1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4 *
5 * Copyright (C) 2008 Atmel Corporation
6 *
7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
8 * The only Atmel DMA Controller that is not covered by this driver is the one
9 * found on AT91SAM9263.
10 */
11
12 #include <dt-bindings/dma/at91.h>
13 #include <linux/clk.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_dma.h>
24
25 #include "at_hdmac_regs.h"
26 #include "dmaengine.h"
27
28 /*
29 * Glossary
30 * --------
31 *
32 * at_hdmac : Name of the ATmel AHB DMA Controller
33 * at_dma_ / atdma : ATmel DMA controller entity related
34 * atc_ / atchan : ATmel DMA Channel entity related
35 */
36
37 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
38 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
39 |ATC_DIF(AT_DMA_MEM_IF))
40 #define ATC_DMA_BUSWIDTHS\
41 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
42 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
43 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
44 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
45
46 #define ATC_MAX_DSCR_TRIALS 10
47
48 /*
49 * Initial number of descriptors to allocate for each channel. This could
50 * be increased during dma usage.
51 */
52 static unsigned int init_nr_desc_per_channel = 64;
53 module_param(init_nr_desc_per_channel, uint, 0644);
54 MODULE_PARM_DESC(init_nr_desc_per_channel,
55 "initial descriptors per channel (default: 64)");
56
57 /**
58 * struct at_dma_platform_data - Controller configuration parameters
59 * @nr_channels: Number of channels supported by hardware (max 8)
60 * @cap_mask: dma_capability flags supported by the platform
61 */
62 struct at_dma_platform_data {
63 unsigned int nr_channels;
64 dma_cap_mask_t cap_mask;
65 };
66
67 /**
68 * struct at_dma_slave - Controller-specific information about a slave
69 * @dma_dev: required DMA master device
70 * @cfg: Platform-specific initializer for the CFG register
71 */
72 struct at_dma_slave {
73 struct device *dma_dev;
74 u32 cfg;
75 };
76
77 /* prototypes */
78 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
79 static void atc_issue_pending(struct dma_chan *chan);
80
81
82 /*----------------------------------------------------------------------*/
83
atc_get_xfer_width(dma_addr_t src,dma_addr_t dst,size_t len)84 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
85 size_t len)
86 {
87 unsigned int width;
88
89 if (!((src | dst | len) & 3))
90 width = 2;
91 else if (!((src | dst | len) & 1))
92 width = 1;
93 else
94 width = 0;
95
96 return width;
97 }
98
atc_first_active(struct at_dma_chan * atchan)99 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
100 {
101 return list_first_entry(&atchan->active_list,
102 struct at_desc, desc_node);
103 }
104
atc_first_queued(struct at_dma_chan * atchan)105 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
106 {
107 return list_first_entry(&atchan->queue,
108 struct at_desc, desc_node);
109 }
110
111 /**
112 * atc_alloc_descriptor - allocate and return an initialized descriptor
113 * @chan: the channel to allocate descriptors for
114 * @gfp_flags: GFP allocation flags
115 *
116 * Note: The ack-bit is positioned in the descriptor flag at creation time
117 * to make initial allocation more convenient. This bit will be cleared
118 * and control will be given to client at usage time (during
119 * preparation functions).
120 */
atc_alloc_descriptor(struct dma_chan * chan,gfp_t gfp_flags)121 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
122 gfp_t gfp_flags)
123 {
124 struct at_desc *desc = NULL;
125 struct at_dma *atdma = to_at_dma(chan->device);
126 dma_addr_t phys;
127
128 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
129 if (desc) {
130 INIT_LIST_HEAD(&desc->tx_list);
131 dma_async_tx_descriptor_init(&desc->txd, chan);
132 /* txd.flags will be overwritten in prep functions */
133 desc->txd.flags = DMA_CTRL_ACK;
134 desc->txd.tx_submit = atc_tx_submit;
135 desc->txd.phys = phys;
136 }
137
138 return desc;
139 }
140
141 /**
142 * atc_desc_get - get an unused descriptor from free_list
143 * @atchan: channel we want a new descriptor for
144 */
atc_desc_get(struct at_dma_chan * atchan)145 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
146 {
147 struct at_desc *desc, *_desc;
148 struct at_desc *ret = NULL;
149 unsigned long flags;
150 unsigned int i = 0;
151
152 spin_lock_irqsave(&atchan->lock, flags);
153 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
154 i++;
155 if (async_tx_test_ack(&desc->txd)) {
156 list_del(&desc->desc_node);
157 ret = desc;
158 break;
159 }
160 dev_dbg(chan2dev(&atchan->chan_common),
161 "desc %p not ACKed\n", desc);
162 }
163 spin_unlock_irqrestore(&atchan->lock, flags);
164 dev_vdbg(chan2dev(&atchan->chan_common),
165 "scanned %u descriptors on freelist\n", i);
166
167 /* no more descriptor available in initial pool: create one more */
168 if (!ret)
169 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT);
170
171 return ret;
172 }
173
174 /**
175 * atc_desc_put - move a descriptor, including any children, to the free list
176 * @atchan: channel we work on
177 * @desc: descriptor, at the head of a chain, to move to free list
178 */
atc_desc_put(struct at_dma_chan * atchan,struct at_desc * desc)179 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
180 {
181 if (desc) {
182 struct at_desc *child;
183 unsigned long flags;
184
185 spin_lock_irqsave(&atchan->lock, flags);
186 list_for_each_entry(child, &desc->tx_list, desc_node)
187 dev_vdbg(chan2dev(&atchan->chan_common),
188 "moving child desc %p to freelist\n",
189 child);
190 list_splice_init(&desc->tx_list, &atchan->free_list);
191 dev_vdbg(chan2dev(&atchan->chan_common),
192 "moving desc %p to freelist\n", desc);
193 list_add(&desc->desc_node, &atchan->free_list);
194 spin_unlock_irqrestore(&atchan->lock, flags);
195 }
196 }
197
198 /**
199 * atc_desc_chain - build chain adding a descriptor
200 * @first: address of first descriptor of the chain
201 * @prev: address of previous descriptor of the chain
202 * @desc: descriptor to queue
203 *
204 * Called from prep_* functions
205 */
atc_desc_chain(struct at_desc ** first,struct at_desc ** prev,struct at_desc * desc)206 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
207 struct at_desc *desc)
208 {
209 if (!(*first)) {
210 *first = desc;
211 } else {
212 /* inform the HW lli about chaining */
213 (*prev)->lli.dscr = desc->txd.phys;
214 /* insert the link descriptor to the LD ring */
215 list_add_tail(&desc->desc_node,
216 &(*first)->tx_list);
217 }
218 *prev = desc;
219 }
220
221 /**
222 * atc_dostart - starts the DMA engine for real
223 * @atchan: the channel we want to start
224 * @first: first descriptor in the list we want to begin with
225 *
226 * Called with atchan->lock held and bh disabled
227 */
atc_dostart(struct at_dma_chan * atchan,struct at_desc * first)228 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
229 {
230 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
231
232 /* ASSERT: channel is idle */
233 if (atc_chan_is_enabled(atchan)) {
234 dev_err(chan2dev(&atchan->chan_common),
235 "BUG: Attempted to start non-idle channel\n");
236 dev_err(chan2dev(&atchan->chan_common),
237 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
238 channel_readl(atchan, SADDR),
239 channel_readl(atchan, DADDR),
240 channel_readl(atchan, CTRLA),
241 channel_readl(atchan, CTRLB),
242 channel_readl(atchan, DSCR));
243
244 /* The tasklet will hopefully advance the queue... */
245 return;
246 }
247
248 vdbg_dump_regs(atchan);
249
250 channel_writel(atchan, SADDR, 0);
251 channel_writel(atchan, DADDR, 0);
252 channel_writel(atchan, CTRLA, 0);
253 channel_writel(atchan, CTRLB, 0);
254 channel_writel(atchan, DSCR, first->txd.phys);
255 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
256 ATC_SPIP_BOUNDARY(first->boundary));
257 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
258 ATC_DPIP_BOUNDARY(first->boundary));
259 dma_writel(atdma, CHER, atchan->mask);
260
261 vdbg_dump_regs(atchan);
262 }
263
264 /*
265 * atc_get_desc_by_cookie - get the descriptor of a cookie
266 * @atchan: the DMA channel
267 * @cookie: the cookie to get the descriptor for
268 */
atc_get_desc_by_cookie(struct at_dma_chan * atchan,dma_cookie_t cookie)269 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
270 dma_cookie_t cookie)
271 {
272 struct at_desc *desc, *_desc;
273
274 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
275 if (desc->txd.cookie == cookie)
276 return desc;
277 }
278
279 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
280 if (desc->txd.cookie == cookie)
281 return desc;
282 }
283
284 return NULL;
285 }
286
287 /**
288 * atc_calc_bytes_left - calculates the number of bytes left according to the
289 * value read from CTRLA.
290 *
291 * @current_len: the number of bytes left before reading CTRLA
292 * @ctrla: the value of CTRLA
293 */
atc_calc_bytes_left(int current_len,u32 ctrla)294 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
295 {
296 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
297 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
298
299 /*
300 * According to the datasheet, when reading the Control A Register
301 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
302 * number of transfers completed on the Source Interface.
303 * So btsize is always a number of source width transfers.
304 */
305 return current_len - (btsize << src_width);
306 }
307
308 /**
309 * atc_get_bytes_left - get the number of bytes residue for a cookie
310 * @chan: DMA channel
311 * @cookie: transaction identifier to check status of
312 */
atc_get_bytes_left(struct dma_chan * chan,dma_cookie_t cookie)313 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
314 {
315 struct at_dma_chan *atchan = to_at_dma_chan(chan);
316 struct at_desc *desc_first = atc_first_active(atchan);
317 struct at_desc *desc;
318 int ret;
319 u32 ctrla, dscr, trials;
320
321 /*
322 * If the cookie doesn't match to the currently running transfer then
323 * we can return the total length of the associated DMA transfer,
324 * because it is still queued.
325 */
326 desc = atc_get_desc_by_cookie(atchan, cookie);
327 if (desc == NULL)
328 return -EINVAL;
329 else if (desc != desc_first)
330 return desc->total_len;
331
332 /* cookie matches to the currently running transfer */
333 ret = desc_first->total_len;
334
335 if (desc_first->lli.dscr) {
336 /* hardware linked list transfer */
337
338 /*
339 * Calculate the residue by removing the length of the child
340 * descriptors already transferred from the total length.
341 * To get the current child descriptor we can use the value of
342 * the channel's DSCR register and compare it against the value
343 * of the hardware linked list structure of each child
344 * descriptor.
345 *
346 * The CTRLA register provides us with the amount of data
347 * already read from the source for the current child
348 * descriptor. So we can compute a more accurate residue by also
349 * removing the number of bytes corresponding to this amount of
350 * data.
351 *
352 * However, the DSCR and CTRLA registers cannot be read both
353 * atomically. Hence a race condition may occur: the first read
354 * register may refer to one child descriptor whereas the second
355 * read may refer to a later child descriptor in the list
356 * because of the DMA transfer progression inbetween the two
357 * reads.
358 *
359 * One solution could have been to pause the DMA transfer, read
360 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
361 * this approach presents some drawbacks:
362 * - If the DMA transfer is paused, RX overruns or TX underruns
363 * are more likey to occur depending on the system latency.
364 * Taking the USART driver as an example, it uses a cyclic DMA
365 * transfer to read data from the Receive Holding Register
366 * (RHR) to avoid RX overruns since the RHR is not protected
367 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
368 * to compute the residue would break the USART driver design.
369 * - The atc_pause() function masks interrupts but we'd rather
370 * avoid to do so for system latency purpose.
371 *
372 * Then we'd rather use another solution: the DSCR is read a
373 * first time, the CTRLA is read in turn, next the DSCR is read
374 * a second time. If the two consecutive read values of the DSCR
375 * are the same then we assume both refers to the very same
376 * child descriptor as well as the CTRLA value read inbetween
377 * does. For cyclic tranfers, the assumption is that a full loop
378 * is "not so fast".
379 * If the two DSCR values are different, we read again the CTRLA
380 * then the DSCR till two consecutive read values from DSCR are
381 * equal or till the maxium trials is reach.
382 * This algorithm is very unlikely not to find a stable value for
383 * DSCR.
384 */
385
386 dscr = channel_readl(atchan, DSCR);
387 rmb(); /* ensure DSCR is read before CTRLA */
388 ctrla = channel_readl(atchan, CTRLA);
389 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
390 u32 new_dscr;
391
392 rmb(); /* ensure DSCR is read after CTRLA */
393 new_dscr = channel_readl(atchan, DSCR);
394
395 /*
396 * If the DSCR register value has not changed inside the
397 * DMA controller since the previous read, we assume
398 * that both the dscr and ctrla values refers to the
399 * very same descriptor.
400 */
401 if (likely(new_dscr == dscr))
402 break;
403
404 /*
405 * DSCR has changed inside the DMA controller, so the
406 * previouly read value of CTRLA may refer to an already
407 * processed descriptor hence could be outdated.
408 * We need to update ctrla to match the current
409 * descriptor.
410 */
411 dscr = new_dscr;
412 rmb(); /* ensure DSCR is read before CTRLA */
413 ctrla = channel_readl(atchan, CTRLA);
414 }
415 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
416 return -ETIMEDOUT;
417
418 /* for the first descriptor we can be more accurate */
419 if (desc_first->lli.dscr == dscr)
420 return atc_calc_bytes_left(ret, ctrla);
421
422 ret -= desc_first->len;
423 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
424 if (desc->lli.dscr == dscr)
425 break;
426
427 ret -= desc->len;
428 }
429
430 /*
431 * For the current descriptor in the chain we can calculate
432 * the remaining bytes using the channel's register.
433 */
434 ret = atc_calc_bytes_left(ret, ctrla);
435 } else {
436 /* single transfer */
437 ctrla = channel_readl(atchan, CTRLA);
438 ret = atc_calc_bytes_left(ret, ctrla);
439 }
440
441 return ret;
442 }
443
444 /**
445 * atc_chain_complete - finish work for one transaction chain
446 * @atchan: channel we work on
447 * @desc: descriptor at the head of the chain we want do complete
448 */
449 static void
atc_chain_complete(struct at_dma_chan * atchan,struct at_desc * desc)450 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
451 {
452 struct dma_async_tx_descriptor *txd = &desc->txd;
453 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
454 unsigned long flags;
455
456 dev_vdbg(chan2dev(&atchan->chan_common),
457 "descriptor %u complete\n", txd->cookie);
458
459 spin_lock_irqsave(&atchan->lock, flags);
460
461 /* mark the descriptor as complete for non cyclic cases only */
462 if (!atc_chan_is_cyclic(atchan))
463 dma_cookie_complete(txd);
464
465 /* If the transfer was a memset, free our temporary buffer */
466 if (desc->memset_buffer) {
467 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
468 desc->memset_paddr);
469 desc->memset_buffer = false;
470 }
471
472 /* move children to free_list */
473 list_splice_init(&desc->tx_list, &atchan->free_list);
474 /* move myself to free_list */
475 list_move(&desc->desc_node, &atchan->free_list);
476
477 spin_unlock_irqrestore(&atchan->lock, flags);
478
479 dma_descriptor_unmap(txd);
480 /* for cyclic transfers,
481 * no need to replay callback function while stopping */
482 if (!atc_chan_is_cyclic(atchan))
483 dmaengine_desc_get_callback_invoke(txd, NULL);
484
485 dma_run_dependencies(txd);
486 }
487
488 /**
489 * atc_complete_all - finish work for all transactions
490 * @atchan: channel to complete transactions for
491 *
492 * Eventually submit queued descriptors if any
493 *
494 * Assume channel is idle while calling this function
495 * Called with atchan->lock held and bh disabled
496 */
atc_complete_all(struct at_dma_chan * atchan)497 static void atc_complete_all(struct at_dma_chan *atchan)
498 {
499 struct at_desc *desc, *_desc;
500 LIST_HEAD(list);
501 unsigned long flags;
502
503 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
504
505 spin_lock_irqsave(&atchan->lock, flags);
506
507 /*
508 * Submit queued descriptors ASAP, i.e. before we go through
509 * the completed ones.
510 */
511 if (!list_empty(&atchan->queue))
512 atc_dostart(atchan, atc_first_queued(atchan));
513 /* empty active_list now it is completed */
514 list_splice_init(&atchan->active_list, &list);
515 /* empty queue list by moving descriptors (if any) to active_list */
516 list_splice_init(&atchan->queue, &atchan->active_list);
517
518 spin_unlock_irqrestore(&atchan->lock, flags);
519
520 list_for_each_entry_safe(desc, _desc, &list, desc_node)
521 atc_chain_complete(atchan, desc);
522 }
523
524 /**
525 * atc_advance_work - at the end of a transaction, move forward
526 * @atchan: channel where the transaction ended
527 */
atc_advance_work(struct at_dma_chan * atchan)528 static void atc_advance_work(struct at_dma_chan *atchan)
529 {
530 unsigned long flags;
531 int ret;
532
533 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
534
535 spin_lock_irqsave(&atchan->lock, flags);
536 ret = atc_chan_is_enabled(atchan);
537 spin_unlock_irqrestore(&atchan->lock, flags);
538 if (ret)
539 return;
540
541 if (list_empty(&atchan->active_list) ||
542 list_is_singular(&atchan->active_list))
543 return atc_complete_all(atchan);
544
545 atc_chain_complete(atchan, atc_first_active(atchan));
546
547 /* advance work */
548 spin_lock_irqsave(&atchan->lock, flags);
549 atc_dostart(atchan, atc_first_active(atchan));
550 spin_unlock_irqrestore(&atchan->lock, flags);
551 }
552
553
554 /**
555 * atc_handle_error - handle errors reported by DMA controller
556 * @atchan: channel where error occurs
557 */
atc_handle_error(struct at_dma_chan * atchan)558 static void atc_handle_error(struct at_dma_chan *atchan)
559 {
560 struct at_desc *bad_desc;
561 struct at_desc *child;
562 unsigned long flags;
563
564 spin_lock_irqsave(&atchan->lock, flags);
565 /*
566 * The descriptor currently at the head of the active list is
567 * broked. Since we don't have any way to report errors, we'll
568 * just have to scream loudly and try to carry on.
569 */
570 bad_desc = atc_first_active(atchan);
571 list_del_init(&bad_desc->desc_node);
572
573 /* As we are stopped, take advantage to push queued descriptors
574 * in active_list */
575 list_splice_init(&atchan->queue, atchan->active_list.prev);
576
577 /* Try to restart the controller */
578 if (!list_empty(&atchan->active_list))
579 atc_dostart(atchan, atc_first_active(atchan));
580
581 /*
582 * KERN_CRITICAL may seem harsh, but since this only happens
583 * when someone submits a bad physical address in a
584 * descriptor, we should consider ourselves lucky that the
585 * controller flagged an error instead of scribbling over
586 * random memory locations.
587 */
588 dev_crit(chan2dev(&atchan->chan_common),
589 "Bad descriptor submitted for DMA!\n");
590 dev_crit(chan2dev(&atchan->chan_common),
591 " cookie: %d\n", bad_desc->txd.cookie);
592 atc_dump_lli(atchan, &bad_desc->lli);
593 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
594 atc_dump_lli(atchan, &child->lli);
595
596 spin_unlock_irqrestore(&atchan->lock, flags);
597
598 /* Pretend the descriptor completed successfully */
599 atc_chain_complete(atchan, bad_desc);
600 }
601
602 /**
603 * atc_handle_cyclic - at the end of a period, run callback function
604 * @atchan: channel used for cyclic operations
605 */
atc_handle_cyclic(struct at_dma_chan * atchan)606 static void atc_handle_cyclic(struct at_dma_chan *atchan)
607 {
608 struct at_desc *first = atc_first_active(atchan);
609 struct dma_async_tx_descriptor *txd = &first->txd;
610
611 dev_vdbg(chan2dev(&atchan->chan_common),
612 "new cyclic period llp 0x%08x\n",
613 channel_readl(atchan, DSCR));
614
615 dmaengine_desc_get_callback_invoke(txd, NULL);
616 }
617
618 /*-- IRQ & Tasklet ---------------------------------------------------*/
619
atc_tasklet(struct tasklet_struct * t)620 static void atc_tasklet(struct tasklet_struct *t)
621 {
622 struct at_dma_chan *atchan = from_tasklet(atchan, t, tasklet);
623
624 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
625 return atc_handle_error(atchan);
626
627 if (atc_chan_is_cyclic(atchan))
628 return atc_handle_cyclic(atchan);
629
630 atc_advance_work(atchan);
631 }
632
at_dma_interrupt(int irq,void * dev_id)633 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
634 {
635 struct at_dma *atdma = (struct at_dma *)dev_id;
636 struct at_dma_chan *atchan;
637 int i;
638 u32 status, pending, imr;
639 int ret = IRQ_NONE;
640
641 do {
642 imr = dma_readl(atdma, EBCIMR);
643 status = dma_readl(atdma, EBCISR);
644 pending = status & imr;
645
646 if (!pending)
647 break;
648
649 dev_vdbg(atdma->dma_common.dev,
650 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
651 status, imr, pending);
652
653 for (i = 0; i < atdma->dma_common.chancnt; i++) {
654 atchan = &atdma->chan[i];
655 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
656 if (pending & AT_DMA_ERR(i)) {
657 /* Disable channel on AHB error */
658 dma_writel(atdma, CHDR,
659 AT_DMA_RES(i) | atchan->mask);
660 /* Give information to tasklet */
661 set_bit(ATC_IS_ERROR, &atchan->status);
662 }
663 tasklet_schedule(&atchan->tasklet);
664 ret = IRQ_HANDLED;
665 }
666 }
667
668 } while (pending);
669
670 return ret;
671 }
672
673
674 /*-- DMA Engine API --------------------------------------------------*/
675
676 /**
677 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
678 * @tx: descriptor at the head of the transaction chain
679 *
680 * Queue chain if DMA engine is working already
681 *
682 * Cookie increment and adding to active_list or queue must be atomic
683 */
atc_tx_submit(struct dma_async_tx_descriptor * tx)684 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
685 {
686 struct at_desc *desc = txd_to_at_desc(tx);
687 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
688 dma_cookie_t cookie;
689 unsigned long flags;
690
691 spin_lock_irqsave(&atchan->lock, flags);
692 cookie = dma_cookie_assign(tx);
693
694 if (list_empty(&atchan->active_list)) {
695 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
696 desc->txd.cookie);
697 atc_dostart(atchan, desc);
698 list_add_tail(&desc->desc_node, &atchan->active_list);
699 } else {
700 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
701 desc->txd.cookie);
702 list_add_tail(&desc->desc_node, &atchan->queue);
703 }
704
705 spin_unlock_irqrestore(&atchan->lock, flags);
706
707 return cookie;
708 }
709
710 /**
711 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
712 * @chan: the channel to prepare operation on
713 * @xt: Interleaved transfer template
714 * @flags: tx descriptor status flags
715 */
716 static struct dma_async_tx_descriptor *
atc_prep_dma_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)717 atc_prep_dma_interleaved(struct dma_chan *chan,
718 struct dma_interleaved_template *xt,
719 unsigned long flags)
720 {
721 struct at_dma_chan *atchan = to_at_dma_chan(chan);
722 struct data_chunk *first;
723 struct at_desc *desc = NULL;
724 size_t xfer_count;
725 unsigned int dwidth;
726 u32 ctrla;
727 u32 ctrlb;
728 size_t len = 0;
729 int i;
730
731 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
732 return NULL;
733
734 first = xt->sgl;
735
736 dev_info(chan2dev(chan),
737 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
738 __func__, &xt->src_start, &xt->dst_start, xt->numf,
739 xt->frame_size, flags);
740
741 /*
742 * The controller can only "skip" X bytes every Y bytes, so we
743 * need to make sure we are given a template that fit that
744 * description, ie a template with chunks that always have the
745 * same size, with the same ICGs.
746 */
747 for (i = 0; i < xt->frame_size; i++) {
748 struct data_chunk *chunk = xt->sgl + i;
749
750 if ((chunk->size != xt->sgl->size) ||
751 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
752 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
753 dev_err(chan2dev(chan),
754 "%s: the controller can transfer only identical chunks\n",
755 __func__);
756 return NULL;
757 }
758
759 len += chunk->size;
760 }
761
762 dwidth = atc_get_xfer_width(xt->src_start,
763 xt->dst_start, len);
764
765 xfer_count = len >> dwidth;
766 if (xfer_count > ATC_BTSIZE_MAX) {
767 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
768 return NULL;
769 }
770
771 ctrla = ATC_SRC_WIDTH(dwidth) |
772 ATC_DST_WIDTH(dwidth);
773
774 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
775 | ATC_SRC_ADDR_MODE_INCR
776 | ATC_DST_ADDR_MODE_INCR
777 | ATC_SRC_PIP
778 | ATC_DST_PIP
779 | ATC_FC_MEM2MEM;
780
781 /* create the transfer */
782 desc = atc_desc_get(atchan);
783 if (!desc) {
784 dev_err(chan2dev(chan),
785 "%s: couldn't allocate our descriptor\n", __func__);
786 return NULL;
787 }
788
789 desc->lli.saddr = xt->src_start;
790 desc->lli.daddr = xt->dst_start;
791 desc->lli.ctrla = ctrla | xfer_count;
792 desc->lli.ctrlb = ctrlb;
793
794 desc->boundary = first->size >> dwidth;
795 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
796 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
797
798 desc->txd.cookie = -EBUSY;
799 desc->total_len = desc->len = len;
800
801 /* set end-of-link to the last link descriptor of list*/
802 set_desc_eol(desc);
803
804 desc->txd.flags = flags; /* client is in control of this ack */
805
806 return &desc->txd;
807 }
808
809 /**
810 * atc_prep_dma_memcpy - prepare a memcpy operation
811 * @chan: the channel to prepare operation on
812 * @dest: operation virtual destination address
813 * @src: operation virtual source address
814 * @len: operation length
815 * @flags: tx descriptor status flags
816 */
817 static struct dma_async_tx_descriptor *
atc_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)818 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
819 size_t len, unsigned long flags)
820 {
821 struct at_dma_chan *atchan = to_at_dma_chan(chan);
822 struct at_desc *desc = NULL;
823 struct at_desc *first = NULL;
824 struct at_desc *prev = NULL;
825 size_t xfer_count;
826 size_t offset;
827 unsigned int src_width;
828 unsigned int dst_width;
829 u32 ctrla;
830 u32 ctrlb;
831
832 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
833 &dest, &src, len, flags);
834
835 if (unlikely(!len)) {
836 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
837 return NULL;
838 }
839
840 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
841 | ATC_SRC_ADDR_MODE_INCR
842 | ATC_DST_ADDR_MODE_INCR
843 | ATC_FC_MEM2MEM;
844
845 /*
846 * We can be a lot more clever here, but this should take care
847 * of the most common optimization.
848 */
849 src_width = dst_width = atc_get_xfer_width(src, dest, len);
850
851 ctrla = ATC_SRC_WIDTH(src_width) |
852 ATC_DST_WIDTH(dst_width);
853
854 for (offset = 0; offset < len; offset += xfer_count << src_width) {
855 xfer_count = min_t(size_t, (len - offset) >> src_width,
856 ATC_BTSIZE_MAX);
857
858 desc = atc_desc_get(atchan);
859 if (!desc)
860 goto err_desc_get;
861
862 desc->lli.saddr = src + offset;
863 desc->lli.daddr = dest + offset;
864 desc->lli.ctrla = ctrla | xfer_count;
865 desc->lli.ctrlb = ctrlb;
866
867 desc->txd.cookie = 0;
868 desc->len = xfer_count << src_width;
869
870 atc_desc_chain(&first, &prev, desc);
871 }
872
873 /* First descriptor of the chain embedds additional information */
874 first->txd.cookie = -EBUSY;
875 first->total_len = len;
876
877 /* set end-of-link to the last link descriptor of list*/
878 set_desc_eol(desc);
879
880 first->txd.flags = flags; /* client is in control of this ack */
881
882 return &first->txd;
883
884 err_desc_get:
885 atc_desc_put(atchan, first);
886 return NULL;
887 }
888
atc_create_memset_desc(struct dma_chan * chan,dma_addr_t psrc,dma_addr_t pdst,size_t len)889 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
890 dma_addr_t psrc,
891 dma_addr_t pdst,
892 size_t len)
893 {
894 struct at_dma_chan *atchan = to_at_dma_chan(chan);
895 struct at_desc *desc;
896 size_t xfer_count;
897
898 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
899 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
900 ATC_SRC_ADDR_MODE_FIXED |
901 ATC_DST_ADDR_MODE_INCR |
902 ATC_FC_MEM2MEM;
903
904 xfer_count = len >> 2;
905 if (xfer_count > ATC_BTSIZE_MAX) {
906 dev_err(chan2dev(chan), "%s: buffer is too big\n",
907 __func__);
908 return NULL;
909 }
910
911 desc = atc_desc_get(atchan);
912 if (!desc) {
913 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
914 __func__);
915 return NULL;
916 }
917
918 desc->lli.saddr = psrc;
919 desc->lli.daddr = pdst;
920 desc->lli.ctrla = ctrla | xfer_count;
921 desc->lli.ctrlb = ctrlb;
922
923 desc->txd.cookie = 0;
924 desc->len = len;
925
926 return desc;
927 }
928
929 /**
930 * atc_prep_dma_memset - prepare a memcpy operation
931 * @chan: the channel to prepare operation on
932 * @dest: operation virtual destination address
933 * @value: value to set memory buffer to
934 * @len: operation length
935 * @flags: tx descriptor status flags
936 */
937 static struct dma_async_tx_descriptor *
atc_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)938 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
939 size_t len, unsigned long flags)
940 {
941 struct at_dma *atdma = to_at_dma(chan->device);
942 struct at_desc *desc;
943 void __iomem *vaddr;
944 dma_addr_t paddr;
945
946 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
947 &dest, value, len, flags);
948
949 if (unlikely(!len)) {
950 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
951 return NULL;
952 }
953
954 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
955 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
956 __func__);
957 return NULL;
958 }
959
960 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
961 if (!vaddr) {
962 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
963 __func__);
964 return NULL;
965 }
966 *(u32*)vaddr = value;
967
968 desc = atc_create_memset_desc(chan, paddr, dest, len);
969 if (!desc) {
970 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
971 __func__);
972 goto err_free_buffer;
973 }
974
975 desc->memset_paddr = paddr;
976 desc->memset_vaddr = vaddr;
977 desc->memset_buffer = true;
978
979 desc->txd.cookie = -EBUSY;
980 desc->total_len = len;
981
982 /* set end-of-link on the descriptor */
983 set_desc_eol(desc);
984
985 desc->txd.flags = flags;
986
987 return &desc->txd;
988
989 err_free_buffer:
990 dma_pool_free(atdma->memset_pool, vaddr, paddr);
991 return NULL;
992 }
993
994 static struct dma_async_tx_descriptor *
atc_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)995 atc_prep_dma_memset_sg(struct dma_chan *chan,
996 struct scatterlist *sgl,
997 unsigned int sg_len, int value,
998 unsigned long flags)
999 {
1000 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1001 struct at_dma *atdma = to_at_dma(chan->device);
1002 struct at_desc *desc = NULL, *first = NULL, *prev = NULL;
1003 struct scatterlist *sg;
1004 void __iomem *vaddr;
1005 dma_addr_t paddr;
1006 size_t total_len = 0;
1007 int i;
1008
1009 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1010 value, sg_len, flags);
1011
1012 if (unlikely(!sgl || !sg_len)) {
1013 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1014 __func__);
1015 return NULL;
1016 }
1017
1018 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1019 if (!vaddr) {
1020 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1021 __func__);
1022 return NULL;
1023 }
1024 *(u32*)vaddr = value;
1025
1026 for_each_sg(sgl, sg, sg_len, i) {
1027 dma_addr_t dest = sg_dma_address(sg);
1028 size_t len = sg_dma_len(sg);
1029
1030 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1031 __func__, &dest, len);
1032
1033 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1034 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1035 __func__);
1036 goto err_put_desc;
1037 }
1038
1039 desc = atc_create_memset_desc(chan, paddr, dest, len);
1040 if (!desc)
1041 goto err_put_desc;
1042
1043 atc_desc_chain(&first, &prev, desc);
1044
1045 total_len += len;
1046 }
1047
1048 /*
1049 * Only set the buffer pointers on the last descriptor to
1050 * avoid free'ing while we have our transfer still going
1051 */
1052 desc->memset_paddr = paddr;
1053 desc->memset_vaddr = vaddr;
1054 desc->memset_buffer = true;
1055
1056 first->txd.cookie = -EBUSY;
1057 first->total_len = total_len;
1058
1059 /* set end-of-link on the descriptor */
1060 set_desc_eol(desc);
1061
1062 first->txd.flags = flags;
1063
1064 return &first->txd;
1065
1066 err_put_desc:
1067 atc_desc_put(atchan, first);
1068 return NULL;
1069 }
1070
1071 /**
1072 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1073 * @chan: DMA channel
1074 * @sgl: scatterlist to transfer to/from
1075 * @sg_len: number of entries in @scatterlist
1076 * @direction: DMA direction
1077 * @flags: tx descriptor status flags
1078 * @context: transaction context (ignored)
1079 */
1080 static struct dma_async_tx_descriptor *
atc_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1081 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1082 unsigned int sg_len, enum dma_transfer_direction direction,
1083 unsigned long flags, void *context)
1084 {
1085 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1086 struct at_dma_slave *atslave = chan->private;
1087 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1088 struct at_desc *first = NULL;
1089 struct at_desc *prev = NULL;
1090 u32 ctrla;
1091 u32 ctrlb;
1092 dma_addr_t reg;
1093 unsigned int reg_width;
1094 unsigned int mem_width;
1095 unsigned int i;
1096 struct scatterlist *sg;
1097 size_t total_len = 0;
1098
1099 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1100 sg_len,
1101 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1102 flags);
1103
1104 if (unlikely(!atslave || !sg_len)) {
1105 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1106 return NULL;
1107 }
1108
1109 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1110 | ATC_DCSIZE(sconfig->dst_maxburst);
1111 ctrlb = ATC_IEN;
1112
1113 switch (direction) {
1114 case DMA_MEM_TO_DEV:
1115 reg_width = convert_buswidth(sconfig->dst_addr_width);
1116 ctrla |= ATC_DST_WIDTH(reg_width);
1117 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1118 | ATC_SRC_ADDR_MODE_INCR
1119 | ATC_FC_MEM2PER
1120 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1121 reg = sconfig->dst_addr;
1122 for_each_sg(sgl, sg, sg_len, i) {
1123 struct at_desc *desc;
1124 u32 len;
1125 u32 mem;
1126
1127 desc = atc_desc_get(atchan);
1128 if (!desc)
1129 goto err_desc_get;
1130
1131 mem = sg_dma_address(sg);
1132 len = sg_dma_len(sg);
1133 if (unlikely(!len)) {
1134 dev_dbg(chan2dev(chan),
1135 "prep_slave_sg: sg(%d) data length is zero\n", i);
1136 goto err;
1137 }
1138 mem_width = 2;
1139 if (unlikely(mem & 3 || len & 3))
1140 mem_width = 0;
1141
1142 desc->lli.saddr = mem;
1143 desc->lli.daddr = reg;
1144 desc->lli.ctrla = ctrla
1145 | ATC_SRC_WIDTH(mem_width)
1146 | len >> mem_width;
1147 desc->lli.ctrlb = ctrlb;
1148 desc->len = len;
1149
1150 atc_desc_chain(&first, &prev, desc);
1151 total_len += len;
1152 }
1153 break;
1154 case DMA_DEV_TO_MEM:
1155 reg_width = convert_buswidth(sconfig->src_addr_width);
1156 ctrla |= ATC_SRC_WIDTH(reg_width);
1157 ctrlb |= ATC_DST_ADDR_MODE_INCR
1158 | ATC_SRC_ADDR_MODE_FIXED
1159 | ATC_FC_PER2MEM
1160 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1161
1162 reg = sconfig->src_addr;
1163 for_each_sg(sgl, sg, sg_len, i) {
1164 struct at_desc *desc;
1165 u32 len;
1166 u32 mem;
1167
1168 desc = atc_desc_get(atchan);
1169 if (!desc)
1170 goto err_desc_get;
1171
1172 mem = sg_dma_address(sg);
1173 len = sg_dma_len(sg);
1174 if (unlikely(!len)) {
1175 dev_dbg(chan2dev(chan),
1176 "prep_slave_sg: sg(%d) data length is zero\n", i);
1177 goto err;
1178 }
1179 mem_width = 2;
1180 if (unlikely(mem & 3 || len & 3))
1181 mem_width = 0;
1182
1183 desc->lli.saddr = reg;
1184 desc->lli.daddr = mem;
1185 desc->lli.ctrla = ctrla
1186 | ATC_DST_WIDTH(mem_width)
1187 | len >> reg_width;
1188 desc->lli.ctrlb = ctrlb;
1189 desc->len = len;
1190
1191 atc_desc_chain(&first, &prev, desc);
1192 total_len += len;
1193 }
1194 break;
1195 default:
1196 return NULL;
1197 }
1198
1199 /* set end-of-link to the last link descriptor of list*/
1200 set_desc_eol(prev);
1201
1202 /* First descriptor of the chain embedds additional information */
1203 first->txd.cookie = -EBUSY;
1204 first->total_len = total_len;
1205
1206 /* first link descriptor of list is responsible of flags */
1207 first->txd.flags = flags; /* client is in control of this ack */
1208
1209 return &first->txd;
1210
1211 err_desc_get:
1212 dev_err(chan2dev(chan), "not enough descriptors available\n");
1213 err:
1214 atc_desc_put(atchan, first);
1215 return NULL;
1216 }
1217
1218 /*
1219 * atc_dma_cyclic_check_values
1220 * Check for too big/unaligned periods and unaligned DMA buffer
1221 */
1222 static int
atc_dma_cyclic_check_values(unsigned int reg_width,dma_addr_t buf_addr,size_t period_len)1223 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1224 size_t period_len)
1225 {
1226 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1227 goto err_out;
1228 if (unlikely(period_len & ((1 << reg_width) - 1)))
1229 goto err_out;
1230 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1231 goto err_out;
1232
1233 return 0;
1234
1235 err_out:
1236 return -EINVAL;
1237 }
1238
1239 /*
1240 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1241 */
1242 static int
atc_dma_cyclic_fill_desc(struct dma_chan * chan,struct at_desc * desc,unsigned int period_index,dma_addr_t buf_addr,unsigned int reg_width,size_t period_len,enum dma_transfer_direction direction)1243 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1244 unsigned int period_index, dma_addr_t buf_addr,
1245 unsigned int reg_width, size_t period_len,
1246 enum dma_transfer_direction direction)
1247 {
1248 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1249 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1250 u32 ctrla;
1251
1252 /* prepare common CRTLA value */
1253 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1254 | ATC_DCSIZE(sconfig->dst_maxburst)
1255 | ATC_DST_WIDTH(reg_width)
1256 | ATC_SRC_WIDTH(reg_width)
1257 | period_len >> reg_width;
1258
1259 switch (direction) {
1260 case DMA_MEM_TO_DEV:
1261 desc->lli.saddr = buf_addr + (period_len * period_index);
1262 desc->lli.daddr = sconfig->dst_addr;
1263 desc->lli.ctrla = ctrla;
1264 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1265 | ATC_SRC_ADDR_MODE_INCR
1266 | ATC_FC_MEM2PER
1267 | ATC_SIF(atchan->mem_if)
1268 | ATC_DIF(atchan->per_if);
1269 desc->len = period_len;
1270 break;
1271
1272 case DMA_DEV_TO_MEM:
1273 desc->lli.saddr = sconfig->src_addr;
1274 desc->lli.daddr = buf_addr + (period_len * period_index);
1275 desc->lli.ctrla = ctrla;
1276 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1277 | ATC_SRC_ADDR_MODE_FIXED
1278 | ATC_FC_PER2MEM
1279 | ATC_SIF(atchan->per_if)
1280 | ATC_DIF(atchan->mem_if);
1281 desc->len = period_len;
1282 break;
1283
1284 default:
1285 return -EINVAL;
1286 }
1287
1288 return 0;
1289 }
1290
1291 /**
1292 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1293 * @chan: the DMA channel to prepare
1294 * @buf_addr: physical DMA address where the buffer starts
1295 * @buf_len: total number of bytes for the entire buffer
1296 * @period_len: number of bytes for each period
1297 * @direction: transfer direction, to or from device
1298 * @flags: tx descriptor status flags
1299 */
1300 static struct dma_async_tx_descriptor *
atc_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1301 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1302 size_t period_len, enum dma_transfer_direction direction,
1303 unsigned long flags)
1304 {
1305 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1306 struct at_dma_slave *atslave = chan->private;
1307 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1308 struct at_desc *first = NULL;
1309 struct at_desc *prev = NULL;
1310 unsigned long was_cyclic;
1311 unsigned int reg_width;
1312 unsigned int periods = buf_len / period_len;
1313 unsigned int i;
1314
1315 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1316 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1317 &buf_addr,
1318 periods, buf_len, period_len);
1319
1320 if (unlikely(!atslave || !buf_len || !period_len)) {
1321 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1322 return NULL;
1323 }
1324
1325 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1326 if (was_cyclic) {
1327 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1328 return NULL;
1329 }
1330
1331 if (unlikely(!is_slave_direction(direction)))
1332 goto err_out;
1333
1334 if (direction == DMA_MEM_TO_DEV)
1335 reg_width = convert_buswidth(sconfig->dst_addr_width);
1336 else
1337 reg_width = convert_buswidth(sconfig->src_addr_width);
1338
1339 /* Check for too big/unaligned periods and unaligned DMA buffer */
1340 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1341 goto err_out;
1342
1343 /* build cyclic linked list */
1344 for (i = 0; i < periods; i++) {
1345 struct at_desc *desc;
1346
1347 desc = atc_desc_get(atchan);
1348 if (!desc)
1349 goto err_desc_get;
1350
1351 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1352 reg_width, period_len, direction))
1353 goto err_desc_get;
1354
1355 atc_desc_chain(&first, &prev, desc);
1356 }
1357
1358 /* lets make a cyclic list */
1359 prev->lli.dscr = first->txd.phys;
1360
1361 /* First descriptor of the chain embedds additional information */
1362 first->txd.cookie = -EBUSY;
1363 first->total_len = buf_len;
1364
1365 return &first->txd;
1366
1367 err_desc_get:
1368 dev_err(chan2dev(chan), "not enough descriptors available\n");
1369 atc_desc_put(atchan, first);
1370 err_out:
1371 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1372 return NULL;
1373 }
1374
atc_config(struct dma_chan * chan,struct dma_slave_config * sconfig)1375 static int atc_config(struct dma_chan *chan,
1376 struct dma_slave_config *sconfig)
1377 {
1378 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1379
1380 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1381
1382 /* Check if it is chan is configured for slave transfers */
1383 if (!chan->private)
1384 return -EINVAL;
1385
1386 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1387
1388 convert_burst(&atchan->dma_sconfig.src_maxburst);
1389 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1390
1391 return 0;
1392 }
1393
atc_pause(struct dma_chan * chan)1394 static int atc_pause(struct dma_chan *chan)
1395 {
1396 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1397 struct at_dma *atdma = to_at_dma(chan->device);
1398 int chan_id = atchan->chan_common.chan_id;
1399 unsigned long flags;
1400
1401 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1402
1403 spin_lock_irqsave(&atchan->lock, flags);
1404
1405 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1406 set_bit(ATC_IS_PAUSED, &atchan->status);
1407
1408 spin_unlock_irqrestore(&atchan->lock, flags);
1409
1410 return 0;
1411 }
1412
atc_resume(struct dma_chan * chan)1413 static int atc_resume(struct dma_chan *chan)
1414 {
1415 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1416 struct at_dma *atdma = to_at_dma(chan->device);
1417 int chan_id = atchan->chan_common.chan_id;
1418 unsigned long flags;
1419
1420 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1421
1422 if (!atc_chan_is_paused(atchan))
1423 return 0;
1424
1425 spin_lock_irqsave(&atchan->lock, flags);
1426
1427 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1428 clear_bit(ATC_IS_PAUSED, &atchan->status);
1429
1430 spin_unlock_irqrestore(&atchan->lock, flags);
1431
1432 return 0;
1433 }
1434
atc_terminate_all(struct dma_chan * chan)1435 static int atc_terminate_all(struct dma_chan *chan)
1436 {
1437 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1438 struct at_dma *atdma = to_at_dma(chan->device);
1439 int chan_id = atchan->chan_common.chan_id;
1440 struct at_desc *desc, *_desc;
1441 unsigned long flags;
1442
1443 LIST_HEAD(list);
1444
1445 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1446
1447 /*
1448 * This is only called when something went wrong elsewhere, so
1449 * we don't really care about the data. Just disable the
1450 * channel. We still have to poll the channel enable bit due
1451 * to AHB/HSB limitations.
1452 */
1453 spin_lock_irqsave(&atchan->lock, flags);
1454
1455 /* disabling channel: must also remove suspend state */
1456 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1457
1458 /* confirm that this channel is disabled */
1459 while (dma_readl(atdma, CHSR) & atchan->mask)
1460 cpu_relax();
1461
1462 /* active_list entries will end up before queued entries */
1463 list_splice_init(&atchan->queue, &list);
1464 list_splice_init(&atchan->active_list, &list);
1465
1466 spin_unlock_irqrestore(&atchan->lock, flags);
1467
1468 /* Flush all pending and queued descriptors */
1469 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1470 atc_chain_complete(atchan, desc);
1471
1472 clear_bit(ATC_IS_PAUSED, &atchan->status);
1473 /* if channel dedicated to cyclic operations, free it */
1474 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1475
1476 return 0;
1477 }
1478
1479 /**
1480 * atc_tx_status - poll for transaction completion
1481 * @chan: DMA channel
1482 * @cookie: transaction identifier to check status of
1483 * @txstate: if not %NULL updated with transaction state
1484 *
1485 * If @txstate is passed in, upon return it reflect the driver
1486 * internal state and can be used with dma_async_is_complete() to check
1487 * the status of multiple cookies without re-checking hardware state.
1488 */
1489 static enum dma_status
atc_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1490 atc_tx_status(struct dma_chan *chan,
1491 dma_cookie_t cookie,
1492 struct dma_tx_state *txstate)
1493 {
1494 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1495 unsigned long flags;
1496 enum dma_status ret;
1497 int bytes = 0;
1498
1499 ret = dma_cookie_status(chan, cookie, txstate);
1500 if (ret == DMA_COMPLETE)
1501 return ret;
1502 /*
1503 * There's no point calculating the residue if there's
1504 * no txstate to store the value.
1505 */
1506 if (!txstate)
1507 return DMA_ERROR;
1508
1509 spin_lock_irqsave(&atchan->lock, flags);
1510
1511 /* Get number of bytes left in the active transactions */
1512 bytes = atc_get_bytes_left(chan, cookie);
1513
1514 spin_unlock_irqrestore(&atchan->lock, flags);
1515
1516 if (unlikely(bytes < 0)) {
1517 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1518 return DMA_ERROR;
1519 } else {
1520 dma_set_residue(txstate, bytes);
1521 }
1522
1523 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1524 ret, cookie, bytes);
1525
1526 return ret;
1527 }
1528
1529 /**
1530 * atc_issue_pending - try to finish work
1531 * @chan: target DMA channel
1532 */
atc_issue_pending(struct dma_chan * chan)1533 static void atc_issue_pending(struct dma_chan *chan)
1534 {
1535 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1536
1537 dev_vdbg(chan2dev(chan), "issue_pending\n");
1538
1539 /* Not needed for cyclic transfers */
1540 if (atc_chan_is_cyclic(atchan))
1541 return;
1542
1543 atc_advance_work(atchan);
1544 }
1545
1546 /**
1547 * atc_alloc_chan_resources - allocate resources for DMA channel
1548 * @chan: allocate descriptor resources for this channel
1549 *
1550 * return - the number of allocated descriptors
1551 */
atc_alloc_chan_resources(struct dma_chan * chan)1552 static int atc_alloc_chan_resources(struct dma_chan *chan)
1553 {
1554 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1555 struct at_dma *atdma = to_at_dma(chan->device);
1556 struct at_desc *desc;
1557 struct at_dma_slave *atslave;
1558 int i;
1559 u32 cfg;
1560
1561 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1562
1563 /* ASSERT: channel is idle */
1564 if (atc_chan_is_enabled(atchan)) {
1565 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1566 return -EIO;
1567 }
1568
1569 if (!list_empty(&atchan->free_list)) {
1570 dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n");
1571 return -EIO;
1572 }
1573
1574 cfg = ATC_DEFAULT_CFG;
1575
1576 atslave = chan->private;
1577 if (atslave) {
1578 /*
1579 * We need controller-specific data to set up slave
1580 * transfers.
1581 */
1582 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1583
1584 /* if cfg configuration specified take it instead of default */
1585 if (atslave->cfg)
1586 cfg = atslave->cfg;
1587 }
1588
1589 /* Allocate initial pool of descriptors */
1590 for (i = 0; i < init_nr_desc_per_channel; i++) {
1591 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1592 if (!desc) {
1593 dev_err(atdma->dma_common.dev,
1594 "Only %d initial descriptors\n", i);
1595 break;
1596 }
1597 list_add_tail(&desc->desc_node, &atchan->free_list);
1598 }
1599
1600 dma_cookie_init(chan);
1601
1602 /* channel parameters */
1603 channel_writel(atchan, CFG, cfg);
1604
1605 dev_dbg(chan2dev(chan),
1606 "alloc_chan_resources: allocated %d descriptors\n", i);
1607
1608 return i;
1609 }
1610
1611 /**
1612 * atc_free_chan_resources - free all channel resources
1613 * @chan: DMA channel
1614 */
atc_free_chan_resources(struct dma_chan * chan)1615 static void atc_free_chan_resources(struct dma_chan *chan)
1616 {
1617 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1618 struct at_dma *atdma = to_at_dma(chan->device);
1619 struct at_desc *desc, *_desc;
1620 LIST_HEAD(list);
1621
1622 /* ASSERT: channel is idle */
1623 BUG_ON(!list_empty(&atchan->active_list));
1624 BUG_ON(!list_empty(&atchan->queue));
1625 BUG_ON(atc_chan_is_enabled(atchan));
1626
1627 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1628 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1629 list_del(&desc->desc_node);
1630 /* free link descriptor */
1631 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1632 }
1633 list_splice_init(&atchan->free_list, &list);
1634 atchan->status = 0;
1635
1636 /*
1637 * Free atslave allocated in at_dma_xlate()
1638 */
1639 kfree(chan->private);
1640 chan->private = NULL;
1641
1642 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1643 }
1644
1645 #ifdef CONFIG_OF
at_dma_filter(struct dma_chan * chan,void * slave)1646 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1647 {
1648 struct at_dma_slave *atslave = slave;
1649
1650 if (atslave->dma_dev == chan->device->dev) {
1651 chan->private = atslave;
1652 return true;
1653 } else {
1654 return false;
1655 }
1656 }
1657
at_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)1658 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1659 struct of_dma *of_dma)
1660 {
1661 struct dma_chan *chan;
1662 struct at_dma_chan *atchan;
1663 struct at_dma_slave *atslave;
1664 dma_cap_mask_t mask;
1665 unsigned int per_id;
1666 struct platform_device *dmac_pdev;
1667
1668 if (dma_spec->args_count != 2)
1669 return NULL;
1670
1671 dmac_pdev = of_find_device_by_node(dma_spec->np);
1672 if (!dmac_pdev)
1673 return NULL;
1674
1675 dma_cap_zero(mask);
1676 dma_cap_set(DMA_SLAVE, mask);
1677
1678 atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1679 if (!atslave) {
1680 put_device(&dmac_pdev->dev);
1681 return NULL;
1682 }
1683
1684 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1685 /*
1686 * We can fill both SRC_PER and DST_PER, one of these fields will be
1687 * ignored depending on DMA transfer direction.
1688 */
1689 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1690 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1691 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1692 /*
1693 * We have to translate the value we get from the device tree since
1694 * the half FIFO configuration value had to be 0 to keep backward
1695 * compatibility.
1696 */
1697 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1698 case AT91_DMA_CFG_FIFOCFG_ALAP:
1699 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1700 break;
1701 case AT91_DMA_CFG_FIFOCFG_ASAP:
1702 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1703 break;
1704 case AT91_DMA_CFG_FIFOCFG_HALF:
1705 default:
1706 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1707 }
1708 atslave->dma_dev = &dmac_pdev->dev;
1709
1710 chan = dma_request_channel(mask, at_dma_filter, atslave);
1711 if (!chan) {
1712 put_device(&dmac_pdev->dev);
1713 kfree(atslave);
1714 return NULL;
1715 }
1716
1717 atchan = to_at_dma_chan(chan);
1718 atchan->per_if = dma_spec->args[0] & 0xff;
1719 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1720
1721 return chan;
1722 }
1723 #else
at_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)1724 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1725 struct of_dma *of_dma)
1726 {
1727 return NULL;
1728 }
1729 #endif
1730
1731 /*-- Module Management -----------------------------------------------*/
1732
1733 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1734 static struct at_dma_platform_data at91sam9rl_config = {
1735 .nr_channels = 2,
1736 };
1737 static struct at_dma_platform_data at91sam9g45_config = {
1738 .nr_channels = 8,
1739 };
1740
1741 #if defined(CONFIG_OF)
1742 static const struct of_device_id atmel_dma_dt_ids[] = {
1743 {
1744 .compatible = "atmel,at91sam9rl-dma",
1745 .data = &at91sam9rl_config,
1746 }, {
1747 .compatible = "atmel,at91sam9g45-dma",
1748 .data = &at91sam9g45_config,
1749 }, {
1750 /* sentinel */
1751 }
1752 };
1753
1754 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1755 #endif
1756
1757 static const struct platform_device_id atdma_devtypes[] = {
1758 {
1759 .name = "at91sam9rl_dma",
1760 .driver_data = (unsigned long) &at91sam9rl_config,
1761 }, {
1762 .name = "at91sam9g45_dma",
1763 .driver_data = (unsigned long) &at91sam9g45_config,
1764 }, {
1765 /* sentinel */
1766 }
1767 };
1768
at_dma_get_driver_data(struct platform_device * pdev)1769 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1770 struct platform_device *pdev)
1771 {
1772 if (pdev->dev.of_node) {
1773 const struct of_device_id *match;
1774 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1775 if (match == NULL)
1776 return NULL;
1777 return match->data;
1778 }
1779 return (struct at_dma_platform_data *)
1780 platform_get_device_id(pdev)->driver_data;
1781 }
1782
1783 /**
1784 * at_dma_off - disable DMA controller
1785 * @atdma: the Atmel HDAMC device
1786 */
at_dma_off(struct at_dma * atdma)1787 static void at_dma_off(struct at_dma *atdma)
1788 {
1789 dma_writel(atdma, EN, 0);
1790
1791 /* disable all interrupts */
1792 dma_writel(atdma, EBCIDR, -1L);
1793
1794 /* confirm that all channels are disabled */
1795 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1796 cpu_relax();
1797 }
1798
at_dma_probe(struct platform_device * pdev)1799 static int __init at_dma_probe(struct platform_device *pdev)
1800 {
1801 struct resource *io;
1802 struct at_dma *atdma;
1803 size_t size;
1804 int irq;
1805 int err;
1806 int i;
1807 const struct at_dma_platform_data *plat_dat;
1808
1809 /* setup platform data for each SoC */
1810 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1811 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1812 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1813 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1814 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1815 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1816 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1817
1818 /* get DMA parameters from controller type */
1819 plat_dat = at_dma_get_driver_data(pdev);
1820 if (!plat_dat)
1821 return -ENODEV;
1822
1823 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1824 if (!io)
1825 return -EINVAL;
1826
1827 irq = platform_get_irq(pdev, 0);
1828 if (irq < 0)
1829 return irq;
1830
1831 size = sizeof(struct at_dma);
1832 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1833 atdma = kzalloc(size, GFP_KERNEL);
1834 if (!atdma)
1835 return -ENOMEM;
1836
1837 /* discover transaction capabilities */
1838 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1839 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1840
1841 size = resource_size(io);
1842 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1843 err = -EBUSY;
1844 goto err_kfree;
1845 }
1846
1847 atdma->regs = ioremap(io->start, size);
1848 if (!atdma->regs) {
1849 err = -ENOMEM;
1850 goto err_release_r;
1851 }
1852
1853 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1854 if (IS_ERR(atdma->clk)) {
1855 err = PTR_ERR(atdma->clk);
1856 goto err_clk;
1857 }
1858 err = clk_prepare_enable(atdma->clk);
1859 if (err)
1860 goto err_clk_prepare;
1861
1862 /* force dma off, just in case */
1863 at_dma_off(atdma);
1864
1865 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1866 if (err)
1867 goto err_irq;
1868
1869 platform_set_drvdata(pdev, atdma);
1870
1871 /* create a pool of consistent memory blocks for hardware descriptors */
1872 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1873 &pdev->dev, sizeof(struct at_desc),
1874 4 /* word alignment */, 0);
1875 if (!atdma->dma_desc_pool) {
1876 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1877 err = -ENOMEM;
1878 goto err_desc_pool_create;
1879 }
1880
1881 /* create a pool of consistent memory blocks for memset blocks */
1882 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1883 &pdev->dev, sizeof(int), 4, 0);
1884 if (!atdma->memset_pool) {
1885 dev_err(&pdev->dev, "No memory for memset dma pool\n");
1886 err = -ENOMEM;
1887 goto err_memset_pool_create;
1888 }
1889
1890 /* clear any pending interrupt */
1891 while (dma_readl(atdma, EBCISR))
1892 cpu_relax();
1893
1894 /* initialize channels related values */
1895 INIT_LIST_HEAD(&atdma->dma_common.channels);
1896 for (i = 0; i < plat_dat->nr_channels; i++) {
1897 struct at_dma_chan *atchan = &atdma->chan[i];
1898
1899 atchan->mem_if = AT_DMA_MEM_IF;
1900 atchan->per_if = AT_DMA_PER_IF;
1901 atchan->chan_common.device = &atdma->dma_common;
1902 dma_cookie_init(&atchan->chan_common);
1903 list_add_tail(&atchan->chan_common.device_node,
1904 &atdma->dma_common.channels);
1905
1906 atchan->ch_regs = atdma->regs + ch_regs(i);
1907 spin_lock_init(&atchan->lock);
1908 atchan->mask = 1 << i;
1909
1910 INIT_LIST_HEAD(&atchan->active_list);
1911 INIT_LIST_HEAD(&atchan->queue);
1912 INIT_LIST_HEAD(&atchan->free_list);
1913
1914 tasklet_setup(&atchan->tasklet, atc_tasklet);
1915 atc_enable_chan_irq(atdma, i);
1916 }
1917
1918 /* set base routines */
1919 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1920 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1921 atdma->dma_common.device_tx_status = atc_tx_status;
1922 atdma->dma_common.device_issue_pending = atc_issue_pending;
1923 atdma->dma_common.dev = &pdev->dev;
1924
1925 /* set prep routines based on capability */
1926 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1927 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1928
1929 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1930 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1931
1932 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1933 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1934 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1935 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1936 }
1937
1938 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1939 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1940 /* controller can do slave DMA: can trigger cyclic transfers */
1941 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1942 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1943 atdma->dma_common.device_config = atc_config;
1944 atdma->dma_common.device_pause = atc_pause;
1945 atdma->dma_common.device_resume = atc_resume;
1946 atdma->dma_common.device_terminate_all = atc_terminate_all;
1947 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1948 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1949 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1950 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1951 }
1952
1953 dma_writel(atdma, EN, AT_DMA_ENABLE);
1954
1955 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1956 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1957 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1958 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
1959 plat_dat->nr_channels);
1960
1961 dma_async_device_register(&atdma->dma_common);
1962
1963 /*
1964 * Do not return an error if the dmac node is not present in order to
1965 * not break the existing way of requesting channel with
1966 * dma_request_channel().
1967 */
1968 if (pdev->dev.of_node) {
1969 err = of_dma_controller_register(pdev->dev.of_node,
1970 at_dma_xlate, atdma);
1971 if (err) {
1972 dev_err(&pdev->dev, "could not register of_dma_controller\n");
1973 goto err_of_dma_controller_register;
1974 }
1975 }
1976
1977 return 0;
1978
1979 err_of_dma_controller_register:
1980 dma_async_device_unregister(&atdma->dma_common);
1981 dma_pool_destroy(atdma->memset_pool);
1982 err_memset_pool_create:
1983 dma_pool_destroy(atdma->dma_desc_pool);
1984 err_desc_pool_create:
1985 free_irq(platform_get_irq(pdev, 0), atdma);
1986 err_irq:
1987 clk_disable_unprepare(atdma->clk);
1988 err_clk_prepare:
1989 clk_put(atdma->clk);
1990 err_clk:
1991 iounmap(atdma->regs);
1992 atdma->regs = NULL;
1993 err_release_r:
1994 release_mem_region(io->start, size);
1995 err_kfree:
1996 kfree(atdma);
1997 return err;
1998 }
1999
at_dma_remove(struct platform_device * pdev)2000 static int at_dma_remove(struct platform_device *pdev)
2001 {
2002 struct at_dma *atdma = platform_get_drvdata(pdev);
2003 struct dma_chan *chan, *_chan;
2004 struct resource *io;
2005
2006 at_dma_off(atdma);
2007 if (pdev->dev.of_node)
2008 of_dma_controller_free(pdev->dev.of_node);
2009 dma_async_device_unregister(&atdma->dma_common);
2010
2011 dma_pool_destroy(atdma->memset_pool);
2012 dma_pool_destroy(atdma->dma_desc_pool);
2013 free_irq(platform_get_irq(pdev, 0), atdma);
2014
2015 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2016 device_node) {
2017 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2018
2019 /* Disable interrupts */
2020 atc_disable_chan_irq(atdma, chan->chan_id);
2021
2022 tasklet_kill(&atchan->tasklet);
2023 list_del(&chan->device_node);
2024 }
2025
2026 clk_disable_unprepare(atdma->clk);
2027 clk_put(atdma->clk);
2028
2029 iounmap(atdma->regs);
2030 atdma->regs = NULL;
2031
2032 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2033 release_mem_region(io->start, resource_size(io));
2034
2035 kfree(atdma);
2036
2037 return 0;
2038 }
2039
at_dma_shutdown(struct platform_device * pdev)2040 static void at_dma_shutdown(struct platform_device *pdev)
2041 {
2042 struct at_dma *atdma = platform_get_drvdata(pdev);
2043
2044 at_dma_off(platform_get_drvdata(pdev));
2045 clk_disable_unprepare(atdma->clk);
2046 }
2047
at_dma_prepare(struct device * dev)2048 static int at_dma_prepare(struct device *dev)
2049 {
2050 struct at_dma *atdma = dev_get_drvdata(dev);
2051 struct dma_chan *chan, *_chan;
2052
2053 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2054 device_node) {
2055 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2056 /* wait for transaction completion (except in cyclic case) */
2057 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2058 return -EAGAIN;
2059 }
2060 return 0;
2061 }
2062
atc_suspend_cyclic(struct at_dma_chan * atchan)2063 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2064 {
2065 struct dma_chan *chan = &atchan->chan_common;
2066
2067 /* Channel should be paused by user
2068 * do it anyway even if it is not done already */
2069 if (!atc_chan_is_paused(atchan)) {
2070 dev_warn(chan2dev(chan),
2071 "cyclic channel not paused, should be done by channel user\n");
2072 atc_pause(chan);
2073 }
2074
2075 /* now preserve additional data for cyclic operations */
2076 /* next descriptor address in the cyclic list */
2077 atchan->save_dscr = channel_readl(atchan, DSCR);
2078
2079 vdbg_dump_regs(atchan);
2080 }
2081
at_dma_suspend_noirq(struct device * dev)2082 static int at_dma_suspend_noirq(struct device *dev)
2083 {
2084 struct at_dma *atdma = dev_get_drvdata(dev);
2085 struct dma_chan *chan, *_chan;
2086
2087 /* preserve data */
2088 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2089 device_node) {
2090 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2091
2092 if (atc_chan_is_cyclic(atchan))
2093 atc_suspend_cyclic(atchan);
2094 atchan->save_cfg = channel_readl(atchan, CFG);
2095 }
2096 atdma->save_imr = dma_readl(atdma, EBCIMR);
2097
2098 /* disable DMA controller */
2099 at_dma_off(atdma);
2100 clk_disable_unprepare(atdma->clk);
2101 return 0;
2102 }
2103
atc_resume_cyclic(struct at_dma_chan * atchan)2104 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2105 {
2106 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2107
2108 /* restore channel status for cyclic descriptors list:
2109 * next descriptor in the cyclic list at the time of suspend */
2110 channel_writel(atchan, SADDR, 0);
2111 channel_writel(atchan, DADDR, 0);
2112 channel_writel(atchan, CTRLA, 0);
2113 channel_writel(atchan, CTRLB, 0);
2114 channel_writel(atchan, DSCR, atchan->save_dscr);
2115 dma_writel(atdma, CHER, atchan->mask);
2116
2117 /* channel pause status should be removed by channel user
2118 * We cannot take the initiative to do it here */
2119
2120 vdbg_dump_regs(atchan);
2121 }
2122
at_dma_resume_noirq(struct device * dev)2123 static int at_dma_resume_noirq(struct device *dev)
2124 {
2125 struct at_dma *atdma = dev_get_drvdata(dev);
2126 struct dma_chan *chan, *_chan;
2127
2128 /* bring back DMA controller */
2129 clk_prepare_enable(atdma->clk);
2130 dma_writel(atdma, EN, AT_DMA_ENABLE);
2131
2132 /* clear any pending interrupt */
2133 while (dma_readl(atdma, EBCISR))
2134 cpu_relax();
2135
2136 /* restore saved data */
2137 dma_writel(atdma, EBCIER, atdma->save_imr);
2138 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2139 device_node) {
2140 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2141
2142 channel_writel(atchan, CFG, atchan->save_cfg);
2143 if (atc_chan_is_cyclic(atchan))
2144 atc_resume_cyclic(atchan);
2145 }
2146 return 0;
2147 }
2148
2149 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2150 .prepare = at_dma_prepare,
2151 .suspend_noirq = at_dma_suspend_noirq,
2152 .resume_noirq = at_dma_resume_noirq,
2153 };
2154
2155 static struct platform_driver at_dma_driver = {
2156 .remove = at_dma_remove,
2157 .shutdown = at_dma_shutdown,
2158 .id_table = atdma_devtypes,
2159 .driver = {
2160 .name = "at_hdmac",
2161 .pm = &at_dma_dev_pm_ops,
2162 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2163 },
2164 };
2165
at_dma_init(void)2166 static int __init at_dma_init(void)
2167 {
2168 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2169 }
2170 subsys_initcall(at_dma_init);
2171
at_dma_exit(void)2172 static void __exit at_dma_exit(void)
2173 {
2174 platform_driver_unregister(&at_dma_driver);
2175 }
2176 module_exit(at_dma_exit);
2177
2178 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2179 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2180 MODULE_LICENSE("GPL");
2181 MODULE_ALIAS("platform:at_hdmac");
2182