, &desc->descs_list);
1279
1280 desc->tx_dma_desc.cookie = -EBUSY;
1281 desc->tx_dma_desc.flags = flags;
1282 desc->xfer_size = len;
1283
1284 return &desc->tx_dma_desc;
1285 }
1286
1287 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)1288 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1289 unsigned int sg_len, int value,
1290 unsigned long flags)
1291 {
1292 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1293 struct at_xdmac_desc *desc, *pdesc = NULL,
1294 *ppdesc = NULL, *first = NULL;
1295 struct scatterlist *sg, *psg = NULL, *ppsg = NULL;
1296 size_t stride = 0, pstride = 0, len = 0;
1297 int i;
1298
1299 if (!sgl)
1300 return NULL;
1301
1302 dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1303 __func__, sg_len, value, flags);
1304
1305 /* Prepare descriptors. */
1306 for_each_sg(sgl, sg, sg_len, i) {
1307 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1308 __func__, &sg_dma_address(sg), sg_dma_len(sg),
1309 value, flags);
1310 desc = at_xdmac_memset_create_desc(chan, atchan,
1311 sg_dma_address(sg),
1312 sg_dma_len(sg),
1313 value);
1314 if (!desc && first)
1315 list_splice_init(&first->descs_list,
1316 &atchan->free_descs_list);
1317
1318 if (!first)
1319 first = desc;
1320
1321 /* Update our strides */
1322 pstride = stride;
1323 if (psg)
1324 stride = sg_dma_address(sg) -
1325 (sg_dma_address(psg) + sg_dma_len(psg));
1326
1327 /*
1328 * The scatterlist API gives us only the address and
1329 * length of each elements.
1330 *
1331 * Unfortunately, we don't have the stride, which we
1332 * will need to compute.
1333 *
1334 * That make us end up in a situation like this one:
1335 * len stride len stride len
1336 * +-------+ +-------+ +-------+
1337 * | N-2 | | N-1 | | N |
1338 * +-------+ +-------+ +-------+
1339 *
1340 * We need all these three elements (N-2, N-1 and N)
1341 * to actually take the decision on whether we need to
1342 * queue N-1 or reuse N-2.
1343 *
1344 * We will only consider N if it is the last element.
1345 */
1346 if (ppdesc && pdesc) {
1347 if ((stride == pstride) &&
1348 (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1349 dev_dbg(chan2dev(chan),
1350 "%s: desc 0x%p can be merged with desc 0x%p\n",
1351 __func__, pdesc, ppdesc);
1352
1353 /*
1354 * Increment the block count of the
1355 * N-2 descriptor
1356 */
1357 at_xdmac_increment_block_count(chan, ppdesc);
1358 ppdesc->lld.mbr_dus = stride;
1359
1360 /*
1361 * Put back the N-1 descriptor in the
1362 * free descriptor list
1363 */
1364 list_add_tail(&pdesc->desc_node,
1365 &atchan->free_descs_list);
1366
1367 /*
1368 * Make our N-1 descriptor pointer
1369 * point to the N-2 since they were
1370 * actually merged.
1371 */
1372 pdesc = ppdesc;
1373
1374 /*
1375 * Rule out the case where we don't have
1376 * pstride computed yet (our second sg
1377 * element)
1378 *
1379 * We also want to catch the case where there
1380 * would be a negative stride,
1381 */
1382 } else if (pstride ||
1383 sg_dma_address(sg) < sg_dma_address(psg)) {
1384 /*
1385 * Queue the N-1 descriptor after the
1386 * N-2
1387 */
1388 at_xdmac_queue_desc(chan, ppdesc, pdesc);
1389
1390 /*
1391 * Add the N-1 descriptor to the list
1392 * of the descriptors used for this
1393 * transfer
1394 */
1395 list_add_tail(&desc->desc_node,
1396 &first->descs_list);
1397 dev_dbg(chan2dev(chan),
1398 "%s: add desc 0x%p to descs_list 0x%p\n",
1399 __func__, desc, first);
1400 }
1401 }
1402
1403 /*
1404 * If we are the last element, just see if we have the
1405 * same size than the previous element.
1406 *
1407 * If so, we can merge it with the previous descriptor
1408 * since we don't care about the stride anymore.
1409 */
1410 if ((i == (sg_len - 1)) &&
1411 sg_dma_len(psg) == sg_dma_len(sg)) {
1412 dev_dbg(chan2dev(chan),
1413 "%s: desc 0x%p can be merged with desc 0x%p\n",
1414 __func__, desc, pdesc);
1415
1416 /*
1417 * Increment the block count of the N-1
1418 * descriptor
1419 */
1420 at_xdmac_increment_block_count(chan, pdesc);
1421 pdesc->lld.mbr_dus = stride;
1422
1423 /*
1424 * Put back the N descriptor in the free
1425 * descriptor list
1426 */
1427 list_add_tail(&desc->desc_node,
1428 &atchan->free_descs_list);
1429 }
1430
1431 /* Update our descriptors */
1432 ppdesc = pdesc;
1433 pdesc = desc;
1434
1435 /* Update our scatter pointers */
1436 ppsg = psg;
1437 psg = sg;
1438
1439 len += sg_dma_len(sg);
1440 }
1441
1442 first->tx_dma_desc.cookie = -EBUSY;
1443 first->tx_dma_desc.flags = flags;
1444 first->xfer_size = len;
1445
1446 return &first->tx_dma_desc;
1447 }
1448
1449 static enum dma_status
at_xdmac_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1450 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1451 struct dma_tx_state *txstate)
1452 {
1453 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1454 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1455 struct at_xdmac_desc *desc, *_desc;
1456 struct list_head *descs_list;
1457 enum dma_status ret;
1458 int residue, retry;
1459 u32 cur_nda, check_nda, cur_ubc, mask, value;
1460 u8 dwidth = 0;
1461 unsigned long flags;
1462 bool initd;
1463
1464 ret = dma_cookie_status(chan, cookie, txstate);
1465 if (ret == DMA_COMPLETE)
1466 return ret;
1467
1468 if (!txstate)
1469 return ret;
1470
1471 spin_lock_irqsave(&atchan->lock, flags);
1472
1473 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1474
1475 /*
1476 * If the transfer has not been started yet, don't need to compute the
1477 * residue, it's the transfer length.
1478 */
1479 if (!desc->active_xfer) {
1480 dma_set_residue(txstate, desc->xfer_size);
1481 goto spin_unlock;
1482 }
1483
1484 residue = desc->xfer_size;
1485 /*
1486 * Flush FIFO: only relevant when the transfer is source peripheral
1487 * synchronized. Flush is needed before reading CUBC because data in
1488 * the FIFO are not reported by CUBC. Reporting a residue of the
1489 * transfer length while we have data in FIFO can cause issue.
1490 * Usecase: atmel USART has a timeout which means I have received
1491 * characters but there is no more character received for a while. On
1492 * timeout, it requests the residue. If the data are in the DMA FIFO,
1493 * we will return a residue of the transfer length. It means no data
1494 * received. If an application is waiting for these data, it will hang
1495 * since we won't have another USART timeout without receiving new
1496 * data.
1497 */
1498 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1499 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1500 if ((desc->lld.mbr_cfg & mask) == value) {
1501 at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1502 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1503 cpu_relax();
1504 }
1505
1506 /*
1507 * The easiest way to compute the residue should be to pause the DMA
1508 * but doing this can lead to miss some data as some devices don't
1509 * have FIFO.
1510 * We need to read several registers because:
1511 * - DMA is running therefore a descriptor change is possible while
1512 * reading these registers
1513 * - When the block transfer is done, the value of the CUBC register
1514 * is set to its initial value until the fetch of the next descriptor.
1515 * This value will corrupt the residue calculation so we have to skip
1516 * it.
1517 *
1518 * INITD -------- ------------
1519 * |____________________|
1520 * _______________________ _______________
1521 * NDA @desc2 \/ @desc3
1522 * _______________________/\_______________
1523 * __________ ___________ _______________
1524 * CUBC 0 \/ MAX desc1 \/ MAX desc2
1525 * __________/\___________/\_______________
1526 *
1527 * Since descriptors are aligned on 64 bits, we can assume that
1528 * the update of NDA and CUBC is atomic.
1529 * Memory barriers are used to ensure the read order of the registers.
1530 * A max number of retries is set because unlikely it could never ends.
1531 */
1532 for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1533 check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1534 rmb();
1535 cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1536 rmb();
1537 initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1538 rmb();
1539 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1540 rmb();
1541
1542 if ((check_nda == cur_nda) && initd)
1543 break;
1544 }
1545
1546 if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1547 ret = DMA_ERROR;
1548 goto spin_unlock;
1549 }
1550
1551 /*
1552 * Flush FIFO: only relevant when the transfer is source peripheral
1553 * synchronized. Another flush is needed here because CUBC is updated
1554 * when the controller sends the data write command. It can lead to
1555 * report data that are not written in the memory or the device. The
1556 * FIFO flush ensures that data are really written.
1557 */
1558 if ((desc->lld.mbr_cfg & mask) == value) {
1559 at_xdmac_write(atxdmac, atxdmac->layout->gswf, atchan->mask);
1560 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1561 cpu_relax();
1562 }
1563
1564 /*
1565 * Remove size of all microblocks already transferred and the current
1566 * one. Then add the remaining size to transfer of the current
1567 * microblock.
1568 */
1569 descs_list = &desc->descs_list;
1570 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
1571 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
1572 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
1573 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
1574 break;
1575 }
1576 residue += cur_ubc << dwidth;
1577
1578 dma_set_residue(txstate, residue);
1579
1580 dev_dbg(chan2dev(chan),
1581 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1582 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1583
1584 spin_unlock:
1585 spin_unlock_irqrestore(&atchan->lock, flags);
1586 return ret;
1587 }
1588
1589 /* Call must be protected by lock. */
at_xdmac_remove_xfer(struct at_xdmac_chan * atchan,struct at_xdmac_desc * desc)1590 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1591 struct at_xdmac_desc *desc)
1592 {
1593 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1594
1595 /*
1596 * Remove the transfer from the transfer list then move the transfer
1597 * descriptors into the free descriptors list.
1598 */
1599 list_del(&desc->xfer_node);
1600 list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1601 }
1602
at_xdmac_advance_work(struct at_xdmac_chan * atchan)1603 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1604 {
1605 struct at_xdmac_desc *desc;
1606
1607 /*
1608 * If channel is enabled, do nothing, advance_work will be triggered
1609 * after the interruption.
1610 */
1611 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1612 desc = list_first_entry(&atchan->xfers_list,
1613 struct at_xdmac_desc,
1614 xfer_node);
1615 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1616 if (!desc->active_xfer)
1617 at_xdmac_start_xfer(atchan, desc);
1618 }
1619 }
1620
at_xdmac_handle_cyclic(struct at_xdmac_chan * atchan)1621 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1622 {
1623 struct at_xdmac_desc *desc;
1624 struct dma_async_tx_descriptor *txd;
1625
1626 if (!list_empty(&atchan->xfers_list)) {
1627 desc = list_first_entry(&atchan->xfers_list,
1628 struct at_xdmac_desc, xfer_node);
1629 txd = &desc->tx_dma_desc;
1630
1631 if (txd->flags & DMA_PREP_INTERRUPT)
1632 dmaengine_desc_get_callback_invoke(txd, NULL);
1633 }
1634 }
1635
at_xdmac_handle_error(struct at_xdmac_chan * atchan)1636 static void at_xdmac_handle_error(struct at_xdmac_chan *atchan)
1637 {
1638 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1639 struct at_xdmac_desc *bad_desc;
1640
1641 /*
1642 * The descriptor currently at the head of the active list is
1643 * broken. Since we don't have any way to report errors, we'll
1644 * just have to scream loudly and try to continue with other
1645 * descriptors queued (if any).
1646 */
1647 if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
1648 dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1649 if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
1650 dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1651 if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
1652 dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1653
1654 spin_lock_irq(&atchan->lock);
1655
1656 /* Channel must be disabled first as it's not done automatically */
1657 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1658 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1659 cpu_relax();
1660
1661 bad_desc = list_first_entry(&atchan->xfers_list,
1662 struct at_xdmac_desc,
1663 xfer_node);
1664
1665 spin_unlock_irq(&atchan->lock);
1666
1667 /* Print bad descriptor's details if needed */
1668 dev_dbg(chan2dev(&atchan->chan),
1669 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
1670 __func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da,
1671 bad_desc->lld.mbr_ubc);
1672
1673 /* Then continue with usual descriptor management */
1674 }
1675
at_xdmac_tasklet(struct tasklet_struct * t)1676 static void at_xdmac_tasklet(struct tasklet_struct *t)
1677 {
1678 struct at_xdmac_chan *atchan = from_tasklet(atchan, t, tasklet);
1679 struct at_xdmac_desc *desc;
1680 u32 error_mask;
1681
1682 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1683 __func__, atchan->irq_status);
1684
1685 error_mask = AT_XDMAC_CIS_RBEIS
1686 | AT_XDMAC_CIS_WBEIS
1687 | AT_XDMAC_CIS_ROIS;
1688
1689 if (at_xdmac_chan_is_cyclic(atchan)) {
1690 at_xdmac_handle_cyclic(atchan);
1691 } else if ((atchan->irq_status & AT_XDMAC_CIS_LIS)
1692 || (atchan->irq_status & error_mask)) {
1693 struct dma_async_tx_descriptor *txd;
1694
1695 if (atchan->irq_status & error_mask)
1696 at_xdmac_handle_error(atchan);
1697
1698 spin_lock_irq(&atchan->lock);
1699 desc = list_first_entry(&atchan->xfers_list,
1700 struct at_xdmac_desc,
1701 xfer_node);
1702 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1703 if (!desc->active_xfer) {
1704 dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
1705 spin_unlock_irq(&atchan->lock);
1706 return;
1707 }
1708
1709 txd = &desc->tx_dma_desc;
1710
1711 at_xdmac_remove_xfer(atchan, desc);
1712 spin_unlock_irq(&atchan->lock);
1713
1714 dma_cookie_complete(txd);
1715 if (txd->flags & DMA_PREP_INTERRUPT)
1716 dmaengine_desc_get_callback_invoke(txd, NULL);
1717
1718 dma_run_dependencies(txd);
1719
1720 spin_lock_irq(&atchan->lock);
1721 at_xdmac_advance_work(atchan);
1722 spin_unlock_irq(&atchan->lock);
1723 }
1724 }
1725
at_xdmac_interrupt(int irq,void * dev_id)1726 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1727 {
1728 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id;
1729 struct at_xdmac_chan *atchan;
1730 u32 imr, status, pending;
1731 u32 chan_imr, chan_status;
1732 int i, ret = IRQ_NONE;
1733
1734 do {
1735 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1736 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1737 pending = status & imr;
1738
1739 dev_vdbg(atxdmac->dma.dev,
1740 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1741 __func__, status, imr, pending);
1742
1743 if (!pending)
1744 break;
1745
1746 /* We have to find which channel has generated the interrupt. */
1747 for (i = 0; i < atxdmac->dma.chancnt; i++) {
1748 if (!((1 << i) & pending))
1749 continue;
1750
1751 atchan = &atxdmac->chan[i];
1752 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1753 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1754 atchan->irq_status = chan_status & chan_imr;
1755 dev_vdbg(atxdmac->dma.dev,
1756 "%s: chan%d: imr=0x%x, status=0x%x\n",
1757 __func__, i, chan_imr, chan_status);
1758 dev_vdbg(chan2dev(&atchan->chan),
1759 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1760 __func__,
1761 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1762 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1763 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1764 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1765 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1766 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1767
1768 if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1769 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1770
1771 tasklet_schedule(&atchan->tasklet);
1772 ret = IRQ_HANDLED;
1773 }
1774
1775 } while (pending);
1776
1777 return ret;
1778 }
1779
at_xdmac_issue_pending(struct dma_chan * chan)1780 static void at_xdmac_issue_pending(struct dma_chan *chan)
1781 {
1782 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1783 unsigned long flags;
1784
1785 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1786
1787 if (!at_xdmac_chan_is_cyclic(atchan)) {
1788 spin_lock_irqsave(&atchan->lock, flags);
1789 at_xdmac_advance_work(atchan);
1790 spin_unlock_irqrestore(&atchan->lock, flags);
1791 }
1792
1793 return;
1794 }
1795
at_xdmac_device_config(struct dma_chan * chan,struct dma_slave_config * config)1796 static int at_xdmac_device_config(struct dma_chan *chan,
1797 struct dma_slave_config *config)
1798 {
1799 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1800 int ret;
1801 unsigned long flags;
1802
1803 dev_dbg(chan2dev(chan), "%s\n", __func__);
1804
1805 spin_lock_irqsave(&atchan->lock, flags);
1806 ret = at_xdmac_set_slave_config(chan, config);
1807 spin_unlock_irqrestore(&atchan->lock, flags);
1808
1809 return ret;
1810 }
1811
at_xdmac_device_pause(struct dma_chan * chan)1812 static int at_xdmac_device_pause(struct dma_chan *chan)
1813 {
1814 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1815 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1816 unsigned long flags;
1817
1818 dev_dbg(chan2dev(chan), "%s\n", __func__);
1819
1820 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1821 return 0;
1822
1823 spin_lock_irqsave(&atchan->lock, flags);
1824 at_xdmac_write(atxdmac, atxdmac->layout->grws, atchan->mask);
1825 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1826 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1827 cpu_relax();
1828 spin_unlock_irqrestore(&atchan->lock, flags);
1829
1830 return 0;
1831 }
1832
at_xdmac_device_resume(struct dma_chan * chan)1833 static int at_xdmac_device_resume(struct dma_chan *chan)
1834 {
1835 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1836 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1837 unsigned long flags;
1838
1839 dev_dbg(chan2dev(chan), "%s\n", __func__);
1840
1841 spin_lock_irqsave(&atchan->lock, flags);
1842 if (!at_xdmac_chan_is_paused(atchan)) {
1843 spin_unlock_irqrestore(&atchan->lock, flags);
1844 return 0;
1845 }
1846
1847 at_xdmac_write(atxdmac, atxdmac->layout->grwr, atchan->mask);
1848 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1849 spin_unlock_irqrestore(&atchan->lock, flags);
1850
1851 return 0;
1852 }
1853
at_xdmac_device_terminate_all(struct dma_chan * chan)1854 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1855 {
1856 struct at_xdmac_desc *desc, *_desc;
1857 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1858 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1859 unsigned long flags;
1860
1861 dev_dbg(chan2dev(chan), "%s\n", __func__);
1862
1863 spin_lock_irqsave(&atchan->lock, flags);
1864 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1865 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1866 cpu_relax();
1867
1868 /* Cancel all pending transfers. */
1869 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1870 at_xdmac_remove_xfer(atchan, desc);
1871
1872 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1873 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1874 spin_unlock_irqrestore(&atchan->lock, flags);
1875
1876 return 0;
1877 }
1878
at_xdmac_alloc_chan_resources(struct dma_chan * chan)1879 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1880 {
1881 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1882 struct at_xdmac_desc *desc;
1883 int i;
1884
1885 if (at_xdmac_chan_is_enabled(atchan)) {
1886 dev_err(chan2dev(chan),
1887 "can't allocate channel resources (channel enabled)\n");
1888 return -EIO;
1889 }
1890
1891 if (!list_empty(&atchan->free_descs_list)) {
1892 dev_err(chan2dev(chan),
1893 "can't allocate channel resources (channel not free from a previous use)\n");
1894 return -EIO;
1895 }
1896
1897 for (i = 0; i < init_nr_desc_per_channel; i++) {
1898 desc = at_xdmac_alloc_desc(chan, GFP_KERNEL);
1899 if (!desc) {
1900 dev_warn(chan2dev(chan),
1901 "only %d descriptors have been allocated\n", i);
1902 break;
1903 }
1904 list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1905 }
1906
1907 dma_cookie_init(chan);
1908
1909 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1910
1911 return i;
1912 }
1913
at_xdmac_free_chan_resources(struct dma_chan * chan)1914 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1915 {
1916 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1917 struct at_xdmac *atxdmac = to_at_xdmac(chan->device);
1918 struct at_xdmac_desc *desc, *_desc;
1919
1920 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1921 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1922 list_del(&desc->desc_node);
1923 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1924 }
1925
1926 return;
1927 }
1928
1929 #ifdef CONFIG_PM
atmel_xdmac_prepare(struct device * dev)1930 static int atmel_xdmac_prepare(struct device *dev)
1931 {
1932 struct at_xdmac *atxdmac = dev_get_drvdata(dev);
1933 struct dma_chan *chan, *_chan;
1934
1935 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1936 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1937
1938 /* Wait for transfer completion, except in cyclic case. */
1939 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1940 return -EAGAIN;
1941 }
1942 return 0;
1943 }
1944 #else
1945 # define atmel_xdmac_prepare NULL
1946 #endif
1947
1948 #ifdef CONFIG_PM_SLEEP
atmel_xdmac_suspend(struct device * dev)1949 static int atmel_xdmac_suspend(struct device *dev)
1950 {
1951 struct at_xdmac *atxdmac = dev_get_drvdata(dev);
1952 struct dma_chan *chan, *_chan;
1953
1954 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1955 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1956
1957 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1958 if (at_xdmac_chan_is_cyclic(atchan)) {
1959 if (!at_xdmac_chan_is_paused(atchan))
1960 at_xdmac_device_pause(chan);
1961 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1962 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1963 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1964 }
1965 }
1966 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1967
1968 at_xdmac_off(atxdmac);
1969 clk_disable_unprepare(atxdmac->clk);
1970 return 0;
1971 }
1972
atmel_xdmac_resume(struct device * dev)1973 static int atmel_xdmac_resume(struct device *dev)
1974 {
1975 struct at_xdmac *atxdmac = dev_get_drvdata(dev);
1976 struct at_xdmac_chan *atchan;
1977 struct dma_chan *chan, *_chan;
1978 int i;
1979 int ret;
1980
1981 ret = clk_prepare_enable(atxdmac->clk);
1982 if (ret)
1983 return ret;
1984
1985 /* Clear pending interrupts. */
1986 for (i = 0; i < atxdmac->dma.chancnt; i++) {
1987 atchan = &atxdmac->chan[i];
1988 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1989 cpu_relax();
1990 }
1991
1992 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1993 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1994 atchan = to_at_xdmac_chan(chan);
1995 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1996 if (at_xdmac_chan_is_cyclic(atchan)) {
1997 if (at_xdmac_chan_is_paused(atchan))
1998 at_xdmac_device_resume(chan);
1999 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
2000 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
2001 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
2002 wmb();
2003 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
2004 }
2005 }
2006 return 0;
2007 }
2008 #endif /* CONFIG_PM_SLEEP */
2009
at_xdmac_axi_config(struct platform_device * pdev)2010 static void at_xdmac_axi_config(struct platform_device *pdev)
2011 {
2012 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2013 bool dev_m2m = false;
2014 u32 dma_requests;
2015
2016 if (!atxdmac->layout->axi_config)
2017 return; /* Not supported */
2018
2019 if (!of_property_read_u32(pdev->dev.of_node, "dma-requests",
2020 &dma_requests)) {
2021 dev_info(&pdev->dev, "controller in mem2mem mode.\n");
2022 dev_m2m = true;
2023 }
2024
2025 if (dev_m2m) {
2026 at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_M2M);
2027 at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_M2M);
2028 } else {
2029 at_xdmac_write(atxdmac, AT_XDMAC_GCFG, AT_XDMAC_GCFG_P2M);
2030 at_xdmac_write(atxdmac, AT_XDMAC_GWAC, AT_XDMAC_GWAC_P2M);
2031 }
2032 }
2033
at_xdmac_probe(struct platform_device * pdev)2034 static int at_xdmac_probe(struct platform_device *pdev)
2035 {
2036 struct at_xdmac *atxdmac;
2037 int irq, size, nr_channels, i, ret;
2038 void __iomem *base;
2039 u32 reg;
2040
2041 irq = platform_get_irq(pdev, 0);
2042 if (irq < 0)
2043 return irq;
2044
2045 base = devm_platform_ioremap_resource(pdev, 0);
2046 if (IS_ERR(base))
2047 return PTR_ERR(base);
2048
2049 /*
2050 * Read number of xdmac channels, read helper function can't be used
2051 * since atxdmac is not yet allocated and we need to know the number
2052 * of channels to do the allocation.
2053 */
2054 reg = readl_relaxed(base + AT_XDMAC_GTYPE);
2055 nr_channels = AT_XDMAC_NB_CH(reg);
2056 if (nr_channels > AT_XDMAC_MAX_CHAN) {
2057 dev_err(&pdev->dev, "invalid number of channels (%u)\n",
2058 nr_channels);
2059 return -EINVAL;
2060 }
2061
2062 size = sizeof(*atxdmac);
2063 size += nr_channels * sizeof(struct at_xdmac_chan);
2064 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2065 if (!atxdmac) {
2066 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
2067 return -ENOMEM;
2068 }
2069
2070 atxdmac->regs = base;
2071 atxdmac->irq = irq;
2072
2073 atxdmac->layout = of_device_get_match_data(&pdev->dev);
2074 if (!atxdmac->layout)
2075 return -ENODEV;
2076
2077 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
2078 if (IS_ERR(atxdmac->clk)) {
2079 dev_err(&pdev->dev, "can't get dma_clk\n");
2080 return PTR_ERR(atxdmac->clk);
2081 }
2082
2083 /* Do not use dev res to prevent races with tasklet */
2084 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
2085 if (ret) {
2086 dev_err(&pdev->dev, "can't request irq\n");
2087 return ret;
2088 }
2089
2090 ret = clk_prepare_enable(atxdmac->clk);
2091 if (ret) {
2092 dev_err(&pdev->dev, "can't prepare or enable clock\n");
2093 goto err_free_irq;
2094 }
2095
2096 atxdmac->at_xdmac_desc_pool =
2097 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
2098 sizeof(struct at_xdmac_desc), 4, 0);
2099 if (!atxdmac->at_xdmac_desc_pool) {
2100 dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
2101 ret = -ENOMEM;
2102 goto err_clk_disable;
2103 }
2104
2105 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
2106 dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
2107 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
2108 dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
2109 dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
2110 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
2111 /*
2112 * Without DMA_PRIVATE the driver is not able to allocate more than
2113 * one channel, second allocation fails in private_candidate.
2114 */
2115 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2116 atxdmac->dma.dev = &pdev->dev;
2117 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources;
2118 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources;
2119 atxdmac->dma.device_tx_status = at_xdmac_tx_status;
2120 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending;
2121 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic;
2122 atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved;
2123 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy;
2124 atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset;
2125 atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg;
2126 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg;
2127 atxdmac->dma.device_config = at_xdmac_device_config;
2128 atxdmac->dma.device_pause = at_xdmac_device_pause;
2129 atxdmac->dma.device_resume = at_xdmac_device_resume;
2130 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all;
2131 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2132 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2133 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2134 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2135
2136 /* Disable all chans and interrupts. */
2137 at_xdmac_off(atxdmac);
2138
2139 /* Init channels. */
2140 INIT_LIST_HEAD(&atxdmac->dma.channels);
2141 for (i = 0; i < nr_channels; i++) {
2142 struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2143
2144 atchan->chan.device = &atxdmac->dma;
2145 list_add_tail(&atchan->chan.device_node,
2146 &atxdmac->dma.channels);
2147
2148 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2149 atchan->mask = 1 << i;
2150
2151 spin_lock_init(&atchan->lock);
2152 INIT_LIST_HEAD(&atchan->xfers_list);
2153 INIT_LIST_HEAD(&atchan->free_descs_list);
2154 tasklet_setup(&atchan->tasklet, at_xdmac_tasklet);
2155
2156 /* Clear pending interrupts. */
2157 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2158 cpu_relax();
2159 }
2160 platform_set_drvdata(pdev, atxdmac);
2161
2162 ret = dma_async_device_register(&atxdmac->dma);
2163 if (ret) {
2164 dev_err(&pdev->dev, "fail to register DMA engine device\n");
2165 goto err_clk_disable;
2166 }
2167
2168 ret = of_dma_controller_register(pdev->dev.of_node,
2169 at_xdmac_xlate, atxdmac);
2170 if (ret) {
2171 dev_err(&pdev->dev, "could not register of dma controller\n");
2172 goto err_dma_unregister;
2173 }
2174
2175 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2176 nr_channels, atxdmac->regs);
2177
2178 at_xdmac_axi_config(pdev);
2179
2180 return 0;
2181
2182 err_dma_unregister:
2183 dma_async_device_unregister(&atxdmac->dma);
2184 err_clk_disable:
2185 clk_disable_unprepare(atxdmac->clk);
2186 err_free_irq:
2187 free_irq(atxdmac->irq, atxdmac);
2188 return ret;
2189 }
2190
at_xdmac_remove(struct platform_device * pdev)2191 static int at_xdmac_remove(struct platform_device *pdev)
2192 {
2193 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2194 int i;
2195
2196 at_xdmac_off(atxdmac);
2197 of_dma_controller_free(pdev->dev.of_node);
2198 dma_async_device_unregister(&atxdmac->dma);
2199 clk_disable_unprepare(atxdmac->clk);
2200
2201 free_irq(atxdmac->irq, atxdmac);
2202
2203 for (i = 0; i < atxdmac->dma.chancnt; i++) {
2204 struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2205
2206 tasklet_kill(&atchan->tasklet);
2207 at_xdmac_free_chan_resources(&atchan->chan);
2208 }
2209
2210 return 0;
2211 }
2212
2213 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2214 .prepare = atmel_xdmac_prepare,
2215 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2216 };
2217
2218 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2219 {
2220 .compatible = "atmel,sama5d4-dma",
2221 .data = &at_xdmac_sama5d4_layout,
2222 }, {
2223 .compatible = "microchip,sama7g5-dma",
2224 .data = &at_xdmac_sama7g5_layout,
2225 }, {
2226 /* sentinel */
2227 }
2228 };
2229 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2230
2231 static struct platform_driver at_xdmac_driver = {
2232 .probe = at_xdmac_probe,
2233 .remove = at_xdmac_remove,
2234 .driver = {
2235 .name = "at_xdmac",
2236 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids),
2237 .pm = &atmel_xdmac_dev_pm_ops,
2238 }
2239 };
2240
at_xdmac_init(void)2241 static int __init at_xdmac_init(void)
2242 {
2243 return platform_driver_register(&at_xdmac_driver);
2244 }
2245 subsys_initcall(at_xdmac_init);
2246
at_xdmac_exit(void)2247 static void __exit at_xdmac_exit(void)
2248 {
2249 platform_driver_unregister(&at_xdmac_driver);
2250 }
2251 module_exit(at_xdmac_exit);
2252
2253 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2254 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2255 MODULE_LICENSE("GPL");
2256