1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom ->submit_bio function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <linux/backing-dev.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsi.h>
68 #include <linux/debugfs.h>
69 #include <linux/device.h>
70 #include <linux/nospec.h>
71 #include <linux/uaccess.h>
72
73 #define DRIVER_NAME "pktcdvd"
74
75 #define pkt_err(pd, fmt, ...) \
76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77 #define pkt_notice(pd, fmt, ...) \
78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79 #define pkt_info(pd, fmt, ...) \
80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81
82 #define pkt_dbg(level, pd, fmt, ...) \
83 do { \
84 if (level == 2 && PACKET_DEBUG >= 2) \
85 pr_notice("%s: %s():" fmt, \
86 pd->name, __func__, ##__VA_ARGS__); \
87 else if (level == 1 && PACKET_DEBUG >= 1) \
88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
89 } while (0)
90
91 #define MAX_SPEED 0xffff
92
93 static DEFINE_MUTEX(pktcdvd_mutex);
94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95 static struct proc_dir_entry *pkt_proc;
96 static int pktdev_major;
97 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
100 static mempool_t psd_pool;
101 static struct bio_set pkt_bio_set;
102
103 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
104 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
105
106 /* forward declaration */
107 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
108 static int pkt_remove_dev(dev_t pkt_dev);
109 static int pkt_seq_show(struct seq_file *m, void *p);
110
get_zone(sector_t sector,struct pktcdvd_device * pd)111 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
112 {
113 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
114 }
115
116 /*
117 * create and register a pktcdvd kernel object.
118 */
pkt_kobj_create(struct pktcdvd_device * pd,const char * name,struct kobject * parent,struct kobj_type * ktype)119 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
120 const char* name,
121 struct kobject* parent,
122 struct kobj_type* ktype)
123 {
124 struct pktcdvd_kobj *p;
125 int error;
126
127 p = kzalloc(sizeof(*p), GFP_KERNEL);
128 if (!p)
129 return NULL;
130 p->pd = pd;
131 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
132 if (error) {
133 kobject_put(&p->kobj);
134 return NULL;
135 }
136 kobject_uevent(&p->kobj, KOBJ_ADD);
137 return p;
138 }
139 /*
140 * remove a pktcdvd kernel object.
141 */
pkt_kobj_remove(struct pktcdvd_kobj * p)142 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
143 {
144 if (p)
145 kobject_put(&p->kobj);
146 }
147 /*
148 * default release function for pktcdvd kernel objects.
149 */
pkt_kobj_release(struct kobject * kobj)150 static void pkt_kobj_release(struct kobject *kobj)
151 {
152 kfree(to_pktcdvdkobj(kobj));
153 }
154
155
156 /**********************************************************
157 *
158 * sysfs interface for pktcdvd
159 * by (C) 2006 Thomas Maier <balagi@justmail.de>
160 *
161 **********************************************************/
162
163 #define DEF_ATTR(_obj,_name,_mode) \
164 static struct attribute _obj = { .name = _name, .mode = _mode }
165
166 /**********************************************************
167 /sys/class/pktcdvd/pktcdvd[0-7]/
168 stat/reset
169 stat/packets_started
170 stat/packets_finished
171 stat/kb_written
172 stat/kb_read
173 stat/kb_read_gather
174 write_queue/size
175 write_queue/congestion_off
176 write_queue/congestion_on
177 **********************************************************/
178
179 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
180 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
181 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
182 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
183 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
184 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
185
186 static struct attribute *kobj_pkt_attrs_stat[] = {
187 &kobj_pkt_attr_st1,
188 &kobj_pkt_attr_st2,
189 &kobj_pkt_attr_st3,
190 &kobj_pkt_attr_st4,
191 &kobj_pkt_attr_st5,
192 &kobj_pkt_attr_st6,
193 NULL
194 };
195
196 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
197 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
198 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
199
200 static struct attribute *kobj_pkt_attrs_wqueue[] = {
201 &kobj_pkt_attr_wq1,
202 &kobj_pkt_attr_wq2,
203 &kobj_pkt_attr_wq3,
204 NULL
205 };
206
kobj_pkt_show(struct kobject * kobj,struct attribute * attr,char * data)207 static ssize_t kobj_pkt_show(struct kobject *kobj,
208 struct attribute *attr, char *data)
209 {
210 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
211 int n = 0;
212 int v;
213 if (strcmp(attr->name, "packets_started") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
215
216 } else if (strcmp(attr->name, "packets_finished") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
218
219 } else if (strcmp(attr->name, "kb_written") == 0) {
220 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
221
222 } else if (strcmp(attr->name, "kb_read") == 0) {
223 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
224
225 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
226 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
227
228 } else if (strcmp(attr->name, "size") == 0) {
229 spin_lock(&pd->lock);
230 v = pd->bio_queue_size;
231 spin_unlock(&pd->lock);
232 n = sprintf(data, "%d\n", v);
233
234 } else if (strcmp(attr->name, "congestion_off") == 0) {
235 spin_lock(&pd->lock);
236 v = pd->write_congestion_off;
237 spin_unlock(&pd->lock);
238 n = sprintf(data, "%d\n", v);
239
240 } else if (strcmp(attr->name, "congestion_on") == 0) {
241 spin_lock(&pd->lock);
242 v = pd->write_congestion_on;
243 spin_unlock(&pd->lock);
244 n = sprintf(data, "%d\n", v);
245 }
246 return n;
247 }
248
init_write_congestion_marks(int * lo,int * hi)249 static void init_write_congestion_marks(int* lo, int* hi)
250 {
251 if (*hi > 0) {
252 *hi = max(*hi, 500);
253 *hi = min(*hi, 1000000);
254 if (*lo <= 0)
255 *lo = *hi - 100;
256 else {
257 *lo = min(*lo, *hi - 100);
258 *lo = max(*lo, 100);
259 }
260 } else {
261 *hi = -1;
262 *lo = -1;
263 }
264 }
265
kobj_pkt_store(struct kobject * kobj,struct attribute * attr,const char * data,size_t len)266 static ssize_t kobj_pkt_store(struct kobject *kobj,
267 struct attribute *attr,
268 const char *data, size_t len)
269 {
270 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
271 int val;
272
273 if (strcmp(attr->name, "reset") == 0 && len > 0) {
274 pd->stats.pkt_started = 0;
275 pd->stats.pkt_ended = 0;
276 pd->stats.secs_w = 0;
277 pd->stats.secs_rg = 0;
278 pd->stats.secs_r = 0;
279
280 } else if (strcmp(attr->name, "congestion_off") == 0
281 && sscanf(data, "%d", &val) == 1) {
282 spin_lock(&pd->lock);
283 pd->write_congestion_off = val;
284 init_write_congestion_marks(&pd->write_congestion_off,
285 &pd->write_congestion_on);
286 spin_unlock(&pd->lock);
287
288 } else if (strcmp(attr->name, "congestion_on") == 0
289 && sscanf(data, "%d", &val) == 1) {
290 spin_lock(&pd->lock);
291 pd->write_congestion_on = val;
292 init_write_congestion_marks(&pd->write_congestion_off,
293 &pd->write_congestion_on);
294 spin_unlock(&pd->lock);
295 }
296 return len;
297 }
298
299 static const struct sysfs_ops kobj_pkt_ops = {
300 .show = kobj_pkt_show,
301 .store = kobj_pkt_store
302 };
303 static struct kobj_type kobj_pkt_type_stat = {
304 .release = pkt_kobj_release,
305 .sysfs_ops = &kobj_pkt_ops,
306 .default_attrs = kobj_pkt_attrs_stat
307 };
308 static struct kobj_type kobj_pkt_type_wqueue = {
309 .release = pkt_kobj_release,
310 .sysfs_ops = &kobj_pkt_ops,
311 .default_attrs = kobj_pkt_attrs_wqueue
312 };
313
pkt_sysfs_dev_new(struct pktcdvd_device * pd)314 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
315 {
316 if (class_pktcdvd) {
317 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
318 "%s", pd->name);
319 if (IS_ERR(pd->dev))
320 pd->dev = NULL;
321 }
322 if (pd->dev) {
323 pd->kobj_stat = pkt_kobj_create(pd, "stat",
324 &pd->dev->kobj,
325 &kobj_pkt_type_stat);
326 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
327 &pd->dev->kobj,
328 &kobj_pkt_type_wqueue);
329 }
330 }
331
pkt_sysfs_dev_remove(struct pktcdvd_device * pd)332 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
333 {
334 pkt_kobj_remove(pd->kobj_stat);
335 pkt_kobj_remove(pd->kobj_wqueue);
336 if (class_pktcdvd)
337 device_unregister(pd->dev);
338 }
339
340
341 /********************************************************************
342 /sys/class/pktcdvd/
343 add map block device
344 remove unmap packet dev
345 device_map show mappings
346 *******************************************************************/
347
class_pktcdvd_release(struct class * cls)348 static void class_pktcdvd_release(struct class *cls)
349 {
350 kfree(cls);
351 }
352
device_map_show(struct class * c,struct class_attribute * attr,char * data)353 static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
354 char *data)
355 {
356 int n = 0;
357 int idx;
358 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
359 for (idx = 0; idx < MAX_WRITERS; idx++) {
360 struct pktcdvd_device *pd = pkt_devs[idx];
361 if (!pd)
362 continue;
363 n += sprintf(data+n, "%s %u:%u %u:%u\n",
364 pd->name,
365 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
366 MAJOR(pd->bdev->bd_dev),
367 MINOR(pd->bdev->bd_dev));
368 }
369 mutex_unlock(&ctl_mutex);
370 return n;
371 }
372 static CLASS_ATTR_RO(device_map);
373
add_store(struct class * c,struct class_attribute * attr,const char * buf,size_t count)374 static ssize_t add_store(struct class *c, struct class_attribute *attr,
375 const char *buf, size_t count)
376 {
377 unsigned int major, minor;
378
379 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
380 /* pkt_setup_dev() expects caller to hold reference to self */
381 if (!try_module_get(THIS_MODULE))
382 return -ENODEV;
383
384 pkt_setup_dev(MKDEV(major, minor), NULL);
385
386 module_put(THIS_MODULE);
387
388 return count;
389 }
390
391 return -EINVAL;
392 }
393 static CLASS_ATTR_WO(add);
394
remove_store(struct class * c,struct class_attribute * attr,const char * buf,size_t count)395 static ssize_t remove_store(struct class *c, struct class_attribute *attr,
396 const char *buf, size_t count)
397 {
398 unsigned int major, minor;
399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 pkt_remove_dev(MKDEV(major, minor));
401 return count;
402 }
403 return -EINVAL;
404 }
405 static CLASS_ATTR_WO(remove);
406
407 static struct attribute *class_pktcdvd_attrs[] = {
408 &class_attr_add.attr,
409 &class_attr_remove.attr,
410 &class_attr_device_map.attr,
411 NULL,
412 };
413 ATTRIBUTE_GROUPS(class_pktcdvd);
414
pkt_sysfs_init(void)415 static int pkt_sysfs_init(void)
416 {
417 int ret = 0;
418
419 /*
420 * create control files in sysfs
421 * /sys/class/pktcdvd/...
422 */
423 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
424 if (!class_pktcdvd)
425 return -ENOMEM;
426 class_pktcdvd->name = DRIVER_NAME;
427 class_pktcdvd->owner = THIS_MODULE;
428 class_pktcdvd->class_release = class_pktcdvd_release;
429 class_pktcdvd->class_groups = class_pktcdvd_groups;
430 ret = class_register(class_pktcdvd);
431 if (ret) {
432 kfree(class_pktcdvd);
433 class_pktcdvd = NULL;
434 pr_err("failed to create class pktcdvd\n");
435 return ret;
436 }
437 return 0;
438 }
439
pkt_sysfs_cleanup(void)440 static void pkt_sysfs_cleanup(void)
441 {
442 if (class_pktcdvd)
443 class_destroy(class_pktcdvd);
444 class_pktcdvd = NULL;
445 }
446
447 /********************************************************************
448 entries in debugfs
449
450 /sys/kernel/debug/pktcdvd[0-7]/
451 info
452
453 *******************************************************************/
454
pkt_debugfs_seq_show(struct seq_file * m,void * p)455 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
456 {
457 return pkt_seq_show(m, p);
458 }
459
pkt_debugfs_fops_open(struct inode * inode,struct file * file)460 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
461 {
462 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
463 }
464
465 static const struct file_operations debug_fops = {
466 .open = pkt_debugfs_fops_open,
467 .read = seq_read,
468 .llseek = seq_lseek,
469 .release = single_release,
470 .owner = THIS_MODULE,
471 };
472
pkt_debugfs_dev_new(struct pktcdvd_device * pd)473 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
474 {
475 if (!pkt_debugfs_root)
476 return;
477 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 if (!pd->dfs_d_root)
479 return;
480
481 pd->dfs_f_info = debugfs_create_file("info", 0444,
482 pd->dfs_d_root, pd, &debug_fops);
483 }
484
pkt_debugfs_dev_remove(struct pktcdvd_device * pd)485 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
486 {
487 if (!pkt_debugfs_root)
488 return;
489 debugfs_remove(pd->dfs_f_info);
490 debugfs_remove(pd->dfs_d_root);
491 pd->dfs_f_info = NULL;
492 pd->dfs_d_root = NULL;
493 }
494
pkt_debugfs_init(void)495 static void pkt_debugfs_init(void)
496 {
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 }
499
pkt_debugfs_cleanup(void)500 static void pkt_debugfs_cleanup(void)
501 {
502 debugfs_remove(pkt_debugfs_root);
503 pkt_debugfs_root = NULL;
504 }
505
506 /* ----------------------------------------------------------*/
507
508
pkt_bio_finished(struct pktcdvd_device * pd)509 static void pkt_bio_finished(struct pktcdvd_device *pd)
510 {
511 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
512 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
513 pkt_dbg(2, pd, "queue empty\n");
514 atomic_set(&pd->iosched.attention, 1);
515 wake_up(&pd->wqueue);
516 }
517 }
518
519 /*
520 * Allocate a packet_data struct
521 */
pkt_alloc_packet_data(int frames)522 static struct packet_data *pkt_alloc_packet_data(int frames)
523 {
524 int i;
525 struct packet_data *pkt;
526
527 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
528 if (!pkt)
529 goto no_pkt;
530
531 pkt->frames = frames;
532 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
533 if (!pkt->w_bio)
534 goto no_bio;
535
536 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
537 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
538 if (!pkt->pages[i])
539 goto no_page;
540 }
541
542 spin_lock_init(&pkt->lock);
543 bio_list_init(&pkt->orig_bios);
544
545 for (i = 0; i < frames; i++) {
546 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
547 if (!bio)
548 goto no_rd_bio;
549
550 pkt->r_bios[i] = bio;
551 }
552
553 return pkt;
554
555 no_rd_bio:
556 for (i = 0; i < frames; i++) {
557 struct bio *bio = pkt->r_bios[i];
558 if (bio)
559 bio_put(bio);
560 }
561
562 no_page:
563 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
564 if (pkt->pages[i])
565 __free_page(pkt->pages[i]);
566 bio_put(pkt->w_bio);
567 no_bio:
568 kfree(pkt);
569 no_pkt:
570 return NULL;
571 }
572
573 /*
574 * Free a packet_data struct
575 */
pkt_free_packet_data(struct packet_data * pkt)576 static void pkt_free_packet_data(struct packet_data *pkt)
577 {
578 int i;
579
580 for (i = 0; i < pkt->frames; i++) {
581 struct bio *bio = pkt->r_bios[i];
582 if (bio)
583 bio_put(bio);
584 }
585 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
586 __free_page(pkt->pages[i]);
587 bio_put(pkt->w_bio);
588 kfree(pkt);
589 }
590
pkt_shrink_pktlist(struct pktcdvd_device * pd)591 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
592 {
593 struct packet_data *pkt, *next;
594
595 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
596
597 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
598 pkt_free_packet_data(pkt);
599 }
600 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
601 }
602
pkt_grow_pktlist(struct pktcdvd_device * pd,int nr_packets)603 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
604 {
605 struct packet_data *pkt;
606
607 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
608
609 while (nr_packets > 0) {
610 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
611 if (!pkt) {
612 pkt_shrink_pktlist(pd);
613 return 0;
614 }
615 pkt->id = nr_packets;
616 pkt->pd = pd;
617 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
618 nr_packets--;
619 }
620 return 1;
621 }
622
pkt_rbtree_next(struct pkt_rb_node * node)623 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
624 {
625 struct rb_node *n = rb_next(&node->rb_node);
626 if (!n)
627 return NULL;
628 return rb_entry(n, struct pkt_rb_node, rb_node);
629 }
630
pkt_rbtree_erase(struct pktcdvd_device * pd,struct pkt_rb_node * node)631 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
632 {
633 rb_erase(&node->rb_node, &pd->bio_queue);
634 mempool_free(node, &pd->rb_pool);
635 pd->bio_queue_size--;
636 BUG_ON(pd->bio_queue_size < 0);
637 }
638
639 /*
640 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
641 */
pkt_rbtree_find(struct pktcdvd_device * pd,sector_t s)642 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
643 {
644 struct rb_node *n = pd->bio_queue.rb_node;
645 struct rb_node *next;
646 struct pkt_rb_node *tmp;
647
648 if (!n) {
649 BUG_ON(pd->bio_queue_size > 0);
650 return NULL;
651 }
652
653 for (;;) {
654 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
655 if (s <= tmp->bio->bi_iter.bi_sector)
656 next = n->rb_left;
657 else
658 next = n->rb_right;
659 if (!next)
660 break;
661 n = next;
662 }
663
664 if (s > tmp->bio->bi_iter.bi_sector) {
665 tmp = pkt_rbtree_next(tmp);
666 if (!tmp)
667 return NULL;
668 }
669 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
670 return tmp;
671 }
672
673 /*
674 * Insert a node into the pd->bio_queue rb tree.
675 */
pkt_rbtree_insert(struct pktcdvd_device * pd,struct pkt_rb_node * node)676 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
677 {
678 struct rb_node **p = &pd->bio_queue.rb_node;
679 struct rb_node *parent = NULL;
680 sector_t s = node->bio->bi_iter.bi_sector;
681 struct pkt_rb_node *tmp;
682
683 while (*p) {
684 parent = *p;
685 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
686 if (s < tmp->bio->bi_iter.bi_sector)
687 p = &(*p)->rb_left;
688 else
689 p = &(*p)->rb_right;
690 }
691 rb_link_node(&node->rb_node, parent, p);
692 rb_insert_color(&node->rb_node, &pd->bio_queue);
693 pd->bio_queue_size++;
694 }
695
696 /*
697 * Send a packet_command to the underlying block device and
698 * wait for completion.
699 */
pkt_generic_packet(struct pktcdvd_device * pd,struct packet_command * cgc)700 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
701 {
702 struct request_queue *q = bdev_get_queue(pd->bdev);
703 struct request *rq;
704 int ret = 0;
705
706 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
707 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
708 if (IS_ERR(rq))
709 return PTR_ERR(rq);
710
711 if (cgc->buflen) {
712 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
713 GFP_NOIO);
714 if (ret)
715 goto out;
716 }
717
718 scsi_req(rq)->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
719 memcpy(scsi_req(rq)->cmd, cgc->cmd, CDROM_PACKET_SIZE);
720
721 rq->timeout = 60*HZ;
722 if (cgc->quiet)
723 rq->rq_flags |= RQF_QUIET;
724
725 blk_execute_rq(pd->bdev->bd_disk, rq, 0);
726 if (scsi_req(rq)->result)
727 ret = -EIO;
728 out:
729 blk_put_request(rq);
730 return ret;
731 }
732
sense_key_string(__u8 index)733 static const char *sense_key_string(__u8 index)
734 {
735 static const char * const info[] = {
736 "No sense", "Recovered error", "Not ready",
737 "Medium error", "Hardware error", "Illegal request",
738 "Unit attention", "Data protect", "Blank check",
739 };
740
741 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
742 }
743
744 /*
745 * A generic sense dump / resolve mechanism should be implemented across
746 * all ATAPI + SCSI devices.
747 */
pkt_dump_sense(struct pktcdvd_device * pd,struct packet_command * cgc)748 static void pkt_dump_sense(struct pktcdvd_device *pd,
749 struct packet_command *cgc)
750 {
751 struct scsi_sense_hdr *sshdr = cgc->sshdr;
752
753 if (sshdr)
754 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
755 CDROM_PACKET_SIZE, cgc->cmd,
756 sshdr->sense_key, sshdr->asc, sshdr->ascq,
757 sense_key_string(sshdr->sense_key));
758 else
759 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
760 }
761
762 /*
763 * flush the drive cache to media
764 */
pkt_flush_cache(struct pktcdvd_device * pd)765 static int pkt_flush_cache(struct pktcdvd_device *pd)
766 {
767 struct packet_command cgc;
768
769 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
770 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
771 cgc.quiet = 1;
772
773 /*
774 * the IMMED bit -- we default to not setting it, although that
775 * would allow a much faster close, this is safer
776 */
777 #if 0
778 cgc.cmd[1] = 1 << 1;
779 #endif
780 return pkt_generic_packet(pd, &cgc);
781 }
782
783 /*
784 * speed is given as the normal factor, e.g. 4 for 4x
785 */
pkt_set_speed(struct pktcdvd_device * pd,unsigned write_speed,unsigned read_speed)786 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
787 unsigned write_speed, unsigned read_speed)
788 {
789 struct packet_command cgc;
790 struct scsi_sense_hdr sshdr;
791 int ret;
792
793 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
794 cgc.sshdr = &sshdr;
795 cgc.cmd[0] = GPCMD_SET_SPEED;
796 cgc.cmd[2] = (read_speed >> 8) & 0xff;
797 cgc.cmd[3] = read_speed & 0xff;
798 cgc.cmd[4] = (write_speed >> 8) & 0xff;
799 cgc.cmd[5] = write_speed & 0xff;
800
801 ret = pkt_generic_packet(pd, &cgc);
802 if (ret)
803 pkt_dump_sense(pd, &cgc);
804
805 return ret;
806 }
807
808 /*
809 * Queue a bio for processing by the low-level CD device. Must be called
810 * from process context.
811 */
pkt_queue_bio(struct pktcdvd_device * pd,struct bio * bio)812 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
813 {
814 spin_lock(&pd->iosched.lock);
815 if (bio_data_dir(bio) == READ)
816 bio_list_add(&pd->iosched.read_queue, bio);
817 else
818 bio_list_add(&pd->iosched.write_queue, bio);
819 spin_unlock(&pd->iosched.lock);
820
821 atomic_set(&pd->iosched.attention, 1);
822 wake_up(&pd->wqueue);
823 }
824
825 /*
826 * Process the queued read/write requests. This function handles special
827 * requirements for CDRW drives:
828 * - A cache flush command must be inserted before a read request if the
829 * previous request was a write.
830 * - Switching between reading and writing is slow, so don't do it more often
831 * than necessary.
832 * - Optimize for throughput at the expense of latency. This means that streaming
833 * writes will never be interrupted by a read, but if the drive has to seek
834 * before the next write, switch to reading instead if there are any pending
835 * read requests.
836 * - Set the read speed according to current usage pattern. When only reading
837 * from the device, it's best to use the highest possible read speed, but
838 * when switching often between reading and writing, it's better to have the
839 * same read and write speeds.
840 */
pkt_iosched_process_queue(struct pktcdvd_device * pd)841 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
842 {
843
844 if (atomic_read(&pd->iosched.attention) == 0)
845 return;
846 atomic_set(&pd->iosched.attention, 0);
847
848 for (;;) {
849 struct bio *bio;
850 int reads_queued, writes_queued;
851
852 spin_lock(&pd->iosched.lock);
853 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
854 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
855 spin_unlock(&pd->iosched.lock);
856
857 if (!reads_queued && !writes_queued)
858 break;
859
860 if (pd->iosched.writing) {
861 int need_write_seek = 1;
862 spin_lock(&pd->iosched.lock);
863 bio = bio_list_peek(&pd->iosched.write_queue);
864 spin_unlock(&pd->iosched.lock);
865 if (bio && (bio->bi_iter.bi_sector ==
866 pd->iosched.last_write))
867 need_write_seek = 0;
868 if (need_write_seek && reads_queued) {
869 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
870 pkt_dbg(2, pd, "write, waiting\n");
871 break;
872 }
873 pkt_flush_cache(pd);
874 pd->iosched.writing = 0;
875 }
876 } else {
877 if (!reads_queued && writes_queued) {
878 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
879 pkt_dbg(2, pd, "read, waiting\n");
880 break;
881 }
882 pd->iosched.writing = 1;
883 }
884 }
885
886 spin_lock(&pd->iosched.lock);
887 if (pd->iosched.writing)
888 bio = bio_list_pop(&pd->iosched.write_queue);
889 else
890 bio = bio_list_pop(&pd->iosched.read_queue);
891 spin_unlock(&pd->iosched.lock);
892
893 if (!bio)
894 continue;
895
896 if (bio_data_dir(bio) == READ)
897 pd->iosched.successive_reads +=
898 bio->bi_iter.bi_size >> 10;
899 else {
900 pd->iosched.successive_reads = 0;
901 pd->iosched.last_write = bio_end_sector(bio);
902 }
903 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
904 if (pd->read_speed == pd->write_speed) {
905 pd->read_speed = MAX_SPEED;
906 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
907 }
908 } else {
909 if (pd->read_speed != pd->write_speed) {
910 pd->read_speed = pd->write_speed;
911 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
912 }
913 }
914
915 atomic_inc(&pd->cdrw.pending_bios);
916 submit_bio_noacct(bio);
917 }
918 }
919
920 /*
921 * Special care is needed if the underlying block device has a small
922 * max_phys_segments value.
923 */
pkt_set_segment_merging(struct pktcdvd_device * pd,struct request_queue * q)924 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
925 {
926 if ((pd->settings.size << 9) / CD_FRAMESIZE
927 <= queue_max_segments(q)) {
928 /*
929 * The cdrom device can handle one segment/frame
930 */
931 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
932 return 0;
933 } else if ((pd->settings.size << 9) / PAGE_SIZE
934 <= queue_max_segments(q)) {
935 /*
936 * We can handle this case at the expense of some extra memory
937 * copies during write operations
938 */
939 set_bit(PACKET_MERGE_SEGS, &pd->flags);
940 return 0;
941 } else {
942 pkt_err(pd, "cdrom max_phys_segments too small\n");
943 return -EIO;
944 }
945 }
946
pkt_end_io_read(struct bio * bio)947 static void pkt_end_io_read(struct bio *bio)
948 {
949 struct packet_data *pkt = bio->bi_private;
950 struct pktcdvd_device *pd = pkt->pd;
951 BUG_ON(!pd);
952
953 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
954 bio, (unsigned long long)pkt->sector,
955 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
956
957 if (bio->bi_status)
958 atomic_inc(&pkt->io_errors);
959 if (atomic_dec_and_test(&pkt->io_wait)) {
960 atomic_inc(&pkt->run_sm);
961 wake_up(&pd->wqueue);
962 }
963 pkt_bio_finished(pd);
964 }
965
pkt_end_io_packet_write(struct bio * bio)966 static void pkt_end_io_packet_write(struct bio *bio)
967 {
968 struct packet_data *pkt = bio->bi_private;
969 struct pktcdvd_device *pd = pkt->pd;
970 BUG_ON(!pd);
971
972 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
973
974 pd->stats.pkt_ended++;
975
976 pkt_bio_finished(pd);
977 atomic_dec(&pkt->io_wait);
978 atomic_inc(&pkt->run_sm);
979 wake_up(&pd->wqueue);
980 }
981
982 /*
983 * Schedule reads for the holes in a packet
984 */
pkt_gather_data(struct pktcdvd_device * pd,struct packet_data * pkt)985 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
986 {
987 int frames_read = 0;
988 struct bio *bio;
989 int f;
990 char written[PACKET_MAX_SIZE];
991
992 BUG_ON(bio_list_empty(&pkt->orig_bios));
993
994 atomic_set(&pkt->io_wait, 0);
995 atomic_set(&pkt->io_errors, 0);
996
997 /*
998 * Figure out which frames we need to read before we can write.
999 */
1000 memset(written, 0, sizeof(written));
1001 spin_lock(&pkt->lock);
1002 bio_list_for_each(bio, &pkt->orig_bios) {
1003 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1004 (CD_FRAMESIZE >> 9);
1005 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1006 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1007 BUG_ON(first_frame < 0);
1008 BUG_ON(first_frame + num_frames > pkt->frames);
1009 for (f = first_frame; f < first_frame + num_frames; f++)
1010 written[f] = 1;
1011 }
1012 spin_unlock(&pkt->lock);
1013
1014 if (pkt->cache_valid) {
1015 pkt_dbg(2, pd, "zone %llx cached\n",
1016 (unsigned long long)pkt->sector);
1017 goto out_account;
1018 }
1019
1020 /*
1021 * Schedule reads for missing parts of the packet.
1022 */
1023 for (f = 0; f < pkt->frames; f++) {
1024 int p, offset;
1025
1026 if (written[f])
1027 continue;
1028
1029 bio = pkt->r_bios[f];
1030 bio_reset(bio);
1031 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1032 bio_set_dev(bio, pd->bdev);
1033 bio->bi_end_io = pkt_end_io_read;
1034 bio->bi_private = pkt;
1035
1036 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1037 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1038 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1039 f, pkt->pages[p], offset);
1040 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1041 BUG();
1042
1043 atomic_inc(&pkt->io_wait);
1044 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1045 pkt_queue_bio(pd, bio);
1046 frames_read++;
1047 }
1048
1049 out_account:
1050 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1051 frames_read, (unsigned long long)pkt->sector);
1052 pd->stats.pkt_started++;
1053 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1054 }
1055
1056 /*
1057 * Find a packet matching zone, or the least recently used packet if
1058 * there is no match.
1059 */
pkt_get_packet_data(struct pktcdvd_device * pd,int zone)1060 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1061 {
1062 struct packet_data *pkt;
1063
1064 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1065 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1066 list_del_init(&pkt->list);
1067 if (pkt->sector != zone)
1068 pkt->cache_valid = 0;
1069 return pkt;
1070 }
1071 }
1072 BUG();
1073 return NULL;
1074 }
1075
pkt_put_packet_data(struct pktcdvd_device * pd,struct packet_data * pkt)1076 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077 {
1078 if (pkt->cache_valid) {
1079 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1080 } else {
1081 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1082 }
1083 }
1084
pkt_set_state(struct packet_data * pkt,enum packet_data_state state)1085 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1086 {
1087 #if PACKET_DEBUG > 1
1088 static const char *state_name[] = {
1089 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1090 };
1091 enum packet_data_state old_state = pkt->state;
1092 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1093 pkt->id, (unsigned long long)pkt->sector,
1094 state_name[old_state], state_name[state]);
1095 #endif
1096 pkt->state = state;
1097 }
1098
1099 /*
1100 * Scan the work queue to see if we can start a new packet.
1101 * returns non-zero if any work was done.
1102 */
pkt_handle_queue(struct pktcdvd_device * pd)1103 static int pkt_handle_queue(struct pktcdvd_device *pd)
1104 {
1105 struct packet_data *pkt, *p;
1106 struct bio *bio = NULL;
1107 sector_t zone = 0; /* Suppress gcc warning */
1108 struct pkt_rb_node *node, *first_node;
1109 struct rb_node *n;
1110 int wakeup;
1111
1112 atomic_set(&pd->scan_queue, 0);
1113
1114 if (list_empty(&pd->cdrw.pkt_free_list)) {
1115 pkt_dbg(2, pd, "no pkt\n");
1116 return 0;
1117 }
1118
1119 /*
1120 * Try to find a zone we are not already working on.
1121 */
1122 spin_lock(&pd->lock);
1123 first_node = pkt_rbtree_find(pd, pd->current_sector);
1124 if (!first_node) {
1125 n = rb_first(&pd->bio_queue);
1126 if (n)
1127 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1128 }
1129 node = first_node;
1130 while (node) {
1131 bio = node->bio;
1132 zone = get_zone(bio->bi_iter.bi_sector, pd);
1133 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1134 if (p->sector == zone) {
1135 bio = NULL;
1136 goto try_next_bio;
1137 }
1138 }
1139 break;
1140 try_next_bio:
1141 node = pkt_rbtree_next(node);
1142 if (!node) {
1143 n = rb_first(&pd->bio_queue);
1144 if (n)
1145 node = rb_entry(n, struct pkt_rb_node, rb_node);
1146 }
1147 if (node == first_node)
1148 node = NULL;
1149 }
1150 spin_unlock(&pd->lock);
1151 if (!bio) {
1152 pkt_dbg(2, pd, "no bio\n");
1153 return 0;
1154 }
1155
1156 pkt = pkt_get_packet_data(pd, zone);
1157
1158 pd->current_sector = zone + pd->settings.size;
1159 pkt->sector = zone;
1160 BUG_ON(pkt->frames != pd->settings.size >> 2);
1161 pkt->write_size = 0;
1162
1163 /*
1164 * Scan work queue for bios in the same zone and link them
1165 * to this packet.
1166 */
1167 spin_lock(&pd->lock);
1168 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1169 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1170 bio = node->bio;
1171 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1172 get_zone(bio->bi_iter.bi_sector, pd));
1173 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1174 break;
1175 pkt_rbtree_erase(pd, node);
1176 spin_lock(&pkt->lock);
1177 bio_list_add(&pkt->orig_bios, bio);
1178 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1179 spin_unlock(&pkt->lock);
1180 }
1181 /* check write congestion marks, and if bio_queue_size is
1182 below, wake up any waiters */
1183 wakeup = (pd->write_congestion_on > 0
1184 && pd->bio_queue_size <= pd->write_congestion_off);
1185 spin_unlock(&pd->lock);
1186 if (wakeup)
1187 clear_bdi_congested(pd->disk->bdi, BLK_RW_ASYNC);
1188
1189 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1190 pkt_set_state(pkt, PACKET_WAITING_STATE);
1191 atomic_set(&pkt->run_sm, 1);
1192
1193 spin_lock(&pd->cdrw.active_list_lock);
1194 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1195 spin_unlock(&pd->cdrw.active_list_lock);
1196
1197 return 1;
1198 }
1199
1200 /**
1201 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1202 * another
1203 * @src: source bio list
1204 * @dst: destination bio list
1205 *
1206 * Stops when it reaches the end of either the @src list or @dst list - that is,
1207 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1208 * bios).
1209 */
bio_list_copy_data(struct bio * dst,struct bio * src)1210 static void bio_list_copy_data(struct bio *dst, struct bio *src)
1211 {
1212 struct bvec_iter src_iter = src->bi_iter;
1213 struct bvec_iter dst_iter = dst->bi_iter;
1214
1215 while (1) {
1216 if (!src_iter.bi_size) {
1217 src = src->bi_next;
1218 if (!src)
1219 break;
1220
1221 src_iter = src->bi_iter;
1222 }
1223
1224 if (!dst_iter.bi_size) {
1225 dst = dst->bi_next;
1226 if (!dst)
1227 break;
1228
1229 dst_iter = dst->bi_iter;
1230 }
1231
1232 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1233 }
1234 }
1235
1236 /*
1237 * Assemble a bio to write one packet and queue the bio for processing
1238 * by the underlying block device.
1239 */
pkt_start_write(struct pktcdvd_device * pd,struct packet_data * pkt)1240 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1241 {
1242 int f;
1243
1244 bio_reset(pkt->w_bio);
1245 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1246 bio_set_dev(pkt->w_bio, pd->bdev);
1247 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1248 pkt->w_bio->bi_private = pkt;
1249
1250 /* XXX: locking? */
1251 for (f = 0; f < pkt->frames; f++) {
1252 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1253 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1254
1255 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1256 BUG();
1257 }
1258 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1259
1260 /*
1261 * Fill-in bvec with data from orig_bios.
1262 */
1263 spin_lock(&pkt->lock);
1264 bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1265
1266 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1267 spin_unlock(&pkt->lock);
1268
1269 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1270 pkt->write_size, (unsigned long long)pkt->sector);
1271
1272 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1273 pkt->cache_valid = 1;
1274 else
1275 pkt->cache_valid = 0;
1276
1277 /* Start the write request */
1278 atomic_set(&pkt->io_wait, 1);
1279 bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0);
1280 pkt_queue_bio(pd, pkt->w_bio);
1281 }
1282
pkt_finish_packet(struct packet_data * pkt,blk_status_t status)1283 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1284 {
1285 struct bio *bio;
1286
1287 if (status)
1288 pkt->cache_valid = 0;
1289
1290 /* Finish all bios corresponding to this packet */
1291 while ((bio = bio_list_pop(&pkt->orig_bios))) {
1292 bio->bi_status = status;
1293 bio_endio(bio);
1294 }
1295 }
1296
pkt_run_state_machine(struct pktcdvd_device * pd,struct packet_data * pkt)1297 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1298 {
1299 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1300
1301 for (;;) {
1302 switch (pkt->state) {
1303 case PACKET_WAITING_STATE:
1304 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1305 return;
1306
1307 pkt->sleep_time = 0;
1308 pkt_gather_data(pd, pkt);
1309 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1310 break;
1311
1312 case PACKET_READ_WAIT_STATE:
1313 if (atomic_read(&pkt->io_wait) > 0)
1314 return;
1315
1316 if (atomic_read(&pkt->io_errors) > 0) {
1317 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1318 } else {
1319 pkt_start_write(pd, pkt);
1320 }
1321 break;
1322
1323 case PACKET_WRITE_WAIT_STATE:
1324 if (atomic_read(&pkt->io_wait) > 0)
1325 return;
1326
1327 if (!pkt->w_bio->bi_status) {
1328 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1329 } else {
1330 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1331 }
1332 break;
1333
1334 case PACKET_RECOVERY_STATE:
1335 pkt_dbg(2, pd, "No recovery possible\n");
1336 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1337 break;
1338
1339 case PACKET_FINISHED_STATE:
1340 pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1341 return;
1342
1343 default:
1344 BUG();
1345 break;
1346 }
1347 }
1348 }
1349
pkt_handle_packets(struct pktcdvd_device * pd)1350 static void pkt_handle_packets(struct pktcdvd_device *pd)
1351 {
1352 struct packet_data *pkt, *next;
1353
1354 /*
1355 * Run state machine for active packets
1356 */
1357 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1358 if (atomic_read(&pkt->run_sm) > 0) {
1359 atomic_set(&pkt->run_sm, 0);
1360 pkt_run_state_machine(pd, pkt);
1361 }
1362 }
1363
1364 /*
1365 * Move no longer active packets to the free list
1366 */
1367 spin_lock(&pd->cdrw.active_list_lock);
1368 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1369 if (pkt->state == PACKET_FINISHED_STATE) {
1370 list_del(&pkt->list);
1371 pkt_put_packet_data(pd, pkt);
1372 pkt_set_state(pkt, PACKET_IDLE_STATE);
1373 atomic_set(&pd->scan_queue, 1);
1374 }
1375 }
1376 spin_unlock(&pd->cdrw.active_list_lock);
1377 }
1378
pkt_count_states(struct pktcdvd_device * pd,int * states)1379 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1380 {
1381 struct packet_data *pkt;
1382 int i;
1383
1384 for (i = 0; i < PACKET_NUM_STATES; i++)
1385 states[i] = 0;
1386
1387 spin_lock(&pd->cdrw.active_list_lock);
1388 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1389 states[pkt->state]++;
1390 }
1391 spin_unlock(&pd->cdrw.active_list_lock);
1392 }
1393
1394 /*
1395 * kcdrwd is woken up when writes have been queued for one of our
1396 * registered devices
1397 */
kcdrwd(void * foobar)1398 static int kcdrwd(void *foobar)
1399 {
1400 struct pktcdvd_device *pd = foobar;
1401 struct packet_data *pkt;
1402 long min_sleep_time, residue;
1403
1404 set_user_nice(current, MIN_NICE);
1405 set_freezable();
1406
1407 for (;;) {
1408 DECLARE_WAITQUEUE(wait, current);
1409
1410 /*
1411 * Wait until there is something to do
1412 */
1413 add_wait_queue(&pd->wqueue, &wait);
1414 for (;;) {
1415 set_current_state(TASK_INTERRUPTIBLE);
1416
1417 /* Check if we need to run pkt_handle_queue */
1418 if (atomic_read(&pd->scan_queue) > 0)
1419 goto work_to_do;
1420
1421 /* Check if we need to run the state machine for some packet */
1422 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1423 if (atomic_read(&pkt->run_sm) > 0)
1424 goto work_to_do;
1425 }
1426
1427 /* Check if we need to process the iosched queues */
1428 if (atomic_read(&pd->iosched.attention) != 0)
1429 goto work_to_do;
1430
1431 /* Otherwise, go to sleep */
1432 if (PACKET_DEBUG > 1) {
1433 int states[PACKET_NUM_STATES];
1434 pkt_count_states(pd, states);
1435 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1436 states[0], states[1], states[2],
1437 states[3], states[4], states[5]);
1438 }
1439
1440 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1441 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1442 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1443 min_sleep_time = pkt->sleep_time;
1444 }
1445
1446 pkt_dbg(2, pd, "sleeping\n");
1447 residue = schedule_timeout(min_sleep_time);
1448 pkt_dbg(2, pd, "wake up\n");
1449
1450 /* make swsusp happy with our thread */
1451 try_to_freeze();
1452
1453 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1454 if (!pkt->sleep_time)
1455 continue;
1456 pkt->sleep_time -= min_sleep_time - residue;
1457 if (pkt->sleep_time <= 0) {
1458 pkt->sleep_time = 0;
1459 atomic_inc(&pkt->run_sm);
1460 }
1461 }
1462
1463 if (kthread_should_stop())
1464 break;
1465 }
1466 work_to_do:
1467 set_current_state(TASK_RUNNING);
1468 remove_wait_queue(&pd->wqueue, &wait);
1469
1470 if (kthread_should_stop())
1471 break;
1472
1473 /*
1474 * if pkt_handle_queue returns true, we can queue
1475 * another request.
1476 */
1477 while (pkt_handle_queue(pd))
1478 ;
1479
1480 /*
1481 * Handle packet state machine
1482 */
1483 pkt_handle_packets(pd);
1484
1485 /*
1486 * Handle iosched queues
1487 */
1488 pkt_iosched_process_queue(pd);
1489 }
1490
1491 return 0;
1492 }
1493
pkt_print_settings(struct pktcdvd_device * pd)1494 static void pkt_print_settings(struct pktcdvd_device *pd)
1495 {
1496 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1497 pd->settings.fp ? "Fixed" : "Variable",
1498 pd->settings.size >> 2,
1499 pd->settings.block_mode == 8 ? '1' : '2');
1500 }
1501
pkt_mode_sense(struct pktcdvd_device * pd,struct packet_command * cgc,int page_code,int page_control)1502 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1503 {
1504 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1505
1506 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1507 cgc->cmd[2] = page_code | (page_control << 6);
1508 cgc->cmd[7] = cgc->buflen >> 8;
1509 cgc->cmd[8] = cgc->buflen & 0xff;
1510 cgc->data_direction = CGC_DATA_READ;
1511 return pkt_generic_packet(pd, cgc);
1512 }
1513
pkt_mode_select(struct pktcdvd_device * pd,struct packet_command * cgc)1514 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1515 {
1516 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1517 memset(cgc->buffer, 0, 2);
1518 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1519 cgc->cmd[1] = 0x10; /* PF */
1520 cgc->cmd[7] = cgc->buflen >> 8;
1521 cgc->cmd[8] = cgc->buflen & 0xff;
1522 cgc->data_direction = CGC_DATA_WRITE;
1523 return pkt_generic_packet(pd, cgc);
1524 }
1525
pkt_get_disc_info(struct pktcdvd_device * pd,disc_information * di)1526 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1527 {
1528 struct packet_command cgc;
1529 int ret;
1530
1531 /* set up command and get the disc info */
1532 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1533 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1534 cgc.cmd[8] = cgc.buflen = 2;
1535 cgc.quiet = 1;
1536
1537 ret = pkt_generic_packet(pd, &cgc);
1538 if (ret)
1539 return ret;
1540
1541 /* not all drives have the same disc_info length, so requeue
1542 * packet with the length the drive tells us it can supply
1543 */
1544 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1545 sizeof(di->disc_information_length);
1546
1547 if (cgc.buflen > sizeof(disc_information))
1548 cgc.buflen = sizeof(disc_information);
1549
1550 cgc.cmd[8] = cgc.buflen;
1551 return pkt_generic_packet(pd, &cgc);
1552 }
1553
pkt_get_track_info(struct pktcdvd_device * pd,__u16 track,__u8 type,track_information * ti)1554 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1555 {
1556 struct packet_command cgc;
1557 int ret;
1558
1559 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1560 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1561 cgc.cmd[1] = type & 3;
1562 cgc.cmd[4] = (track & 0xff00) >> 8;
1563 cgc.cmd[5] = track & 0xff;
1564 cgc.cmd[8] = 8;
1565 cgc.quiet = 1;
1566
1567 ret = pkt_generic_packet(pd, &cgc);
1568 if (ret)
1569 return ret;
1570
1571 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1572 sizeof(ti->track_information_length);
1573
1574 if (cgc.buflen > sizeof(track_information))
1575 cgc.buflen = sizeof(track_information);
1576
1577 cgc.cmd[8] = cgc.buflen;
1578 return pkt_generic_packet(pd, &cgc);
1579 }
1580
pkt_get_last_written(struct pktcdvd_device * pd,long * last_written)1581 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1582 long *last_written)
1583 {
1584 disc_information di;
1585 track_information ti;
1586 __u32 last_track;
1587 int ret;
1588
1589 ret = pkt_get_disc_info(pd, &di);
1590 if (ret)
1591 return ret;
1592
1593 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1594 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1595 if (ret)
1596 return ret;
1597
1598 /* if this track is blank, try the previous. */
1599 if (ti.blank) {
1600 last_track--;
1601 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1602 if (ret)
1603 return ret;
1604 }
1605
1606 /* if last recorded field is valid, return it. */
1607 if (ti.lra_v) {
1608 *last_written = be32_to_cpu(ti.last_rec_address);
1609 } else {
1610 /* make it up instead */
1611 *last_written = be32_to_cpu(ti.track_start) +
1612 be32_to_cpu(ti.track_size);
1613 if (ti.free_blocks)
1614 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1615 }
1616 return 0;
1617 }
1618
1619 /*
1620 * write mode select package based on pd->settings
1621 */
pkt_set_write_settings(struct pktcdvd_device * pd)1622 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1623 {
1624 struct packet_command cgc;
1625 struct scsi_sense_hdr sshdr;
1626 write_param_page *wp;
1627 char buffer[128];
1628 int ret, size;
1629
1630 /* doesn't apply to DVD+RW or DVD-RAM */
1631 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1632 return 0;
1633
1634 memset(buffer, 0, sizeof(buffer));
1635 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1636 cgc.sshdr = &sshdr;
1637 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1638 if (ret) {
1639 pkt_dump_sense(pd, &cgc);
1640 return ret;
1641 }
1642
1643 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1644 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1645 if (size > sizeof(buffer))
1646 size = sizeof(buffer);
1647
1648 /*
1649 * now get it all
1650 */
1651 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1652 cgc.sshdr = &sshdr;
1653 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1654 if (ret) {
1655 pkt_dump_sense(pd, &cgc);
1656 return ret;
1657 }
1658
1659 /*
1660 * write page is offset header + block descriptor length
1661 */
1662 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1663
1664 wp->fp = pd->settings.fp;
1665 wp->track_mode = pd->settings.track_mode;
1666 wp->write_type = pd->settings.write_type;
1667 wp->data_block_type = pd->settings.block_mode;
1668
1669 wp->multi_session = 0;
1670
1671 #ifdef PACKET_USE_LS
1672 wp->link_size = 7;
1673 wp->ls_v = 1;
1674 #endif
1675
1676 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1677 wp->session_format = 0;
1678 wp->subhdr2 = 0x20;
1679 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1680 wp->session_format = 0x20;
1681 wp->subhdr2 = 8;
1682 #if 0
1683 wp->mcn[0] = 0x80;
1684 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1685 #endif
1686 } else {
1687 /*
1688 * paranoia
1689 */
1690 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1691 return 1;
1692 }
1693 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1694
1695 cgc.buflen = cgc.cmd[8] = size;
1696 ret = pkt_mode_select(pd, &cgc);
1697 if (ret) {
1698 pkt_dump_sense(pd, &cgc);
1699 return ret;
1700 }
1701
1702 pkt_print_settings(pd);
1703 return 0;
1704 }
1705
1706 /*
1707 * 1 -- we can write to this track, 0 -- we can't
1708 */
pkt_writable_track(struct pktcdvd_device * pd,track_information * ti)1709 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1710 {
1711 switch (pd->mmc3_profile) {
1712 case 0x1a: /* DVD+RW */
1713 case 0x12: /* DVD-RAM */
1714 /* The track is always writable on DVD+RW/DVD-RAM */
1715 return 1;
1716 default:
1717 break;
1718 }
1719
1720 if (!ti->packet || !ti->fp)
1721 return 0;
1722
1723 /*
1724 * "good" settings as per Mt Fuji.
1725 */
1726 if (ti->rt == 0 && ti->blank == 0)
1727 return 1;
1728
1729 if (ti->rt == 0 && ti->blank == 1)
1730 return 1;
1731
1732 if (ti->rt == 1 && ti->blank == 0)
1733 return 1;
1734
1735 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1736 return 0;
1737 }
1738
1739 /*
1740 * 1 -- we can write to this disc, 0 -- we can't
1741 */
pkt_writable_disc(struct pktcdvd_device * pd,disc_information * di)1742 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1743 {
1744 switch (pd->mmc3_profile) {
1745 case 0x0a: /* CD-RW */
1746 case 0xffff: /* MMC3 not supported */
1747 break;
1748 case 0x1a: /* DVD+RW */
1749 case 0x13: /* DVD-RW */
1750 case 0x12: /* DVD-RAM */
1751 return 1;
1752 default:
1753 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1754 pd->mmc3_profile);
1755 return 0;
1756 }
1757
1758 /*
1759 * for disc type 0xff we should probably reserve a new track.
1760 * but i'm not sure, should we leave this to user apps? probably.
1761 */
1762 if (di->disc_type == 0xff) {
1763 pkt_notice(pd, "unknown disc - no track?\n");
1764 return 0;
1765 }
1766
1767 if (di->disc_type != 0x20 && di->disc_type != 0) {
1768 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1769 return 0;
1770 }
1771
1772 if (di->erasable == 0) {
1773 pkt_notice(pd, "disc not erasable\n");
1774 return 0;
1775 }
1776
1777 if (di->border_status == PACKET_SESSION_RESERVED) {
1778 pkt_err(pd, "can't write to last track (reserved)\n");
1779 return 0;
1780 }
1781
1782 return 1;
1783 }
1784
pkt_probe_settings(struct pktcdvd_device * pd)1785 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1786 {
1787 struct packet_command cgc;
1788 unsigned char buf[12];
1789 disc_information di;
1790 track_information ti;
1791 int ret, track;
1792
1793 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1794 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1795 cgc.cmd[8] = 8;
1796 ret = pkt_generic_packet(pd, &cgc);
1797 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1798
1799 memset(&di, 0, sizeof(disc_information));
1800 memset(&ti, 0, sizeof(track_information));
1801
1802 ret = pkt_get_disc_info(pd, &di);
1803 if (ret) {
1804 pkt_err(pd, "failed get_disc\n");
1805 return ret;
1806 }
1807
1808 if (!pkt_writable_disc(pd, &di))
1809 return -EROFS;
1810
1811 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1812
1813 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1814 ret = pkt_get_track_info(pd, track, 1, &ti);
1815 if (ret) {
1816 pkt_err(pd, "failed get_track\n");
1817 return ret;
1818 }
1819
1820 if (!pkt_writable_track(pd, &ti)) {
1821 pkt_err(pd, "can't write to this track\n");
1822 return -EROFS;
1823 }
1824
1825 /*
1826 * we keep packet size in 512 byte units, makes it easier to
1827 * deal with request calculations.
1828 */
1829 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1830 if (pd->settings.size == 0) {
1831 pkt_notice(pd, "detected zero packet size!\n");
1832 return -ENXIO;
1833 }
1834 if (pd->settings.size > PACKET_MAX_SECTORS) {
1835 pkt_err(pd, "packet size is too big\n");
1836 return -EROFS;
1837 }
1838 pd->settings.fp = ti.fp;
1839 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1840
1841 if (ti.nwa_v) {
1842 pd->nwa = be32_to_cpu(ti.next_writable);
1843 set_bit(PACKET_NWA_VALID, &pd->flags);
1844 }
1845
1846 /*
1847 * in theory we could use lra on -RW media as well and just zero
1848 * blocks that haven't been written yet, but in practice that
1849 * is just a no-go. we'll use that for -R, naturally.
1850 */
1851 if (ti.lra_v) {
1852 pd->lra = be32_to_cpu(ti.last_rec_address);
1853 set_bit(PACKET_LRA_VALID, &pd->flags);
1854 } else {
1855 pd->lra = 0xffffffff;
1856 set_bit(PACKET_LRA_VALID, &pd->flags);
1857 }
1858
1859 /*
1860 * fine for now
1861 */
1862 pd->settings.link_loss = 7;
1863 pd->settings.write_type = 0; /* packet */
1864 pd->settings.track_mode = ti.track_mode;
1865
1866 /*
1867 * mode1 or mode2 disc
1868 */
1869 switch (ti.data_mode) {
1870 case PACKET_MODE1:
1871 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1872 break;
1873 case PACKET_MODE2:
1874 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1875 break;
1876 default:
1877 pkt_err(pd, "unknown data mode\n");
1878 return -EROFS;
1879 }
1880 return 0;
1881 }
1882
1883 /*
1884 * enable/disable write caching on drive
1885 */
pkt_write_caching(struct pktcdvd_device * pd,int set)1886 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1887 int set)
1888 {
1889 struct packet_command cgc;
1890 struct scsi_sense_hdr sshdr;
1891 unsigned char buf[64];
1892 int ret;
1893
1894 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1895 cgc.sshdr = &sshdr;
1896 cgc.buflen = pd->mode_offset + 12;
1897
1898 /*
1899 * caching mode page might not be there, so quiet this command
1900 */
1901 cgc.quiet = 1;
1902
1903 ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1904 if (ret)
1905 return ret;
1906
1907 buf[pd->mode_offset + 10] |= (!!set << 2);
1908
1909 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1910 ret = pkt_mode_select(pd, &cgc);
1911 if (ret) {
1912 pkt_err(pd, "write caching control failed\n");
1913 pkt_dump_sense(pd, &cgc);
1914 } else if (!ret && set)
1915 pkt_notice(pd, "enabled write caching\n");
1916 return ret;
1917 }
1918
pkt_lock_door(struct pktcdvd_device * pd,int lockflag)1919 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1920 {
1921 struct packet_command cgc;
1922
1923 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1924 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1925 cgc.cmd[4] = lockflag ? 1 : 0;
1926 return pkt_generic_packet(pd, &cgc);
1927 }
1928
1929 /*
1930 * Returns drive maximum write speed
1931 */
pkt_get_max_speed(struct pktcdvd_device * pd,unsigned * write_speed)1932 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1933 unsigned *write_speed)
1934 {
1935 struct packet_command cgc;
1936 struct scsi_sense_hdr sshdr;
1937 unsigned char buf[256+18];
1938 unsigned char *cap_buf;
1939 int ret, offset;
1940
1941 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1942 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1943 cgc.sshdr = &sshdr;
1944
1945 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1946 if (ret) {
1947 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1948 sizeof(struct mode_page_header);
1949 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1950 if (ret) {
1951 pkt_dump_sense(pd, &cgc);
1952 return ret;
1953 }
1954 }
1955
1956 offset = 20; /* Obsoleted field, used by older drives */
1957 if (cap_buf[1] >= 28)
1958 offset = 28; /* Current write speed selected */
1959 if (cap_buf[1] >= 30) {
1960 /* If the drive reports at least one "Logical Unit Write
1961 * Speed Performance Descriptor Block", use the information
1962 * in the first block. (contains the highest speed)
1963 */
1964 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1965 if (num_spdb > 0)
1966 offset = 34;
1967 }
1968
1969 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1970 return 0;
1971 }
1972
1973 /* These tables from cdrecord - I don't have orange book */
1974 /* standard speed CD-RW (1-4x) */
1975 static char clv_to_speed[16] = {
1976 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1977 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1978 };
1979 /* high speed CD-RW (-10x) */
1980 static char hs_clv_to_speed[16] = {
1981 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1982 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1983 };
1984 /* ultra high speed CD-RW */
1985 static char us_clv_to_speed[16] = {
1986 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1987 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1988 };
1989
1990 /*
1991 * reads the maximum media speed from ATIP
1992 */
pkt_media_speed(struct pktcdvd_device * pd,unsigned * speed)1993 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
1994 unsigned *speed)
1995 {
1996 struct packet_command cgc;
1997 struct scsi_sense_hdr sshdr;
1998 unsigned char buf[64];
1999 unsigned int size, st, sp;
2000 int ret;
2001
2002 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2003 cgc.sshdr = &sshdr;
2004 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2005 cgc.cmd[1] = 2;
2006 cgc.cmd[2] = 4; /* READ ATIP */
2007 cgc.cmd[8] = 2;
2008 ret = pkt_generic_packet(pd, &cgc);
2009 if (ret) {
2010 pkt_dump_sense(pd, &cgc);
2011 return ret;
2012 }
2013 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2014 if (size > sizeof(buf))
2015 size = sizeof(buf);
2016
2017 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2018 cgc.sshdr = &sshdr;
2019 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2020 cgc.cmd[1] = 2;
2021 cgc.cmd[2] = 4;
2022 cgc.cmd[8] = size;
2023 ret = pkt_generic_packet(pd, &cgc);
2024 if (ret) {
2025 pkt_dump_sense(pd, &cgc);
2026 return ret;
2027 }
2028
2029 if (!(buf[6] & 0x40)) {
2030 pkt_notice(pd, "disc type is not CD-RW\n");
2031 return 1;
2032 }
2033 if (!(buf[6] & 0x4)) {
2034 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2035 return 1;
2036 }
2037
2038 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2039
2040 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2041
2042 /* Info from cdrecord */
2043 switch (st) {
2044 case 0: /* standard speed */
2045 *speed = clv_to_speed[sp];
2046 break;
2047 case 1: /* high speed */
2048 *speed = hs_clv_to_speed[sp];
2049 break;
2050 case 2: /* ultra high speed */
2051 *speed = us_clv_to_speed[sp];
2052 break;
2053 default:
2054 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2055 return 1;
2056 }
2057 if (*speed) {
2058 pkt_info(pd, "maximum media speed: %d\n", *speed);
2059 return 0;
2060 } else {
2061 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2062 return 1;
2063 }
2064 }
2065
pkt_perform_opc(struct pktcdvd_device * pd)2066 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2067 {
2068 struct packet_command cgc;
2069 struct scsi_sense_hdr sshdr;
2070 int ret;
2071
2072 pkt_dbg(2, pd, "Performing OPC\n");
2073
2074 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2075 cgc.sshdr = &sshdr;
2076 cgc.timeout = 60*HZ;
2077 cgc.cmd[0] = GPCMD_SEND_OPC;
2078 cgc.cmd[1] = 1;
2079 ret = pkt_generic_packet(pd, &cgc);
2080 if (ret)
2081 pkt_dump_sense(pd, &cgc);
2082 return ret;
2083 }
2084
pkt_open_write(struct pktcdvd_device * pd)2085 static int pkt_open_write(struct pktcdvd_device *pd)
2086 {
2087 int ret;
2088 unsigned int write_speed, media_write_speed, read_speed;
2089
2090 ret = pkt_probe_settings(pd);
2091 if (ret) {
2092 pkt_dbg(2, pd, "failed probe\n");
2093 return ret;
2094 }
2095
2096 ret = pkt_set_write_settings(pd);
2097 if (ret) {
2098 pkt_dbg(1, pd, "failed saving write settings\n");
2099 return -EIO;
2100 }
2101
2102 pkt_write_caching(pd, USE_WCACHING);
2103
2104 ret = pkt_get_max_speed(pd, &write_speed);
2105 if (ret)
2106 write_speed = 16 * 177;
2107 switch (pd->mmc3_profile) {
2108 case 0x13: /* DVD-RW */
2109 case 0x1a: /* DVD+RW */
2110 case 0x12: /* DVD-RAM */
2111 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2112 break;
2113 default:
2114 ret = pkt_media_speed(pd, &media_write_speed);
2115 if (ret)
2116 media_write_speed = 16;
2117 write_speed = min(write_speed, media_write_speed * 177);
2118 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2119 break;
2120 }
2121 read_speed = write_speed;
2122
2123 ret = pkt_set_speed(pd, write_speed, read_speed);
2124 if (ret) {
2125 pkt_dbg(1, pd, "couldn't set write speed\n");
2126 return -EIO;
2127 }
2128 pd->write_speed = write_speed;
2129 pd->read_speed = read_speed;
2130
2131 ret = pkt_perform_opc(pd);
2132 if (ret) {
2133 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2134 }
2135
2136 return 0;
2137 }
2138
2139 /*
2140 * called at open time.
2141 */
pkt_open_dev(struct pktcdvd_device * pd,fmode_t write)2142 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2143 {
2144 int ret;
2145 long lba;
2146 struct request_queue *q;
2147 struct block_device *bdev;
2148
2149 /*
2150 * We need to re-open the cdrom device without O_NONBLOCK to be able
2151 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2152 * so open should not fail.
2153 */
2154 bdev = blkdev_get_by_dev(pd->bdev->bd_dev, FMODE_READ | FMODE_EXCL, pd);
2155 if (IS_ERR(bdev)) {
2156 ret = PTR_ERR(bdev);
2157 goto out;
2158 }
2159
2160 ret = pkt_get_last_written(pd, &lba);
2161 if (ret) {
2162 pkt_err(pd, "pkt_get_last_written failed\n");
2163 goto out_putdev;
2164 }
2165
2166 set_capacity(pd->disk, lba << 2);
2167 set_capacity_and_notify(pd->bdev->bd_disk, lba << 2);
2168
2169 q = bdev_get_queue(pd->bdev);
2170 if (write) {
2171 ret = pkt_open_write(pd);
2172 if (ret)
2173 goto out_putdev;
2174 /*
2175 * Some CDRW drives can not handle writes larger than one packet,
2176 * even if the size is a multiple of the packet size.
2177 */
2178 blk_queue_max_hw_sectors(q, pd->settings.size);
2179 set_bit(PACKET_WRITABLE, &pd->flags);
2180 } else {
2181 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2182 clear_bit(PACKET_WRITABLE, &pd->flags);
2183 }
2184
2185 ret = pkt_set_segment_merging(pd, q);
2186 if (ret)
2187 goto out_putdev;
2188
2189 if (write) {
2190 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2191 pkt_err(pd, "not enough memory for buffers\n");
2192 ret = -ENOMEM;
2193 goto out_putdev;
2194 }
2195 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2196 }
2197
2198 return 0;
2199
2200 out_putdev:
2201 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
2202 out:
2203 return ret;
2204 }
2205
2206 /*
2207 * called when the device is closed. makes sure that the device flushes
2208 * the internal cache before we close.
2209 */
pkt_release_dev(struct pktcdvd_device * pd,int flush)2210 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2211 {
2212 if (flush && pkt_flush_cache(pd))
2213 pkt_dbg(1, pd, "not flushing cache\n");
2214
2215 pkt_lock_door(pd, 0);
2216
2217 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2218 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2219
2220 pkt_shrink_pktlist(pd);
2221 }
2222
pkt_find_dev_from_minor(unsigned int dev_minor)2223 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2224 {
2225 if (dev_minor >= MAX_WRITERS)
2226 return NULL;
2227
2228 dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2229 return pkt_devs[dev_minor];
2230 }
2231
pkt_open(struct block_device * bdev,fmode_t mode)2232 static int pkt_open(struct block_device *bdev, fmode_t mode)
2233 {
2234 struct pktcdvd_device *pd = NULL;
2235 int ret;
2236
2237 mutex_lock(&pktcdvd_mutex);
2238 mutex_lock(&ctl_mutex);
2239 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2240 if (!pd) {
2241 ret = -ENODEV;
2242 goto out;
2243 }
2244 BUG_ON(pd->refcnt < 0);
2245
2246 pd->refcnt++;
2247 if (pd->refcnt > 1) {
2248 if ((mode & FMODE_WRITE) &&
2249 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2250 ret = -EBUSY;
2251 goto out_dec;
2252 }
2253 } else {
2254 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2255 if (ret)
2256 goto out_dec;
2257 /*
2258 * needed here as well, since ext2 (among others) may change
2259 * the blocksize at mount time
2260 */
2261 set_blocksize(bdev, CD_FRAMESIZE);
2262 }
2263
2264 mutex_unlock(&ctl_mutex);
2265 mutex_unlock(&pktcdvd_mutex);
2266 return 0;
2267
2268 out_dec:
2269 pd->refcnt--;
2270 out:
2271 mutex_unlock(&ctl_mutex);
2272 mutex_unlock(&pktcdvd_mutex);
2273 return ret;
2274 }
2275
pkt_close(struct gendisk * disk,fmode_t mode)2276 static void pkt_close(struct gendisk *disk, fmode_t mode)
2277 {
2278 struct pktcdvd_device *pd = disk->private_data;
2279
2280 mutex_lock(&pktcdvd_mutex);
2281 mutex_lock(&ctl_mutex);
2282 pd->refcnt--;
2283 BUG_ON(pd->refcnt < 0);
2284 if (pd->refcnt == 0) {
2285 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2286 pkt_release_dev(pd, flush);
2287 }
2288 mutex_unlock(&ctl_mutex);
2289 mutex_unlock(&pktcdvd_mutex);
2290 }
2291
2292
pkt_end_io_read_cloned(struct bio * bio)2293 static void pkt_end_io_read_cloned(struct bio *bio)
2294 {
2295 struct packet_stacked_data *psd = bio->bi_private;
2296 struct pktcdvd_device *pd = psd->pd;
2297
2298 psd->bio->bi_status = bio->bi_status;
2299 bio_put(bio);
2300 bio_endio(psd->bio);
2301 mempool_free(psd, &psd_pool);
2302 pkt_bio_finished(pd);
2303 }
2304
pkt_make_request_read(struct pktcdvd_device * pd,struct bio * bio)2305 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2306 {
2307 struct bio *cloned_bio = bio_clone_fast(bio, GFP_NOIO, &pkt_bio_set);
2308 struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2309
2310 psd->pd = pd;
2311 psd->bio = bio;
2312 bio_set_dev(cloned_bio, pd->bdev);
2313 cloned_bio->bi_private = psd;
2314 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2315 pd->stats.secs_r += bio_sectors(bio);
2316 pkt_queue_bio(pd, cloned_bio);
2317 }
2318
pkt_make_request_write(struct request_queue * q,struct bio * bio)2319 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2320 {
2321 struct pktcdvd_device *pd = q->queuedata;
2322 sector_t zone;
2323 struct packet_data *pkt;
2324 int was_empty, blocked_bio;
2325 struct pkt_rb_node *node;
2326
2327 zone = get_zone(bio->bi_iter.bi_sector, pd);
2328
2329 /*
2330 * If we find a matching packet in state WAITING or READ_WAIT, we can
2331 * just append this bio to that packet.
2332 */
2333 spin_lock(&pd->cdrw.active_list_lock);
2334 blocked_bio = 0;
2335 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2336 if (pkt->sector == zone) {
2337 spin_lock(&pkt->lock);
2338 if ((pkt->state == PACKET_WAITING_STATE) ||
2339 (pkt->state == PACKET_READ_WAIT_STATE)) {
2340 bio_list_add(&pkt->orig_bios, bio);
2341 pkt->write_size +=
2342 bio->bi_iter.bi_size / CD_FRAMESIZE;
2343 if ((pkt->write_size >= pkt->frames) &&
2344 (pkt->state == PACKET_WAITING_STATE)) {
2345 atomic_inc(&pkt->run_sm);
2346 wake_up(&pd->wqueue);
2347 }
2348 spin_unlock(&pkt->lock);
2349 spin_unlock(&pd->cdrw.active_list_lock);
2350 return;
2351 } else {
2352 blocked_bio = 1;
2353 }
2354 spin_unlock(&pkt->lock);
2355 }
2356 }
2357 spin_unlock(&pd->cdrw.active_list_lock);
2358
2359 /*
2360 * Test if there is enough room left in the bio work queue
2361 * (queue size >= congestion on mark).
2362 * If not, wait till the work queue size is below the congestion off mark.
2363 */
2364 spin_lock(&pd->lock);
2365 if (pd->write_congestion_on > 0
2366 && pd->bio_queue_size >= pd->write_congestion_on) {
2367 set_bdi_congested(bio->bi_bdev->bd_disk->bdi, BLK_RW_ASYNC);
2368 do {
2369 spin_unlock(&pd->lock);
2370 congestion_wait(BLK_RW_ASYNC, HZ);
2371 spin_lock(&pd->lock);
2372 } while(pd->bio_queue_size > pd->write_congestion_off);
2373 }
2374 spin_unlock(&pd->lock);
2375
2376 /*
2377 * No matching packet found. Store the bio in the work queue.
2378 */
2379 node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2380 node->bio = bio;
2381 spin_lock(&pd->lock);
2382 BUG_ON(pd->bio_queue_size < 0);
2383 was_empty = (pd->bio_queue_size == 0);
2384 pkt_rbtree_insert(pd, node);
2385 spin_unlock(&pd->lock);
2386
2387 /*
2388 * Wake up the worker thread.
2389 */
2390 atomic_set(&pd->scan_queue, 1);
2391 if (was_empty) {
2392 /* This wake_up is required for correct operation */
2393 wake_up(&pd->wqueue);
2394 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2395 /*
2396 * This wake up is not required for correct operation,
2397 * but improves performance in some cases.
2398 */
2399 wake_up(&pd->wqueue);
2400 }
2401 }
2402
pkt_submit_bio(struct bio * bio)2403 static blk_qc_t pkt_submit_bio(struct bio *bio)
2404 {
2405 struct pktcdvd_device *pd;
2406 char b[BDEVNAME_SIZE];
2407 struct bio *split;
2408
2409 blk_queue_split(&bio);
2410
2411 pd = bio->bi_bdev->bd_disk->queue->queuedata;
2412 if (!pd) {
2413 pr_err("%s incorrect request queue\n", bio_devname(bio, b));
2414 goto end_io;
2415 }
2416
2417 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2418 (unsigned long long)bio->bi_iter.bi_sector,
2419 (unsigned long long)bio_end_sector(bio));
2420
2421 /*
2422 * Clone READ bios so we can have our own bi_end_io callback.
2423 */
2424 if (bio_data_dir(bio) == READ) {
2425 pkt_make_request_read(pd, bio);
2426 return BLK_QC_T_NONE;
2427 }
2428
2429 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2430 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2431 (unsigned long long)bio->bi_iter.bi_sector);
2432 goto end_io;
2433 }
2434
2435 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2436 pkt_err(pd, "wrong bio size\n");
2437 goto end_io;
2438 }
2439
2440 do {
2441 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2442 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2443
2444 if (last_zone != zone) {
2445 BUG_ON(last_zone != zone + pd->settings.size);
2446
2447 split = bio_split(bio, last_zone -
2448 bio->bi_iter.bi_sector,
2449 GFP_NOIO, &pkt_bio_set);
2450 bio_chain(split, bio);
2451 } else {
2452 split = bio;
2453 }
2454
2455 pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2456 } while (split != bio);
2457
2458 return BLK_QC_T_NONE;
2459 end_io:
2460 bio_io_error(bio);
2461 return BLK_QC_T_NONE;
2462 }
2463
pkt_init_queue(struct pktcdvd_device * pd)2464 static void pkt_init_queue(struct pktcdvd_device *pd)
2465 {
2466 struct request_queue *q = pd->disk->queue;
2467
2468 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2469 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2470 q->queuedata = pd;
2471 }
2472
pkt_seq_show(struct seq_file * m,void * p)2473 static int pkt_seq_show(struct seq_file *m, void *p)
2474 {
2475 struct pktcdvd_device *pd = m->private;
2476 char *msg;
2477 char bdev_buf[BDEVNAME_SIZE];
2478 int states[PACKET_NUM_STATES];
2479
2480 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2481 bdevname(pd->bdev, bdev_buf));
2482
2483 seq_printf(m, "\nSettings:\n");
2484 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2485
2486 if (pd->settings.write_type == 0)
2487 msg = "Packet";
2488 else
2489 msg = "Unknown";
2490 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2491
2492 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2493 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2494
2495 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2496
2497 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2498 msg = "Mode 1";
2499 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2500 msg = "Mode 2";
2501 else
2502 msg = "Unknown";
2503 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2504
2505 seq_printf(m, "\nStatistics:\n");
2506 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2507 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2508 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2509 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2510 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2511
2512 seq_printf(m, "\nMisc:\n");
2513 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2514 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2515 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2516 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2517 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2518 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2519
2520 seq_printf(m, "\nQueue state:\n");
2521 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2522 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2523 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2524
2525 pkt_count_states(pd, states);
2526 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2527 states[0], states[1], states[2], states[3], states[4], states[5]);
2528
2529 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2530 pd->write_congestion_off,
2531 pd->write_congestion_on);
2532 return 0;
2533 }
2534
pkt_new_dev(struct pktcdvd_device * pd,dev_t dev)2535 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2536 {
2537 int i;
2538 char b[BDEVNAME_SIZE];
2539 struct block_device *bdev;
2540
2541 if (pd->pkt_dev == dev) {
2542 pkt_err(pd, "recursive setup not allowed\n");
2543 return -EBUSY;
2544 }
2545 for (i = 0; i < MAX_WRITERS; i++) {
2546 struct pktcdvd_device *pd2 = pkt_devs[i];
2547 if (!pd2)
2548 continue;
2549 if (pd2->bdev->bd_dev == dev) {
2550 pkt_err(pd, "%s already setup\n",
2551 bdevname(pd2->bdev, b));
2552 return -EBUSY;
2553 }
2554 if (pd2->pkt_dev == dev) {
2555 pkt_err(pd, "can't chain pktcdvd devices\n");
2556 return -EBUSY;
2557 }
2558 }
2559
2560 bdev = blkdev_get_by_dev(dev, FMODE_READ | FMODE_NDELAY, NULL);
2561 if (IS_ERR(bdev))
2562 return PTR_ERR(bdev);
2563 if (!blk_queue_scsi_passthrough(bdev_get_queue(bdev))) {
2564 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2565 return -EINVAL;
2566 }
2567
2568 /* This is safe, since we have a reference from open(). */
2569 __module_get(THIS_MODULE);
2570
2571 pd->bdev = bdev;
2572 set_blocksize(bdev, CD_FRAMESIZE);
2573
2574 pkt_init_queue(pd);
2575
2576 atomic_set(&pd->cdrw.pending_bios, 0);
2577 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2578 if (IS_ERR(pd->cdrw.thread)) {
2579 pkt_err(pd, "can't start kernel thread\n");
2580 goto out_mem;
2581 }
2582
2583 proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd);
2584 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2585 return 0;
2586
2587 out_mem:
2588 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2589 /* This is safe: open() is still holding a reference. */
2590 module_put(THIS_MODULE);
2591 return -ENOMEM;
2592 }
2593
pkt_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)2594 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2595 {
2596 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2597 int ret;
2598
2599 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2600 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2601
2602 mutex_lock(&pktcdvd_mutex);
2603 switch (cmd) {
2604 case CDROMEJECT:
2605 /*
2606 * The door gets locked when the device is opened, so we
2607 * have to unlock it or else the eject command fails.
2608 */
2609 if (pd->refcnt == 1)
2610 pkt_lock_door(pd, 0);
2611 fallthrough;
2612 /*
2613 * forward selected CDROM ioctls to CD-ROM, for UDF
2614 */
2615 case CDROMMULTISESSION:
2616 case CDROMREADTOCENTRY:
2617 case CDROM_LAST_WRITTEN:
2618 case CDROM_SEND_PACKET:
2619 case SCSI_IOCTL_SEND_COMMAND:
2620 if (!bdev->bd_disk->fops->ioctl)
2621 ret = -ENOTTY;
2622 else
2623 ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2624 break;
2625 default:
2626 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2627 ret = -ENOTTY;
2628 }
2629 mutex_unlock(&pktcdvd_mutex);
2630
2631 return ret;
2632 }
2633
pkt_check_events(struct gendisk * disk,unsigned int clearing)2634 static unsigned int pkt_check_events(struct gendisk *disk,
2635 unsigned int clearing)
2636 {
2637 struct pktcdvd_device *pd = disk->private_data;
2638 struct gendisk *attached_disk;
2639
2640 if (!pd)
2641 return 0;
2642 if (!pd->bdev)
2643 return 0;
2644 attached_disk = pd->bdev->bd_disk;
2645 if (!attached_disk || !attached_disk->fops->check_events)
2646 return 0;
2647 return attached_disk->fops->check_events(attached_disk, clearing);
2648 }
2649
pkt_devnode(struct gendisk * disk,umode_t * mode)2650 static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2651 {
2652 return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2653 }
2654
2655 static const struct block_device_operations pktcdvd_ops = {
2656 .owner = THIS_MODULE,
2657 .submit_bio = pkt_submit_bio,
2658 .open = pkt_open,
2659 .release = pkt_close,
2660 .ioctl = pkt_ioctl,
2661 .compat_ioctl = blkdev_compat_ptr_ioctl,
2662 .check_events = pkt_check_events,
2663 .devnode = pkt_devnode,
2664 };
2665
2666 /*
2667 * Set up mapping from pktcdvd device to CD-ROM device.
2668 */
pkt_setup_dev(dev_t dev,dev_t * pkt_dev)2669 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2670 {
2671 int idx;
2672 int ret = -ENOMEM;
2673 struct pktcdvd_device *pd;
2674 struct gendisk *disk;
2675
2676 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2677
2678 for (idx = 0; idx < MAX_WRITERS; idx++)
2679 if (!pkt_devs[idx])
2680 break;
2681 if (idx == MAX_WRITERS) {
2682 pr_err("max %d writers supported\n", MAX_WRITERS);
2683 ret = -EBUSY;
2684 goto out_mutex;
2685 }
2686
2687 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2688 if (!pd)
2689 goto out_mutex;
2690
2691 ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2692 sizeof(struct pkt_rb_node));
2693 if (ret)
2694 goto out_mem;
2695
2696 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2697 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2698 spin_lock_init(&pd->cdrw.active_list_lock);
2699
2700 spin_lock_init(&pd->lock);
2701 spin_lock_init(&pd->iosched.lock);
2702 bio_list_init(&pd->iosched.read_queue);
2703 bio_list_init(&pd->iosched.write_queue);
2704 sprintf(pd->name, DRIVER_NAME"%d", idx);
2705 init_waitqueue_head(&pd->wqueue);
2706 pd->bio_queue = RB_ROOT;
2707
2708 pd->write_congestion_on = write_congestion_on;
2709 pd->write_congestion_off = write_congestion_off;
2710
2711 ret = -ENOMEM;
2712 disk = blk_alloc_disk(NUMA_NO_NODE);
2713 if (!disk)
2714 goto out_mem;
2715 pd->disk = disk;
2716 disk->major = pktdev_major;
2717 disk->first_minor = idx;
2718 disk->minors = 1;
2719 disk->fops = &pktcdvd_ops;
2720 disk->flags = GENHD_FL_REMOVABLE;
2721 strcpy(disk->disk_name, pd->name);
2722 disk->private_data = pd;
2723
2724 pd->pkt_dev = MKDEV(pktdev_major, idx);
2725 ret = pkt_new_dev(pd, dev);
2726 if (ret)
2727 goto out_mem2;
2728
2729 /* inherit events of the host device */
2730 disk->events = pd->bdev->bd_disk->events;
2731
2732 add_disk(disk);
2733
2734 pkt_sysfs_dev_new(pd);
2735 pkt_debugfs_dev_new(pd);
2736
2737 pkt_devs[idx] = pd;
2738 if (pkt_dev)
2739 *pkt_dev = pd->pkt_dev;
2740
2741 mutex_unlock(&ctl_mutex);
2742 return 0;
2743
2744 out_mem2:
2745 blk_cleanup_disk(disk);
2746 out_mem:
2747 mempool_exit(&pd->rb_pool);
2748 kfree(pd);
2749 out_mutex:
2750 mutex_unlock(&ctl_mutex);
2751 pr_err("setup of pktcdvd device failed\n");
2752 return ret;
2753 }
2754
2755 /*
2756 * Tear down mapping from pktcdvd device to CD-ROM device.
2757 */
pkt_remove_dev(dev_t pkt_dev)2758 static int pkt_remove_dev(dev_t pkt_dev)
2759 {
2760 struct pktcdvd_device *pd;
2761 int idx;
2762 int ret = 0;
2763
2764 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2765
2766 for (idx = 0; idx < MAX_WRITERS; idx++) {
2767 pd = pkt_devs[idx];
2768 if (pd && (pd->pkt_dev == pkt_dev))
2769 break;
2770 }
2771 if (idx == MAX_WRITERS) {
2772 pr_debug("dev not setup\n");
2773 ret = -ENXIO;
2774 goto out;
2775 }
2776
2777 if (pd->refcnt > 0) {
2778 ret = -EBUSY;
2779 goto out;
2780 }
2781 if (!IS_ERR(pd->cdrw.thread))
2782 kthread_stop(pd->cdrw.thread);
2783
2784 pkt_devs[idx] = NULL;
2785
2786 pkt_debugfs_dev_remove(pd);
2787 pkt_sysfs_dev_remove(pd);
2788
2789 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2790
2791 remove_proc_entry(pd->name, pkt_proc);
2792 pkt_dbg(1, pd, "writer unmapped\n");
2793
2794 del_gendisk(pd->disk);
2795 blk_cleanup_disk(pd->disk);
2796
2797 mempool_exit(&pd->rb_pool);
2798 kfree(pd);
2799
2800 /* This is safe: open() is still holding a reference. */
2801 module_put(THIS_MODULE);
2802
2803 out:
2804 mutex_unlock(&ctl_mutex);
2805 return ret;
2806 }
2807
pkt_get_status(struct pkt_ctrl_command * ctrl_cmd)2808 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2809 {
2810 struct pktcdvd_device *pd;
2811
2812 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2813
2814 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2815 if (pd) {
2816 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2817 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2818 } else {
2819 ctrl_cmd->dev = 0;
2820 ctrl_cmd->pkt_dev = 0;
2821 }
2822 ctrl_cmd->num_devices = MAX_WRITERS;
2823
2824 mutex_unlock(&ctl_mutex);
2825 }
2826
pkt_ctl_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2827 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2828 {
2829 void __user *argp = (void __user *)arg;
2830 struct pkt_ctrl_command ctrl_cmd;
2831 int ret = 0;
2832 dev_t pkt_dev = 0;
2833
2834 if (cmd != PACKET_CTRL_CMD)
2835 return -ENOTTY;
2836
2837 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2838 return -EFAULT;
2839
2840 switch (ctrl_cmd.command) {
2841 case PKT_CTRL_CMD_SETUP:
2842 if (!capable(CAP_SYS_ADMIN))
2843 return -EPERM;
2844 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2845 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2846 break;
2847 case PKT_CTRL_CMD_TEARDOWN:
2848 if (!capable(CAP_SYS_ADMIN))
2849 return -EPERM;
2850 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2851 break;
2852 case PKT_CTRL_CMD_STATUS:
2853 pkt_get_status(&ctrl_cmd);
2854 break;
2855 default:
2856 return -ENOTTY;
2857 }
2858
2859 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2860 return -EFAULT;
2861 return ret;
2862 }
2863
2864 #ifdef CONFIG_COMPAT
pkt_ctl_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2865 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2866 {
2867 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2868 }
2869 #endif
2870
2871 static const struct file_operations pkt_ctl_fops = {
2872 .open = nonseekable_open,
2873 .unlocked_ioctl = pkt_ctl_ioctl,
2874 #ifdef CONFIG_COMPAT
2875 .compat_ioctl = pkt_ctl_compat_ioctl,
2876 #endif
2877 .owner = THIS_MODULE,
2878 .llseek = no_llseek,
2879 };
2880
2881 static struct miscdevice pkt_misc = {
2882 .minor = MISC_DYNAMIC_MINOR,
2883 .name = DRIVER_NAME,
2884 .nodename = "pktcdvd/control",
2885 .fops = &pkt_ctl_fops
2886 };
2887
pkt_init(void)2888 static int __init pkt_init(void)
2889 {
2890 int ret;
2891
2892 mutex_init(&ctl_mutex);
2893
2894 ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2895 sizeof(struct packet_stacked_data));
2896 if (ret)
2897 return ret;
2898 ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2899 if (ret) {
2900 mempool_exit(&psd_pool);
2901 return ret;
2902 }
2903
2904 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2905 if (ret < 0) {
2906 pr_err("unable to register block device\n");
2907 goto out2;
2908 }
2909 if (!pktdev_major)
2910 pktdev_major = ret;
2911
2912 ret = pkt_sysfs_init();
2913 if (ret)
2914 goto out;
2915
2916 pkt_debugfs_init();
2917
2918 ret = misc_register(&pkt_misc);
2919 if (ret) {
2920 pr_err("unable to register misc device\n");
2921 goto out_misc;
2922 }
2923
2924 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2925
2926 return 0;
2927
2928 out_misc:
2929 pkt_debugfs_cleanup();
2930 pkt_sysfs_cleanup();
2931 out:
2932 unregister_blkdev(pktdev_major, DRIVER_NAME);
2933 out2:
2934 mempool_exit(&psd_pool);
2935 bioset_exit(&pkt_bio_set);
2936 return ret;
2937 }
2938
pkt_exit(void)2939 static void __exit pkt_exit(void)
2940 {
2941 remove_proc_entry("driver/"DRIVER_NAME, NULL);
2942 misc_deregister(&pkt_misc);
2943
2944 pkt_debugfs_cleanup();
2945 pkt_sysfs_cleanup();
2946
2947 unregister_blkdev(pktdev_major, DRIVER_NAME);
2948 mempool_exit(&psd_pool);
2949 bioset_exit(&pkt_bio_set);
2950 }
2951
2952 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2953 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2954 MODULE_LICENSE("GPL");
2955
2956 module_init(pkt_init);
2957 module_exit(pkt_exit);
2958