1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345
4 * Copyright (C) 2019 Topic Embedded Products
5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
6 *
7 * The Si5341 has 10 outputs and 5 synthesizers.
8 * The Si5340 is a smaller version of the Si5341 with only 4 outputs.
9 * The Si5345 is similar to the Si5341, with the addition of fractional input
10 * dividers and automatic input selection.
11 * The Si5342 and Si5344 are smaller versions of the Si5345.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/gcd.h>
18 #include <linux/math64.h>
19 #include <linux/i2c.h>
20 #include <linux/module.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25
26 #define SI5341_NUM_INPUTS 4
27
28 #define SI5340_MAX_NUM_OUTPUTS 4
29 #define SI5341_MAX_NUM_OUTPUTS 10
30 #define SI5342_MAX_NUM_OUTPUTS 2
31 #define SI5344_MAX_NUM_OUTPUTS 4
32 #define SI5345_MAX_NUM_OUTPUTS 10
33
34 #define SI5340_NUM_SYNTH 4
35 #define SI5341_NUM_SYNTH 5
36 #define SI5342_NUM_SYNTH 2
37 #define SI5344_NUM_SYNTH 4
38 #define SI5345_NUM_SYNTH 5
39
40 /* Range of the synthesizer fractional divider */
41 #define SI5341_SYNTH_N_MIN 10
42 #define SI5341_SYNTH_N_MAX 4095
43
44 /* The chip can get its input clock from 3 input pins or an XTAL */
45
46 /* There is one PLL running at 13500–14256 MHz */
47 #define SI5341_PLL_VCO_MIN 13500000000ull
48 #define SI5341_PLL_VCO_MAX 14256000000ull
49
50 /* The 5 frequency synthesizers obtain their input from the PLL */
51 struct clk_si5341_synth {
52 struct clk_hw hw;
53 struct clk_si5341 *data;
54 u8 index;
55 };
56 #define to_clk_si5341_synth(_hw) \
57 container_of(_hw, struct clk_si5341_synth, hw)
58
59 /* The output stages can be connected to any synth (full mux) */
60 struct clk_si5341_output {
61 struct clk_hw hw;
62 struct clk_si5341 *data;
63 struct regulator *vddo_reg;
64 u8 index;
65 };
66 #define to_clk_si5341_output(_hw) \
67 container_of(_hw, struct clk_si5341_output, hw)
68
69 struct clk_si5341 {
70 struct clk_hw hw;
71 struct regmap *regmap;
72 struct i2c_client *i2c_client;
73 struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
74 struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
75 struct clk *input_clk[SI5341_NUM_INPUTS];
76 const char *input_clk_name[SI5341_NUM_INPUTS];
77 const u16 *reg_output_offset;
78 const u16 *reg_rdiv_offset;
79 u64 freq_vco; /* 13500–14256 MHz */
80 u8 num_outputs;
81 u8 num_synth;
82 u16 chip_id;
83 bool xaxb_ext_clk;
84 bool iovdd_33;
85 };
86 #define to_clk_si5341(_hw) container_of(_hw, struct clk_si5341, hw)
87
88 struct clk_si5341_output_config {
89 u8 out_format_drv_bits;
90 u8 out_cm_ampl_bits;
91 u8 vdd_sel_bits;
92 bool synth_master;
93 bool always_on;
94 };
95
96 #define SI5341_PAGE 0x0001
97 #define SI5341_PN_BASE 0x0002
98 #define SI5341_DEVICE_REV 0x0005
99 #define SI5341_STATUS 0x000C
100 #define SI5341_LOS 0x000D
101 #define SI5341_STATUS_STICKY 0x0011
102 #define SI5341_LOS_STICKY 0x0012
103 #define SI5341_SOFT_RST 0x001C
104 #define SI5341_IN_SEL 0x0021
105 #define SI5341_DEVICE_READY 0x00FE
106 #define SI5341_XAXB_CFG 0x090E
107 #define SI5341_IO_VDD_SEL 0x0943
108 #define SI5341_IN_EN 0x0949
109 #define SI5341_INX_TO_PFD_EN 0x094A
110
111 /* Status bits */
112 #define SI5341_STATUS_SYSINCAL BIT(0)
113 #define SI5341_STATUS_LOSXAXB BIT(1)
114 #define SI5341_STATUS_LOSREF BIT(2)
115 #define SI5341_STATUS_LOL BIT(3)
116
117 /* Input selection */
118 #define SI5341_IN_SEL_MASK 0x06
119 #define SI5341_IN_SEL_SHIFT 1
120 #define SI5341_IN_SEL_REGCTRL 0x01
121 #define SI5341_INX_TO_PFD_SHIFT 4
122
123 /* XTAL config bits */
124 #define SI5341_XAXB_CFG_EXTCLK_EN BIT(0)
125 #define SI5341_XAXB_CFG_PDNB BIT(1)
126
127 /* Input dividers (48-bit) */
128 #define SI5341_IN_PDIV(x) (0x0208 + ((x) * 10))
129 #define SI5341_IN_PSET(x) (0x020E + ((x) * 10))
130 #define SI5341_PX_UPD 0x0230
131
132 /* PLL configuration */
133 #define SI5341_PLL_M_NUM 0x0235
134 #define SI5341_PLL_M_DEN 0x023B
135
136 /* Output configuration */
137 #define SI5341_OUT_CONFIG(output) \
138 ((output)->data->reg_output_offset[(output)->index])
139 #define SI5341_OUT_FORMAT(output) (SI5341_OUT_CONFIG(output) + 1)
140 #define SI5341_OUT_CM(output) (SI5341_OUT_CONFIG(output) + 2)
141 #define SI5341_OUT_MUX_SEL(output) (SI5341_OUT_CONFIG(output) + 3)
142 #define SI5341_OUT_R_REG(output) \
143 ((output)->data->reg_rdiv_offset[(output)->index])
144
145 #define SI5341_OUT_MUX_VDD_SEL_MASK 0x38
146
147 /* Synthesize N divider */
148 #define SI5341_SYNTH_N_NUM(x) (0x0302 + ((x) * 11))
149 #define SI5341_SYNTH_N_DEN(x) (0x0308 + ((x) * 11))
150 #define SI5341_SYNTH_N_UPD(x) (0x030C + ((x) * 11))
151
152 /* Synthesizer output enable, phase bypass, power mode */
153 #define SI5341_SYNTH_N_CLK_TO_OUTX_EN 0x0A03
154 #define SI5341_SYNTH_N_PIBYP 0x0A04
155 #define SI5341_SYNTH_N_PDNB 0x0A05
156 #define SI5341_SYNTH_N_CLK_DIS 0x0B4A
157
158 #define SI5341_REGISTER_MAX 0xBFF
159
160 /* SI5341_OUT_CONFIG bits */
161 #define SI5341_OUT_CFG_PDN BIT(0)
162 #define SI5341_OUT_CFG_OE BIT(1)
163 #define SI5341_OUT_CFG_RDIV_FORCE2 BIT(2)
164
165 /* Static configuration (to be moved to firmware) */
166 struct si5341_reg_default {
167 u16 address;
168 u8 value;
169 };
170
171 static const char * const si5341_input_clock_names[] = {
172 "in0", "in1", "in2", "xtal"
173 };
174
175 /* Output configuration registers 0..9 are not quite logically organized */
176 /* Also for si5345 */
177 static const u16 si5341_reg_output_offset[] = {
178 0x0108,
179 0x010D,
180 0x0112,
181 0x0117,
182 0x011C,
183 0x0121,
184 0x0126,
185 0x012B,
186 0x0130,
187 0x013A,
188 };
189
190 /* for si5340, si5342 and si5344 */
191 static const u16 si5340_reg_output_offset[] = {
192 0x0112,
193 0x0117,
194 0x0126,
195 0x012B,
196 };
197
198 /* The location of the R divider registers */
199 static const u16 si5341_reg_rdiv_offset[] = {
200 0x024A,
201 0x024D,
202 0x0250,
203 0x0253,
204 0x0256,
205 0x0259,
206 0x025C,
207 0x025F,
208 0x0262,
209 0x0268,
210 };
211 static const u16 si5340_reg_rdiv_offset[] = {
212 0x0250,
213 0x0253,
214 0x025C,
215 0x025F,
216 };
217
218 /*
219 * Programming sequence from ClockBuilder, settings to initialize the system
220 * using only the XTAL input, without pre-divider.
221 * This also contains settings that aren't mentioned anywhere in the datasheet.
222 * The "known" settings like synth and output configuration are done later.
223 */
224 static const struct si5341_reg_default si5341_reg_defaults[] = {
225 { 0x0017, 0x3A }, /* INT mask (disable interrupts) */
226 { 0x0018, 0xFF }, /* INT mask */
227 { 0x0021, 0x0F }, /* Select XTAL as input */
228 { 0x0022, 0x00 }, /* Not in datasheet */
229 { 0x002B, 0x02 }, /* SPI config */
230 { 0x002C, 0x20 }, /* LOS enable for XTAL */
231 { 0x002D, 0x00 }, /* LOS timing */
232 { 0x002E, 0x00 },
233 { 0x002F, 0x00 },
234 { 0x0030, 0x00 },
235 { 0x0031, 0x00 },
236 { 0x0032, 0x00 },
237 { 0x0033, 0x00 },
238 { 0x0034, 0x00 },
239 { 0x0035, 0x00 },
240 { 0x0036, 0x00 },
241 { 0x0037, 0x00 },
242 { 0x0038, 0x00 }, /* LOS setting (thresholds) */
243 { 0x0039, 0x00 },
244 { 0x003A, 0x00 },
245 { 0x003B, 0x00 },
246 { 0x003C, 0x00 },
247 { 0x003D, 0x00 }, /* LOS setting (thresholds) end */
248 { 0x0041, 0x00 }, /* LOS0_DIV_SEL */
249 { 0x0042, 0x00 }, /* LOS1_DIV_SEL */
250 { 0x0043, 0x00 }, /* LOS2_DIV_SEL */
251 { 0x0044, 0x00 }, /* LOS3_DIV_SEL */
252 { 0x009E, 0x00 }, /* Not in datasheet */
253 { 0x0102, 0x01 }, /* Enable outputs */
254 { 0x013F, 0x00 }, /* Not in datasheet */
255 { 0x0140, 0x00 }, /* Not in datasheet */
256 { 0x0141, 0x40 }, /* OUT LOS */
257 { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
258 { 0x0203, 0x00 },
259 { 0x0204, 0x00 },
260 { 0x0205, 0x00 },
261 { 0x0206, 0x00 }, /* PXAXB (2^x) */
262 { 0x0208, 0x00 }, /* Px divider setting (usually 0) */
263 { 0x0209, 0x00 },
264 { 0x020A, 0x00 },
265 { 0x020B, 0x00 },
266 { 0x020C, 0x00 },
267 { 0x020D, 0x00 },
268 { 0x020E, 0x00 },
269 { 0x020F, 0x00 },
270 { 0x0210, 0x00 },
271 { 0x0211, 0x00 },
272 { 0x0212, 0x00 },
273 { 0x0213, 0x00 },
274 { 0x0214, 0x00 },
275 { 0x0215, 0x00 },
276 { 0x0216, 0x00 },
277 { 0x0217, 0x00 },
278 { 0x0218, 0x00 },
279 { 0x0219, 0x00 },
280 { 0x021A, 0x00 },
281 { 0x021B, 0x00 },
282 { 0x021C, 0x00 },
283 { 0x021D, 0x00 },
284 { 0x021E, 0x00 },
285 { 0x021F, 0x00 },
286 { 0x0220, 0x00 },
287 { 0x0221, 0x00 },
288 { 0x0222, 0x00 },
289 { 0x0223, 0x00 },
290 { 0x0224, 0x00 },
291 { 0x0225, 0x00 },
292 { 0x0226, 0x00 },
293 { 0x0227, 0x00 },
294 { 0x0228, 0x00 },
295 { 0x0229, 0x00 },
296 { 0x022A, 0x00 },
297 { 0x022B, 0x00 },
298 { 0x022C, 0x00 },
299 { 0x022D, 0x00 },
300 { 0x022E, 0x00 },
301 { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
302 { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
303 { 0x026C, 0x00 },
304 { 0x026D, 0x00 },
305 { 0x026E, 0x00 },
306 { 0x026F, 0x00 },
307 { 0x0270, 0x00 },
308 { 0x0271, 0x00 },
309 { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
310 { 0x0339, 0x1F }, /* N_FSTEP_MSK */
311 { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
312 { 0x033C, 0x00 },
313 { 0x033D, 0x00 },
314 { 0x033E, 0x00 },
315 { 0x033F, 0x00 },
316 { 0x0340, 0x00 },
317 { 0x0341, 0x00 },
318 { 0x0342, 0x00 },
319 { 0x0343, 0x00 },
320 { 0x0344, 0x00 },
321 { 0x0345, 0x00 },
322 { 0x0346, 0x00 },
323 { 0x0347, 0x00 },
324 { 0x0348, 0x00 },
325 { 0x0349, 0x00 },
326 { 0x034A, 0x00 },
327 { 0x034B, 0x00 },
328 { 0x034C, 0x00 },
329 { 0x034D, 0x00 },
330 { 0x034E, 0x00 },
331 { 0x034F, 0x00 },
332 { 0x0350, 0x00 },
333 { 0x0351, 0x00 },
334 { 0x0352, 0x00 },
335 { 0x0353, 0x00 },
336 { 0x0354, 0x00 },
337 { 0x0355, 0x00 },
338 { 0x0356, 0x00 },
339 { 0x0357, 0x00 },
340 { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
341 { 0x0359, 0x00 }, /* Nx_DELAY */
342 { 0x035A, 0x00 },
343 { 0x035B, 0x00 },
344 { 0x035C, 0x00 },
345 { 0x035D, 0x00 },
346 { 0x035E, 0x00 },
347 { 0x035F, 0x00 },
348 { 0x0360, 0x00 },
349 { 0x0361, 0x00 },
350 { 0x0362, 0x00 }, /* Nx_DELAY end */
351 { 0x0802, 0x00 }, /* Not in datasheet */
352 { 0x0803, 0x00 }, /* Not in datasheet */
353 { 0x0804, 0x00 }, /* Not in datasheet */
354 { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
355 { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
356 { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
357 { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
358 { 0x0A02, 0x00 }, /* Not in datasheet */
359 { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
360 { 0x0B57, 0x10 }, /* VCO_RESET_CALCODE (not described in datasheet) */
361 { 0x0B58, 0x05 }, /* VCO_RESET_CALCODE (not described in datasheet) */
362 };
363
364 /* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
si5341_decode_44_32(struct regmap * regmap,unsigned int reg,u64 * val1,u32 * val2)365 static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
366 u64 *val1, u32 *val2)
367 {
368 int err;
369 u8 r[10];
370
371 err = regmap_bulk_read(regmap, reg, r, 10);
372 if (err < 0)
373 return err;
374
375 *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
376 (get_unaligned_le32(r));
377 *val2 = get_unaligned_le32(&r[6]);
378
379 return 0;
380 }
381
si5341_encode_44_32(struct regmap * regmap,unsigned int reg,u64 n_num,u32 n_den)382 static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
383 u64 n_num, u32 n_den)
384 {
385 u8 r[10];
386
387 /* Shift left as far as possible without overflowing */
388 while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
389 n_num <<= 1;
390 n_den <<= 1;
391 }
392
393 /* 44 bits (6 bytes) numerator */
394 put_unaligned_le32(n_num, r);
395 r[4] = (n_num >> 32) & 0xff;
396 r[5] = (n_num >> 40) & 0x0f;
397 /* 32 bits denominator */
398 put_unaligned_le32(n_den, &r[6]);
399
400 /* Program the fraction */
401 return regmap_bulk_write(regmap, reg, r, sizeof(r));
402 }
403
404 /* VCO, we assume it runs at a constant frequency */
si5341_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)405 static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
406 unsigned long parent_rate)
407 {
408 struct clk_si5341 *data = to_clk_si5341(hw);
409 int err;
410 u64 res;
411 u64 m_num;
412 u32 m_den;
413 unsigned int shift;
414
415 /* Assume that PDIV is not being used, just read the PLL setting */
416 err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
417 &m_num, &m_den);
418 if (err < 0)
419 return 0;
420
421 if (!m_num || !m_den)
422 return 0;
423
424 /*
425 * Though m_num is 64-bit, only the upper bits are actually used. While
426 * calculating m_num and m_den, they are shifted as far as possible to
427 * the left. To avoid 96-bit division here, we just shift them back so
428 * we can do with just 64 bits.
429 */
430 shift = 0;
431 res = m_num;
432 while (res & 0xffff00000000ULL) {
433 ++shift;
434 res >>= 1;
435 }
436 res *= parent_rate;
437 do_div(res, (m_den >> shift));
438
439 /* We cannot return the actual frequency in 32 bit, store it locally */
440 data->freq_vco = res;
441
442 /* Report kHz since the value is out of range */
443 do_div(res, 1000);
444
445 return (unsigned long)res;
446 }
447
si5341_clk_get_selected_input(struct clk_si5341 * data)448 static int si5341_clk_get_selected_input(struct clk_si5341 *data)
449 {
450 int err;
451 u32 val;
452
453 err = regmap_read(data->regmap, SI5341_IN_SEL, &val);
454 if (err < 0)
455 return err;
456
457 return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT;
458 }
459
si5341_clk_get_parent(struct clk_hw * hw)460 static u8 si5341_clk_get_parent(struct clk_hw *hw)
461 {
462 struct clk_si5341 *data = to_clk_si5341(hw);
463 int res = si5341_clk_get_selected_input(data);
464
465 if (res < 0)
466 return 0; /* Apparently we cannot report errors */
467
468 return res;
469 }
470
si5341_clk_reparent(struct clk_si5341 * data,u8 index)471 static int si5341_clk_reparent(struct clk_si5341 *data, u8 index)
472 {
473 int err;
474 u8 val;
475
476 val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK;
477 /* Enable register-based input selection */
478 val |= SI5341_IN_SEL_REGCTRL;
479
480 err = regmap_update_bits(data->regmap,
481 SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val);
482 if (err < 0)
483 return err;
484
485 if (index < 3) {
486 /* Enable input buffer for selected input */
487 err = regmap_update_bits(data->regmap,
488 SI5341_IN_EN, 0x07, BIT(index));
489 if (err < 0)
490 return err;
491
492 /* Enables the input to phase detector */
493 err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
494 0x7 << SI5341_INX_TO_PFD_SHIFT,
495 BIT(index + SI5341_INX_TO_PFD_SHIFT));
496 if (err < 0)
497 return err;
498
499 /* Power down XTAL oscillator and buffer */
500 err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
501 SI5341_XAXB_CFG_PDNB, 0);
502 if (err < 0)
503 return err;
504
505 /*
506 * Set the P divider to "1". There's no explanation in the
507 * datasheet of these registers, but the clockbuilder software
508 * programs a "1" when the input is being used.
509 */
510 err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1);
511 if (err < 0)
512 return err;
513
514 err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1);
515 if (err < 0)
516 return err;
517
518 /* Set update PDIV bit */
519 err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index));
520 if (err < 0)
521 return err;
522 } else {
523 /* Disable all input buffers */
524 err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0);
525 if (err < 0)
526 return err;
527
528 /* Disable input to phase detector */
529 err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
530 0x7 << SI5341_INX_TO_PFD_SHIFT, 0);
531 if (err < 0)
532 return err;
533
534 /* Power up XTAL oscillator and buffer, select clock mode */
535 err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
536 SI5341_XAXB_CFG_PDNB | SI5341_XAXB_CFG_EXTCLK_EN,
537 SI5341_XAXB_CFG_PDNB | (data->xaxb_ext_clk ?
538 SI5341_XAXB_CFG_EXTCLK_EN : 0));
539 if (err < 0)
540 return err;
541 }
542
543 return 0;
544 }
545
si5341_clk_set_parent(struct clk_hw * hw,u8 index)546 static int si5341_clk_set_parent(struct clk_hw *hw, u8 index)
547 {
548 struct clk_si5341 *data = to_clk_si5341(hw);
549
550 return si5341_clk_reparent(data, index);
551 }
552
553 static const struct clk_ops si5341_clk_ops = {
554 .set_parent = si5341_clk_set_parent,
555 .get_parent = si5341_clk_get_parent,
556 .recalc_rate = si5341_clk_recalc_rate,
557 };
558
559 /* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
560
561 /* The synthesizer is on if all power and enable bits are set */
si5341_synth_clk_is_on(struct clk_hw * hw)562 static int si5341_synth_clk_is_on(struct clk_hw *hw)
563 {
564 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
565 int err;
566 u32 val;
567 u8 index = synth->index;
568
569 err = regmap_read(synth->data->regmap,
570 SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
571 if (err < 0)
572 return 0;
573
574 if (!(val & BIT(index)))
575 return 0;
576
577 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
578 if (err < 0)
579 return 0;
580
581 if (!(val & BIT(index)))
582 return 0;
583
584 /* This bit must be 0 for the synthesizer to receive clock input */
585 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
586 if (err < 0)
587 return 0;
588
589 return !(val & BIT(index));
590 }
591
si5341_synth_clk_unprepare(struct clk_hw * hw)592 static void si5341_synth_clk_unprepare(struct clk_hw *hw)
593 {
594 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
595 u8 index = synth->index; /* In range 0..5 */
596 u8 mask = BIT(index);
597
598 /* Disable output */
599 regmap_update_bits(synth->data->regmap,
600 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
601 /* Power down */
602 regmap_update_bits(synth->data->regmap,
603 SI5341_SYNTH_N_PDNB, mask, 0);
604 /* Disable clock input to synth (set to 1 to disable) */
605 regmap_update_bits(synth->data->regmap,
606 SI5341_SYNTH_N_CLK_DIS, mask, mask);
607 }
608
si5341_synth_clk_prepare(struct clk_hw * hw)609 static int si5341_synth_clk_prepare(struct clk_hw *hw)
610 {
611 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
612 int err;
613 u8 index = synth->index;
614 u8 mask = BIT(index);
615
616 /* Power up */
617 err = regmap_update_bits(synth->data->regmap,
618 SI5341_SYNTH_N_PDNB, mask, mask);
619 if (err < 0)
620 return err;
621
622 /* Enable clock input to synth (set bit to 0 to enable) */
623 err = regmap_update_bits(synth->data->regmap,
624 SI5341_SYNTH_N_CLK_DIS, mask, 0);
625 if (err < 0)
626 return err;
627
628 /* Enable output */
629 return regmap_update_bits(synth->data->regmap,
630 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
631 }
632
633 /* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
si5341_synth_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)634 static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
635 unsigned long parent_rate)
636 {
637 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
638 u64 f;
639 u64 n_num;
640 u32 n_den;
641 int err;
642
643 err = si5341_decode_44_32(synth->data->regmap,
644 SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
645 if (err < 0)
646 return err;
647 /* Check for bogus/uninitialized settings */
648 if (!n_num || !n_den)
649 return 0;
650
651 /*
652 * n_num and n_den are shifted left as much as possible, so to prevent
653 * overflow in 64-bit math, we shift n_den 4 bits to the right
654 */
655 f = synth->data->freq_vco;
656 f *= n_den >> 4;
657
658 /* Now we need to to 64-bit division: f/n_num */
659 /* And compensate for the 4 bits we dropped */
660 f = div64_u64(f, (n_num >> 4));
661
662 return f;
663 }
664
si5341_synth_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)665 static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
666 unsigned long *parent_rate)
667 {
668 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
669 u64 f;
670
671 /* The synthesizer accuracy is such that anything in range will work */
672 f = synth->data->freq_vco;
673 do_div(f, SI5341_SYNTH_N_MAX);
674 if (rate < f)
675 return f;
676
677 f = synth->data->freq_vco;
678 do_div(f, SI5341_SYNTH_N_MIN);
679 if (rate > f)
680 return f;
681
682 return rate;
683 }
684
si5341_synth_program(struct clk_si5341_synth * synth,u64 n_num,u32 n_den,bool is_integer)685 static int si5341_synth_program(struct clk_si5341_synth *synth,
686 u64 n_num, u32 n_den, bool is_integer)
687 {
688 int err;
689 u8 index = synth->index;
690
691 err = si5341_encode_44_32(synth->data->regmap,
692 SI5341_SYNTH_N_NUM(index), n_num, n_den);
693
694 err = regmap_update_bits(synth->data->regmap,
695 SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
696 if (err < 0)
697 return err;
698
699 return regmap_write(synth->data->regmap,
700 SI5341_SYNTH_N_UPD(index), 0x01);
701 }
702
703
si5341_synth_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)704 static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
705 unsigned long parent_rate)
706 {
707 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
708 u64 n_num;
709 u32 n_den;
710 u32 r;
711 u32 g;
712 bool is_integer;
713
714 n_num = synth->data->freq_vco;
715
716 /* see if there's an integer solution */
717 r = do_div(n_num, rate);
718 is_integer = (r == 0);
719 if (is_integer) {
720 /* Integer divider equal to n_num */
721 n_den = 1;
722 } else {
723 /* Calculate a fractional solution */
724 g = gcd(r, rate);
725 n_den = rate / g;
726 n_num *= n_den;
727 n_num += r / g;
728 }
729
730 dev_dbg(&synth->data->i2c_client->dev,
731 "%s(%u): n=0x%llx d=0x%x %s\n", __func__,
732 synth->index, n_num, n_den,
733 is_integer ? "int" : "frac");
734
735 return si5341_synth_program(synth, n_num, n_den, is_integer);
736 }
737
738 static const struct clk_ops si5341_synth_clk_ops = {
739 .is_prepared = si5341_synth_clk_is_on,
740 .prepare = si5341_synth_clk_prepare,
741 .unprepare = si5341_synth_clk_unprepare,
742 .recalc_rate = si5341_synth_clk_recalc_rate,
743 .round_rate = si5341_synth_clk_round_rate,
744 .set_rate = si5341_synth_clk_set_rate,
745 };
746
si5341_output_clk_is_on(struct clk_hw * hw)747 static int si5341_output_clk_is_on(struct clk_hw *hw)
748 {
749 struct clk_si5341_output *output = to_clk_si5341_output(hw);
750 int err;
751 u32 val;
752
753 err = regmap_read(output->data->regmap,
754 SI5341_OUT_CONFIG(output), &val);
755 if (err < 0)
756 return err;
757
758 /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
759 return (val & 0x03) == SI5341_OUT_CFG_OE;
760 }
761
762 /* Disables and then powers down the output */
si5341_output_clk_unprepare(struct clk_hw * hw)763 static void si5341_output_clk_unprepare(struct clk_hw *hw)
764 {
765 struct clk_si5341_output *output = to_clk_si5341_output(hw);
766
767 regmap_update_bits(output->data->regmap,
768 SI5341_OUT_CONFIG(output),
769 SI5341_OUT_CFG_OE, 0);
770 regmap_update_bits(output->data->regmap,
771 SI5341_OUT_CONFIG(output),
772 SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
773 }
774
775 /* Powers up and then enables the output */
si5341_output_clk_prepare(struct clk_hw * hw)776 static int si5341_output_clk_prepare(struct clk_hw *hw)
777 {
778 struct clk_si5341_output *output = to_clk_si5341_output(hw);
779 int err;
780
781 err = regmap_update_bits(output->data->regmap,
782 SI5341_OUT_CONFIG(output),
783 SI5341_OUT_CFG_PDN, 0);
784 if (err < 0)
785 return err;
786
787 return regmap_update_bits(output->data->regmap,
788 SI5341_OUT_CONFIG(output),
789 SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
790 }
791
si5341_output_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)792 static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
793 unsigned long parent_rate)
794 {
795 struct clk_si5341_output *output = to_clk_si5341_output(hw);
796 int err;
797 u32 val;
798 u32 r_divider;
799 u8 r[3];
800
801 err = regmap_bulk_read(output->data->regmap,
802 SI5341_OUT_R_REG(output), r, 3);
803 if (err < 0)
804 return err;
805
806 /* Calculate value as 24-bit integer*/
807 r_divider = r[2] << 16 | r[1] << 8 | r[0];
808
809 /* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
810 if (!r_divider)
811 return 0;
812
813 /* Divider is 2*(Rx_REG+1) */
814 r_divider += 1;
815 r_divider <<= 1;
816
817 err = regmap_read(output->data->regmap,
818 SI5341_OUT_CONFIG(output), &val);
819 if (err < 0)
820 return err;
821
822 if (val & SI5341_OUT_CFG_RDIV_FORCE2)
823 r_divider = 2;
824
825 return parent_rate / r_divider;
826 }
827
si5341_output_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)828 static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
829 unsigned long *parent_rate)
830 {
831 unsigned long r;
832
833 if (!rate)
834 return 0;
835
836 r = *parent_rate >> 1;
837
838 /* If rate is an even divisor, no changes to parent required */
839 if (r && !(r % rate))
840 return (long)rate;
841
842 if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
843 if (rate > 200000000) {
844 /* minimum r-divider is 2 */
845 r = 2;
846 } else {
847 /* Take a parent frequency near 400 MHz */
848 r = (400000000u / rate) & ~1;
849 }
850 *parent_rate = r * rate;
851 } else {
852 /* We cannot change our parent's rate, report what we can do */
853 r /= rate;
854 rate = *parent_rate / (r << 1);
855 }
856
857 return rate;
858 }
859
si5341_output_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)860 static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
861 unsigned long parent_rate)
862 {
863 struct clk_si5341_output *output = to_clk_si5341_output(hw);
864 u32 r_div;
865 int err;
866 u8 r[3];
867
868 if (!rate)
869 return -EINVAL;
870
871 /* Frequency divider is (r_div + 1) * 2 */
872 r_div = (parent_rate / rate) >> 1;
873
874 if (r_div <= 1)
875 r_div = 0;
876 else if (r_div >= BIT(24))
877 r_div = BIT(24) - 1;
878 else
879 --r_div;
880
881 /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
882 err = regmap_update_bits(output->data->regmap,
883 SI5341_OUT_CONFIG(output),
884 SI5341_OUT_CFG_RDIV_FORCE2,
885 (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
886 if (err < 0)
887 return err;
888
889 /* Always write Rx_REG, because a zero value disables the divider */
890 r[0] = r_div ? (r_div & 0xff) : 1;
891 r[1] = (r_div >> 8) & 0xff;
892 r[2] = (r_div >> 16) & 0xff;
893 err = regmap_bulk_write(output->data->regmap,
894 SI5341_OUT_R_REG(output), r, 3);
895
896 return 0;
897 }
898
si5341_output_reparent(struct clk_si5341_output * output,u8 index)899 static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
900 {
901 return regmap_update_bits(output->data->regmap,
902 SI5341_OUT_MUX_SEL(output), 0x07, index);
903 }
904
si5341_output_set_parent(struct clk_hw * hw,u8 index)905 static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
906 {
907 struct clk_si5341_output *output = to_clk_si5341_output(hw);
908
909 if (index >= output->data->num_synth)
910 return -EINVAL;
911
912 return si5341_output_reparent(output, index);
913 }
914
si5341_output_get_parent(struct clk_hw * hw)915 static u8 si5341_output_get_parent(struct clk_hw *hw)
916 {
917 struct clk_si5341_output *output = to_clk_si5341_output(hw);
918 u32 val;
919
920 regmap_read(output->data->regmap, SI5341_OUT_MUX_SEL(output), &val);
921
922 return val & 0x7;
923 }
924
925 static const struct clk_ops si5341_output_clk_ops = {
926 .is_prepared = si5341_output_clk_is_on,
927 .prepare = si5341_output_clk_prepare,
928 .unprepare = si5341_output_clk_unprepare,
929 .recalc_rate = si5341_output_clk_recalc_rate,
930 .round_rate = si5341_output_clk_round_rate,
931 .set_rate = si5341_output_clk_set_rate,
932 .set_parent = si5341_output_set_parent,
933 .get_parent = si5341_output_get_parent,
934 };
935
936 /*
937 * The chip can be bought in a pre-programmed version, or one can program the
938 * NVM in the chip to boot up in a preset mode. This routine tries to determine
939 * if that's the case, or if we need to reset and program everything from
940 * scratch. Returns negative error, or true/false.
941 */
si5341_is_programmed_already(struct clk_si5341 * data)942 static int si5341_is_programmed_already(struct clk_si5341 *data)
943 {
944 int err;
945 u8 r[4];
946
947 /* Read the PLL divider value, it must have a non-zero value */
948 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
949 r, ARRAY_SIZE(r));
950 if (err < 0)
951 return err;
952
953 return !!get_unaligned_le32(r);
954 }
955
956 static struct clk_hw *
of_clk_si5341_get(struct of_phandle_args * clkspec,void * _data)957 of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
958 {
959 struct clk_si5341 *data = _data;
960 unsigned int idx = clkspec->args[1];
961 unsigned int group = clkspec->args[0];
962
963 switch (group) {
964 case 0:
965 if (idx >= data->num_outputs) {
966 dev_err(&data->i2c_client->dev,
967 "invalid output index %u\n", idx);
968 return ERR_PTR(-EINVAL);
969 }
970 return &data->clk[idx].hw;
971 case 1:
972 if (idx >= data->num_synth) {
973 dev_err(&data->i2c_client->dev,
974 "invalid synthesizer index %u\n", idx);
975 return ERR_PTR(-EINVAL);
976 }
977 return &data->synth[idx].hw;
978 case 2:
979 if (idx > 0) {
980 dev_err(&data->i2c_client->dev,
981 "invalid PLL index %u\n", idx);
982 return ERR_PTR(-EINVAL);
983 }
984 return &data->hw;
985 default:
986 dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
987 return ERR_PTR(-EINVAL);
988 }
989 }
990
si5341_probe_chip_id(struct clk_si5341 * data)991 static int si5341_probe_chip_id(struct clk_si5341 *data)
992 {
993 int err;
994 u8 reg[4];
995 u16 model;
996
997 err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
998 ARRAY_SIZE(reg));
999 if (err < 0) {
1000 dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
1001 return err;
1002 }
1003
1004 model = get_unaligned_le16(reg);
1005
1006 dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
1007 model, reg[2], reg[3]);
1008
1009 switch (model) {
1010 case 0x5340:
1011 data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
1012 data->num_synth = SI5340_NUM_SYNTH;
1013 data->reg_output_offset = si5340_reg_output_offset;
1014 data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1015 break;
1016 case 0x5341:
1017 data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
1018 data->num_synth = SI5341_NUM_SYNTH;
1019 data->reg_output_offset = si5341_reg_output_offset;
1020 data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1021 break;
1022 case 0x5342:
1023 data->num_outputs = SI5342_MAX_NUM_OUTPUTS;
1024 data->num_synth = SI5342_NUM_SYNTH;
1025 data->reg_output_offset = si5340_reg_output_offset;
1026 data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1027 break;
1028 case 0x5344:
1029 data->num_outputs = SI5344_MAX_NUM_OUTPUTS;
1030 data->num_synth = SI5344_NUM_SYNTH;
1031 data->reg_output_offset = si5340_reg_output_offset;
1032 data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1033 break;
1034 case 0x5345:
1035 data->num_outputs = SI5345_MAX_NUM_OUTPUTS;
1036 data->num_synth = SI5345_NUM_SYNTH;
1037 data->reg_output_offset = si5341_reg_output_offset;
1038 data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1039 break;
1040 default:
1041 dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
1042 model);
1043 return -EINVAL;
1044 }
1045
1046 data->chip_id = model;
1047
1048 return 0;
1049 }
1050
1051 /* Read active settings into the regmap cache for later reference */
si5341_read_settings(struct clk_si5341 * data)1052 static int si5341_read_settings(struct clk_si5341 *data)
1053 {
1054 int err;
1055 u8 i;
1056 u8 r[10];
1057
1058 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
1059 if (err < 0)
1060 return err;
1061
1062 err = regmap_bulk_read(data->regmap,
1063 SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
1064 if (err < 0)
1065 return err;
1066
1067 err = regmap_bulk_read(data->regmap,
1068 SI5341_SYNTH_N_CLK_DIS, r, 1);
1069 if (err < 0)
1070 return err;
1071
1072 for (i = 0; i < data->num_synth; ++i) {
1073 err = regmap_bulk_read(data->regmap,
1074 SI5341_SYNTH_N_NUM(i), r, 10);
1075 if (err < 0)
1076 return err;
1077 }
1078
1079 for (i = 0; i < data->num_outputs; ++i) {
1080 err = regmap_bulk_read(data->regmap,
1081 data->reg_output_offset[i], r, 4);
1082 if (err < 0)
1083 return err;
1084
1085 err = regmap_bulk_read(data->regmap,
1086 data->reg_rdiv_offset[i], r, 3);
1087 if (err < 0)
1088 return err;
1089 }
1090
1091 return 0;
1092 }
1093
si5341_write_multiple(struct clk_si5341 * data,const struct si5341_reg_default * values,unsigned int num_values)1094 static int si5341_write_multiple(struct clk_si5341 *data,
1095 const struct si5341_reg_default *values, unsigned int num_values)
1096 {
1097 unsigned int i;
1098 int res;
1099
1100 for (i = 0; i < num_values; ++i) {
1101 res = regmap_write(data->regmap,
1102 values[i].address, values[i].value);
1103 if (res < 0) {
1104 dev_err(&data->i2c_client->dev,
1105 "Failed to write %#x:%#x\n",
1106 values[i].address, values[i].value);
1107 return res;
1108 }
1109 }
1110
1111 return 0;
1112 }
1113
1114 static const struct si5341_reg_default si5341_preamble[] = {
1115 { 0x0B25, 0x00 },
1116 { 0x0502, 0x01 },
1117 { 0x0505, 0x03 },
1118 { 0x0957, 0x17 },
1119 { 0x0B4E, 0x1A },
1120 };
1121
1122 static const struct si5341_reg_default si5345_preamble[] = {
1123 { 0x0B25, 0x00 },
1124 { 0x0540, 0x01 },
1125 };
1126
si5341_send_preamble(struct clk_si5341 * data)1127 static int si5341_send_preamble(struct clk_si5341 *data)
1128 {
1129 int res;
1130 u32 revision;
1131
1132 /* For revision 2 and up, the values are slightly different */
1133 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1134 if (res < 0)
1135 return res;
1136
1137 /* Write "preamble" as specified by datasheet */
1138 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
1139 if (res < 0)
1140 return res;
1141
1142 /* The si5342..si5345 require a different preamble */
1143 if (data->chip_id > 0x5341)
1144 res = si5341_write_multiple(data,
1145 si5345_preamble, ARRAY_SIZE(si5345_preamble));
1146 else
1147 res = si5341_write_multiple(data,
1148 si5341_preamble, ARRAY_SIZE(si5341_preamble));
1149 if (res < 0)
1150 return res;
1151
1152 /* Datasheet specifies a 300ms wait after sending the preamble */
1153 msleep(300);
1154
1155 return 0;
1156 }
1157
1158 /* Perform a soft reset and write post-amble */
si5341_finalize_defaults(struct clk_si5341 * data)1159 static int si5341_finalize_defaults(struct clk_si5341 *data)
1160 {
1161 int res;
1162 u32 revision;
1163
1164 res = regmap_write(data->regmap, SI5341_IO_VDD_SEL,
1165 data->iovdd_33 ? 1 : 0);
1166 if (res < 0)
1167 return res;
1168
1169 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1170 if (res < 0)
1171 return res;
1172
1173 dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
1174
1175 res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
1176 if (res < 0)
1177 return res;
1178
1179 /* The si5342..si5345 have an additional post-amble */
1180 if (data->chip_id > 0x5341) {
1181 res = regmap_write(data->regmap, 0x540, 0x0);
1182 if (res < 0)
1183 return res;
1184 }
1185
1186 /* Datasheet does not explain these nameless registers */
1187 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
1188 if (res < 0)
1189 return res;
1190 res = regmap_write(data->regmap, 0x0B25, 0x02);
1191 if (res < 0)
1192 return res;
1193
1194 return 0;
1195 }
1196
1197
1198 static const struct regmap_range si5341_regmap_volatile_range[] = {
1199 regmap_reg_range(0x000C, 0x0012), /* Status */
1200 regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
1201 regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
1202 /* Update bits for P divider and synth config */
1203 regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD),
1204 regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
1205 regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
1206 regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
1207 regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
1208 regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
1209 };
1210
1211 static const struct regmap_access_table si5341_regmap_volatile = {
1212 .yes_ranges = si5341_regmap_volatile_range,
1213 .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1214 };
1215
1216 /* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1217 static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1218 {
1219 .range_min = 0,
1220 .range_max = SI5341_REGISTER_MAX,
1221 .selector_reg = SI5341_PAGE,
1222 .selector_mask = 0xff,
1223 .selector_shift = 0,
1224 .window_start = 0,
1225 .window_len = 256,
1226 },
1227 };
1228
si5341_wait_device_ready(struct i2c_client * client)1229 static int si5341_wait_device_ready(struct i2c_client *client)
1230 {
1231 int count;
1232
1233 /* Datasheet warns: Any attempt to read or write any register other
1234 * than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the
1235 * NVM programming and may corrupt the register contents, as they are
1236 * read from NVM. Note that this includes accesses to the PAGE register.
1237 * Also: DEVICE_READY is available on every register page, so no page
1238 * change is needed to read it.
1239 * Do this outside regmap to avoid automatic PAGE register access.
1240 * May take up to 300ms to complete.
1241 */
1242 for (count = 0; count < 15; ++count) {
1243 s32 result = i2c_smbus_read_byte_data(client,
1244 SI5341_DEVICE_READY);
1245 if (result < 0)
1246 return result;
1247 if (result == 0x0F)
1248 return 0;
1249 msleep(20);
1250 }
1251 dev_err(&client->dev, "timeout waiting for DEVICE_READY\n");
1252 return -EIO;
1253 }
1254
1255 static const struct regmap_config si5341_regmap_config = {
1256 .reg_bits = 8,
1257 .val_bits = 8,
1258 .cache_type = REGCACHE_RBTREE,
1259 .ranges = si5341_regmap_ranges,
1260 .num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1261 .max_register = SI5341_REGISTER_MAX,
1262 .volatile_table = &si5341_regmap_volatile,
1263 };
1264
si5341_dt_parse_dt(struct clk_si5341 * data,struct clk_si5341_output_config * config)1265 static int si5341_dt_parse_dt(struct clk_si5341 *data,
1266 struct clk_si5341_output_config *config)
1267 {
1268 struct device_node *child;
1269 struct device_node *np = data->i2c_client->dev.of_node;
1270 u32 num;
1271 u32 val;
1272
1273 memset(config, 0, sizeof(struct clk_si5341_output_config) *
1274 SI5341_MAX_NUM_OUTPUTS);
1275
1276 for_each_child_of_node(np, child) {
1277 if (of_property_read_u32(child, "reg", &num)) {
1278 dev_err(&data->i2c_client->dev, "missing reg property of %s\n",
1279 child->name);
1280 goto put_child;
1281 }
1282
1283 if (num >= SI5341_MAX_NUM_OUTPUTS) {
1284 dev_err(&data->i2c_client->dev, "invalid clkout %d\n", num);
1285 goto put_child;
1286 }
1287
1288 if (!of_property_read_u32(child, "silabs,format", &val)) {
1289 /* Set cm and ampl conservatively to 3v3 settings */
1290 switch (val) {
1291 case 1: /* normal differential */
1292 config[num].out_cm_ampl_bits = 0x33;
1293 break;
1294 case 2: /* low-power differential */
1295 config[num].out_cm_ampl_bits = 0x13;
1296 break;
1297 case 4: /* LVCMOS */
1298 config[num].out_cm_ampl_bits = 0x33;
1299 /* Set SI recommended impedance for LVCMOS */
1300 config[num].out_format_drv_bits |= 0xc0;
1301 break;
1302 default:
1303 dev_err(&data->i2c_client->dev,
1304 "invalid silabs,format %u for %u\n",
1305 val, num);
1306 goto put_child;
1307 }
1308 config[num].out_format_drv_bits &= ~0x07;
1309 config[num].out_format_drv_bits |= val & 0x07;
1310 /* Always enable the SYNC feature */
1311 config[num].out_format_drv_bits |= 0x08;
1312 }
1313
1314 if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1315 if (val > 0xf) {
1316 dev_err(&data->i2c_client->dev,
1317 "invalid silabs,common-mode %u\n",
1318 val);
1319 goto put_child;
1320 }
1321 config[num].out_cm_ampl_bits &= 0xf0;
1322 config[num].out_cm_ampl_bits |= val & 0x0f;
1323 }
1324
1325 if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1326 if (val > 0xf) {
1327 dev_err(&data->i2c_client->dev,
1328 "invalid silabs,amplitude %u\n",
1329 val);
1330 goto put_child;
1331 }
1332 config[num].out_cm_ampl_bits &= 0x0f;
1333 config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1334 }
1335
1336 if (of_property_read_bool(child, "silabs,disable-high"))
1337 config[num].out_format_drv_bits |= 0x10;
1338
1339 config[num].synth_master =
1340 of_property_read_bool(child, "silabs,synth-master");
1341
1342 config[num].always_on =
1343 of_property_read_bool(child, "always-on");
1344
1345 config[num].vdd_sel_bits = 0x08;
1346 if (data->clk[num].vddo_reg) {
1347 int vdd = regulator_get_voltage(data->clk[num].vddo_reg);
1348
1349 switch (vdd) {
1350 case 3300000:
1351 config[num].vdd_sel_bits |= 0 << 4;
1352 break;
1353 case 1800000:
1354 config[num].vdd_sel_bits |= 1 << 4;
1355 break;
1356 case 2500000:
1357 config[num].vdd_sel_bits |= 2 << 4;
1358 break;
1359 default:
1360 dev_err(&data->i2c_client->dev,
1361 "unsupported vddo voltage %d for %s\n",
1362 vdd, child->name);
1363 goto put_child;
1364 }
1365 } else {
1366 /* chip seems to default to 2.5V when not set */
1367 dev_warn(&data->i2c_client->dev,
1368 "no regulator set, defaulting vdd_sel to 2.5V for %s\n",
1369 child->name);
1370 config[num].vdd_sel_bits |= 2 << 4;
1371 }
1372 }
1373
1374 return 0;
1375
1376 put_child:
1377 of_node_put(child);
1378 return -EINVAL;
1379 }
1380
1381 /*
1382 * If not pre-configured, calculate and set the PLL configuration manually.
1383 * For low-jitter performance, the PLL should be set such that the synthesizers
1384 * only need integer division.
1385 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1386 * the chip to generate any frequency on its outputs, but jitter performance
1387 * may be sub-optimal.
1388 */
si5341_initialize_pll(struct clk_si5341 * data)1389 static int si5341_initialize_pll(struct clk_si5341 *data)
1390 {
1391 struct device_node *np = data->i2c_client->dev.of_node;
1392 u32 m_num = 0;
1393 u32 m_den = 0;
1394 int sel;
1395
1396 if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1397 dev_err(&data->i2c_client->dev,
1398 "PLL configuration requires silabs,pll-m-num\n");
1399 }
1400 if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1401 dev_err(&data->i2c_client->dev,
1402 "PLL configuration requires silabs,pll-m-den\n");
1403 }
1404
1405 if (!m_num || !m_den) {
1406 dev_err(&data->i2c_client->dev,
1407 "PLL configuration invalid, assume 14GHz\n");
1408 sel = si5341_clk_get_selected_input(data);
1409 if (sel < 0)
1410 return sel;
1411
1412 m_den = clk_get_rate(data->input_clk[sel]) / 10;
1413 m_num = 1400000000;
1414 }
1415
1416 return si5341_encode_44_32(data->regmap,
1417 SI5341_PLL_M_NUM, m_num, m_den);
1418 }
1419
si5341_clk_select_active_input(struct clk_si5341 * data)1420 static int si5341_clk_select_active_input(struct clk_si5341 *data)
1421 {
1422 int res;
1423 int err;
1424 int i;
1425
1426 res = si5341_clk_get_selected_input(data);
1427 if (res < 0)
1428 return res;
1429
1430 /* If the current register setting is invalid, pick the first input */
1431 if (!data->input_clk[res]) {
1432 dev_dbg(&data->i2c_client->dev,
1433 "Input %d not connected, rerouting\n", res);
1434 res = -ENODEV;
1435 for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1436 if (data->input_clk[i]) {
1437 res = i;
1438 break;
1439 }
1440 }
1441 if (res < 0) {
1442 dev_err(&data->i2c_client->dev,
1443 "No clock input available\n");
1444 return res;
1445 }
1446 }
1447
1448 /* Make sure the selected clock is also enabled and routed */
1449 err = si5341_clk_reparent(data, res);
1450 if (err < 0)
1451 return err;
1452
1453 err = clk_prepare_enable(data->input_clk[res]);
1454 if (err < 0)
1455 return err;
1456
1457 return res;
1458 }
1459
input_present_show(struct device * dev,struct device_attribute * attr,char * buf)1460 static ssize_t input_present_show(struct device *dev,
1461 struct device_attribute *attr,
1462 char *buf)
1463 {
1464 struct clk_si5341 *data = dev_get_drvdata(dev);
1465 u32 status;
1466 int res = regmap_read(data->regmap, SI5341_STATUS, &status);
1467
1468 if (res < 0)
1469 return res;
1470 res = !(status & SI5341_STATUS_LOSREF);
1471 return snprintf(buf, PAGE_SIZE, "%d\n", res);
1472 }
1473 static DEVICE_ATTR_RO(input_present);
1474
input_present_sticky_show(struct device * dev,struct device_attribute * attr,char * buf)1475 static ssize_t input_present_sticky_show(struct device *dev,
1476 struct device_attribute *attr,
1477 char *buf)
1478 {
1479 struct clk_si5341 *data = dev_get_drvdata(dev);
1480 u32 status;
1481 int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status);
1482
1483 if (res < 0)
1484 return res;
1485 res = !(status & SI5341_STATUS_LOSREF);
1486 return snprintf(buf, PAGE_SIZE, "%d\n", res);
1487 }
1488 static DEVICE_ATTR_RO(input_present_sticky);
1489
pll_locked_show(struct device * dev,struct device_attribute * attr,char * buf)1490 static ssize_t pll_locked_show(struct device *dev,
1491 struct device_attribute *attr,
1492 char *buf)
1493 {
1494 struct clk_si5341 *data = dev_get_drvdata(dev);
1495 u32 status;
1496 int res = regmap_read(data->regmap, SI5341_STATUS, &status);
1497
1498 if (res < 0)
1499 return res;
1500 res = !(status & SI5341_STATUS_LOL);
1501 return snprintf(buf, PAGE_SIZE, "%d\n", res);
1502 }
1503 static DEVICE_ATTR_RO(pll_locked);
1504
pll_locked_sticky_show(struct device * dev,struct device_attribute * attr,char * buf)1505 static ssize_t pll_locked_sticky_show(struct device *dev,
1506 struct device_attribute *attr,
1507 char *buf)
1508 {
1509 struct clk_si5341 *data = dev_get_drvdata(dev);
1510 u32 status;
1511 int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status);
1512
1513 if (res < 0)
1514 return res;
1515 res = !(status & SI5341_STATUS_LOL);
1516 return snprintf(buf, PAGE_SIZE, "%d\n", res);
1517 }
1518 static DEVICE_ATTR_RO(pll_locked_sticky);
1519
clear_sticky_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1520 static ssize_t clear_sticky_store(struct device *dev,
1521 struct device_attribute *attr,
1522 const char *buf, size_t count)
1523 {
1524 struct clk_si5341 *data = dev_get_drvdata(dev);
1525 long val;
1526
1527 if (kstrtol(buf, 10, &val))
1528 return -EINVAL;
1529 if (val) {
1530 int res = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1531
1532 if (res < 0)
1533 return res;
1534 }
1535 return count;
1536 }
1537 static DEVICE_ATTR_WO(clear_sticky);
1538
1539 static const struct attribute *si5341_attributes[] = {
1540 &dev_attr_input_present.attr,
1541 &dev_attr_input_present_sticky.attr,
1542 &dev_attr_pll_locked.attr,
1543 &dev_attr_pll_locked_sticky.attr,
1544 &dev_attr_clear_sticky.attr,
1545 NULL
1546 };
1547
si5341_probe(struct i2c_client * client,const struct i2c_device_id * id)1548 static int si5341_probe(struct i2c_client *client,
1549 const struct i2c_device_id *id)
1550 {
1551 struct clk_si5341 *data;
1552 struct clk_init_data init;
1553 struct clk *input;
1554 const char *root_clock_name;
1555 const char *synth_clock_names[SI5341_NUM_SYNTH];
1556 int err;
1557 unsigned int i;
1558 struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1559 bool initialization_required;
1560 u32 status;
1561
1562 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1563 if (!data)
1564 return -ENOMEM;
1565
1566 data->i2c_client = client;
1567
1568 /* Must be done before otherwise touching hardware */
1569 err = si5341_wait_device_ready(client);
1570 if (err)
1571 return err;
1572
1573 for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1574 input = devm_clk_get(&client->dev, si5341_input_clock_names[i]);
1575 if (IS_ERR(input)) {
1576 if (PTR_ERR(input) == -EPROBE_DEFER)
1577 return -EPROBE_DEFER;
1578 data->input_clk_name[i] = si5341_input_clock_names[i];
1579 } else {
1580 data->input_clk[i] = input;
1581 data->input_clk_name[i] = __clk_get_name(input);
1582 }
1583 }
1584
1585 for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1586 char reg_name[10];
1587
1588 snprintf(reg_name, sizeof(reg_name), "vddo%d", i);
1589 data->clk[i].vddo_reg = devm_regulator_get_optional(
1590 &client->dev, reg_name);
1591 if (IS_ERR(data->clk[i].vddo_reg)) {
1592 err = PTR_ERR(data->clk[i].vddo_reg);
1593 data->clk[i].vddo_reg = NULL;
1594 if (err == -ENODEV)
1595 continue;
1596 goto cleanup;
1597 } else {
1598 err = regulator_enable(data->clk[i].vddo_reg);
1599 if (err) {
1600 dev_err(&client->dev,
1601 "failed to enable %s regulator: %d\n",
1602 reg_name, err);
1603 data->clk[i].vddo_reg = NULL;
1604 goto cleanup;
1605 }
1606 }
1607 }
1608
1609 err = si5341_dt_parse_dt(data, config);
1610 if (err)
1611 goto cleanup;
1612
1613 if (of_property_read_string(client->dev.of_node, "clock-output-names",
1614 &init.name))
1615 init.name = client->dev.of_node->name;
1616 root_clock_name = init.name;
1617
1618 data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1619 if (IS_ERR(data->regmap)) {
1620 err = PTR_ERR(data->regmap);
1621 goto cleanup;
1622 }
1623
1624 i2c_set_clientdata(client, data);
1625
1626 err = si5341_probe_chip_id(data);
1627 if (err < 0)
1628 goto cleanup;
1629
1630 if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1631 initialization_required = true;
1632 } else {
1633 err = si5341_is_programmed_already(data);
1634 if (err < 0)
1635 goto cleanup;
1636
1637 initialization_required = !err;
1638 }
1639 data->xaxb_ext_clk = of_property_read_bool(client->dev.of_node,
1640 "silabs,xaxb-ext-clk");
1641 data->iovdd_33 = of_property_read_bool(client->dev.of_node,
1642 "silabs,iovdd-33");
1643
1644 if (initialization_required) {
1645 /* Populate the regmap cache in preparation for "cache only" */
1646 err = si5341_read_settings(data);
1647 if (err < 0)
1648 goto cleanup;
1649
1650 err = si5341_send_preamble(data);
1651 if (err < 0)
1652 goto cleanup;
1653
1654 /*
1655 * We intend to send all 'final' register values in a single
1656 * transaction. So cache all register writes until we're done
1657 * configuring.
1658 */
1659 regcache_cache_only(data->regmap, true);
1660
1661 /* Write the configuration pairs from the firmware blob */
1662 err = si5341_write_multiple(data, si5341_reg_defaults,
1663 ARRAY_SIZE(si5341_reg_defaults));
1664 if (err < 0)
1665 goto cleanup;
1666 }
1667
1668 /* Input must be up and running at this point */
1669 err = si5341_clk_select_active_input(data);
1670 if (err < 0)
1671 goto cleanup;
1672
1673 if (initialization_required) {
1674 /* PLL configuration is required */
1675 err = si5341_initialize_pll(data);
1676 if (err < 0)
1677 goto cleanup;
1678 }
1679
1680 /* Register the PLL */
1681 init.parent_names = data->input_clk_name;
1682 init.num_parents = SI5341_NUM_INPUTS;
1683 init.ops = &si5341_clk_ops;
1684 init.flags = 0;
1685 data->hw.init = &init;
1686
1687 err = devm_clk_hw_register(&client->dev, &data->hw);
1688 if (err) {
1689 dev_err(&client->dev, "clock registration failed\n");
1690 goto cleanup;
1691 }
1692
1693 init.num_parents = 1;
1694 init.parent_names = &root_clock_name;
1695 init.ops = &si5341_synth_clk_ops;
1696 for (i = 0; i < data->num_synth; ++i) {
1697 synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1698 "%s.N%u", client->dev.of_node->name, i);
1699 init.name = synth_clock_names[i];
1700 data->synth[i].index = i;
1701 data->synth[i].data = data;
1702 data->synth[i].hw.init = &init;
1703 err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1704 if (err) {
1705 dev_err(&client->dev,
1706 "synth N%u registration failed\n", i);
1707 }
1708 }
1709
1710 init.num_parents = data->num_synth;
1711 init.parent_names = synth_clock_names;
1712 init.ops = &si5341_output_clk_ops;
1713 for (i = 0; i < data->num_outputs; ++i) {
1714 init.name = kasprintf(GFP_KERNEL, "%s.%d",
1715 client->dev.of_node->name, i);
1716 init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1717 data->clk[i].index = i;
1718 data->clk[i].data = data;
1719 data->clk[i].hw.init = &init;
1720 if (config[i].out_format_drv_bits & 0x07) {
1721 regmap_write(data->regmap,
1722 SI5341_OUT_FORMAT(&data->clk[i]),
1723 config[i].out_format_drv_bits);
1724 regmap_write(data->regmap,
1725 SI5341_OUT_CM(&data->clk[i]),
1726 config[i].out_cm_ampl_bits);
1727 regmap_update_bits(data->regmap,
1728 SI5341_OUT_MUX_SEL(&data->clk[i]),
1729 SI5341_OUT_MUX_VDD_SEL_MASK,
1730 config[i].vdd_sel_bits);
1731 }
1732 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1733 kfree(init.name); /* clock framework made a copy of the name */
1734 if (err) {
1735 dev_err(&client->dev,
1736 "output %u registration failed\n", i);
1737 goto cleanup;
1738 }
1739 if (config[i].always_on)
1740 clk_prepare(data->clk[i].hw.clk);
1741 }
1742
1743 err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get,
1744 data);
1745 if (err) {
1746 dev_err(&client->dev, "unable to add clk provider\n");
1747 goto cleanup;
1748 }
1749
1750 if (initialization_required) {
1751 /* Synchronize */
1752 regcache_cache_only(data->regmap, false);
1753 err = regcache_sync(data->regmap);
1754 if (err < 0)
1755 goto cleanup;
1756
1757 err = si5341_finalize_defaults(data);
1758 if (err < 0)
1759 goto cleanup;
1760 }
1761
1762 /* wait for device to report input clock present and PLL lock */
1763 err = regmap_read_poll_timeout(data->regmap, SI5341_STATUS, status,
1764 !(status & (SI5341_STATUS_LOSREF | SI5341_STATUS_LOL)),
1765 10000, 250000);
1766 if (err) {
1767 dev_err(&client->dev, "Error waiting for input clock or PLL lock\n");
1768 goto cleanup;
1769 }
1770
1771 /* clear sticky alarm bits from initialization */
1772 err = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1773 if (err) {
1774 dev_err(&client->dev, "unable to clear sticky status\n");
1775 goto cleanup;
1776 }
1777
1778 err = sysfs_create_files(&client->dev.kobj, si5341_attributes);
1779 if (err) {
1780 dev_err(&client->dev, "unable to create sysfs files\n");
1781 goto cleanup;
1782 }
1783
1784 /* Free the names, clk framework makes copies */
1785 for (i = 0; i < data->num_synth; ++i)
1786 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1787
1788 return 0;
1789
1790 cleanup:
1791 for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1792 if (data->clk[i].vddo_reg)
1793 regulator_disable(data->clk[i].vddo_reg);
1794 }
1795 return err;
1796 }
1797
si5341_remove(struct i2c_client * client)1798 static int si5341_remove(struct i2c_client *client)
1799 {
1800 struct clk_si5341 *data = i2c_get_clientdata(client);
1801 int i;
1802
1803 sysfs_remove_files(&client->dev.kobj, si5341_attributes);
1804
1805 for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1806 if (data->clk[i].vddo_reg)
1807 regulator_disable(data->clk[i].vddo_reg);
1808 }
1809
1810 return 0;
1811 }
1812
1813 static const struct i2c_device_id si5341_id[] = {
1814 { "si5340", 0 },
1815 { "si5341", 1 },
1816 { "si5342", 2 },
1817 { "si5344", 4 },
1818 { "si5345", 5 },
1819 { }
1820 };
1821 MODULE_DEVICE_TABLE(i2c, si5341_id);
1822
1823 static const struct of_device_id clk_si5341_of_match[] = {
1824 { .compatible = "silabs,si5340" },
1825 { .compatible = "silabs,si5341" },
1826 { .compatible = "silabs,si5342" },
1827 { .compatible = "silabs,si5344" },
1828 { .compatible = "silabs,si5345" },
1829 { }
1830 };
1831 MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1832
1833 static struct i2c_driver si5341_driver = {
1834 .driver = {
1835 .name = "si5341",
1836 .of_match_table = clk_si5341_of_match,
1837 },
1838 .probe = si5341_probe,
1839 .remove = si5341_remove,
1840 .id_table = si5341_id,
1841 };
1842 module_i2c_driver(si5341_driver);
1843
1844 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1845 MODULE_DESCRIPTION("Si5341 driver");
1846 MODULE_LICENSE("GPL");
1847