1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DMABUF CMA heap exporter
4 *
5 * Copyright (C) 2012, 2019, 2020 Linaro Ltd.
6 * Author: <benjamin.gaignard@linaro.org> for ST-Ericsson.
7 *
8 * Also utilizing parts of Andrew Davis' SRAM heap:
9 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
10 * Andrew F. Davis <afd@ti.com>
11 */
12 #include <linux/cma.h>
13 #include <linux/dma-buf.h>
14 #include <linux/dma-heap.h>
15 #include <linux/dma-map-ops.h>
16 #include <linux/err.h>
17 #include <linux/highmem.h>
18 #include <linux/io.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/scatterlist.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24
25
26 struct cma_heap {
27 struct dma_heap *heap;
28 struct cma *cma;
29 };
30
31 struct cma_heap_buffer {
32 struct cma_heap *heap;
33 struct list_head attachments;
34 struct mutex lock;
35 unsigned long len;
36 struct page *cma_pages;
37 struct page **pages;
38 pgoff_t pagecount;
39 int vmap_cnt;
40 void *vaddr;
41 };
42
43 struct dma_heap_attachment {
44 struct device *dev;
45 struct sg_table table;
46 struct list_head list;
47 bool mapped;
48 };
49
cma_heap_attach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)50 static int cma_heap_attach(struct dma_buf *dmabuf,
51 struct dma_buf_attachment *attachment)
52 {
53 struct cma_heap_buffer *buffer = dmabuf->priv;
54 struct dma_heap_attachment *a;
55 int ret;
56
57 a = kzalloc(sizeof(*a), GFP_KERNEL);
58 if (!a)
59 return -ENOMEM;
60
61 ret = sg_alloc_table_from_pages(&a->table, buffer->pages,
62 buffer->pagecount, 0,
63 buffer->pagecount << PAGE_SHIFT,
64 GFP_KERNEL);
65 if (ret) {
66 kfree(a);
67 return ret;
68 }
69
70 a->dev = attachment->dev;
71 INIT_LIST_HEAD(&a->list);
72 a->mapped = false;
73
74 attachment->priv = a;
75
76 mutex_lock(&buffer->lock);
77 list_add(&a->list, &buffer->attachments);
78 mutex_unlock(&buffer->lock);
79
80 return 0;
81 }
82
cma_heap_detach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)83 static void cma_heap_detach(struct dma_buf *dmabuf,
84 struct dma_buf_attachment *attachment)
85 {
86 struct cma_heap_buffer *buffer = dmabuf->priv;
87 struct dma_heap_attachment *a = attachment->priv;
88
89 mutex_lock(&buffer->lock);
90 list_del(&a->list);
91 mutex_unlock(&buffer->lock);
92
93 sg_free_table(&a->table);
94 kfree(a);
95 }
96
cma_heap_map_dma_buf(struct dma_buf_attachment * attachment,enum dma_data_direction direction)97 static struct sg_table *cma_heap_map_dma_buf(struct dma_buf_attachment *attachment,
98 enum dma_data_direction direction)
99 {
100 struct dma_heap_attachment *a = attachment->priv;
101 struct sg_table *table = &a->table;
102 int ret;
103
104 ret = dma_map_sgtable(attachment->dev, table, direction, 0);
105 if (ret)
106 return ERR_PTR(-ENOMEM);
107 a->mapped = true;
108 return table;
109 }
110
cma_heap_unmap_dma_buf(struct dma_buf_attachment * attachment,struct sg_table * table,enum dma_data_direction direction)111 static void cma_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
112 struct sg_table *table,
113 enum dma_data_direction direction)
114 {
115 struct dma_heap_attachment *a = attachment->priv;
116
117 a->mapped = false;
118 dma_unmap_sgtable(attachment->dev, table, direction, 0);
119 }
120
cma_heap_dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)121 static int cma_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
122 enum dma_data_direction direction)
123 {
124 struct cma_heap_buffer *buffer = dmabuf->priv;
125 struct dma_heap_attachment *a;
126
127 if (buffer->vmap_cnt)
128 invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
129
130 mutex_lock(&buffer->lock);
131 list_for_each_entry(a, &buffer->attachments, list) {
132 if (!a->mapped)
133 continue;
134 dma_sync_sgtable_for_cpu(a->dev, &a->table, direction);
135 }
136 mutex_unlock(&buffer->lock);
137
138 return 0;
139 }
140
cma_heap_dma_buf_end_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)141 static int cma_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
142 enum dma_data_direction direction)
143 {
144 struct cma_heap_buffer *buffer = dmabuf->priv;
145 struct dma_heap_attachment *a;
146
147 if (buffer->vmap_cnt)
148 flush_kernel_vmap_range(buffer->vaddr, buffer->len);
149
150 mutex_lock(&buffer->lock);
151 list_for_each_entry(a, &buffer->attachments, list) {
152 if (!a->mapped)
153 continue;
154 dma_sync_sgtable_for_device(a->dev, &a->table, direction);
155 }
156 mutex_unlock(&buffer->lock);
157
158 return 0;
159 }
160
cma_heap_vm_fault(struct vm_fault * vmf)161 static vm_fault_t cma_heap_vm_fault(struct vm_fault *vmf)
162 {
163 struct vm_area_struct *vma = vmf->vma;
164 struct cma_heap_buffer *buffer = vma->vm_private_data;
165
166 if (vmf->pgoff > buffer->pagecount)
167 return VM_FAULT_SIGBUS;
168
169 vmf->page = buffer->pages[vmf->pgoff];
170 get_page(vmf->page);
171
172 return 0;
173 }
174
175 static const struct vm_operations_struct dma_heap_vm_ops = {
176 .fault = cma_heap_vm_fault,
177 };
178
cma_heap_mmap(struct dma_buf * dmabuf,struct vm_area_struct * vma)179 static int cma_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
180 {
181 struct cma_heap_buffer *buffer = dmabuf->priv;
182
183 if ((vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) == 0)
184 return -EINVAL;
185
186 vma->vm_ops = &dma_heap_vm_ops;
187 vma->vm_private_data = buffer;
188
189 return 0;
190 }
191
cma_heap_do_vmap(struct cma_heap_buffer * buffer)192 static void *cma_heap_do_vmap(struct cma_heap_buffer *buffer)
193 {
194 void *vaddr;
195
196 vaddr = vmap(buffer->pages, buffer->pagecount, VM_MAP, PAGE_KERNEL);
197 if (!vaddr)
198 return ERR_PTR(-ENOMEM);
199
200 return vaddr;
201 }
202
cma_heap_vmap(struct dma_buf * dmabuf,struct dma_buf_map * map)203 static int cma_heap_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
204 {
205 struct cma_heap_buffer *buffer = dmabuf->priv;
206 void *vaddr;
207 int ret = 0;
208
209 mutex_lock(&buffer->lock);
210 if (buffer->vmap_cnt) {
211 buffer->vmap_cnt++;
212 dma_buf_map_set_vaddr(map, buffer->vaddr);
213 goto out;
214 }
215
216 vaddr = cma_heap_do_vmap(buffer);
217 if (IS_ERR(vaddr)) {
218 ret = PTR_ERR(vaddr);
219 goto out;
220 }
221 buffer->vaddr = vaddr;
222 buffer->vmap_cnt++;
223 dma_buf_map_set_vaddr(map, buffer->vaddr);
224 out:
225 mutex_unlock(&buffer->lock);
226
227 return ret;
228 }
229
cma_heap_vunmap(struct dma_buf * dmabuf,struct dma_buf_map * map)230 static void cma_heap_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
231 {
232 struct cma_heap_buffer *buffer = dmabuf->priv;
233
234 mutex_lock(&buffer->lock);
235 if (!--buffer->vmap_cnt) {
236 vunmap(buffer->vaddr);
237 buffer->vaddr = NULL;
238 }
239 mutex_unlock(&buffer->lock);
240 dma_buf_map_clear(map);
241 }
242
cma_heap_dma_buf_release(struct dma_buf * dmabuf)243 static void cma_heap_dma_buf_release(struct dma_buf *dmabuf)
244 {
245 struct cma_heap_buffer *buffer = dmabuf->priv;
246 struct cma_heap *cma_heap = buffer->heap;
247
248 if (buffer->vmap_cnt > 0) {
249 WARN(1, "%s: buffer still mapped in the kernel\n", __func__);
250 vunmap(buffer->vaddr);
251 buffer->vaddr = NULL;
252 }
253
254 /* free page list */
255 kfree(buffer->pages);
256 /* release memory */
257 cma_release(cma_heap->cma, buffer->cma_pages, buffer->pagecount);
258 kfree(buffer);
259 }
260
261 static const struct dma_buf_ops cma_heap_buf_ops = {
262 .attach = cma_heap_attach,
263 .detach = cma_heap_detach,
264 .map_dma_buf = cma_heap_map_dma_buf,
265 .unmap_dma_buf = cma_heap_unmap_dma_buf,
266 .begin_cpu_access = cma_heap_dma_buf_begin_cpu_access,
267 .end_cpu_access = cma_heap_dma_buf_end_cpu_access,
268 .mmap = cma_heap_mmap,
269 .vmap = cma_heap_vmap,
270 .vunmap = cma_heap_vunmap,
271 .release = cma_heap_dma_buf_release,
272 };
273
cma_heap_allocate(struct dma_heap * heap,unsigned long len,unsigned long fd_flags,unsigned long heap_flags)274 static struct dma_buf *cma_heap_allocate(struct dma_heap *heap,
275 unsigned long len,
276 unsigned long fd_flags,
277 unsigned long heap_flags)
278 {
279 struct cma_heap *cma_heap = dma_heap_get_drvdata(heap);
280 struct cma_heap_buffer *buffer;
281 DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
282 size_t size = PAGE_ALIGN(len);
283 pgoff_t pagecount = size >> PAGE_SHIFT;
284 unsigned long align = get_order(size);
285 struct page *cma_pages;
286 struct dma_buf *dmabuf;
287 int ret = -ENOMEM;
288 pgoff_t pg;
289
290 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
291 if (!buffer)
292 return ERR_PTR(-ENOMEM);
293
294 INIT_LIST_HEAD(&buffer->attachments);
295 mutex_init(&buffer->lock);
296 buffer->len = size;
297
298 if (align > CONFIG_CMA_ALIGNMENT)
299 align = CONFIG_CMA_ALIGNMENT;
300
301 cma_pages = cma_alloc(cma_heap->cma, pagecount, align, false);
302 if (!cma_pages)
303 goto free_buffer;
304
305 /* Clear the cma pages */
306 if (PageHighMem(cma_pages)) {
307 unsigned long nr_clear_pages = pagecount;
308 struct page *page = cma_pages;
309
310 while (nr_clear_pages > 0) {
311 void *vaddr = kmap_atomic(page);
312
313 memset(vaddr, 0, PAGE_SIZE);
314 kunmap_atomic(vaddr);
315 /*
316 * Avoid wasting time zeroing memory if the process
317 * has been killed by by SIGKILL
318 */
319 if (fatal_signal_pending(current))
320 goto free_cma;
321 page++;
322 nr_clear_pages--;
323 }
324 } else {
325 memset(page_address(cma_pages), 0, size);
326 }
327
328 buffer->pages = kmalloc_array(pagecount, sizeof(*buffer->pages), GFP_KERNEL);
329 if (!buffer->pages) {
330 ret = -ENOMEM;
331 goto free_cma;
332 }
333
334 for (pg = 0; pg < pagecount; pg++)
335 buffer->pages[pg] = &cma_pages[pg];
336
337 buffer->cma_pages = cma_pages;
338 buffer->heap = cma_heap;
339 buffer->pagecount = pagecount;
340
341 /* create the dmabuf */
342 exp_info.exp_name = dma_heap_get_name(heap);
343 exp_info.ops = &cma_heap_buf_ops;
344 exp_info.size = buffer->len;
345 exp_info.flags = fd_flags;
346 exp_info.priv = buffer;
347 dmabuf = dma_buf_export(&exp_info);
348 if (IS_ERR(dmabuf)) {
349 ret = PTR_ERR(dmabuf);
350 goto free_pages;
351 }
352 return dmabuf;
353
354 free_pages:
355 kfree(buffer->pages);
356 free_cma:
357 cma_release(cma_heap->cma, cma_pages, pagecount);
358 free_buffer:
359 kfree(buffer);
360
361 return ERR_PTR(ret);
362 }
363
364 static const struct dma_heap_ops cma_heap_ops = {
365 .allocate = cma_heap_allocate,
366 };
367
__add_cma_heap(struct cma * cma,void * data)368 static int __add_cma_heap(struct cma *cma, void *data)
369 {
370 struct cma_heap *cma_heap;
371 struct dma_heap_export_info exp_info;
372
373 cma_heap = kzalloc(sizeof(*cma_heap), GFP_KERNEL);
374 if (!cma_heap)
375 return -ENOMEM;
376 cma_heap->cma = cma;
377
378 exp_info.name = cma_get_name(cma);
379 exp_info.ops = &cma_heap_ops;
380 exp_info.priv = cma_heap;
381
382 cma_heap->heap = dma_heap_add(&exp_info);
383 if (IS_ERR(cma_heap->heap)) {
384 int ret = PTR_ERR(cma_heap->heap);
385
386 kfree(cma_heap);
387 return ret;
388 }
389
390 return 0;
391 }
392
add_default_cma_heap(void)393 static int add_default_cma_heap(void)
394 {
395 struct cma *default_cma = dev_get_cma_area(NULL);
396 int ret = 0;
397
398 if (default_cma)
399 ret = __add_cma_heap(default_cma, NULL);
400
401 return ret;
402 }
403 module_init(add_default_cma_heap);
404 MODULE_DESCRIPTION("DMA-BUF CMA Heap");
405 MODULE_LICENSE("GPL v2");
406