1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 drbd_worker.c
4
5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11
12 */
13
14 #include <linux/module.h>
15 #include <linux/drbd.h>
16 #include <linux/sched/signal.h>
17 #include <linux/wait.h>
18 #include <linux/mm.h>
19 #include <linux/memcontrol.h>
20 #include <linux/mm_inline.h>
21 #include <linux/slab.h>
22 #include <linux/random.h>
23 #include <linux/string.h>
24 #include <linux/scatterlist.h>
25 #include <linux/part_stat.h>
26
27 #include "drbd_int.h"
28 #include "drbd_protocol.h"
29 #include "drbd_req.h"
30
31 static int make_ov_request(struct drbd_device *, int);
32 static int make_resync_request(struct drbd_device *, int);
33
34 /* endio handlers:
35 * drbd_md_endio (defined here)
36 * drbd_request_endio (defined here)
37 * drbd_peer_request_endio (defined here)
38 * drbd_bm_endio (defined in drbd_bitmap.c)
39 *
40 * For all these callbacks, note the following:
41 * The callbacks will be called in irq context by the IDE drivers,
42 * and in Softirqs/Tasklets/BH context by the SCSI drivers.
43 * Try to get the locking right :)
44 *
45 */
46
47 /* used for synchronous meta data and bitmap IO
48 * submitted by drbd_md_sync_page_io()
49 */
drbd_md_endio(struct bio * bio)50 void drbd_md_endio(struct bio *bio)
51 {
52 struct drbd_device *device;
53
54 device = bio->bi_private;
55 device->md_io.error = blk_status_to_errno(bio->bi_status);
56
57 /* special case: drbd_md_read() during drbd_adm_attach() */
58 if (device->ldev)
59 put_ldev(device);
60 bio_put(bio);
61
62 /* We grabbed an extra reference in _drbd_md_sync_page_io() to be able
63 * to timeout on the lower level device, and eventually detach from it.
64 * If this io completion runs after that timeout expired, this
65 * drbd_md_put_buffer() may allow us to finally try and re-attach.
66 * During normal operation, this only puts that extra reference
67 * down to 1 again.
68 * Make sure we first drop the reference, and only then signal
69 * completion, or we may (in drbd_al_read_log()) cycle so fast into the
70 * next drbd_md_sync_page_io(), that we trigger the
71 * ASSERT(atomic_read(&device->md_io_in_use) == 1) there.
72 */
73 drbd_md_put_buffer(device);
74 device->md_io.done = 1;
75 wake_up(&device->misc_wait);
76 }
77
78 /* reads on behalf of the partner,
79 * "submitted" by the receiver
80 */
drbd_endio_read_sec_final(struct drbd_peer_request * peer_req)81 static void drbd_endio_read_sec_final(struct drbd_peer_request *peer_req) __releases(local)
82 {
83 unsigned long flags = 0;
84 struct drbd_peer_device *peer_device = peer_req->peer_device;
85 struct drbd_device *device = peer_device->device;
86
87 spin_lock_irqsave(&device->resource->req_lock, flags);
88 device->read_cnt += peer_req->i.size >> 9;
89 list_del(&peer_req->w.list);
90 if (list_empty(&device->read_ee))
91 wake_up(&device->ee_wait);
92 if (test_bit(__EE_WAS_ERROR, &peer_req->flags))
93 __drbd_chk_io_error(device, DRBD_READ_ERROR);
94 spin_unlock_irqrestore(&device->resource->req_lock, flags);
95
96 drbd_queue_work(&peer_device->connection->sender_work, &peer_req->w);
97 put_ldev(device);
98 }
99
100 /* writes on behalf of the partner, or resync writes,
101 * "submitted" by the receiver, final stage. */
drbd_endio_write_sec_final(struct drbd_peer_request * peer_req)102 void drbd_endio_write_sec_final(struct drbd_peer_request *peer_req) __releases(local)
103 {
104 unsigned long flags = 0;
105 struct drbd_peer_device *peer_device = peer_req->peer_device;
106 struct drbd_device *device = peer_device->device;
107 struct drbd_connection *connection = peer_device->connection;
108 struct drbd_interval i;
109 int do_wake;
110 u64 block_id;
111 int do_al_complete_io;
112
113 /* after we moved peer_req to done_ee,
114 * we may no longer access it,
115 * it may be freed/reused already!
116 * (as soon as we release the req_lock) */
117 i = peer_req->i;
118 do_al_complete_io = peer_req->flags & EE_CALL_AL_COMPLETE_IO;
119 block_id = peer_req->block_id;
120 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
121
122 if (peer_req->flags & EE_WAS_ERROR) {
123 /* In protocol != C, we usually do not send write acks.
124 * In case of a write error, send the neg ack anyways. */
125 if (!__test_and_set_bit(__EE_SEND_WRITE_ACK, &peer_req->flags))
126 inc_unacked(device);
127 drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
128 }
129
130 spin_lock_irqsave(&device->resource->req_lock, flags);
131 device->writ_cnt += peer_req->i.size >> 9;
132 list_move_tail(&peer_req->w.list, &device->done_ee);
133
134 /*
135 * Do not remove from the write_requests tree here: we did not send the
136 * Ack yet and did not wake possibly waiting conflicting requests.
137 * Removed from the tree from "drbd_process_done_ee" within the
138 * appropriate dw.cb (e_end_block/e_end_resync_block) or from
139 * _drbd_clear_done_ee.
140 */
141
142 do_wake = list_empty(block_id == ID_SYNCER ? &device->sync_ee : &device->active_ee);
143
144 /* FIXME do we want to detach for failed REQ_OP_DISCARD?
145 * ((peer_req->flags & (EE_WAS_ERROR|EE_TRIM)) == EE_WAS_ERROR) */
146 if (peer_req->flags & EE_WAS_ERROR)
147 __drbd_chk_io_error(device, DRBD_WRITE_ERROR);
148
149 if (connection->cstate >= C_WF_REPORT_PARAMS) {
150 kref_get(&device->kref); /* put is in drbd_send_acks_wf() */
151 if (!queue_work(connection->ack_sender, &peer_device->send_acks_work))
152 kref_put(&device->kref, drbd_destroy_device);
153 }
154 spin_unlock_irqrestore(&device->resource->req_lock, flags);
155
156 if (block_id == ID_SYNCER)
157 drbd_rs_complete_io(device, i.sector);
158
159 if (do_wake)
160 wake_up(&device->ee_wait);
161
162 if (do_al_complete_io)
163 drbd_al_complete_io(device, &i);
164
165 put_ldev(device);
166 }
167
168 /* writes on behalf of the partner, or resync writes,
169 * "submitted" by the receiver.
170 */
drbd_peer_request_endio(struct bio * bio)171 void drbd_peer_request_endio(struct bio *bio)
172 {
173 struct drbd_peer_request *peer_req = bio->bi_private;
174 struct drbd_device *device = peer_req->peer_device->device;
175 bool is_write = bio_data_dir(bio) == WRITE;
176 bool is_discard = bio_op(bio) == REQ_OP_WRITE_ZEROES ||
177 bio_op(bio) == REQ_OP_DISCARD;
178
179 if (bio->bi_status && __ratelimit(&drbd_ratelimit_state))
180 drbd_warn(device, "%s: error=%d s=%llus\n",
181 is_write ? (is_discard ? "discard" : "write")
182 : "read", bio->bi_status,
183 (unsigned long long)peer_req->i.sector);
184
185 if (bio->bi_status)
186 set_bit(__EE_WAS_ERROR, &peer_req->flags);
187
188 bio_put(bio); /* no need for the bio anymore */
189 if (atomic_dec_and_test(&peer_req->pending_bios)) {
190 if (is_write)
191 drbd_endio_write_sec_final(peer_req);
192 else
193 drbd_endio_read_sec_final(peer_req);
194 }
195 }
196
197 static void
drbd_panic_after_delayed_completion_of_aborted_request(struct drbd_device * device)198 drbd_panic_after_delayed_completion_of_aborted_request(struct drbd_device *device)
199 {
200 panic("drbd%u %s/%u potential random memory corruption caused by delayed completion of aborted local request\n",
201 device->minor, device->resource->name, device->vnr);
202 }
203
204 /* read, readA or write requests on R_PRIMARY coming from drbd_make_request
205 */
drbd_request_endio(struct bio * bio)206 void drbd_request_endio(struct bio *bio)
207 {
208 unsigned long flags;
209 struct drbd_request *req = bio->bi_private;
210 struct drbd_device *device = req->device;
211 struct bio_and_error m;
212 enum drbd_req_event what;
213
214 /* If this request was aborted locally before,
215 * but now was completed "successfully",
216 * chances are that this caused arbitrary data corruption.
217 *
218 * "aborting" requests, or force-detaching the disk, is intended for
219 * completely blocked/hung local backing devices which do no longer
220 * complete requests at all, not even do error completions. In this
221 * situation, usually a hard-reset and failover is the only way out.
222 *
223 * By "aborting", basically faking a local error-completion,
224 * we allow for a more graceful swichover by cleanly migrating services.
225 * Still the affected node has to be rebooted "soon".
226 *
227 * By completing these requests, we allow the upper layers to re-use
228 * the associated data pages.
229 *
230 * If later the local backing device "recovers", and now DMAs some data
231 * from disk into the original request pages, in the best case it will
232 * just put random data into unused pages; but typically it will corrupt
233 * meanwhile completely unrelated data, causing all sorts of damage.
234 *
235 * Which means delayed successful completion,
236 * especially for READ requests,
237 * is a reason to panic().
238 *
239 * We assume that a delayed *error* completion is OK,
240 * though we still will complain noisily about it.
241 */
242 if (unlikely(req->rq_state & RQ_LOCAL_ABORTED)) {
243 if (__ratelimit(&drbd_ratelimit_state))
244 drbd_emerg(device, "delayed completion of aborted local request; disk-timeout may be too aggressive\n");
245
246 if (!bio->bi_status)
247 drbd_panic_after_delayed_completion_of_aborted_request(device);
248 }
249
250 /* to avoid recursion in __req_mod */
251 if (unlikely(bio->bi_status)) {
252 switch (bio_op(bio)) {
253 case REQ_OP_WRITE_ZEROES:
254 case REQ_OP_DISCARD:
255 if (bio->bi_status == BLK_STS_NOTSUPP)
256 what = DISCARD_COMPLETED_NOTSUPP;
257 else
258 what = DISCARD_COMPLETED_WITH_ERROR;
259 break;
260 case REQ_OP_READ:
261 if (bio->bi_opf & REQ_RAHEAD)
262 what = READ_AHEAD_COMPLETED_WITH_ERROR;
263 else
264 what = READ_COMPLETED_WITH_ERROR;
265 break;
266 default:
267 what = WRITE_COMPLETED_WITH_ERROR;
268 break;
269 }
270 } else {
271 what = COMPLETED_OK;
272 }
273
274 req->private_bio = ERR_PTR(blk_status_to_errno(bio->bi_status));
275 bio_put(bio);
276
277 /* not req_mod(), we need irqsave here! */
278 spin_lock_irqsave(&device->resource->req_lock, flags);
279 __req_mod(req, what, &m);
280 spin_unlock_irqrestore(&device->resource->req_lock, flags);
281 put_ldev(device);
282
283 if (m.bio)
284 complete_master_bio(device, &m);
285 }
286
drbd_csum_ee(struct crypto_shash * tfm,struct drbd_peer_request * peer_req,void * digest)287 void drbd_csum_ee(struct crypto_shash *tfm, struct drbd_peer_request *peer_req, void *digest)
288 {
289 SHASH_DESC_ON_STACK(desc, tfm);
290 struct page *page = peer_req->pages;
291 struct page *tmp;
292 unsigned len;
293 void *src;
294
295 desc->tfm = tfm;
296
297 crypto_shash_init(desc);
298
299 src = kmap_atomic(page);
300 while ((tmp = page_chain_next(page))) {
301 /* all but the last page will be fully used */
302 crypto_shash_update(desc, src, PAGE_SIZE);
303 kunmap_atomic(src);
304 page = tmp;
305 src = kmap_atomic(page);
306 }
307 /* and now the last, possibly only partially used page */
308 len = peer_req->i.size & (PAGE_SIZE - 1);
309 crypto_shash_update(desc, src, len ?: PAGE_SIZE);
310 kunmap_atomic(src);
311
312 crypto_shash_final(desc, digest);
313 shash_desc_zero(desc);
314 }
315
drbd_csum_bio(struct crypto_shash * tfm,struct bio * bio,void * digest)316 void drbd_csum_bio(struct crypto_shash *tfm, struct bio *bio, void *digest)
317 {
318 SHASH_DESC_ON_STACK(desc, tfm);
319 struct bio_vec bvec;
320 struct bvec_iter iter;
321
322 desc->tfm = tfm;
323
324 crypto_shash_init(desc);
325
326 bio_for_each_segment(bvec, bio, iter) {
327 u8 *src;
328
329 src = kmap_atomic(bvec.bv_page);
330 crypto_shash_update(desc, src + bvec.bv_offset, bvec.bv_len);
331 kunmap_atomic(src);
332
333 /* REQ_OP_WRITE_SAME has only one segment,
334 * checksum the payload only once. */
335 if (bio_op(bio) == REQ_OP_WRITE_SAME)
336 break;
337 }
338 crypto_shash_final(desc, digest);
339 shash_desc_zero(desc);
340 }
341
342 /* MAYBE merge common code with w_e_end_ov_req */
w_e_send_csum(struct drbd_work * w,int cancel)343 static int w_e_send_csum(struct drbd_work *w, int cancel)
344 {
345 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
346 struct drbd_peer_device *peer_device = peer_req->peer_device;
347 struct drbd_device *device = peer_device->device;
348 int digest_size;
349 void *digest;
350 int err = 0;
351
352 if (unlikely(cancel))
353 goto out;
354
355 if (unlikely((peer_req->flags & EE_WAS_ERROR) != 0))
356 goto out;
357
358 digest_size = crypto_shash_digestsize(peer_device->connection->csums_tfm);
359 digest = kmalloc(digest_size, GFP_NOIO);
360 if (digest) {
361 sector_t sector = peer_req->i.sector;
362 unsigned int size = peer_req->i.size;
363 drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest);
364 /* Free peer_req and pages before send.
365 * In case we block on congestion, we could otherwise run into
366 * some distributed deadlock, if the other side blocks on
367 * congestion as well, because our receiver blocks in
368 * drbd_alloc_pages due to pp_in_use > max_buffers. */
369 drbd_free_peer_req(device, peer_req);
370 peer_req = NULL;
371 inc_rs_pending(device);
372 err = drbd_send_drequest_csum(peer_device, sector, size,
373 digest, digest_size,
374 P_CSUM_RS_REQUEST);
375 kfree(digest);
376 } else {
377 drbd_err(device, "kmalloc() of digest failed.\n");
378 err = -ENOMEM;
379 }
380
381 out:
382 if (peer_req)
383 drbd_free_peer_req(device, peer_req);
384
385 if (unlikely(err))
386 drbd_err(device, "drbd_send_drequest(..., csum) failed\n");
387 return err;
388 }
389
390 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN)
391
read_for_csum(struct drbd_peer_device * peer_device,sector_t sector,int size)392 static int read_for_csum(struct drbd_peer_device *peer_device, sector_t sector, int size)
393 {
394 struct drbd_device *device = peer_device->device;
395 struct drbd_peer_request *peer_req;
396
397 if (!get_ldev(device))
398 return -EIO;
399
400 /* GFP_TRY, because if there is no memory available right now, this may
401 * be rescheduled for later. It is "only" background resync, after all. */
402 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER /* unused */, sector,
403 size, size, GFP_TRY);
404 if (!peer_req)
405 goto defer;
406
407 peer_req->w.cb = w_e_send_csum;
408 spin_lock_irq(&device->resource->req_lock);
409 list_add_tail(&peer_req->w.list, &device->read_ee);
410 spin_unlock_irq(&device->resource->req_lock);
411
412 atomic_add(size >> 9, &device->rs_sect_ev);
413 if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0,
414 DRBD_FAULT_RS_RD) == 0)
415 return 0;
416
417 /* If it failed because of ENOMEM, retry should help. If it failed
418 * because bio_add_page failed (probably broken lower level driver),
419 * retry may or may not help.
420 * If it does not, you may need to force disconnect. */
421 spin_lock_irq(&device->resource->req_lock);
422 list_del(&peer_req->w.list);
423 spin_unlock_irq(&device->resource->req_lock);
424
425 drbd_free_peer_req(device, peer_req);
426 defer:
427 put_ldev(device);
428 return -EAGAIN;
429 }
430
w_resync_timer(struct drbd_work * w,int cancel)431 int w_resync_timer(struct drbd_work *w, int cancel)
432 {
433 struct drbd_device *device =
434 container_of(w, struct drbd_device, resync_work);
435
436 switch (device->state.conn) {
437 case C_VERIFY_S:
438 make_ov_request(device, cancel);
439 break;
440 case C_SYNC_TARGET:
441 make_resync_request(device, cancel);
442 break;
443 }
444
445 return 0;
446 }
447
resync_timer_fn(struct timer_list * t)448 void resync_timer_fn(struct timer_list *t)
449 {
450 struct drbd_device *device = from_timer(device, t, resync_timer);
451
452 drbd_queue_work_if_unqueued(
453 &first_peer_device(device)->connection->sender_work,
454 &device->resync_work);
455 }
456
fifo_set(struct fifo_buffer * fb,int value)457 static void fifo_set(struct fifo_buffer *fb, int value)
458 {
459 int i;
460
461 for (i = 0; i < fb->size; i++)
462 fb->values[i] = value;
463 }
464
fifo_push(struct fifo_buffer * fb,int value)465 static int fifo_push(struct fifo_buffer *fb, int value)
466 {
467 int ov;
468
469 ov = fb->values[fb->head_index];
470 fb->values[fb->head_index++] = value;
471
472 if (fb->head_index >= fb->size)
473 fb->head_index = 0;
474
475 return ov;
476 }
477
fifo_add_val(struct fifo_buffer * fb,int value)478 static void fifo_add_val(struct fifo_buffer *fb, int value)
479 {
480 int i;
481
482 for (i = 0; i < fb->size; i++)
483 fb->values[i] += value;
484 }
485
fifo_alloc(unsigned int fifo_size)486 struct fifo_buffer *fifo_alloc(unsigned int fifo_size)
487 {
488 struct fifo_buffer *fb;
489
490 fb = kzalloc(struct_size(fb, values, fifo_size), GFP_NOIO);
491 if (!fb)
492 return NULL;
493
494 fb->head_index = 0;
495 fb->size = fifo_size;
496 fb->total = 0;
497
498 return fb;
499 }
500
drbd_rs_controller(struct drbd_device * device,unsigned int sect_in)501 static int drbd_rs_controller(struct drbd_device *device, unsigned int sect_in)
502 {
503 struct disk_conf *dc;
504 unsigned int want; /* The number of sectors we want in-flight */
505 int req_sect; /* Number of sectors to request in this turn */
506 int correction; /* Number of sectors more we need in-flight */
507 int cps; /* correction per invocation of drbd_rs_controller() */
508 int steps; /* Number of time steps to plan ahead */
509 int curr_corr;
510 int max_sect;
511 struct fifo_buffer *plan;
512
513 dc = rcu_dereference(device->ldev->disk_conf);
514 plan = rcu_dereference(device->rs_plan_s);
515
516 steps = plan->size; /* (dc->c_plan_ahead * 10 * SLEEP_TIME) / HZ; */
517
518 if (device->rs_in_flight + sect_in == 0) { /* At start of resync */
519 want = ((dc->resync_rate * 2 * SLEEP_TIME) / HZ) * steps;
520 } else { /* normal path */
521 want = dc->c_fill_target ? dc->c_fill_target :
522 sect_in * dc->c_delay_target * HZ / (SLEEP_TIME * 10);
523 }
524
525 correction = want - device->rs_in_flight - plan->total;
526
527 /* Plan ahead */
528 cps = correction / steps;
529 fifo_add_val(plan, cps);
530 plan->total += cps * steps;
531
532 /* What we do in this step */
533 curr_corr = fifo_push(plan, 0);
534 plan->total -= curr_corr;
535
536 req_sect = sect_in + curr_corr;
537 if (req_sect < 0)
538 req_sect = 0;
539
540 max_sect = (dc->c_max_rate * 2 * SLEEP_TIME) / HZ;
541 if (req_sect > max_sect)
542 req_sect = max_sect;
543
544 /*
545 drbd_warn(device, "si=%u if=%d wa=%u co=%d st=%d cps=%d pl=%d cc=%d rs=%d\n",
546 sect_in, device->rs_in_flight, want, correction,
547 steps, cps, device->rs_planed, curr_corr, req_sect);
548 */
549
550 return req_sect;
551 }
552
drbd_rs_number_requests(struct drbd_device * device)553 static int drbd_rs_number_requests(struct drbd_device *device)
554 {
555 unsigned int sect_in; /* Number of sectors that came in since the last turn */
556 int number, mxb;
557
558 sect_in = atomic_xchg(&device->rs_sect_in, 0);
559 device->rs_in_flight -= sect_in;
560
561 rcu_read_lock();
562 mxb = drbd_get_max_buffers(device) / 2;
563 if (rcu_dereference(device->rs_plan_s)->size) {
564 number = drbd_rs_controller(device, sect_in) >> (BM_BLOCK_SHIFT - 9);
565 device->c_sync_rate = number * HZ * (BM_BLOCK_SIZE / 1024) / SLEEP_TIME;
566 } else {
567 device->c_sync_rate = rcu_dereference(device->ldev->disk_conf)->resync_rate;
568 number = SLEEP_TIME * device->c_sync_rate / ((BM_BLOCK_SIZE / 1024) * HZ);
569 }
570 rcu_read_unlock();
571
572 /* Don't have more than "max-buffers"/2 in-flight.
573 * Otherwise we may cause the remote site to stall on drbd_alloc_pages(),
574 * potentially causing a distributed deadlock on congestion during
575 * online-verify or (checksum-based) resync, if max-buffers,
576 * socket buffer sizes and resync rate settings are mis-configured. */
577
578 /* note that "number" is in units of "BM_BLOCK_SIZE" (which is 4k),
579 * mxb (as used here, and in drbd_alloc_pages on the peer) is
580 * "number of pages" (typically also 4k),
581 * but "rs_in_flight" is in "sectors" (512 Byte). */
582 if (mxb - device->rs_in_flight/8 < number)
583 number = mxb - device->rs_in_flight/8;
584
585 return number;
586 }
587
make_resync_request(struct drbd_device * const device,int cancel)588 static int make_resync_request(struct drbd_device *const device, int cancel)
589 {
590 struct drbd_peer_device *const peer_device = first_peer_device(device);
591 struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
592 unsigned long bit;
593 sector_t sector;
594 const sector_t capacity = get_capacity(device->vdisk);
595 int max_bio_size;
596 int number, rollback_i, size;
597 int align, requeue = 0;
598 int i = 0;
599 int discard_granularity = 0;
600
601 if (unlikely(cancel))
602 return 0;
603
604 if (device->rs_total == 0) {
605 /* empty resync? */
606 drbd_resync_finished(device);
607 return 0;
608 }
609
610 if (!get_ldev(device)) {
611 /* Since we only need to access device->rsync a
612 get_ldev_if_state(device,D_FAILED) would be sufficient, but
613 to continue resync with a broken disk makes no sense at
614 all */
615 drbd_err(device, "Disk broke down during resync!\n");
616 return 0;
617 }
618
619 if (connection->agreed_features & DRBD_FF_THIN_RESYNC) {
620 rcu_read_lock();
621 discard_granularity = rcu_dereference(device->ldev->disk_conf)->rs_discard_granularity;
622 rcu_read_unlock();
623 }
624
625 max_bio_size = queue_max_hw_sectors(device->rq_queue) << 9;
626 number = drbd_rs_number_requests(device);
627 if (number <= 0)
628 goto requeue;
629
630 for (i = 0; i < number; i++) {
631 /* Stop generating RS requests when half of the send buffer is filled,
632 * but notify TCP that we'd like to have more space. */
633 mutex_lock(&connection->data.mutex);
634 if (connection->data.socket) {
635 struct sock *sk = connection->data.socket->sk;
636 int queued = sk->sk_wmem_queued;
637 int sndbuf = sk->sk_sndbuf;
638 if (queued > sndbuf / 2) {
639 requeue = 1;
640 if (sk->sk_socket)
641 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
642 }
643 } else
644 requeue = 1;
645 mutex_unlock(&connection->data.mutex);
646 if (requeue)
647 goto requeue;
648
649 next_sector:
650 size = BM_BLOCK_SIZE;
651 bit = drbd_bm_find_next(device, device->bm_resync_fo);
652
653 if (bit == DRBD_END_OF_BITMAP) {
654 device->bm_resync_fo = drbd_bm_bits(device);
655 put_ldev(device);
656 return 0;
657 }
658
659 sector = BM_BIT_TO_SECT(bit);
660
661 if (drbd_try_rs_begin_io(device, sector)) {
662 device->bm_resync_fo = bit;
663 goto requeue;
664 }
665 device->bm_resync_fo = bit + 1;
666
667 if (unlikely(drbd_bm_test_bit(device, bit) == 0)) {
668 drbd_rs_complete_io(device, sector);
669 goto next_sector;
670 }
671
672 #if DRBD_MAX_BIO_SIZE > BM_BLOCK_SIZE
673 /* try to find some adjacent bits.
674 * we stop if we have already the maximum req size.
675 *
676 * Additionally always align bigger requests, in order to
677 * be prepared for all stripe sizes of software RAIDs.
678 */
679 align = 1;
680 rollback_i = i;
681 while (i < number) {
682 if (size + BM_BLOCK_SIZE > max_bio_size)
683 break;
684
685 /* Be always aligned */
686 if (sector & ((1<<(align+3))-1))
687 break;
688
689 if (discard_granularity && size == discard_granularity)
690 break;
691
692 /* do not cross extent boundaries */
693 if (((bit+1) & BM_BLOCKS_PER_BM_EXT_MASK) == 0)
694 break;
695 /* now, is it actually dirty, after all?
696 * caution, drbd_bm_test_bit is tri-state for some
697 * obscure reason; ( b == 0 ) would get the out-of-band
698 * only accidentally right because of the "oddly sized"
699 * adjustment below */
700 if (drbd_bm_test_bit(device, bit+1) != 1)
701 break;
702 bit++;
703 size += BM_BLOCK_SIZE;
704 if ((BM_BLOCK_SIZE << align) <= size)
705 align++;
706 i++;
707 }
708 /* if we merged some,
709 * reset the offset to start the next drbd_bm_find_next from */
710 if (size > BM_BLOCK_SIZE)
711 device->bm_resync_fo = bit + 1;
712 #endif
713
714 /* adjust very last sectors, in case we are oddly sized */
715 if (sector + (size>>9) > capacity)
716 size = (capacity-sector)<<9;
717
718 if (device->use_csums) {
719 switch (read_for_csum(peer_device, sector, size)) {
720 case -EIO: /* Disk failure */
721 put_ldev(device);
722 return -EIO;
723 case -EAGAIN: /* allocation failed, or ldev busy */
724 drbd_rs_complete_io(device, sector);
725 device->bm_resync_fo = BM_SECT_TO_BIT(sector);
726 i = rollback_i;
727 goto requeue;
728 case 0:
729 /* everything ok */
730 break;
731 default:
732 BUG();
733 }
734 } else {
735 int err;
736
737 inc_rs_pending(device);
738 err = drbd_send_drequest(peer_device,
739 size == discard_granularity ? P_RS_THIN_REQ : P_RS_DATA_REQUEST,
740 sector, size, ID_SYNCER);
741 if (err) {
742 drbd_err(device, "drbd_send_drequest() failed, aborting...\n");
743 dec_rs_pending(device);
744 put_ldev(device);
745 return err;
746 }
747 }
748 }
749
750 if (device->bm_resync_fo >= drbd_bm_bits(device)) {
751 /* last syncer _request_ was sent,
752 * but the P_RS_DATA_REPLY not yet received. sync will end (and
753 * next sync group will resume), as soon as we receive the last
754 * resync data block, and the last bit is cleared.
755 * until then resync "work" is "inactive" ...
756 */
757 put_ldev(device);
758 return 0;
759 }
760
761 requeue:
762 device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
763 mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
764 put_ldev(device);
765 return 0;
766 }
767
make_ov_request(struct drbd_device * device,int cancel)768 static int make_ov_request(struct drbd_device *device, int cancel)
769 {
770 int number, i, size;
771 sector_t sector;
772 const sector_t capacity = get_capacity(device->vdisk);
773 bool stop_sector_reached = false;
774
775 if (unlikely(cancel))
776 return 1;
777
778 number = drbd_rs_number_requests(device);
779
780 sector = device->ov_position;
781 for (i = 0; i < number; i++) {
782 if (sector >= capacity)
783 return 1;
784
785 /* We check for "finished" only in the reply path:
786 * w_e_end_ov_reply().
787 * We need to send at least one request out. */
788 stop_sector_reached = i > 0
789 && verify_can_do_stop_sector(device)
790 && sector >= device->ov_stop_sector;
791 if (stop_sector_reached)
792 break;
793
794 size = BM_BLOCK_SIZE;
795
796 if (drbd_try_rs_begin_io(device, sector)) {
797 device->ov_position = sector;
798 goto requeue;
799 }
800
801 if (sector + (size>>9) > capacity)
802 size = (capacity-sector)<<9;
803
804 inc_rs_pending(device);
805 if (drbd_send_ov_request(first_peer_device(device), sector, size)) {
806 dec_rs_pending(device);
807 return 0;
808 }
809 sector += BM_SECT_PER_BIT;
810 }
811 device->ov_position = sector;
812
813 requeue:
814 device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
815 if (i == 0 || !stop_sector_reached)
816 mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
817 return 1;
818 }
819
w_ov_finished(struct drbd_work * w,int cancel)820 int w_ov_finished(struct drbd_work *w, int cancel)
821 {
822 struct drbd_device_work *dw =
823 container_of(w, struct drbd_device_work, w);
824 struct drbd_device *device = dw->device;
825 kfree(dw);
826 ov_out_of_sync_print(device);
827 drbd_resync_finished(device);
828
829 return 0;
830 }
831
w_resync_finished(struct drbd_work * w,int cancel)832 static int w_resync_finished(struct drbd_work *w, int cancel)
833 {
834 struct drbd_device_work *dw =
835 container_of(w, struct drbd_device_work, w);
836 struct drbd_device *device = dw->device;
837 kfree(dw);
838
839 drbd_resync_finished(device);
840
841 return 0;
842 }
843
ping_peer(struct drbd_device * device)844 static void ping_peer(struct drbd_device *device)
845 {
846 struct drbd_connection *connection = first_peer_device(device)->connection;
847
848 clear_bit(GOT_PING_ACK, &connection->flags);
849 request_ping(connection);
850 wait_event(connection->ping_wait,
851 test_bit(GOT_PING_ACK, &connection->flags) || device->state.conn < C_CONNECTED);
852 }
853
drbd_resync_finished(struct drbd_device * device)854 int drbd_resync_finished(struct drbd_device *device)
855 {
856 struct drbd_connection *connection = first_peer_device(device)->connection;
857 unsigned long db, dt, dbdt;
858 unsigned long n_oos;
859 union drbd_state os, ns;
860 struct drbd_device_work *dw;
861 char *khelper_cmd = NULL;
862 int verify_done = 0;
863
864 /* Remove all elements from the resync LRU. Since future actions
865 * might set bits in the (main) bitmap, then the entries in the
866 * resync LRU would be wrong. */
867 if (drbd_rs_del_all(device)) {
868 /* In case this is not possible now, most probably because
869 * there are P_RS_DATA_REPLY Packets lingering on the worker's
870 * queue (or even the read operations for those packets
871 * is not finished by now). Retry in 100ms. */
872
873 schedule_timeout_interruptible(HZ / 10);
874 dw = kmalloc(sizeof(struct drbd_device_work), GFP_ATOMIC);
875 if (dw) {
876 dw->w.cb = w_resync_finished;
877 dw->device = device;
878 drbd_queue_work(&connection->sender_work, &dw->w);
879 return 1;
880 }
881 drbd_err(device, "Warn failed to drbd_rs_del_all() and to kmalloc(dw).\n");
882 }
883
884 dt = (jiffies - device->rs_start - device->rs_paused) / HZ;
885 if (dt <= 0)
886 dt = 1;
887
888 db = device->rs_total;
889 /* adjust for verify start and stop sectors, respective reached position */
890 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
891 db -= device->ov_left;
892
893 dbdt = Bit2KB(db/dt);
894 device->rs_paused /= HZ;
895
896 if (!get_ldev(device))
897 goto out;
898
899 ping_peer(device);
900
901 spin_lock_irq(&device->resource->req_lock);
902 os = drbd_read_state(device);
903
904 verify_done = (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T);
905
906 /* This protects us against multiple calls (that can happen in the presence
907 of application IO), and against connectivity loss just before we arrive here. */
908 if (os.conn <= C_CONNECTED)
909 goto out_unlock;
910
911 ns = os;
912 ns.conn = C_CONNECTED;
913
914 drbd_info(device, "%s done (total %lu sec; paused %lu sec; %lu K/sec)\n",
915 verify_done ? "Online verify" : "Resync",
916 dt + device->rs_paused, device->rs_paused, dbdt);
917
918 n_oos = drbd_bm_total_weight(device);
919
920 if (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) {
921 if (n_oos) {
922 drbd_alert(device, "Online verify found %lu %dk block out of sync!\n",
923 n_oos, Bit2KB(1));
924 khelper_cmd = "out-of-sync";
925 }
926 } else {
927 D_ASSERT(device, (n_oos - device->rs_failed) == 0);
928
929 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T)
930 khelper_cmd = "after-resync-target";
931
932 if (device->use_csums && device->rs_total) {
933 const unsigned long s = device->rs_same_csum;
934 const unsigned long t = device->rs_total;
935 const int ratio =
936 (t == 0) ? 0 :
937 (t < 100000) ? ((s*100)/t) : (s/(t/100));
938 drbd_info(device, "%u %% had equal checksums, eliminated: %luK; "
939 "transferred %luK total %luK\n",
940 ratio,
941 Bit2KB(device->rs_same_csum),
942 Bit2KB(device->rs_total - device->rs_same_csum),
943 Bit2KB(device->rs_total));
944 }
945 }
946
947 if (device->rs_failed) {
948 drbd_info(device, " %lu failed blocks\n", device->rs_failed);
949
950 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
951 ns.disk = D_INCONSISTENT;
952 ns.pdsk = D_UP_TO_DATE;
953 } else {
954 ns.disk = D_UP_TO_DATE;
955 ns.pdsk = D_INCONSISTENT;
956 }
957 } else {
958 ns.disk = D_UP_TO_DATE;
959 ns.pdsk = D_UP_TO_DATE;
960
961 if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
962 if (device->p_uuid) {
963 int i;
964 for (i = UI_BITMAP ; i <= UI_HISTORY_END ; i++)
965 _drbd_uuid_set(device, i, device->p_uuid[i]);
966 drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_CURRENT]);
967 _drbd_uuid_set(device, UI_CURRENT, device->p_uuid[UI_CURRENT]);
968 } else {
969 drbd_err(device, "device->p_uuid is NULL! BUG\n");
970 }
971 }
972
973 if (!(os.conn == C_VERIFY_S || os.conn == C_VERIFY_T)) {
974 /* for verify runs, we don't update uuids here,
975 * so there would be nothing to report. */
976 drbd_uuid_set_bm(device, 0UL);
977 drbd_print_uuids(device, "updated UUIDs");
978 if (device->p_uuid) {
979 /* Now the two UUID sets are equal, update what we
980 * know of the peer. */
981 int i;
982 for (i = UI_CURRENT ; i <= UI_HISTORY_END ; i++)
983 device->p_uuid[i] = device->ldev->md.uuid[i];
984 }
985 }
986 }
987
988 _drbd_set_state(device, ns, CS_VERBOSE, NULL);
989 out_unlock:
990 spin_unlock_irq(&device->resource->req_lock);
991
992 /* If we have been sync source, and have an effective fencing-policy,
993 * once *all* volumes are back in sync, call "unfence". */
994 if (os.conn == C_SYNC_SOURCE) {
995 enum drbd_disk_state disk_state = D_MASK;
996 enum drbd_disk_state pdsk_state = D_MASK;
997 enum drbd_fencing_p fp = FP_DONT_CARE;
998
999 rcu_read_lock();
1000 fp = rcu_dereference(device->ldev->disk_conf)->fencing;
1001 if (fp != FP_DONT_CARE) {
1002 struct drbd_peer_device *peer_device;
1003 int vnr;
1004 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1005 struct drbd_device *device = peer_device->device;
1006 disk_state = min_t(enum drbd_disk_state, disk_state, device->state.disk);
1007 pdsk_state = min_t(enum drbd_disk_state, pdsk_state, device->state.pdsk);
1008 }
1009 }
1010 rcu_read_unlock();
1011 if (disk_state == D_UP_TO_DATE && pdsk_state == D_UP_TO_DATE)
1012 conn_khelper(connection, "unfence-peer");
1013 }
1014
1015 put_ldev(device);
1016 out:
1017 device->rs_total = 0;
1018 device->rs_failed = 0;
1019 device->rs_paused = 0;
1020
1021 /* reset start sector, if we reached end of device */
1022 if (verify_done && device->ov_left == 0)
1023 device->ov_start_sector = 0;
1024
1025 drbd_md_sync(device);
1026
1027 if (khelper_cmd)
1028 drbd_khelper(device, khelper_cmd);
1029
1030 return 1;
1031 }
1032
1033 /* helper */
move_to_net_ee_or_free(struct drbd_device * device,struct drbd_peer_request * peer_req)1034 static void move_to_net_ee_or_free(struct drbd_device *device, struct drbd_peer_request *peer_req)
1035 {
1036 if (drbd_peer_req_has_active_page(peer_req)) {
1037 /* This might happen if sendpage() has not finished */
1038 int i = (peer_req->i.size + PAGE_SIZE -1) >> PAGE_SHIFT;
1039 atomic_add(i, &device->pp_in_use_by_net);
1040 atomic_sub(i, &device->pp_in_use);
1041 spin_lock_irq(&device->resource->req_lock);
1042 list_add_tail(&peer_req->w.list, &device->net_ee);
1043 spin_unlock_irq(&device->resource->req_lock);
1044 wake_up(&drbd_pp_wait);
1045 } else
1046 drbd_free_peer_req(device, peer_req);
1047 }
1048
1049 /**
1050 * w_e_end_data_req() - Worker callback, to send a P_DATA_REPLY packet in response to a P_DATA_REQUEST
1051 * @w: work object.
1052 * @cancel: The connection will be closed anyways
1053 */
w_e_end_data_req(struct drbd_work * w,int cancel)1054 int w_e_end_data_req(struct drbd_work *w, int cancel)
1055 {
1056 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1057 struct drbd_peer_device *peer_device = peer_req->peer_device;
1058 struct drbd_device *device = peer_device->device;
1059 int err;
1060
1061 if (unlikely(cancel)) {
1062 drbd_free_peer_req(device, peer_req);
1063 dec_unacked(device);
1064 return 0;
1065 }
1066
1067 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1068 err = drbd_send_block(peer_device, P_DATA_REPLY, peer_req);
1069 } else {
1070 if (__ratelimit(&drbd_ratelimit_state))
1071 drbd_err(device, "Sending NegDReply. sector=%llus.\n",
1072 (unsigned long long)peer_req->i.sector);
1073
1074 err = drbd_send_ack(peer_device, P_NEG_DREPLY, peer_req);
1075 }
1076
1077 dec_unacked(device);
1078
1079 move_to_net_ee_or_free(device, peer_req);
1080
1081 if (unlikely(err))
1082 drbd_err(device, "drbd_send_block() failed\n");
1083 return err;
1084 }
1085
all_zero(struct drbd_peer_request * peer_req)1086 static bool all_zero(struct drbd_peer_request *peer_req)
1087 {
1088 struct page *page = peer_req->pages;
1089 unsigned int len = peer_req->i.size;
1090
1091 page_chain_for_each(page) {
1092 unsigned int l = min_t(unsigned int, len, PAGE_SIZE);
1093 unsigned int i, words = l / sizeof(long);
1094 unsigned long *d;
1095
1096 d = kmap_atomic(page);
1097 for (i = 0; i < words; i++) {
1098 if (d[i]) {
1099 kunmap_atomic(d);
1100 return false;
1101 }
1102 }
1103 kunmap_atomic(d);
1104 len -= l;
1105 }
1106
1107 return true;
1108 }
1109
1110 /**
1111 * w_e_end_rsdata_req() - Worker callback to send a P_RS_DATA_REPLY packet in response to a P_RS_DATA_REQUEST
1112 * @w: work object.
1113 * @cancel: The connection will be closed anyways
1114 */
w_e_end_rsdata_req(struct drbd_work * w,int cancel)1115 int w_e_end_rsdata_req(struct drbd_work *w, int cancel)
1116 {
1117 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1118 struct drbd_peer_device *peer_device = peer_req->peer_device;
1119 struct drbd_device *device = peer_device->device;
1120 int err;
1121
1122 if (unlikely(cancel)) {
1123 drbd_free_peer_req(device, peer_req);
1124 dec_unacked(device);
1125 return 0;
1126 }
1127
1128 if (get_ldev_if_state(device, D_FAILED)) {
1129 drbd_rs_complete_io(device, peer_req->i.sector);
1130 put_ldev(device);
1131 }
1132
1133 if (device->state.conn == C_AHEAD) {
1134 err = drbd_send_ack(peer_device, P_RS_CANCEL, peer_req);
1135 } else if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1136 if (likely(device->state.pdsk >= D_INCONSISTENT)) {
1137 inc_rs_pending(device);
1138 if (peer_req->flags & EE_RS_THIN_REQ && all_zero(peer_req))
1139 err = drbd_send_rs_deallocated(peer_device, peer_req);
1140 else
1141 err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req);
1142 } else {
1143 if (__ratelimit(&drbd_ratelimit_state))
1144 drbd_err(device, "Not sending RSDataReply, "
1145 "partner DISKLESS!\n");
1146 err = 0;
1147 }
1148 } else {
1149 if (__ratelimit(&drbd_ratelimit_state))
1150 drbd_err(device, "Sending NegRSDReply. sector %llus.\n",
1151 (unsigned long long)peer_req->i.sector);
1152
1153 err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req);
1154
1155 /* update resync data with failure */
1156 drbd_rs_failed_io(device, peer_req->i.sector, peer_req->i.size);
1157 }
1158
1159 dec_unacked(device);
1160
1161 move_to_net_ee_or_free(device, peer_req);
1162
1163 if (unlikely(err))
1164 drbd_err(device, "drbd_send_block() failed\n");
1165 return err;
1166 }
1167
w_e_end_csum_rs_req(struct drbd_work * w,int cancel)1168 int w_e_end_csum_rs_req(struct drbd_work *w, int cancel)
1169 {
1170 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1171 struct drbd_peer_device *peer_device = peer_req->peer_device;
1172 struct drbd_device *device = peer_device->device;
1173 struct digest_info *di;
1174 int digest_size;
1175 void *digest = NULL;
1176 int err, eq = 0;
1177
1178 if (unlikely(cancel)) {
1179 drbd_free_peer_req(device, peer_req);
1180 dec_unacked(device);
1181 return 0;
1182 }
1183
1184 if (get_ldev(device)) {
1185 drbd_rs_complete_io(device, peer_req->i.sector);
1186 put_ldev(device);
1187 }
1188
1189 di = peer_req->digest;
1190
1191 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1192 /* quick hack to try to avoid a race against reconfiguration.
1193 * a real fix would be much more involved,
1194 * introducing more locking mechanisms */
1195 if (peer_device->connection->csums_tfm) {
1196 digest_size = crypto_shash_digestsize(peer_device->connection->csums_tfm);
1197 D_ASSERT(device, digest_size == di->digest_size);
1198 digest = kmalloc(digest_size, GFP_NOIO);
1199 }
1200 if (digest) {
1201 drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest);
1202 eq = !memcmp(digest, di->digest, digest_size);
1203 kfree(digest);
1204 }
1205
1206 if (eq) {
1207 drbd_set_in_sync(device, peer_req->i.sector, peer_req->i.size);
1208 /* rs_same_csums unit is BM_BLOCK_SIZE */
1209 device->rs_same_csum += peer_req->i.size >> BM_BLOCK_SHIFT;
1210 err = drbd_send_ack(peer_device, P_RS_IS_IN_SYNC, peer_req);
1211 } else {
1212 inc_rs_pending(device);
1213 peer_req->block_id = ID_SYNCER; /* By setting block_id, digest pointer becomes invalid! */
1214 peer_req->flags &= ~EE_HAS_DIGEST; /* This peer request no longer has a digest pointer */
1215 kfree(di);
1216 err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req);
1217 }
1218 } else {
1219 err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req);
1220 if (__ratelimit(&drbd_ratelimit_state))
1221 drbd_err(device, "Sending NegDReply. I guess it gets messy.\n");
1222 }
1223
1224 dec_unacked(device);
1225 move_to_net_ee_or_free(device, peer_req);
1226
1227 if (unlikely(err))
1228 drbd_err(device, "drbd_send_block/ack() failed\n");
1229 return err;
1230 }
1231
w_e_end_ov_req(struct drbd_work * w,int cancel)1232 int w_e_end_ov_req(struct drbd_work *w, int cancel)
1233 {
1234 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1235 struct drbd_peer_device *peer_device = peer_req->peer_device;
1236 struct drbd_device *device = peer_device->device;
1237 sector_t sector = peer_req->i.sector;
1238 unsigned int size = peer_req->i.size;
1239 int digest_size;
1240 void *digest;
1241 int err = 0;
1242
1243 if (unlikely(cancel))
1244 goto out;
1245
1246 digest_size = crypto_shash_digestsize(peer_device->connection->verify_tfm);
1247 digest = kmalloc(digest_size, GFP_NOIO);
1248 if (!digest) {
1249 err = 1; /* terminate the connection in case the allocation failed */
1250 goto out;
1251 }
1252
1253 if (likely(!(peer_req->flags & EE_WAS_ERROR)))
1254 drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest);
1255 else
1256 memset(digest, 0, digest_size);
1257
1258 /* Free e and pages before send.
1259 * In case we block on congestion, we could otherwise run into
1260 * some distributed deadlock, if the other side blocks on
1261 * congestion as well, because our receiver blocks in
1262 * drbd_alloc_pages due to pp_in_use > max_buffers. */
1263 drbd_free_peer_req(device, peer_req);
1264 peer_req = NULL;
1265 inc_rs_pending(device);
1266 err = drbd_send_drequest_csum(peer_device, sector, size, digest, digest_size, P_OV_REPLY);
1267 if (err)
1268 dec_rs_pending(device);
1269 kfree(digest);
1270
1271 out:
1272 if (peer_req)
1273 drbd_free_peer_req(device, peer_req);
1274 dec_unacked(device);
1275 return err;
1276 }
1277
drbd_ov_out_of_sync_found(struct drbd_device * device,sector_t sector,int size)1278 void drbd_ov_out_of_sync_found(struct drbd_device *device, sector_t sector, int size)
1279 {
1280 if (device->ov_last_oos_start + device->ov_last_oos_size == sector) {
1281 device->ov_last_oos_size += size>>9;
1282 } else {
1283 device->ov_last_oos_start = sector;
1284 device->ov_last_oos_size = size>>9;
1285 }
1286 drbd_set_out_of_sync(device, sector, size);
1287 }
1288
w_e_end_ov_reply(struct drbd_work * w,int cancel)1289 int w_e_end_ov_reply(struct drbd_work *w, int cancel)
1290 {
1291 struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1292 struct drbd_peer_device *peer_device = peer_req->peer_device;
1293 struct drbd_device *device = peer_device->device;
1294 struct digest_info *di;
1295 void *digest;
1296 sector_t sector = peer_req->i.sector;
1297 unsigned int size = peer_req->i.size;
1298 int digest_size;
1299 int err, eq = 0;
1300 bool stop_sector_reached = false;
1301
1302 if (unlikely(cancel)) {
1303 drbd_free_peer_req(device, peer_req);
1304 dec_unacked(device);
1305 return 0;
1306 }
1307
1308 /* after "cancel", because after drbd_disconnect/drbd_rs_cancel_all
1309 * the resync lru has been cleaned up already */
1310 if (get_ldev(device)) {
1311 drbd_rs_complete_io(device, peer_req->i.sector);
1312 put_ldev(device);
1313 }
1314
1315 di = peer_req->digest;
1316
1317 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1318 digest_size = crypto_shash_digestsize(peer_device->connection->verify_tfm);
1319 digest = kmalloc(digest_size, GFP_NOIO);
1320 if (digest) {
1321 drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest);
1322
1323 D_ASSERT(device, digest_size == di->digest_size);
1324 eq = !memcmp(digest, di->digest, digest_size);
1325 kfree(digest);
1326 }
1327 }
1328
1329 /* Free peer_req and pages before send.
1330 * In case we block on congestion, we could otherwise run into
1331 * some distributed deadlock, if the other side blocks on
1332 * congestion as well, because our receiver blocks in
1333 * drbd_alloc_pages due to pp_in_use > max_buffers. */
1334 drbd_free_peer_req(device, peer_req);
1335 if (!eq)
1336 drbd_ov_out_of_sync_found(device, sector, size);
1337 else
1338 ov_out_of_sync_print(device);
1339
1340 err = drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size,
1341 eq ? ID_IN_SYNC : ID_OUT_OF_SYNC);
1342
1343 dec_unacked(device);
1344
1345 --device->ov_left;
1346
1347 /* let's advance progress step marks only for every other megabyte */
1348 if ((device->ov_left & 0x200) == 0x200)
1349 drbd_advance_rs_marks(device, device->ov_left);
1350
1351 stop_sector_reached = verify_can_do_stop_sector(device) &&
1352 (sector + (size>>9)) >= device->ov_stop_sector;
1353
1354 if (device->ov_left == 0 || stop_sector_reached) {
1355 ov_out_of_sync_print(device);
1356 drbd_resync_finished(device);
1357 }
1358
1359 return err;
1360 }
1361
1362 /* FIXME
1363 * We need to track the number of pending barrier acks,
1364 * and to be able to wait for them.
1365 * See also comment in drbd_adm_attach before drbd_suspend_io.
1366 */
drbd_send_barrier(struct drbd_connection * connection)1367 static int drbd_send_barrier(struct drbd_connection *connection)
1368 {
1369 struct p_barrier *p;
1370 struct drbd_socket *sock;
1371
1372 sock = &connection->data;
1373 p = conn_prepare_command(connection, sock);
1374 if (!p)
1375 return -EIO;
1376 p->barrier = connection->send.current_epoch_nr;
1377 p->pad = 0;
1378 connection->send.current_epoch_writes = 0;
1379 connection->send.last_sent_barrier_jif = jiffies;
1380
1381 return conn_send_command(connection, sock, P_BARRIER, sizeof(*p), NULL, 0);
1382 }
1383
pd_send_unplug_remote(struct drbd_peer_device * pd)1384 static int pd_send_unplug_remote(struct drbd_peer_device *pd)
1385 {
1386 struct drbd_socket *sock = &pd->connection->data;
1387 if (!drbd_prepare_command(pd, sock))
1388 return -EIO;
1389 return drbd_send_command(pd, sock, P_UNPLUG_REMOTE, 0, NULL, 0);
1390 }
1391
w_send_write_hint(struct drbd_work * w,int cancel)1392 int w_send_write_hint(struct drbd_work *w, int cancel)
1393 {
1394 struct drbd_device *device =
1395 container_of(w, struct drbd_device, unplug_work);
1396
1397 if (cancel)
1398 return 0;
1399 return pd_send_unplug_remote(first_peer_device(device));
1400 }
1401
re_init_if_first_write(struct drbd_connection * connection,unsigned int epoch)1402 static void re_init_if_first_write(struct drbd_connection *connection, unsigned int epoch)
1403 {
1404 if (!connection->send.seen_any_write_yet) {
1405 connection->send.seen_any_write_yet = true;
1406 connection->send.current_epoch_nr = epoch;
1407 connection->send.current_epoch_writes = 0;
1408 connection->send.last_sent_barrier_jif = jiffies;
1409 }
1410 }
1411
maybe_send_barrier(struct drbd_connection * connection,unsigned int epoch)1412 static void maybe_send_barrier(struct drbd_connection *connection, unsigned int epoch)
1413 {
1414 /* re-init if first write on this connection */
1415 if (!connection->send.seen_any_write_yet)
1416 return;
1417 if (connection->send.current_epoch_nr != epoch) {
1418 if (connection->send.current_epoch_writes)
1419 drbd_send_barrier(connection);
1420 connection->send.current_epoch_nr = epoch;
1421 }
1422 }
1423
w_send_out_of_sync(struct drbd_work * w,int cancel)1424 int w_send_out_of_sync(struct drbd_work *w, int cancel)
1425 {
1426 struct drbd_request *req = container_of(w, struct drbd_request, w);
1427 struct drbd_device *device = req->device;
1428 struct drbd_peer_device *const peer_device = first_peer_device(device);
1429 struct drbd_connection *const connection = peer_device->connection;
1430 int err;
1431
1432 if (unlikely(cancel)) {
1433 req_mod(req, SEND_CANCELED);
1434 return 0;
1435 }
1436 req->pre_send_jif = jiffies;
1437
1438 /* this time, no connection->send.current_epoch_writes++;
1439 * If it was sent, it was the closing barrier for the last
1440 * replicated epoch, before we went into AHEAD mode.
1441 * No more barriers will be sent, until we leave AHEAD mode again. */
1442 maybe_send_barrier(connection, req->epoch);
1443
1444 err = drbd_send_out_of_sync(peer_device, req);
1445 req_mod(req, OOS_HANDED_TO_NETWORK);
1446
1447 return err;
1448 }
1449
1450 /**
1451 * w_send_dblock() - Worker callback to send a P_DATA packet in order to mirror a write request
1452 * @w: work object.
1453 * @cancel: The connection will be closed anyways
1454 */
w_send_dblock(struct drbd_work * w,int cancel)1455 int w_send_dblock(struct drbd_work *w, int cancel)
1456 {
1457 struct drbd_request *req = container_of(w, struct drbd_request, w);
1458 struct drbd_device *device = req->device;
1459 struct drbd_peer_device *const peer_device = first_peer_device(device);
1460 struct drbd_connection *connection = peer_device->connection;
1461 bool do_send_unplug = req->rq_state & RQ_UNPLUG;
1462 int err;
1463
1464 if (unlikely(cancel)) {
1465 req_mod(req, SEND_CANCELED);
1466 return 0;
1467 }
1468 req->pre_send_jif = jiffies;
1469
1470 re_init_if_first_write(connection, req->epoch);
1471 maybe_send_barrier(connection, req->epoch);
1472 connection->send.current_epoch_writes++;
1473
1474 err = drbd_send_dblock(peer_device, req);
1475 req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
1476
1477 if (do_send_unplug && !err)
1478 pd_send_unplug_remote(peer_device);
1479
1480 return err;
1481 }
1482
1483 /**
1484 * w_send_read_req() - Worker callback to send a read request (P_DATA_REQUEST) packet
1485 * @w: work object.
1486 * @cancel: The connection will be closed anyways
1487 */
w_send_read_req(struct drbd_work * w,int cancel)1488 int w_send_read_req(struct drbd_work *w, int cancel)
1489 {
1490 struct drbd_request *req = container_of(w, struct drbd_request, w);
1491 struct drbd_device *device = req->device;
1492 struct drbd_peer_device *const peer_device = first_peer_device(device);
1493 struct drbd_connection *connection = peer_device->connection;
1494 bool do_send_unplug = req->rq_state & RQ_UNPLUG;
1495 int err;
1496
1497 if (unlikely(cancel)) {
1498 req_mod(req, SEND_CANCELED);
1499 return 0;
1500 }
1501 req->pre_send_jif = jiffies;
1502
1503 /* Even read requests may close a write epoch,
1504 * if there was any yet. */
1505 maybe_send_barrier(connection, req->epoch);
1506
1507 err = drbd_send_drequest(peer_device, P_DATA_REQUEST, req->i.sector, req->i.size,
1508 (unsigned long)req);
1509
1510 req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
1511
1512 if (do_send_unplug && !err)
1513 pd_send_unplug_remote(peer_device);
1514
1515 return err;
1516 }
1517
w_restart_disk_io(struct drbd_work * w,int cancel)1518 int w_restart_disk_io(struct drbd_work *w, int cancel)
1519 {
1520 struct drbd_request *req = container_of(w, struct drbd_request, w);
1521 struct drbd_device *device = req->device;
1522
1523 if (bio_data_dir(req->master_bio) == WRITE && req->rq_state & RQ_IN_ACT_LOG)
1524 drbd_al_begin_io(device, &req->i);
1525
1526 req->private_bio = bio_clone_fast(req->master_bio, GFP_NOIO,
1527 &drbd_io_bio_set);
1528 bio_set_dev(req->private_bio, device->ldev->backing_bdev);
1529 req->private_bio->bi_private = req;
1530 req->private_bio->bi_end_io = drbd_request_endio;
1531 submit_bio_noacct(req->private_bio);
1532
1533 return 0;
1534 }
1535
_drbd_may_sync_now(struct drbd_device * device)1536 static int _drbd_may_sync_now(struct drbd_device *device)
1537 {
1538 struct drbd_device *odev = device;
1539 int resync_after;
1540
1541 while (1) {
1542 if (!odev->ldev || odev->state.disk == D_DISKLESS)
1543 return 1;
1544 rcu_read_lock();
1545 resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
1546 rcu_read_unlock();
1547 if (resync_after == -1)
1548 return 1;
1549 odev = minor_to_device(resync_after);
1550 if (!odev)
1551 return 1;
1552 if ((odev->state.conn >= C_SYNC_SOURCE &&
1553 odev->state.conn <= C_PAUSED_SYNC_T) ||
1554 odev->state.aftr_isp || odev->state.peer_isp ||
1555 odev->state.user_isp)
1556 return 0;
1557 }
1558 }
1559
1560 /**
1561 * drbd_pause_after() - Pause resync on all devices that may not resync now
1562 * @device: DRBD device.
1563 *
1564 * Called from process context only (admin command and after_state_ch).
1565 */
drbd_pause_after(struct drbd_device * device)1566 static bool drbd_pause_after(struct drbd_device *device)
1567 {
1568 bool changed = false;
1569 struct drbd_device *odev;
1570 int i;
1571
1572 rcu_read_lock();
1573 idr_for_each_entry(&drbd_devices, odev, i) {
1574 if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
1575 continue;
1576 if (!_drbd_may_sync_now(odev) &&
1577 _drbd_set_state(_NS(odev, aftr_isp, 1),
1578 CS_HARD, NULL) != SS_NOTHING_TO_DO)
1579 changed = true;
1580 }
1581 rcu_read_unlock();
1582
1583 return changed;
1584 }
1585
1586 /**
1587 * drbd_resume_next() - Resume resync on all devices that may resync now
1588 * @device: DRBD device.
1589 *
1590 * Called from process context only (admin command and worker).
1591 */
drbd_resume_next(struct drbd_device * device)1592 static bool drbd_resume_next(struct drbd_device *device)
1593 {
1594 bool changed = false;
1595 struct drbd_device *odev;
1596 int i;
1597
1598 rcu_read_lock();
1599 idr_for_each_entry(&drbd_devices, odev, i) {
1600 if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
1601 continue;
1602 if (odev->state.aftr_isp) {
1603 if (_drbd_may_sync_now(odev) &&
1604 _drbd_set_state(_NS(odev, aftr_isp, 0),
1605 CS_HARD, NULL) != SS_NOTHING_TO_DO)
1606 changed = true;
1607 }
1608 }
1609 rcu_read_unlock();
1610 return changed;
1611 }
1612
resume_next_sg(struct drbd_device * device)1613 void resume_next_sg(struct drbd_device *device)
1614 {
1615 lock_all_resources();
1616 drbd_resume_next(device);
1617 unlock_all_resources();
1618 }
1619
suspend_other_sg(struct drbd_device * device)1620 void suspend_other_sg(struct drbd_device *device)
1621 {
1622 lock_all_resources();
1623 drbd_pause_after(device);
1624 unlock_all_resources();
1625 }
1626
1627 /* caller must lock_all_resources() */
drbd_resync_after_valid(struct drbd_device * device,int o_minor)1628 enum drbd_ret_code drbd_resync_after_valid(struct drbd_device *device, int o_minor)
1629 {
1630 struct drbd_device *odev;
1631 int resync_after;
1632
1633 if (o_minor == -1)
1634 return NO_ERROR;
1635 if (o_minor < -1 || o_minor > MINORMASK)
1636 return ERR_RESYNC_AFTER;
1637
1638 /* check for loops */
1639 odev = minor_to_device(o_minor);
1640 while (1) {
1641 if (odev == device)
1642 return ERR_RESYNC_AFTER_CYCLE;
1643
1644 /* You are free to depend on diskless, non-existing,
1645 * or not yet/no longer existing minors.
1646 * We only reject dependency loops.
1647 * We cannot follow the dependency chain beyond a detached or
1648 * missing minor.
1649 */
1650 if (!odev || !odev->ldev || odev->state.disk == D_DISKLESS)
1651 return NO_ERROR;
1652
1653 rcu_read_lock();
1654 resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
1655 rcu_read_unlock();
1656 /* dependency chain ends here, no cycles. */
1657 if (resync_after == -1)
1658 return NO_ERROR;
1659
1660 /* follow the dependency chain */
1661 odev = minor_to_device(resync_after);
1662 }
1663 }
1664
1665 /* caller must lock_all_resources() */
drbd_resync_after_changed(struct drbd_device * device)1666 void drbd_resync_after_changed(struct drbd_device *device)
1667 {
1668 int changed;
1669
1670 do {
1671 changed = drbd_pause_after(device);
1672 changed |= drbd_resume_next(device);
1673 } while (changed);
1674 }
1675
drbd_rs_controller_reset(struct drbd_device * device)1676 void drbd_rs_controller_reset(struct drbd_device *device)
1677 {
1678 struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
1679 struct fifo_buffer *plan;
1680
1681 atomic_set(&device->rs_sect_in, 0);
1682 atomic_set(&device->rs_sect_ev, 0);
1683 device->rs_in_flight = 0;
1684 device->rs_last_events =
1685 (int)part_stat_read_accum(disk->part0, sectors);
1686
1687 /* Updating the RCU protected object in place is necessary since
1688 this function gets called from atomic context.
1689 It is valid since all other updates also lead to an completely
1690 empty fifo */
1691 rcu_read_lock();
1692 plan = rcu_dereference(device->rs_plan_s);
1693 plan->total = 0;
1694 fifo_set(plan, 0);
1695 rcu_read_unlock();
1696 }
1697
start_resync_timer_fn(struct timer_list * t)1698 void start_resync_timer_fn(struct timer_list *t)
1699 {
1700 struct drbd_device *device = from_timer(device, t, start_resync_timer);
1701 drbd_device_post_work(device, RS_START);
1702 }
1703
do_start_resync(struct drbd_device * device)1704 static void do_start_resync(struct drbd_device *device)
1705 {
1706 if (atomic_read(&device->unacked_cnt) || atomic_read(&device->rs_pending_cnt)) {
1707 drbd_warn(device, "postponing start_resync ...\n");
1708 device->start_resync_timer.expires = jiffies + HZ/10;
1709 add_timer(&device->start_resync_timer);
1710 return;
1711 }
1712
1713 drbd_start_resync(device, C_SYNC_SOURCE);
1714 clear_bit(AHEAD_TO_SYNC_SOURCE, &device->flags);
1715 }
1716
use_checksum_based_resync(struct drbd_connection * connection,struct drbd_device * device)1717 static bool use_checksum_based_resync(struct drbd_connection *connection, struct drbd_device *device)
1718 {
1719 bool csums_after_crash_only;
1720 rcu_read_lock();
1721 csums_after_crash_only = rcu_dereference(connection->net_conf)->csums_after_crash_only;
1722 rcu_read_unlock();
1723 return connection->agreed_pro_version >= 89 && /* supported? */
1724 connection->csums_tfm && /* configured? */
1725 (csums_after_crash_only == false /* use for each resync? */
1726 || test_bit(CRASHED_PRIMARY, &device->flags)); /* or only after Primary crash? */
1727 }
1728
1729 /**
1730 * drbd_start_resync() - Start the resync process
1731 * @device: DRBD device.
1732 * @side: Either C_SYNC_SOURCE or C_SYNC_TARGET
1733 *
1734 * This function might bring you directly into one of the
1735 * C_PAUSED_SYNC_* states.
1736 */
drbd_start_resync(struct drbd_device * device,enum drbd_conns side)1737 void drbd_start_resync(struct drbd_device *device, enum drbd_conns side)
1738 {
1739 struct drbd_peer_device *peer_device = first_peer_device(device);
1740 struct drbd_connection *connection = peer_device ? peer_device->connection : NULL;
1741 union drbd_state ns;
1742 int r;
1743
1744 if (device->state.conn >= C_SYNC_SOURCE && device->state.conn < C_AHEAD) {
1745 drbd_err(device, "Resync already running!\n");
1746 return;
1747 }
1748
1749 if (!connection) {
1750 drbd_err(device, "No connection to peer, aborting!\n");
1751 return;
1752 }
1753
1754 if (!test_bit(B_RS_H_DONE, &device->flags)) {
1755 if (side == C_SYNC_TARGET) {
1756 /* Since application IO was locked out during C_WF_BITMAP_T and
1757 C_WF_SYNC_UUID we are still unmodified. Before going to C_SYNC_TARGET
1758 we check that we might make the data inconsistent. */
1759 r = drbd_khelper(device, "before-resync-target");
1760 r = (r >> 8) & 0xff;
1761 if (r > 0) {
1762 drbd_info(device, "before-resync-target handler returned %d, "
1763 "dropping connection.\n", r);
1764 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
1765 return;
1766 }
1767 } else /* C_SYNC_SOURCE */ {
1768 r = drbd_khelper(device, "before-resync-source");
1769 r = (r >> 8) & 0xff;
1770 if (r > 0) {
1771 if (r == 3) {
1772 drbd_info(device, "before-resync-source handler returned %d, "
1773 "ignoring. Old userland tools?", r);
1774 } else {
1775 drbd_info(device, "before-resync-source handler returned %d, "
1776 "dropping connection.\n", r);
1777 conn_request_state(connection,
1778 NS(conn, C_DISCONNECTING), CS_HARD);
1779 return;
1780 }
1781 }
1782 }
1783 }
1784
1785 if (current == connection->worker.task) {
1786 /* The worker should not sleep waiting for state_mutex,
1787 that can take long */
1788 if (!mutex_trylock(device->state_mutex)) {
1789 set_bit(B_RS_H_DONE, &device->flags);
1790 device->start_resync_timer.expires = jiffies + HZ/5;
1791 add_timer(&device->start_resync_timer);
1792 return;
1793 }
1794 } else {
1795 mutex_lock(device->state_mutex);
1796 }
1797
1798 lock_all_resources();
1799 clear_bit(B_RS_H_DONE, &device->flags);
1800 /* Did some connection breakage or IO error race with us? */
1801 if (device->state.conn < C_CONNECTED
1802 || !get_ldev_if_state(device, D_NEGOTIATING)) {
1803 unlock_all_resources();
1804 goto out;
1805 }
1806
1807 ns = drbd_read_state(device);
1808
1809 ns.aftr_isp = !_drbd_may_sync_now(device);
1810
1811 ns.conn = side;
1812
1813 if (side == C_SYNC_TARGET)
1814 ns.disk = D_INCONSISTENT;
1815 else /* side == C_SYNC_SOURCE */
1816 ns.pdsk = D_INCONSISTENT;
1817
1818 r = _drbd_set_state(device, ns, CS_VERBOSE, NULL);
1819 ns = drbd_read_state(device);
1820
1821 if (ns.conn < C_CONNECTED)
1822 r = SS_UNKNOWN_ERROR;
1823
1824 if (r == SS_SUCCESS) {
1825 unsigned long tw = drbd_bm_total_weight(device);
1826 unsigned long now = jiffies;
1827 int i;
1828
1829 device->rs_failed = 0;
1830 device->rs_paused = 0;
1831 device->rs_same_csum = 0;
1832 device->rs_last_sect_ev = 0;
1833 device->rs_total = tw;
1834 device->rs_start = now;
1835 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1836 device->rs_mark_left[i] = tw;
1837 device->rs_mark_time[i] = now;
1838 }
1839 drbd_pause_after(device);
1840 /* Forget potentially stale cached per resync extent bit-counts.
1841 * Open coded drbd_rs_cancel_all(device), we already have IRQs
1842 * disabled, and know the disk state is ok. */
1843 spin_lock(&device->al_lock);
1844 lc_reset(device->resync);
1845 device->resync_locked = 0;
1846 device->resync_wenr = LC_FREE;
1847 spin_unlock(&device->al_lock);
1848 }
1849 unlock_all_resources();
1850
1851 if (r == SS_SUCCESS) {
1852 wake_up(&device->al_wait); /* for lc_reset() above */
1853 /* reset rs_last_bcast when a resync or verify is started,
1854 * to deal with potential jiffies wrap. */
1855 device->rs_last_bcast = jiffies - HZ;
1856
1857 drbd_info(device, "Began resync as %s (will sync %lu KB [%lu bits set]).\n",
1858 drbd_conn_str(ns.conn),
1859 (unsigned long) device->rs_total << (BM_BLOCK_SHIFT-10),
1860 (unsigned long) device->rs_total);
1861 if (side == C_SYNC_TARGET) {
1862 device->bm_resync_fo = 0;
1863 device->use_csums = use_checksum_based_resync(connection, device);
1864 } else {
1865 device->use_csums = false;
1866 }
1867
1868 /* Since protocol 96, we must serialize drbd_gen_and_send_sync_uuid
1869 * with w_send_oos, or the sync target will get confused as to
1870 * how much bits to resync. We cannot do that always, because for an
1871 * empty resync and protocol < 95, we need to do it here, as we call
1872 * drbd_resync_finished from here in that case.
1873 * We drbd_gen_and_send_sync_uuid here for protocol < 96,
1874 * and from after_state_ch otherwise. */
1875 if (side == C_SYNC_SOURCE && connection->agreed_pro_version < 96)
1876 drbd_gen_and_send_sync_uuid(peer_device);
1877
1878 if (connection->agreed_pro_version < 95 && device->rs_total == 0) {
1879 /* This still has a race (about when exactly the peers
1880 * detect connection loss) that can lead to a full sync
1881 * on next handshake. In 8.3.9 we fixed this with explicit
1882 * resync-finished notifications, but the fix
1883 * introduces a protocol change. Sleeping for some
1884 * time longer than the ping interval + timeout on the
1885 * SyncSource, to give the SyncTarget the chance to
1886 * detect connection loss, then waiting for a ping
1887 * response (implicit in drbd_resync_finished) reduces
1888 * the race considerably, but does not solve it. */
1889 if (side == C_SYNC_SOURCE) {
1890 struct net_conf *nc;
1891 int timeo;
1892
1893 rcu_read_lock();
1894 nc = rcu_dereference(connection->net_conf);
1895 timeo = nc->ping_int * HZ + nc->ping_timeo * HZ / 9;
1896 rcu_read_unlock();
1897 schedule_timeout_interruptible(timeo);
1898 }
1899 drbd_resync_finished(device);
1900 }
1901
1902 drbd_rs_controller_reset(device);
1903 /* ns.conn may already be != device->state.conn,
1904 * we may have been paused in between, or become paused until
1905 * the timer triggers.
1906 * No matter, that is handled in resync_timer_fn() */
1907 if (ns.conn == C_SYNC_TARGET)
1908 mod_timer(&device->resync_timer, jiffies);
1909
1910 drbd_md_sync(device);
1911 }
1912 put_ldev(device);
1913 out:
1914 mutex_unlock(device->state_mutex);
1915 }
1916
update_on_disk_bitmap(struct drbd_device * device,bool resync_done)1917 static void update_on_disk_bitmap(struct drbd_device *device, bool resync_done)
1918 {
1919 struct sib_info sib = { .sib_reason = SIB_SYNC_PROGRESS, };
1920 device->rs_last_bcast = jiffies;
1921
1922 if (!get_ldev(device))
1923 return;
1924
1925 drbd_bm_write_lazy(device, 0);
1926 if (resync_done && is_sync_state(device->state.conn))
1927 drbd_resync_finished(device);
1928
1929 drbd_bcast_event(device, &sib);
1930 /* update timestamp, in case it took a while to write out stuff */
1931 device->rs_last_bcast = jiffies;
1932 put_ldev(device);
1933 }
1934
drbd_ldev_destroy(struct drbd_device * device)1935 static void drbd_ldev_destroy(struct drbd_device *device)
1936 {
1937 lc_destroy(device->resync);
1938 device->resync = NULL;
1939 lc_destroy(device->act_log);
1940 device->act_log = NULL;
1941
1942 __acquire(local);
1943 drbd_backing_dev_free(device, device->ldev);
1944 device->ldev = NULL;
1945 __release(local);
1946
1947 clear_bit(GOING_DISKLESS, &device->flags);
1948 wake_up(&device->misc_wait);
1949 }
1950
go_diskless(struct drbd_device * device)1951 static void go_diskless(struct drbd_device *device)
1952 {
1953 D_ASSERT(device, device->state.disk == D_FAILED);
1954 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
1955 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
1956 * the protected members anymore, though, so once put_ldev reaches zero
1957 * again, it will be safe to free them. */
1958
1959 /* Try to write changed bitmap pages, read errors may have just
1960 * set some bits outside the area covered by the activity log.
1961 *
1962 * If we have an IO error during the bitmap writeout,
1963 * we will want a full sync next time, just in case.
1964 * (Do we want a specific meta data flag for this?)
1965 *
1966 * If that does not make it to stable storage either,
1967 * we cannot do anything about that anymore.
1968 *
1969 * We still need to check if both bitmap and ldev are present, we may
1970 * end up here after a failed attach, before ldev was even assigned.
1971 */
1972 if (device->bitmap && device->ldev) {
1973 /* An interrupted resync or similar is allowed to recounts bits
1974 * while we detach.
1975 * Any modifications would not be expected anymore, though.
1976 */
1977 if (drbd_bitmap_io_from_worker(device, drbd_bm_write,
1978 "detach", BM_LOCKED_TEST_ALLOWED)) {
1979 if (test_bit(WAS_READ_ERROR, &device->flags)) {
1980 drbd_md_set_flag(device, MDF_FULL_SYNC);
1981 drbd_md_sync(device);
1982 }
1983 }
1984 }
1985
1986 drbd_force_state(device, NS(disk, D_DISKLESS));
1987 }
1988
do_md_sync(struct drbd_device * device)1989 static int do_md_sync(struct drbd_device *device)
1990 {
1991 drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
1992 drbd_md_sync(device);
1993 return 0;
1994 }
1995
1996 /* only called from drbd_worker thread, no locking */
__update_timing_details(struct drbd_thread_timing_details * tdp,unsigned int * cb_nr,void * cb,const char * fn,const unsigned int line)1997 void __update_timing_details(
1998 struct drbd_thread_timing_details *tdp,
1999 unsigned int *cb_nr,
2000 void *cb,
2001 const char *fn, const unsigned int line)
2002 {
2003 unsigned int i = *cb_nr % DRBD_THREAD_DETAILS_HIST;
2004 struct drbd_thread_timing_details *td = tdp + i;
2005
2006 td->start_jif = jiffies;
2007 td->cb_addr = cb;
2008 td->caller_fn = fn;
2009 td->line = line;
2010 td->cb_nr = *cb_nr;
2011
2012 i = (i+1) % DRBD_THREAD_DETAILS_HIST;
2013 td = tdp + i;
2014 memset(td, 0, sizeof(*td));
2015
2016 ++(*cb_nr);
2017 }
2018
do_device_work(struct drbd_device * device,const unsigned long todo)2019 static void do_device_work(struct drbd_device *device, const unsigned long todo)
2020 {
2021 if (test_bit(MD_SYNC, &todo))
2022 do_md_sync(device);
2023 if (test_bit(RS_DONE, &todo) ||
2024 test_bit(RS_PROGRESS, &todo))
2025 update_on_disk_bitmap(device, test_bit(RS_DONE, &todo));
2026 if (test_bit(GO_DISKLESS, &todo))
2027 go_diskless(device);
2028 if (test_bit(DESTROY_DISK, &todo))
2029 drbd_ldev_destroy(device);
2030 if (test_bit(RS_START, &todo))
2031 do_start_resync(device);
2032 }
2033
2034 #define DRBD_DEVICE_WORK_MASK \
2035 ((1UL << GO_DISKLESS) \
2036 |(1UL << DESTROY_DISK) \
2037 |(1UL << MD_SYNC) \
2038 |(1UL << RS_START) \
2039 |(1UL << RS_PROGRESS) \
2040 |(1UL << RS_DONE) \
2041 )
2042
get_work_bits(unsigned long * flags)2043 static unsigned long get_work_bits(unsigned long *flags)
2044 {
2045 unsigned long old, new;
2046 do {
2047 old = *flags;
2048 new = old & ~DRBD_DEVICE_WORK_MASK;
2049 } while (cmpxchg(flags, old, new) != old);
2050 return old & DRBD_DEVICE_WORK_MASK;
2051 }
2052
do_unqueued_work(struct drbd_connection * connection)2053 static void do_unqueued_work(struct drbd_connection *connection)
2054 {
2055 struct drbd_peer_device *peer_device;
2056 int vnr;
2057
2058 rcu_read_lock();
2059 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2060 struct drbd_device *device = peer_device->device;
2061 unsigned long todo = get_work_bits(&device->flags);
2062 if (!todo)
2063 continue;
2064
2065 kref_get(&device->kref);
2066 rcu_read_unlock();
2067 do_device_work(device, todo);
2068 kref_put(&device->kref, drbd_destroy_device);
2069 rcu_read_lock();
2070 }
2071 rcu_read_unlock();
2072 }
2073
dequeue_work_batch(struct drbd_work_queue * queue,struct list_head * work_list)2074 static bool dequeue_work_batch(struct drbd_work_queue *queue, struct list_head *work_list)
2075 {
2076 spin_lock_irq(&queue->q_lock);
2077 list_splice_tail_init(&queue->q, work_list);
2078 spin_unlock_irq(&queue->q_lock);
2079 return !list_empty(work_list);
2080 }
2081
wait_for_work(struct drbd_connection * connection,struct list_head * work_list)2082 static void wait_for_work(struct drbd_connection *connection, struct list_head *work_list)
2083 {
2084 DEFINE_WAIT(wait);
2085 struct net_conf *nc;
2086 int uncork, cork;
2087
2088 dequeue_work_batch(&connection->sender_work, work_list);
2089 if (!list_empty(work_list))
2090 return;
2091
2092 /* Still nothing to do?
2093 * Maybe we still need to close the current epoch,
2094 * even if no new requests are queued yet.
2095 *
2096 * Also, poke TCP, just in case.
2097 * Then wait for new work (or signal). */
2098 rcu_read_lock();
2099 nc = rcu_dereference(connection->net_conf);
2100 uncork = nc ? nc->tcp_cork : 0;
2101 rcu_read_unlock();
2102 if (uncork) {
2103 mutex_lock(&connection->data.mutex);
2104 if (connection->data.socket)
2105 tcp_sock_set_cork(connection->data.socket->sk, false);
2106 mutex_unlock(&connection->data.mutex);
2107 }
2108
2109 for (;;) {
2110 int send_barrier;
2111 prepare_to_wait(&connection->sender_work.q_wait, &wait, TASK_INTERRUPTIBLE);
2112 spin_lock_irq(&connection->resource->req_lock);
2113 spin_lock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */
2114 if (!list_empty(&connection->sender_work.q))
2115 list_splice_tail_init(&connection->sender_work.q, work_list);
2116 spin_unlock(&connection->sender_work.q_lock); /* FIXME get rid of this one? */
2117 if (!list_empty(work_list) || signal_pending(current)) {
2118 spin_unlock_irq(&connection->resource->req_lock);
2119 break;
2120 }
2121
2122 /* We found nothing new to do, no to-be-communicated request,
2123 * no other work item. We may still need to close the last
2124 * epoch. Next incoming request epoch will be connection ->
2125 * current transfer log epoch number. If that is different
2126 * from the epoch of the last request we communicated, it is
2127 * safe to send the epoch separating barrier now.
2128 */
2129 send_barrier =
2130 atomic_read(&connection->current_tle_nr) !=
2131 connection->send.current_epoch_nr;
2132 spin_unlock_irq(&connection->resource->req_lock);
2133
2134 if (send_barrier)
2135 maybe_send_barrier(connection,
2136 connection->send.current_epoch_nr + 1);
2137
2138 if (test_bit(DEVICE_WORK_PENDING, &connection->flags))
2139 break;
2140
2141 /* drbd_send() may have called flush_signals() */
2142 if (get_t_state(&connection->worker) != RUNNING)
2143 break;
2144
2145 schedule();
2146 /* may be woken up for other things but new work, too,
2147 * e.g. if the current epoch got closed.
2148 * In which case we send the barrier above. */
2149 }
2150 finish_wait(&connection->sender_work.q_wait, &wait);
2151
2152 /* someone may have changed the config while we have been waiting above. */
2153 rcu_read_lock();
2154 nc = rcu_dereference(connection->net_conf);
2155 cork = nc ? nc->tcp_cork : 0;
2156 rcu_read_unlock();
2157 mutex_lock(&connection->data.mutex);
2158 if (connection->data.socket) {
2159 if (cork)
2160 tcp_sock_set_cork(connection->data.socket->sk, true);
2161 else if (!uncork)
2162 tcp_sock_set_cork(connection->data.socket->sk, false);
2163 }
2164 mutex_unlock(&connection->data.mutex);
2165 }
2166
drbd_worker(struct drbd_thread * thi)2167 int drbd_worker(struct drbd_thread *thi)
2168 {
2169 struct drbd_connection *connection = thi->connection;
2170 struct drbd_work *w = NULL;
2171 struct drbd_peer_device *peer_device;
2172 LIST_HEAD(work_list);
2173 int vnr;
2174
2175 while (get_t_state(thi) == RUNNING) {
2176 drbd_thread_current_set_cpu(thi);
2177
2178 if (list_empty(&work_list)) {
2179 update_worker_timing_details(connection, wait_for_work);
2180 wait_for_work(connection, &work_list);
2181 }
2182
2183 if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) {
2184 update_worker_timing_details(connection, do_unqueued_work);
2185 do_unqueued_work(connection);
2186 }
2187
2188 if (signal_pending(current)) {
2189 flush_signals(current);
2190 if (get_t_state(thi) == RUNNING) {
2191 drbd_warn(connection, "Worker got an unexpected signal\n");
2192 continue;
2193 }
2194 break;
2195 }
2196
2197 if (get_t_state(thi) != RUNNING)
2198 break;
2199
2200 if (!list_empty(&work_list)) {
2201 w = list_first_entry(&work_list, struct drbd_work, list);
2202 list_del_init(&w->list);
2203 update_worker_timing_details(connection, w->cb);
2204 if (w->cb(w, connection->cstate < C_WF_REPORT_PARAMS) == 0)
2205 continue;
2206 if (connection->cstate >= C_WF_REPORT_PARAMS)
2207 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
2208 }
2209 }
2210
2211 do {
2212 if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) {
2213 update_worker_timing_details(connection, do_unqueued_work);
2214 do_unqueued_work(connection);
2215 }
2216 if (!list_empty(&work_list)) {
2217 w = list_first_entry(&work_list, struct drbd_work, list);
2218 list_del_init(&w->list);
2219 update_worker_timing_details(connection, w->cb);
2220 w->cb(w, 1);
2221 } else
2222 dequeue_work_batch(&connection->sender_work, &work_list);
2223 } while (!list_empty(&work_list) || test_bit(DEVICE_WORK_PENDING, &connection->flags));
2224
2225 rcu_read_lock();
2226 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2227 struct drbd_device *device = peer_device->device;
2228 D_ASSERT(device, device->state.disk == D_DISKLESS && device->state.conn == C_STANDALONE);
2229 kref_get(&device->kref);
2230 rcu_read_unlock();
2231 drbd_device_cleanup(device);
2232 kref_put(&device->kref, drbd_destroy_device);
2233 rcu_read_lock();
2234 }
2235 rcu_read_unlock();
2236
2237 return 0;
2238 }
2239