1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    drbd_worker.c
4 
5    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6 
7    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10 
11 
12 */
13 
14 #include <linux/module.h>
15 #include <linux/drbd.h>
16 #include <linux/sched/signal.h>
17 #include <linux/wait.h>
18 #include <linux/mm.h>
19 #include <linux/memcontrol.h>
20 #include <linux/mm_inline.h>
21 #include <linux/slab.h>
22 #include <linux/random.h>
23 #include <linux/string.h>
24 #include <linux/scatterlist.h>
25 #include <linux/part_stat.h>
26 
27 #include "drbd_int.h"
28 #include "drbd_protocol.h"
29 #include "drbd_req.h"
30 
31 static int make_ov_request(struct drbd_device *, int);
32 static int make_resync_request(struct drbd_device *, int);
33 
34 /* endio handlers:
35  *   drbd_md_endio (defined here)
36  *   drbd_request_endio (defined here)
37  *   drbd_peer_request_endio (defined here)
38  *   drbd_bm_endio (defined in drbd_bitmap.c)
39  *
40  * For all these callbacks, note the following:
41  * The callbacks will be called in irq context by the IDE drivers,
42  * and in Softirqs/Tasklets/BH context by the SCSI drivers.
43  * Try to get the locking right :)
44  *
45  */
46 
47 /* used for synchronous meta data and bitmap IO
48  * submitted by drbd_md_sync_page_io()
49  */
drbd_md_endio(struct bio * bio)50 void drbd_md_endio(struct bio *bio)
51 {
52 	struct drbd_device *device;
53 
54 	device = bio->bi_private;
55 	device->md_io.error = blk_status_to_errno(bio->bi_status);
56 
57 	/* special case: drbd_md_read() during drbd_adm_attach() */
58 	if (device->ldev)
59 		put_ldev(device);
60 	bio_put(bio);
61 
62 	/* We grabbed an extra reference in _drbd_md_sync_page_io() to be able
63 	 * to timeout on the lower level device, and eventually detach from it.
64 	 * If this io completion runs after that timeout expired, this
65 	 * drbd_md_put_buffer() may allow us to finally try and re-attach.
66 	 * During normal operation, this only puts that extra reference
67 	 * down to 1 again.
68 	 * Make sure we first drop the reference, and only then signal
69 	 * completion, or we may (in drbd_al_read_log()) cycle so fast into the
70 	 * next drbd_md_sync_page_io(), that we trigger the
71 	 * ASSERT(atomic_read(&device->md_io_in_use) == 1) there.
72 	 */
73 	drbd_md_put_buffer(device);
74 	device->md_io.done = 1;
75 	wake_up(&device->misc_wait);
76 }
77 
78 /* reads on behalf of the partner,
79  * "submitted" by the receiver
80  */
drbd_endio_read_sec_final(struct drbd_peer_request * peer_req)81 static void drbd_endio_read_sec_final(struct drbd_peer_request *peer_req) __releases(local)
82 {
83 	unsigned long flags = 0;
84 	struct drbd_peer_device *peer_device = peer_req->peer_device;
85 	struct drbd_device *device = peer_device->device;
86 
87 	spin_lock_irqsave(&device->resource->req_lock, flags);
88 	device->read_cnt += peer_req->i.size >> 9;
89 	list_del(&peer_req->w.list);
90 	if (list_empty(&device->read_ee))
91 		wake_up(&device->ee_wait);
92 	if (test_bit(__EE_WAS_ERROR, &peer_req->flags))
93 		__drbd_chk_io_error(device, DRBD_READ_ERROR);
94 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
95 
96 	drbd_queue_work(&peer_device->connection->sender_work, &peer_req->w);
97 	put_ldev(device);
98 }
99 
100 /* writes on behalf of the partner, or resync writes,
101  * "submitted" by the receiver, final stage.  */
drbd_endio_write_sec_final(struct drbd_peer_request * peer_req)102 void drbd_endio_write_sec_final(struct drbd_peer_request *peer_req) __releases(local)
103 {
104 	unsigned long flags = 0;
105 	struct drbd_peer_device *peer_device = peer_req->peer_device;
106 	struct drbd_device *device = peer_device->device;
107 	struct drbd_connection *connection = peer_device->connection;
108 	struct drbd_interval i;
109 	int do_wake;
110 	u64 block_id;
111 	int do_al_complete_io;
112 
113 	/* after we moved peer_req to done_ee,
114 	 * we may no longer access it,
115 	 * it may be freed/reused already!
116 	 * (as soon as we release the req_lock) */
117 	i = peer_req->i;
118 	do_al_complete_io = peer_req->flags & EE_CALL_AL_COMPLETE_IO;
119 	block_id = peer_req->block_id;
120 	peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
121 
122 	if (peer_req->flags & EE_WAS_ERROR) {
123 		/* In protocol != C, we usually do not send write acks.
124 		 * In case of a write error, send the neg ack anyways. */
125 		if (!__test_and_set_bit(__EE_SEND_WRITE_ACK, &peer_req->flags))
126 			inc_unacked(device);
127 		drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
128 	}
129 
130 	spin_lock_irqsave(&device->resource->req_lock, flags);
131 	device->writ_cnt += peer_req->i.size >> 9;
132 	list_move_tail(&peer_req->w.list, &device->done_ee);
133 
134 	/*
135 	 * Do not remove from the write_requests tree here: we did not send the
136 	 * Ack yet and did not wake possibly waiting conflicting requests.
137 	 * Removed from the tree from "drbd_process_done_ee" within the
138 	 * appropriate dw.cb (e_end_block/e_end_resync_block) or from
139 	 * _drbd_clear_done_ee.
140 	 */
141 
142 	do_wake = list_empty(block_id == ID_SYNCER ? &device->sync_ee : &device->active_ee);
143 
144 	/* FIXME do we want to detach for failed REQ_OP_DISCARD?
145 	 * ((peer_req->flags & (EE_WAS_ERROR|EE_TRIM)) == EE_WAS_ERROR) */
146 	if (peer_req->flags & EE_WAS_ERROR)
147 		__drbd_chk_io_error(device, DRBD_WRITE_ERROR);
148 
149 	if (connection->cstate >= C_WF_REPORT_PARAMS) {
150 		kref_get(&device->kref); /* put is in drbd_send_acks_wf() */
151 		if (!queue_work(connection->ack_sender, &peer_device->send_acks_work))
152 			kref_put(&device->kref, drbd_destroy_device);
153 	}
154 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
155 
156 	if (block_id == ID_SYNCER)
157 		drbd_rs_complete_io(device, i.sector);
158 
159 	if (do_wake)
160 		wake_up(&device->ee_wait);
161 
162 	if (do_al_complete_io)
163 		drbd_al_complete_io(device, &i);
164 
165 	put_ldev(device);
166 }
167 
168 /* writes on behalf of the partner, or resync writes,
169  * "submitted" by the receiver.
170  */
drbd_peer_request_endio(struct bio * bio)171 void drbd_peer_request_endio(struct bio *bio)
172 {
173 	struct drbd_peer_request *peer_req = bio->bi_private;
174 	struct drbd_device *device = peer_req->peer_device->device;
175 	bool is_write = bio_data_dir(bio) == WRITE;
176 	bool is_discard = bio_op(bio) == REQ_OP_WRITE_ZEROES ||
177 			  bio_op(bio) == REQ_OP_DISCARD;
178 
179 	if (bio->bi_status && __ratelimit(&drbd_ratelimit_state))
180 		drbd_warn(device, "%s: error=%d s=%llus\n",
181 				is_write ? (is_discard ? "discard" : "write")
182 					: "read", bio->bi_status,
183 				(unsigned long long)peer_req->i.sector);
184 
185 	if (bio->bi_status)
186 		set_bit(__EE_WAS_ERROR, &peer_req->flags);
187 
188 	bio_put(bio); /* no need for the bio anymore */
189 	if (atomic_dec_and_test(&peer_req->pending_bios)) {
190 		if (is_write)
191 			drbd_endio_write_sec_final(peer_req);
192 		else
193 			drbd_endio_read_sec_final(peer_req);
194 	}
195 }
196 
197 static void
drbd_panic_after_delayed_completion_of_aborted_request(struct drbd_device * device)198 drbd_panic_after_delayed_completion_of_aborted_request(struct drbd_device *device)
199 {
200 	panic("drbd%u %s/%u potential random memory corruption caused by delayed completion of aborted local request\n",
201 		device->minor, device->resource->name, device->vnr);
202 }
203 
204 /* read, readA or write requests on R_PRIMARY coming from drbd_make_request
205  */
drbd_request_endio(struct bio * bio)206 void drbd_request_endio(struct bio *bio)
207 {
208 	unsigned long flags;
209 	struct drbd_request *req = bio->bi_private;
210 	struct drbd_device *device = req->device;
211 	struct bio_and_error m;
212 	enum drbd_req_event what;
213 
214 	/* If this request was aborted locally before,
215 	 * but now was completed "successfully",
216 	 * chances are that this caused arbitrary data corruption.
217 	 *
218 	 * "aborting" requests, or force-detaching the disk, is intended for
219 	 * completely blocked/hung local backing devices which do no longer
220 	 * complete requests at all, not even do error completions.  In this
221 	 * situation, usually a hard-reset and failover is the only way out.
222 	 *
223 	 * By "aborting", basically faking a local error-completion,
224 	 * we allow for a more graceful swichover by cleanly migrating services.
225 	 * Still the affected node has to be rebooted "soon".
226 	 *
227 	 * By completing these requests, we allow the upper layers to re-use
228 	 * the associated data pages.
229 	 *
230 	 * If later the local backing device "recovers", and now DMAs some data
231 	 * from disk into the original request pages, in the best case it will
232 	 * just put random data into unused pages; but typically it will corrupt
233 	 * meanwhile completely unrelated data, causing all sorts of damage.
234 	 *
235 	 * Which means delayed successful completion,
236 	 * especially for READ requests,
237 	 * is a reason to panic().
238 	 *
239 	 * We assume that a delayed *error* completion is OK,
240 	 * though we still will complain noisily about it.
241 	 */
242 	if (unlikely(req->rq_state & RQ_LOCAL_ABORTED)) {
243 		if (__ratelimit(&drbd_ratelimit_state))
244 			drbd_emerg(device, "delayed completion of aborted local request; disk-timeout may be too aggressive\n");
245 
246 		if (!bio->bi_status)
247 			drbd_panic_after_delayed_completion_of_aborted_request(device);
248 	}
249 
250 	/* to avoid recursion in __req_mod */
251 	if (unlikely(bio->bi_status)) {
252 		switch (bio_op(bio)) {
253 		case REQ_OP_WRITE_ZEROES:
254 		case REQ_OP_DISCARD:
255 			if (bio->bi_status == BLK_STS_NOTSUPP)
256 				what = DISCARD_COMPLETED_NOTSUPP;
257 			else
258 				what = DISCARD_COMPLETED_WITH_ERROR;
259 			break;
260 		case REQ_OP_READ:
261 			if (bio->bi_opf & REQ_RAHEAD)
262 				what = READ_AHEAD_COMPLETED_WITH_ERROR;
263 			else
264 				what = READ_COMPLETED_WITH_ERROR;
265 			break;
266 		default:
267 			what = WRITE_COMPLETED_WITH_ERROR;
268 			break;
269 		}
270 	} else {
271 		what = COMPLETED_OK;
272 	}
273 
274 	req->private_bio = ERR_PTR(blk_status_to_errno(bio->bi_status));
275 	bio_put(bio);
276 
277 	/* not req_mod(), we need irqsave here! */
278 	spin_lock_irqsave(&device->resource->req_lock, flags);
279 	__req_mod(req, what, &m);
280 	spin_unlock_irqrestore(&device->resource->req_lock, flags);
281 	put_ldev(device);
282 
283 	if (m.bio)
284 		complete_master_bio(device, &m);
285 }
286 
drbd_csum_ee(struct crypto_shash * tfm,struct drbd_peer_request * peer_req,void * digest)287 void drbd_csum_ee(struct crypto_shash *tfm, struct drbd_peer_request *peer_req, void *digest)
288 {
289 	SHASH_DESC_ON_STACK(desc, tfm);
290 	struct page *page = peer_req->pages;
291 	struct page *tmp;
292 	unsigned len;
293 	void *src;
294 
295 	desc->tfm = tfm;
296 
297 	crypto_shash_init(desc);
298 
299 	src = kmap_atomic(page);
300 	while ((tmp = page_chain_next(page))) {
301 		/* all but the last page will be fully used */
302 		crypto_shash_update(desc, src, PAGE_SIZE);
303 		kunmap_atomic(src);
304 		page = tmp;
305 		src = kmap_atomic(page);
306 	}
307 	/* and now the last, possibly only partially used page */
308 	len = peer_req->i.size & (PAGE_SIZE - 1);
309 	crypto_shash_update(desc, src, len ?: PAGE_SIZE);
310 	kunmap_atomic(src);
311 
312 	crypto_shash_final(desc, digest);
313 	shash_desc_zero(desc);
314 }
315 
drbd_csum_bio(struct crypto_shash * tfm,struct bio * bio,void * digest)316 void drbd_csum_bio(struct crypto_shash *tfm, struct bio *bio, void *digest)
317 {
318 	SHASH_DESC_ON_STACK(desc, tfm);
319 	struct bio_vec bvec;
320 	struct bvec_iter iter;
321 
322 	desc->tfm = tfm;
323 
324 	crypto_shash_init(desc);
325 
326 	bio_for_each_segment(bvec, bio, iter) {
327 		u8 *src;
328 
329 		src = kmap_atomic(bvec.bv_page);
330 		crypto_shash_update(desc, src + bvec.bv_offset, bvec.bv_len);
331 		kunmap_atomic(src);
332 
333 		/* REQ_OP_WRITE_SAME has only one segment,
334 		 * checksum the payload only once. */
335 		if (bio_op(bio) == REQ_OP_WRITE_SAME)
336 			break;
337 	}
338 	crypto_shash_final(desc, digest);
339 	shash_desc_zero(desc);
340 }
341 
342 /* MAYBE merge common code with w_e_end_ov_req */
w_e_send_csum(struct drbd_work * w,int cancel)343 static int w_e_send_csum(struct drbd_work *w, int cancel)
344 {
345 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
346 	struct drbd_peer_device *peer_device = peer_req->peer_device;
347 	struct drbd_device *device = peer_device->device;
348 	int digest_size;
349 	void *digest;
350 	int err = 0;
351 
352 	if (unlikely(cancel))
353 		goto out;
354 
355 	if (unlikely((peer_req->flags & EE_WAS_ERROR) != 0))
356 		goto out;
357 
358 	digest_size = crypto_shash_digestsize(peer_device->connection->csums_tfm);
359 	digest = kmalloc(digest_size, GFP_NOIO);
360 	if (digest) {
361 		sector_t sector = peer_req->i.sector;
362 		unsigned int size = peer_req->i.size;
363 		drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest);
364 		/* Free peer_req and pages before send.
365 		 * In case we block on congestion, we could otherwise run into
366 		 * some distributed deadlock, if the other side blocks on
367 		 * congestion as well, because our receiver blocks in
368 		 * drbd_alloc_pages due to pp_in_use > max_buffers. */
369 		drbd_free_peer_req(device, peer_req);
370 		peer_req = NULL;
371 		inc_rs_pending(device);
372 		err = drbd_send_drequest_csum(peer_device, sector, size,
373 					      digest, digest_size,
374 					      P_CSUM_RS_REQUEST);
375 		kfree(digest);
376 	} else {
377 		drbd_err(device, "kmalloc() of digest failed.\n");
378 		err = -ENOMEM;
379 	}
380 
381 out:
382 	if (peer_req)
383 		drbd_free_peer_req(device, peer_req);
384 
385 	if (unlikely(err))
386 		drbd_err(device, "drbd_send_drequest(..., csum) failed\n");
387 	return err;
388 }
389 
390 #define GFP_TRY	(__GFP_HIGHMEM | __GFP_NOWARN)
391 
read_for_csum(struct drbd_peer_device * peer_device,sector_t sector,int size)392 static int read_for_csum(struct drbd_peer_device *peer_device, sector_t sector, int size)
393 {
394 	struct drbd_device *device = peer_device->device;
395 	struct drbd_peer_request *peer_req;
396 
397 	if (!get_ldev(device))
398 		return -EIO;
399 
400 	/* GFP_TRY, because if there is no memory available right now, this may
401 	 * be rescheduled for later. It is "only" background resync, after all. */
402 	peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER /* unused */, sector,
403 				       size, size, GFP_TRY);
404 	if (!peer_req)
405 		goto defer;
406 
407 	peer_req->w.cb = w_e_send_csum;
408 	spin_lock_irq(&device->resource->req_lock);
409 	list_add_tail(&peer_req->w.list, &device->read_ee);
410 	spin_unlock_irq(&device->resource->req_lock);
411 
412 	atomic_add(size >> 9, &device->rs_sect_ev);
413 	if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0,
414 				     DRBD_FAULT_RS_RD) == 0)
415 		return 0;
416 
417 	/* If it failed because of ENOMEM, retry should help.  If it failed
418 	 * because bio_add_page failed (probably broken lower level driver),
419 	 * retry may or may not help.
420 	 * If it does not, you may need to force disconnect. */
421 	spin_lock_irq(&device->resource->req_lock);
422 	list_del(&peer_req->w.list);
423 	spin_unlock_irq(&device->resource->req_lock);
424 
425 	drbd_free_peer_req(device, peer_req);
426 defer:
427 	put_ldev(device);
428 	return -EAGAIN;
429 }
430 
w_resync_timer(struct drbd_work * w,int cancel)431 int w_resync_timer(struct drbd_work *w, int cancel)
432 {
433 	struct drbd_device *device =
434 		container_of(w, struct drbd_device, resync_work);
435 
436 	switch (device->state.conn) {
437 	case C_VERIFY_S:
438 		make_ov_request(device, cancel);
439 		break;
440 	case C_SYNC_TARGET:
441 		make_resync_request(device, cancel);
442 		break;
443 	}
444 
445 	return 0;
446 }
447 
resync_timer_fn(struct timer_list * t)448 void resync_timer_fn(struct timer_list *t)
449 {
450 	struct drbd_device *device = from_timer(device, t, resync_timer);
451 
452 	drbd_queue_work_if_unqueued(
453 		&first_peer_device(device)->connection->sender_work,
454 		&device->resync_work);
455 }
456 
fifo_set(struct fifo_buffer * fb,int value)457 static void fifo_set(struct fifo_buffer *fb, int value)
458 {
459 	int i;
460 
461 	for (i = 0; i < fb->size; i++)
462 		fb->values[i] = value;
463 }
464 
fifo_push(struct fifo_buffer * fb,int value)465 static int fifo_push(struct fifo_buffer *fb, int value)
466 {
467 	int ov;
468 
469 	ov = fb->values[fb->head_index];
470 	fb->values[fb->head_index++] = value;
471 
472 	if (fb->head_index >= fb->size)
473 		fb->head_index = 0;
474 
475 	return ov;
476 }
477 
fifo_add_val(struct fifo_buffer * fb,int value)478 static void fifo_add_val(struct fifo_buffer *fb, int value)
479 {
480 	int i;
481 
482 	for (i = 0; i < fb->size; i++)
483 		fb->values[i] += value;
484 }
485 
fifo_alloc(unsigned int fifo_size)486 struct fifo_buffer *fifo_alloc(unsigned int fifo_size)
487 {
488 	struct fifo_buffer *fb;
489 
490 	fb = kzalloc(struct_size(fb, values, fifo_size), GFP_NOIO);
491 	if (!fb)
492 		return NULL;
493 
494 	fb->head_index = 0;
495 	fb->size = fifo_size;
496 	fb->total = 0;
497 
498 	return fb;
499 }
500 
drbd_rs_controller(struct drbd_device * device,unsigned int sect_in)501 static int drbd_rs_controller(struct drbd_device *device, unsigned int sect_in)
502 {
503 	struct disk_conf *dc;
504 	unsigned int want;     /* The number of sectors we want in-flight */
505 	int req_sect; /* Number of sectors to request in this turn */
506 	int correction; /* Number of sectors more we need in-flight */
507 	int cps; /* correction per invocation of drbd_rs_controller() */
508 	int steps; /* Number of time steps to plan ahead */
509 	int curr_corr;
510 	int max_sect;
511 	struct fifo_buffer *plan;
512 
513 	dc = rcu_dereference(device->ldev->disk_conf);
514 	plan = rcu_dereference(device->rs_plan_s);
515 
516 	steps = plan->size; /* (dc->c_plan_ahead * 10 * SLEEP_TIME) / HZ; */
517 
518 	if (device->rs_in_flight + sect_in == 0) { /* At start of resync */
519 		want = ((dc->resync_rate * 2 * SLEEP_TIME) / HZ) * steps;
520 	} else { /* normal path */
521 		want = dc->c_fill_target ? dc->c_fill_target :
522 			sect_in * dc->c_delay_target * HZ / (SLEEP_TIME * 10);
523 	}
524 
525 	correction = want - device->rs_in_flight - plan->total;
526 
527 	/* Plan ahead */
528 	cps = correction / steps;
529 	fifo_add_val(plan, cps);
530 	plan->total += cps * steps;
531 
532 	/* What we do in this step */
533 	curr_corr = fifo_push(plan, 0);
534 	plan->total -= curr_corr;
535 
536 	req_sect = sect_in + curr_corr;
537 	if (req_sect < 0)
538 		req_sect = 0;
539 
540 	max_sect = (dc->c_max_rate * 2 * SLEEP_TIME) / HZ;
541 	if (req_sect > max_sect)
542 		req_sect = max_sect;
543 
544 	/*
545 	drbd_warn(device, "si=%u if=%d wa=%u co=%d st=%d cps=%d pl=%d cc=%d rs=%d\n",
546 		 sect_in, device->rs_in_flight, want, correction,
547 		 steps, cps, device->rs_planed, curr_corr, req_sect);
548 	*/
549 
550 	return req_sect;
551 }
552 
drbd_rs_number_requests(struct drbd_device * device)553 static int drbd_rs_number_requests(struct drbd_device *device)
554 {
555 	unsigned int sect_in;  /* Number of sectors that came in since the last turn */
556 	int number, mxb;
557 
558 	sect_in = atomic_xchg(&device->rs_sect_in, 0);
559 	device->rs_in_flight -= sect_in;
560 
561 	rcu_read_lock();
562 	mxb = drbd_get_max_buffers(device) / 2;
563 	if (rcu_dereference(device->rs_plan_s)->size) {
564 		number = drbd_rs_controller(device, sect_in) >> (BM_BLOCK_SHIFT - 9);
565 		device->c_sync_rate = number * HZ * (BM_BLOCK_SIZE / 1024) / SLEEP_TIME;
566 	} else {
567 		device->c_sync_rate = rcu_dereference(device->ldev->disk_conf)->resync_rate;
568 		number = SLEEP_TIME * device->c_sync_rate  / ((BM_BLOCK_SIZE / 1024) * HZ);
569 	}
570 	rcu_read_unlock();
571 
572 	/* Don't have more than "max-buffers"/2 in-flight.
573 	 * Otherwise we may cause the remote site to stall on drbd_alloc_pages(),
574 	 * potentially causing a distributed deadlock on congestion during
575 	 * online-verify or (checksum-based) resync, if max-buffers,
576 	 * socket buffer sizes and resync rate settings are mis-configured. */
577 
578 	/* note that "number" is in units of "BM_BLOCK_SIZE" (which is 4k),
579 	 * mxb (as used here, and in drbd_alloc_pages on the peer) is
580 	 * "number of pages" (typically also 4k),
581 	 * but "rs_in_flight" is in "sectors" (512 Byte). */
582 	if (mxb - device->rs_in_flight/8 < number)
583 		number = mxb - device->rs_in_flight/8;
584 
585 	return number;
586 }
587 
make_resync_request(struct drbd_device * const device,int cancel)588 static int make_resync_request(struct drbd_device *const device, int cancel)
589 {
590 	struct drbd_peer_device *const peer_device = first_peer_device(device);
591 	struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
592 	unsigned long bit;
593 	sector_t sector;
594 	const sector_t capacity = get_capacity(device->vdisk);
595 	int max_bio_size;
596 	int number, rollback_i, size;
597 	int align, requeue = 0;
598 	int i = 0;
599 	int discard_granularity = 0;
600 
601 	if (unlikely(cancel))
602 		return 0;
603 
604 	if (device->rs_total == 0) {
605 		/* empty resync? */
606 		drbd_resync_finished(device);
607 		return 0;
608 	}
609 
610 	if (!get_ldev(device)) {
611 		/* Since we only need to access device->rsync a
612 		   get_ldev_if_state(device,D_FAILED) would be sufficient, but
613 		   to continue resync with a broken disk makes no sense at
614 		   all */
615 		drbd_err(device, "Disk broke down during resync!\n");
616 		return 0;
617 	}
618 
619 	if (connection->agreed_features & DRBD_FF_THIN_RESYNC) {
620 		rcu_read_lock();
621 		discard_granularity = rcu_dereference(device->ldev->disk_conf)->rs_discard_granularity;
622 		rcu_read_unlock();
623 	}
624 
625 	max_bio_size = queue_max_hw_sectors(device->rq_queue) << 9;
626 	number = drbd_rs_number_requests(device);
627 	if (number <= 0)
628 		goto requeue;
629 
630 	for (i = 0; i < number; i++) {
631 		/* Stop generating RS requests when half of the send buffer is filled,
632 		 * but notify TCP that we'd like to have more space. */
633 		mutex_lock(&connection->data.mutex);
634 		if (connection->data.socket) {
635 			struct sock *sk = connection->data.socket->sk;
636 			int queued = sk->sk_wmem_queued;
637 			int sndbuf = sk->sk_sndbuf;
638 			if (queued > sndbuf / 2) {
639 				requeue = 1;
640 				if (sk->sk_socket)
641 					set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
642 			}
643 		} else
644 			requeue = 1;
645 		mutex_unlock(&connection->data.mutex);
646 		if (requeue)
647 			goto requeue;
648 
649 next_sector:
650 		size = BM_BLOCK_SIZE;
651 		bit  = drbd_bm_find_next(device, device->bm_resync_fo);
652 
653 		if (bit == DRBD_END_OF_BITMAP) {
654 			device->bm_resync_fo = drbd_bm_bits(device);
655 			put_ldev(device);
656 			return 0;
657 		}
658 
659 		sector = BM_BIT_TO_SECT(bit);
660 
661 		if (drbd_try_rs_begin_io(device, sector)) {
662 			device->bm_resync_fo = bit;
663 			goto requeue;
664 		}
665 		device->bm_resync_fo = bit + 1;
666 
667 		if (unlikely(drbd_bm_test_bit(device, bit) == 0)) {
668 			drbd_rs_complete_io(device, sector);
669 			goto next_sector;
670 		}
671 
672 #if DRBD_MAX_BIO_SIZE > BM_BLOCK_SIZE
673 		/* try to find some adjacent bits.
674 		 * we stop if we have already the maximum req size.
675 		 *
676 		 * Additionally always align bigger requests, in order to
677 		 * be prepared for all stripe sizes of software RAIDs.
678 		 */
679 		align = 1;
680 		rollback_i = i;
681 		while (i < number) {
682 			if (size + BM_BLOCK_SIZE > max_bio_size)
683 				break;
684 
685 			/* Be always aligned */
686 			if (sector & ((1<<(align+3))-1))
687 				break;
688 
689 			if (discard_granularity && size == discard_granularity)
690 				break;
691 
692 			/* do not cross extent boundaries */
693 			if (((bit+1) & BM_BLOCKS_PER_BM_EXT_MASK) == 0)
694 				break;
695 			/* now, is it actually dirty, after all?
696 			 * caution, drbd_bm_test_bit is tri-state for some
697 			 * obscure reason; ( b == 0 ) would get the out-of-band
698 			 * only accidentally right because of the "oddly sized"
699 			 * adjustment below */
700 			if (drbd_bm_test_bit(device, bit+1) != 1)
701 				break;
702 			bit++;
703 			size += BM_BLOCK_SIZE;
704 			if ((BM_BLOCK_SIZE << align) <= size)
705 				align++;
706 			i++;
707 		}
708 		/* if we merged some,
709 		 * reset the offset to start the next drbd_bm_find_next from */
710 		if (size > BM_BLOCK_SIZE)
711 			device->bm_resync_fo = bit + 1;
712 #endif
713 
714 		/* adjust very last sectors, in case we are oddly sized */
715 		if (sector + (size>>9) > capacity)
716 			size = (capacity-sector)<<9;
717 
718 		if (device->use_csums) {
719 			switch (read_for_csum(peer_device, sector, size)) {
720 			case -EIO: /* Disk failure */
721 				put_ldev(device);
722 				return -EIO;
723 			case -EAGAIN: /* allocation failed, or ldev busy */
724 				drbd_rs_complete_io(device, sector);
725 				device->bm_resync_fo = BM_SECT_TO_BIT(sector);
726 				i = rollback_i;
727 				goto requeue;
728 			case 0:
729 				/* everything ok */
730 				break;
731 			default:
732 				BUG();
733 			}
734 		} else {
735 			int err;
736 
737 			inc_rs_pending(device);
738 			err = drbd_send_drequest(peer_device,
739 						 size == discard_granularity ? P_RS_THIN_REQ : P_RS_DATA_REQUEST,
740 						 sector, size, ID_SYNCER);
741 			if (err) {
742 				drbd_err(device, "drbd_send_drequest() failed, aborting...\n");
743 				dec_rs_pending(device);
744 				put_ldev(device);
745 				return err;
746 			}
747 		}
748 	}
749 
750 	if (device->bm_resync_fo >= drbd_bm_bits(device)) {
751 		/* last syncer _request_ was sent,
752 		 * but the P_RS_DATA_REPLY not yet received.  sync will end (and
753 		 * next sync group will resume), as soon as we receive the last
754 		 * resync data block, and the last bit is cleared.
755 		 * until then resync "work" is "inactive" ...
756 		 */
757 		put_ldev(device);
758 		return 0;
759 	}
760 
761  requeue:
762 	device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
763 	mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
764 	put_ldev(device);
765 	return 0;
766 }
767 
make_ov_request(struct drbd_device * device,int cancel)768 static int make_ov_request(struct drbd_device *device, int cancel)
769 {
770 	int number, i, size;
771 	sector_t sector;
772 	const sector_t capacity = get_capacity(device->vdisk);
773 	bool stop_sector_reached = false;
774 
775 	if (unlikely(cancel))
776 		return 1;
777 
778 	number = drbd_rs_number_requests(device);
779 
780 	sector = device->ov_position;
781 	for (i = 0; i < number; i++) {
782 		if (sector >= capacity)
783 			return 1;
784 
785 		/* We check for "finished" only in the reply path:
786 		 * w_e_end_ov_reply().
787 		 * We need to send at least one request out. */
788 		stop_sector_reached = i > 0
789 			&& verify_can_do_stop_sector(device)
790 			&& sector >= device->ov_stop_sector;
791 		if (stop_sector_reached)
792 			break;
793 
794 		size = BM_BLOCK_SIZE;
795 
796 		if (drbd_try_rs_begin_io(device, sector)) {
797 			device->ov_position = sector;
798 			goto requeue;
799 		}
800 
801 		if (sector + (size>>9) > capacity)
802 			size = (capacity-sector)<<9;
803 
804 		inc_rs_pending(device);
805 		if (drbd_send_ov_request(first_peer_device(device), sector, size)) {
806 			dec_rs_pending(device);
807 			return 0;
808 		}
809 		sector += BM_SECT_PER_BIT;
810 	}
811 	device->ov_position = sector;
812 
813  requeue:
814 	device->rs_in_flight += (i << (BM_BLOCK_SHIFT - 9));
815 	if (i == 0 || !stop_sector_reached)
816 		mod_timer(&device->resync_timer, jiffies + SLEEP_TIME);
817 	return 1;
818 }
819 
w_ov_finished(struct drbd_work * w,int cancel)820 int w_ov_finished(struct drbd_work *w, int cancel)
821 {
822 	struct drbd_device_work *dw =
823 		container_of(w, struct drbd_device_work, w);
824 	struct drbd_device *device = dw->device;
825 	kfree(dw);
826 	ov_out_of_sync_print(device);
827 	drbd_resync_finished(device);
828 
829 	return 0;
830 }
831 
w_resync_finished(struct drbd_work * w,int cancel)832 static int w_resync_finished(struct drbd_work *w, int cancel)
833 {
834 	struct drbd_device_work *dw =
835 		container_of(w, struct drbd_device_work, w);
836 	struct drbd_device *device = dw->device;
837 	kfree(dw);
838 
839 	drbd_resync_finished(device);
840 
841 	return 0;
842 }
843 
ping_peer(struct drbd_device * device)844 static void ping_peer(struct drbd_device *device)
845 {
846 	struct drbd_connection *connection = first_peer_device(device)->connection;
847 
848 	clear_bit(GOT_PING_ACK, &connection->flags);
849 	request_ping(connection);
850 	wait_event(connection->ping_wait,
851 		   test_bit(GOT_PING_ACK, &connection->flags) || device->state.conn < C_CONNECTED);
852 }
853 
drbd_resync_finished(struct drbd_device * device)854 int drbd_resync_finished(struct drbd_device *device)
855 {
856 	struct drbd_connection *connection = first_peer_device(device)->connection;
857 	unsigned long db, dt, dbdt;
858 	unsigned long n_oos;
859 	union drbd_state os, ns;
860 	struct drbd_device_work *dw;
861 	char *khelper_cmd = NULL;
862 	int verify_done = 0;
863 
864 	/* Remove all elements from the resync LRU. Since future actions
865 	 * might set bits in the (main) bitmap, then the entries in the
866 	 * resync LRU would be wrong. */
867 	if (drbd_rs_del_all(device)) {
868 		/* In case this is not possible now, most probably because
869 		 * there are P_RS_DATA_REPLY Packets lingering on the worker's
870 		 * queue (or even the read operations for those packets
871 		 * is not finished by now).   Retry in 100ms. */
872 
873 		schedule_timeout_interruptible(HZ / 10);
874 		dw = kmalloc(sizeof(struct drbd_device_work), GFP_ATOMIC);
875 		if (dw) {
876 			dw->w.cb = w_resync_finished;
877 			dw->device = device;
878 			drbd_queue_work(&connection->sender_work, &dw->w);
879 			return 1;
880 		}
881 		drbd_err(device, "Warn failed to drbd_rs_del_all() and to kmalloc(dw).\n");
882 	}
883 
884 	dt = (jiffies - device->rs_start - device->rs_paused) / HZ;
885 	if (dt <= 0)
886 		dt = 1;
887 
888 	db = device->rs_total;
889 	/* adjust for verify start and stop sectors, respective reached position */
890 	if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
891 		db -= device->ov_left;
892 
893 	dbdt = Bit2KB(db/dt);
894 	device->rs_paused /= HZ;
895 
896 	if (!get_ldev(device))
897 		goto out;
898 
899 	ping_peer(device);
900 
901 	spin_lock_irq(&device->resource->req_lock);
902 	os = drbd_read_state(device);
903 
904 	verify_done = (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T);
905 
906 	/* This protects us against multiple calls (that can happen in the presence
907 	   of application IO), and against connectivity loss just before we arrive here. */
908 	if (os.conn <= C_CONNECTED)
909 		goto out_unlock;
910 
911 	ns = os;
912 	ns.conn = C_CONNECTED;
913 
914 	drbd_info(device, "%s done (total %lu sec; paused %lu sec; %lu K/sec)\n",
915 	     verify_done ? "Online verify" : "Resync",
916 	     dt + device->rs_paused, device->rs_paused, dbdt);
917 
918 	n_oos = drbd_bm_total_weight(device);
919 
920 	if (os.conn == C_VERIFY_S || os.conn == C_VERIFY_T) {
921 		if (n_oos) {
922 			drbd_alert(device, "Online verify found %lu %dk block out of sync!\n",
923 			      n_oos, Bit2KB(1));
924 			khelper_cmd = "out-of-sync";
925 		}
926 	} else {
927 		D_ASSERT(device, (n_oos - device->rs_failed) == 0);
928 
929 		if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T)
930 			khelper_cmd = "after-resync-target";
931 
932 		if (device->use_csums && device->rs_total) {
933 			const unsigned long s = device->rs_same_csum;
934 			const unsigned long t = device->rs_total;
935 			const int ratio =
936 				(t == 0)     ? 0 :
937 			(t < 100000) ? ((s*100)/t) : (s/(t/100));
938 			drbd_info(device, "%u %% had equal checksums, eliminated: %luK; "
939 			     "transferred %luK total %luK\n",
940 			     ratio,
941 			     Bit2KB(device->rs_same_csum),
942 			     Bit2KB(device->rs_total - device->rs_same_csum),
943 			     Bit2KB(device->rs_total));
944 		}
945 	}
946 
947 	if (device->rs_failed) {
948 		drbd_info(device, "            %lu failed blocks\n", device->rs_failed);
949 
950 		if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
951 			ns.disk = D_INCONSISTENT;
952 			ns.pdsk = D_UP_TO_DATE;
953 		} else {
954 			ns.disk = D_UP_TO_DATE;
955 			ns.pdsk = D_INCONSISTENT;
956 		}
957 	} else {
958 		ns.disk = D_UP_TO_DATE;
959 		ns.pdsk = D_UP_TO_DATE;
960 
961 		if (os.conn == C_SYNC_TARGET || os.conn == C_PAUSED_SYNC_T) {
962 			if (device->p_uuid) {
963 				int i;
964 				for (i = UI_BITMAP ; i <= UI_HISTORY_END ; i++)
965 					_drbd_uuid_set(device, i, device->p_uuid[i]);
966 				drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_CURRENT]);
967 				_drbd_uuid_set(device, UI_CURRENT, device->p_uuid[UI_CURRENT]);
968 			} else {
969 				drbd_err(device, "device->p_uuid is NULL! BUG\n");
970 			}
971 		}
972 
973 		if (!(os.conn == C_VERIFY_S || os.conn == C_VERIFY_T)) {
974 			/* for verify runs, we don't update uuids here,
975 			 * so there would be nothing to report. */
976 			drbd_uuid_set_bm(device, 0UL);
977 			drbd_print_uuids(device, "updated UUIDs");
978 			if (device->p_uuid) {
979 				/* Now the two UUID sets are equal, update what we
980 				 * know of the peer. */
981 				int i;
982 				for (i = UI_CURRENT ; i <= UI_HISTORY_END ; i++)
983 					device->p_uuid[i] = device->ldev->md.uuid[i];
984 			}
985 		}
986 	}
987 
988 	_drbd_set_state(device, ns, CS_VERBOSE, NULL);
989 out_unlock:
990 	spin_unlock_irq(&device->resource->req_lock);
991 
992 	/* If we have been sync source, and have an effective fencing-policy,
993 	 * once *all* volumes are back in sync, call "unfence". */
994 	if (os.conn == C_SYNC_SOURCE) {
995 		enum drbd_disk_state disk_state = D_MASK;
996 		enum drbd_disk_state pdsk_state = D_MASK;
997 		enum drbd_fencing_p fp = FP_DONT_CARE;
998 
999 		rcu_read_lock();
1000 		fp = rcu_dereference(device->ldev->disk_conf)->fencing;
1001 		if (fp != FP_DONT_CARE) {
1002 			struct drbd_peer_device *peer_device;
1003 			int vnr;
1004 			idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1005 				struct drbd_device *device = peer_device->device;
1006 				disk_state = min_t(enum drbd_disk_state, disk_state, device->state.disk);
1007 				pdsk_state = min_t(enum drbd_disk_state, pdsk_state, device->state.pdsk);
1008 			}
1009 		}
1010 		rcu_read_unlock();
1011 		if (disk_state == D_UP_TO_DATE && pdsk_state == D_UP_TO_DATE)
1012 			conn_khelper(connection, "unfence-peer");
1013 	}
1014 
1015 	put_ldev(device);
1016 out:
1017 	device->rs_total  = 0;
1018 	device->rs_failed = 0;
1019 	device->rs_paused = 0;
1020 
1021 	/* reset start sector, if we reached end of device */
1022 	if (verify_done && device->ov_left == 0)
1023 		device->ov_start_sector = 0;
1024 
1025 	drbd_md_sync(device);
1026 
1027 	if (khelper_cmd)
1028 		drbd_khelper(device, khelper_cmd);
1029 
1030 	return 1;
1031 }
1032 
1033 /* helper */
move_to_net_ee_or_free(struct drbd_device * device,struct drbd_peer_request * peer_req)1034 static void move_to_net_ee_or_free(struct drbd_device *device, struct drbd_peer_request *peer_req)
1035 {
1036 	if (drbd_peer_req_has_active_page(peer_req)) {
1037 		/* This might happen if sendpage() has not finished */
1038 		int i = (peer_req->i.size + PAGE_SIZE -1) >> PAGE_SHIFT;
1039 		atomic_add(i, &device->pp_in_use_by_net);
1040 		atomic_sub(i, &device->pp_in_use);
1041 		spin_lock_irq(&device->resource->req_lock);
1042 		list_add_tail(&peer_req->w.list, &device->net_ee);
1043 		spin_unlock_irq(&device->resource->req_lock);
1044 		wake_up(&drbd_pp_wait);
1045 	} else
1046 		drbd_free_peer_req(device, peer_req);
1047 }
1048 
1049 /**
1050  * w_e_end_data_req() - Worker callback, to send a P_DATA_REPLY packet in response to a P_DATA_REQUEST
1051  * @w:		work object.
1052  * @cancel:	The connection will be closed anyways
1053  */
w_e_end_data_req(struct drbd_work * w,int cancel)1054 int w_e_end_data_req(struct drbd_work *w, int cancel)
1055 {
1056 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1057 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1058 	struct drbd_device *device = peer_device->device;
1059 	int err;
1060 
1061 	if (unlikely(cancel)) {
1062 		drbd_free_peer_req(device, peer_req);
1063 		dec_unacked(device);
1064 		return 0;
1065 	}
1066 
1067 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1068 		err = drbd_send_block(peer_device, P_DATA_REPLY, peer_req);
1069 	} else {
1070 		if (__ratelimit(&drbd_ratelimit_state))
1071 			drbd_err(device, "Sending NegDReply. sector=%llus.\n",
1072 			    (unsigned long long)peer_req->i.sector);
1073 
1074 		err = drbd_send_ack(peer_device, P_NEG_DREPLY, peer_req);
1075 	}
1076 
1077 	dec_unacked(device);
1078 
1079 	move_to_net_ee_or_free(device, peer_req);
1080 
1081 	if (unlikely(err))
1082 		drbd_err(device, "drbd_send_block() failed\n");
1083 	return err;
1084 }
1085 
all_zero(struct drbd_peer_request * peer_req)1086 static bool all_zero(struct drbd_peer_request *peer_req)
1087 {
1088 	struct page *page = peer_req->pages;
1089 	unsigned int len = peer_req->i.size;
1090 
1091 	page_chain_for_each(page) {
1092 		unsigned int l = min_t(unsigned int, len, PAGE_SIZE);
1093 		unsigned int i, words = l / sizeof(long);
1094 		unsigned long *d;
1095 
1096 		d = kmap_atomic(page);
1097 		for (i = 0; i < words; i++) {
1098 			if (d[i]) {
1099 				kunmap_atomic(d);
1100 				return false;
1101 			}
1102 		}
1103 		kunmap_atomic(d);
1104 		len -= l;
1105 	}
1106 
1107 	return true;
1108 }
1109 
1110 /**
1111  * w_e_end_rsdata_req() - Worker callback to send a P_RS_DATA_REPLY packet in response to a P_RS_DATA_REQUEST
1112  * @w:		work object.
1113  * @cancel:	The connection will be closed anyways
1114  */
w_e_end_rsdata_req(struct drbd_work * w,int cancel)1115 int w_e_end_rsdata_req(struct drbd_work *w, int cancel)
1116 {
1117 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1118 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1119 	struct drbd_device *device = peer_device->device;
1120 	int err;
1121 
1122 	if (unlikely(cancel)) {
1123 		drbd_free_peer_req(device, peer_req);
1124 		dec_unacked(device);
1125 		return 0;
1126 	}
1127 
1128 	if (get_ldev_if_state(device, D_FAILED)) {
1129 		drbd_rs_complete_io(device, peer_req->i.sector);
1130 		put_ldev(device);
1131 	}
1132 
1133 	if (device->state.conn == C_AHEAD) {
1134 		err = drbd_send_ack(peer_device, P_RS_CANCEL, peer_req);
1135 	} else if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1136 		if (likely(device->state.pdsk >= D_INCONSISTENT)) {
1137 			inc_rs_pending(device);
1138 			if (peer_req->flags & EE_RS_THIN_REQ && all_zero(peer_req))
1139 				err = drbd_send_rs_deallocated(peer_device, peer_req);
1140 			else
1141 				err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req);
1142 		} else {
1143 			if (__ratelimit(&drbd_ratelimit_state))
1144 				drbd_err(device, "Not sending RSDataReply, "
1145 				    "partner DISKLESS!\n");
1146 			err = 0;
1147 		}
1148 	} else {
1149 		if (__ratelimit(&drbd_ratelimit_state))
1150 			drbd_err(device, "Sending NegRSDReply. sector %llus.\n",
1151 			    (unsigned long long)peer_req->i.sector);
1152 
1153 		err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req);
1154 
1155 		/* update resync data with failure */
1156 		drbd_rs_failed_io(device, peer_req->i.sector, peer_req->i.size);
1157 	}
1158 
1159 	dec_unacked(device);
1160 
1161 	move_to_net_ee_or_free(device, peer_req);
1162 
1163 	if (unlikely(err))
1164 		drbd_err(device, "drbd_send_block() failed\n");
1165 	return err;
1166 }
1167 
w_e_end_csum_rs_req(struct drbd_work * w,int cancel)1168 int w_e_end_csum_rs_req(struct drbd_work *w, int cancel)
1169 {
1170 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1171 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1172 	struct drbd_device *device = peer_device->device;
1173 	struct digest_info *di;
1174 	int digest_size;
1175 	void *digest = NULL;
1176 	int err, eq = 0;
1177 
1178 	if (unlikely(cancel)) {
1179 		drbd_free_peer_req(device, peer_req);
1180 		dec_unacked(device);
1181 		return 0;
1182 	}
1183 
1184 	if (get_ldev(device)) {
1185 		drbd_rs_complete_io(device, peer_req->i.sector);
1186 		put_ldev(device);
1187 	}
1188 
1189 	di = peer_req->digest;
1190 
1191 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1192 		/* quick hack to try to avoid a race against reconfiguration.
1193 		 * a real fix would be much more involved,
1194 		 * introducing more locking mechanisms */
1195 		if (peer_device->connection->csums_tfm) {
1196 			digest_size = crypto_shash_digestsize(peer_device->connection->csums_tfm);
1197 			D_ASSERT(device, digest_size == di->digest_size);
1198 			digest = kmalloc(digest_size, GFP_NOIO);
1199 		}
1200 		if (digest) {
1201 			drbd_csum_ee(peer_device->connection->csums_tfm, peer_req, digest);
1202 			eq = !memcmp(digest, di->digest, digest_size);
1203 			kfree(digest);
1204 		}
1205 
1206 		if (eq) {
1207 			drbd_set_in_sync(device, peer_req->i.sector, peer_req->i.size);
1208 			/* rs_same_csums unit is BM_BLOCK_SIZE */
1209 			device->rs_same_csum += peer_req->i.size >> BM_BLOCK_SHIFT;
1210 			err = drbd_send_ack(peer_device, P_RS_IS_IN_SYNC, peer_req);
1211 		} else {
1212 			inc_rs_pending(device);
1213 			peer_req->block_id = ID_SYNCER; /* By setting block_id, digest pointer becomes invalid! */
1214 			peer_req->flags &= ~EE_HAS_DIGEST; /* This peer request no longer has a digest pointer */
1215 			kfree(di);
1216 			err = drbd_send_block(peer_device, P_RS_DATA_REPLY, peer_req);
1217 		}
1218 	} else {
1219 		err = drbd_send_ack(peer_device, P_NEG_RS_DREPLY, peer_req);
1220 		if (__ratelimit(&drbd_ratelimit_state))
1221 			drbd_err(device, "Sending NegDReply. I guess it gets messy.\n");
1222 	}
1223 
1224 	dec_unacked(device);
1225 	move_to_net_ee_or_free(device, peer_req);
1226 
1227 	if (unlikely(err))
1228 		drbd_err(device, "drbd_send_block/ack() failed\n");
1229 	return err;
1230 }
1231 
w_e_end_ov_req(struct drbd_work * w,int cancel)1232 int w_e_end_ov_req(struct drbd_work *w, int cancel)
1233 {
1234 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1235 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1236 	struct drbd_device *device = peer_device->device;
1237 	sector_t sector = peer_req->i.sector;
1238 	unsigned int size = peer_req->i.size;
1239 	int digest_size;
1240 	void *digest;
1241 	int err = 0;
1242 
1243 	if (unlikely(cancel))
1244 		goto out;
1245 
1246 	digest_size = crypto_shash_digestsize(peer_device->connection->verify_tfm);
1247 	digest = kmalloc(digest_size, GFP_NOIO);
1248 	if (!digest) {
1249 		err = 1;	/* terminate the connection in case the allocation failed */
1250 		goto out;
1251 	}
1252 
1253 	if (likely(!(peer_req->flags & EE_WAS_ERROR)))
1254 		drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest);
1255 	else
1256 		memset(digest, 0, digest_size);
1257 
1258 	/* Free e and pages before send.
1259 	 * In case we block on congestion, we could otherwise run into
1260 	 * some distributed deadlock, if the other side blocks on
1261 	 * congestion as well, because our receiver blocks in
1262 	 * drbd_alloc_pages due to pp_in_use > max_buffers. */
1263 	drbd_free_peer_req(device, peer_req);
1264 	peer_req = NULL;
1265 	inc_rs_pending(device);
1266 	err = drbd_send_drequest_csum(peer_device, sector, size, digest, digest_size, P_OV_REPLY);
1267 	if (err)
1268 		dec_rs_pending(device);
1269 	kfree(digest);
1270 
1271 out:
1272 	if (peer_req)
1273 		drbd_free_peer_req(device, peer_req);
1274 	dec_unacked(device);
1275 	return err;
1276 }
1277 
drbd_ov_out_of_sync_found(struct drbd_device * device,sector_t sector,int size)1278 void drbd_ov_out_of_sync_found(struct drbd_device *device, sector_t sector, int size)
1279 {
1280 	if (device->ov_last_oos_start + device->ov_last_oos_size == sector) {
1281 		device->ov_last_oos_size += size>>9;
1282 	} else {
1283 		device->ov_last_oos_start = sector;
1284 		device->ov_last_oos_size = size>>9;
1285 	}
1286 	drbd_set_out_of_sync(device, sector, size);
1287 }
1288 
w_e_end_ov_reply(struct drbd_work * w,int cancel)1289 int w_e_end_ov_reply(struct drbd_work *w, int cancel)
1290 {
1291 	struct drbd_peer_request *peer_req = container_of(w, struct drbd_peer_request, w);
1292 	struct drbd_peer_device *peer_device = peer_req->peer_device;
1293 	struct drbd_device *device = peer_device->device;
1294 	struct digest_info *di;
1295 	void *digest;
1296 	sector_t sector = peer_req->i.sector;
1297 	unsigned int size = peer_req->i.size;
1298 	int digest_size;
1299 	int err, eq = 0;
1300 	bool stop_sector_reached = false;
1301 
1302 	if (unlikely(cancel)) {
1303 		drbd_free_peer_req(device, peer_req);
1304 		dec_unacked(device);
1305 		return 0;
1306 	}
1307 
1308 	/* after "cancel", because after drbd_disconnect/drbd_rs_cancel_all
1309 	 * the resync lru has been cleaned up already */
1310 	if (get_ldev(device)) {
1311 		drbd_rs_complete_io(device, peer_req->i.sector);
1312 		put_ldev(device);
1313 	}
1314 
1315 	di = peer_req->digest;
1316 
1317 	if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
1318 		digest_size = crypto_shash_digestsize(peer_device->connection->verify_tfm);
1319 		digest = kmalloc(digest_size, GFP_NOIO);
1320 		if (digest) {
1321 			drbd_csum_ee(peer_device->connection->verify_tfm, peer_req, digest);
1322 
1323 			D_ASSERT(device, digest_size == di->digest_size);
1324 			eq = !memcmp(digest, di->digest, digest_size);
1325 			kfree(digest);
1326 		}
1327 	}
1328 
1329 	/* Free peer_req and pages before send.
1330 	 * In case we block on congestion, we could otherwise run into
1331 	 * some distributed deadlock, if the other side blocks on
1332 	 * congestion as well, because our receiver blocks in
1333 	 * drbd_alloc_pages due to pp_in_use > max_buffers. */
1334 	drbd_free_peer_req(device, peer_req);
1335 	if (!eq)
1336 		drbd_ov_out_of_sync_found(device, sector, size);
1337 	else
1338 		ov_out_of_sync_print(device);
1339 
1340 	err = drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size,
1341 			       eq ? ID_IN_SYNC : ID_OUT_OF_SYNC);
1342 
1343 	dec_unacked(device);
1344 
1345 	--device->ov_left;
1346 
1347 	/* let's advance progress step marks only for every other megabyte */
1348 	if ((device->ov_left & 0x200) == 0x200)
1349 		drbd_advance_rs_marks(device, device->ov_left);
1350 
1351 	stop_sector_reached = verify_can_do_stop_sector(device) &&
1352 		(sector + (size>>9)) >= device->ov_stop_sector;
1353 
1354 	if (device->ov_left == 0 || stop_sector_reached) {
1355 		ov_out_of_sync_print(device);
1356 		drbd_resync_finished(device);
1357 	}
1358 
1359 	return err;
1360 }
1361 
1362 /* FIXME
1363  * We need to track the number of pending barrier acks,
1364  * and to be able to wait for them.
1365  * See also comment in drbd_adm_attach before drbd_suspend_io.
1366  */
drbd_send_barrier(struct drbd_connection * connection)1367 static int drbd_send_barrier(struct drbd_connection *connection)
1368 {
1369 	struct p_barrier *p;
1370 	struct drbd_socket *sock;
1371 
1372 	sock = &connection->data;
1373 	p = conn_prepare_command(connection, sock);
1374 	if (!p)
1375 		return -EIO;
1376 	p->barrier = connection->send.current_epoch_nr;
1377 	p->pad = 0;
1378 	connection->send.current_epoch_writes = 0;
1379 	connection->send.last_sent_barrier_jif = jiffies;
1380 
1381 	return conn_send_command(connection, sock, P_BARRIER, sizeof(*p), NULL, 0);
1382 }
1383 
pd_send_unplug_remote(struct drbd_peer_device * pd)1384 static int pd_send_unplug_remote(struct drbd_peer_device *pd)
1385 {
1386 	struct drbd_socket *sock = &pd->connection->data;
1387 	if (!drbd_prepare_command(pd, sock))
1388 		return -EIO;
1389 	return drbd_send_command(pd, sock, P_UNPLUG_REMOTE, 0, NULL, 0);
1390 }
1391 
w_send_write_hint(struct drbd_work * w,int cancel)1392 int w_send_write_hint(struct drbd_work *w, int cancel)
1393 {
1394 	struct drbd_device *device =
1395 		container_of(w, struct drbd_device, unplug_work);
1396 
1397 	if (cancel)
1398 		return 0;
1399 	return pd_send_unplug_remote(first_peer_device(device));
1400 }
1401 
re_init_if_first_write(struct drbd_connection * connection,unsigned int epoch)1402 static void re_init_if_first_write(struct drbd_connection *connection, unsigned int epoch)
1403 {
1404 	if (!connection->send.seen_any_write_yet) {
1405 		connection->send.seen_any_write_yet = true;
1406 		connection->send.current_epoch_nr = epoch;
1407 		connection->send.current_epoch_writes = 0;
1408 		connection->send.last_sent_barrier_jif = jiffies;
1409 	}
1410 }
1411 
maybe_send_barrier(struct drbd_connection * connection,unsigned int epoch)1412 static void maybe_send_barrier(struct drbd_connection *connection, unsigned int epoch)
1413 {
1414 	/* re-init if first write on this connection */
1415 	if (!connection->send.seen_any_write_yet)
1416 		return;
1417 	if (connection->send.current_epoch_nr != epoch) {
1418 		if (connection->send.current_epoch_writes)
1419 			drbd_send_barrier(connection);
1420 		connection->send.current_epoch_nr = epoch;
1421 	}
1422 }
1423 
w_send_out_of_sync(struct drbd_work * w,int cancel)1424 int w_send_out_of_sync(struct drbd_work *w, int cancel)
1425 {
1426 	struct drbd_request *req = container_of(w, struct drbd_request, w);
1427 	struct drbd_device *device = req->device;
1428 	struct drbd_peer_device *const peer_device = first_peer_device(device);
1429 	struct drbd_connection *const connection = peer_device->connection;
1430 	int err;
1431 
1432 	if (unlikely(cancel)) {
1433 		req_mod(req, SEND_CANCELED);
1434 		return 0;
1435 	}
1436 	req->pre_send_jif = jiffies;
1437 
1438 	/* this time, no connection->send.current_epoch_writes++;
1439 	 * If it was sent, it was the closing barrier for the last
1440 	 * replicated epoch, before we went into AHEAD mode.
1441 	 * No more barriers will be sent, until we leave AHEAD mode again. */
1442 	maybe_send_barrier(connection, req->epoch);
1443 
1444 	err = drbd_send_out_of_sync(peer_device, req);
1445 	req_mod(req, OOS_HANDED_TO_NETWORK);
1446 
1447 	return err;
1448 }
1449 
1450 /**
1451  * w_send_dblock() - Worker callback to send a P_DATA packet in order to mirror a write request
1452  * @w:		work object.
1453  * @cancel:	The connection will be closed anyways
1454  */
w_send_dblock(struct drbd_work * w,int cancel)1455 int w_send_dblock(struct drbd_work *w, int cancel)
1456 {
1457 	struct drbd_request *req = container_of(w, struct drbd_request, w);
1458 	struct drbd_device *device = req->device;
1459 	struct drbd_peer_device *const peer_device = first_peer_device(device);
1460 	struct drbd_connection *connection = peer_device->connection;
1461 	bool do_send_unplug = req->rq_state & RQ_UNPLUG;
1462 	int err;
1463 
1464 	if (unlikely(cancel)) {
1465 		req_mod(req, SEND_CANCELED);
1466 		return 0;
1467 	}
1468 	req->pre_send_jif = jiffies;
1469 
1470 	re_init_if_first_write(connection, req->epoch);
1471 	maybe_send_barrier(connection, req->epoch);
1472 	connection->send.current_epoch_writes++;
1473 
1474 	err = drbd_send_dblock(peer_device, req);
1475 	req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
1476 
1477 	if (do_send_unplug && !err)
1478 		pd_send_unplug_remote(peer_device);
1479 
1480 	return err;
1481 }
1482 
1483 /**
1484  * w_send_read_req() - Worker callback to send a read request (P_DATA_REQUEST) packet
1485  * @w:		work object.
1486  * @cancel:	The connection will be closed anyways
1487  */
w_send_read_req(struct drbd_work * w,int cancel)1488 int w_send_read_req(struct drbd_work *w, int cancel)
1489 {
1490 	struct drbd_request *req = container_of(w, struct drbd_request, w);
1491 	struct drbd_device *device = req->device;
1492 	struct drbd_peer_device *const peer_device = first_peer_device(device);
1493 	struct drbd_connection *connection = peer_device->connection;
1494 	bool do_send_unplug = req->rq_state & RQ_UNPLUG;
1495 	int err;
1496 
1497 	if (unlikely(cancel)) {
1498 		req_mod(req, SEND_CANCELED);
1499 		return 0;
1500 	}
1501 	req->pre_send_jif = jiffies;
1502 
1503 	/* Even read requests may close a write epoch,
1504 	 * if there was any yet. */
1505 	maybe_send_barrier(connection, req->epoch);
1506 
1507 	err = drbd_send_drequest(peer_device, P_DATA_REQUEST, req->i.sector, req->i.size,
1508 				 (unsigned long)req);
1509 
1510 	req_mod(req, err ? SEND_FAILED : HANDED_OVER_TO_NETWORK);
1511 
1512 	if (do_send_unplug && !err)
1513 		pd_send_unplug_remote(peer_device);
1514 
1515 	return err;
1516 }
1517 
w_restart_disk_io(struct drbd_work * w,int cancel)1518 int w_restart_disk_io(struct drbd_work *w, int cancel)
1519 {
1520 	struct drbd_request *req = container_of(w, struct drbd_request, w);
1521 	struct drbd_device *device = req->device;
1522 
1523 	if (bio_data_dir(req->master_bio) == WRITE && req->rq_state & RQ_IN_ACT_LOG)
1524 		drbd_al_begin_io(device, &req->i);
1525 
1526 	req->private_bio = bio_clone_fast(req->master_bio, GFP_NOIO,
1527 					  &drbd_io_bio_set);
1528 	bio_set_dev(req->private_bio, device->ldev->backing_bdev);
1529 	req->private_bio->bi_private = req;
1530 	req->private_bio->bi_end_io = drbd_request_endio;
1531 	submit_bio_noacct(req->private_bio);
1532 
1533 	return 0;
1534 }
1535 
_drbd_may_sync_now(struct drbd_device * device)1536 static int _drbd_may_sync_now(struct drbd_device *device)
1537 {
1538 	struct drbd_device *odev = device;
1539 	int resync_after;
1540 
1541 	while (1) {
1542 		if (!odev->ldev || odev->state.disk == D_DISKLESS)
1543 			return 1;
1544 		rcu_read_lock();
1545 		resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
1546 		rcu_read_unlock();
1547 		if (resync_after == -1)
1548 			return 1;
1549 		odev = minor_to_device(resync_after);
1550 		if (!odev)
1551 			return 1;
1552 		if ((odev->state.conn >= C_SYNC_SOURCE &&
1553 		     odev->state.conn <= C_PAUSED_SYNC_T) ||
1554 		    odev->state.aftr_isp || odev->state.peer_isp ||
1555 		    odev->state.user_isp)
1556 			return 0;
1557 	}
1558 }
1559 
1560 /**
1561  * drbd_pause_after() - Pause resync on all devices that may not resync now
1562  * @device:	DRBD device.
1563  *
1564  * Called from process context only (admin command and after_state_ch).
1565  */
drbd_pause_after(struct drbd_device * device)1566 static bool drbd_pause_after(struct drbd_device *device)
1567 {
1568 	bool changed = false;
1569 	struct drbd_device *odev;
1570 	int i;
1571 
1572 	rcu_read_lock();
1573 	idr_for_each_entry(&drbd_devices, odev, i) {
1574 		if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
1575 			continue;
1576 		if (!_drbd_may_sync_now(odev) &&
1577 		    _drbd_set_state(_NS(odev, aftr_isp, 1),
1578 				    CS_HARD, NULL) != SS_NOTHING_TO_DO)
1579 			changed = true;
1580 	}
1581 	rcu_read_unlock();
1582 
1583 	return changed;
1584 }
1585 
1586 /**
1587  * drbd_resume_next() - Resume resync on all devices that may resync now
1588  * @device:	DRBD device.
1589  *
1590  * Called from process context only (admin command and worker).
1591  */
drbd_resume_next(struct drbd_device * device)1592 static bool drbd_resume_next(struct drbd_device *device)
1593 {
1594 	bool changed = false;
1595 	struct drbd_device *odev;
1596 	int i;
1597 
1598 	rcu_read_lock();
1599 	idr_for_each_entry(&drbd_devices, odev, i) {
1600 		if (odev->state.conn == C_STANDALONE && odev->state.disk == D_DISKLESS)
1601 			continue;
1602 		if (odev->state.aftr_isp) {
1603 			if (_drbd_may_sync_now(odev) &&
1604 			    _drbd_set_state(_NS(odev, aftr_isp, 0),
1605 					    CS_HARD, NULL) != SS_NOTHING_TO_DO)
1606 				changed = true;
1607 		}
1608 	}
1609 	rcu_read_unlock();
1610 	return changed;
1611 }
1612 
resume_next_sg(struct drbd_device * device)1613 void resume_next_sg(struct drbd_device *device)
1614 {
1615 	lock_all_resources();
1616 	drbd_resume_next(device);
1617 	unlock_all_resources();
1618 }
1619 
suspend_other_sg(struct drbd_device * device)1620 void suspend_other_sg(struct drbd_device *device)
1621 {
1622 	lock_all_resources();
1623 	drbd_pause_after(device);
1624 	unlock_all_resources();
1625 }
1626 
1627 /* caller must lock_all_resources() */
drbd_resync_after_valid(struct drbd_device * device,int o_minor)1628 enum drbd_ret_code drbd_resync_after_valid(struct drbd_device *device, int o_minor)
1629 {
1630 	struct drbd_device *odev;
1631 	int resync_after;
1632 
1633 	if (o_minor == -1)
1634 		return NO_ERROR;
1635 	if (o_minor < -1 || o_minor > MINORMASK)
1636 		return ERR_RESYNC_AFTER;
1637 
1638 	/* check for loops */
1639 	odev = minor_to_device(o_minor);
1640 	while (1) {
1641 		if (odev == device)
1642 			return ERR_RESYNC_AFTER_CYCLE;
1643 
1644 		/* You are free to depend on diskless, non-existing,
1645 		 * or not yet/no longer existing minors.
1646 		 * We only reject dependency loops.
1647 		 * We cannot follow the dependency chain beyond a detached or
1648 		 * missing minor.
1649 		 */
1650 		if (!odev || !odev->ldev || odev->state.disk == D_DISKLESS)
1651 			return NO_ERROR;
1652 
1653 		rcu_read_lock();
1654 		resync_after = rcu_dereference(odev->ldev->disk_conf)->resync_after;
1655 		rcu_read_unlock();
1656 		/* dependency chain ends here, no cycles. */
1657 		if (resync_after == -1)
1658 			return NO_ERROR;
1659 
1660 		/* follow the dependency chain */
1661 		odev = minor_to_device(resync_after);
1662 	}
1663 }
1664 
1665 /* caller must lock_all_resources() */
drbd_resync_after_changed(struct drbd_device * device)1666 void drbd_resync_after_changed(struct drbd_device *device)
1667 {
1668 	int changed;
1669 
1670 	do {
1671 		changed  = drbd_pause_after(device);
1672 		changed |= drbd_resume_next(device);
1673 	} while (changed);
1674 }
1675 
drbd_rs_controller_reset(struct drbd_device * device)1676 void drbd_rs_controller_reset(struct drbd_device *device)
1677 {
1678 	struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
1679 	struct fifo_buffer *plan;
1680 
1681 	atomic_set(&device->rs_sect_in, 0);
1682 	atomic_set(&device->rs_sect_ev, 0);
1683 	device->rs_in_flight = 0;
1684 	device->rs_last_events =
1685 		(int)part_stat_read_accum(disk->part0, sectors);
1686 
1687 	/* Updating the RCU protected object in place is necessary since
1688 	   this function gets called from atomic context.
1689 	   It is valid since all other updates also lead to an completely
1690 	   empty fifo */
1691 	rcu_read_lock();
1692 	plan = rcu_dereference(device->rs_plan_s);
1693 	plan->total = 0;
1694 	fifo_set(plan, 0);
1695 	rcu_read_unlock();
1696 }
1697 
start_resync_timer_fn(struct timer_list * t)1698 void start_resync_timer_fn(struct timer_list *t)
1699 {
1700 	struct drbd_device *device = from_timer(device, t, start_resync_timer);
1701 	drbd_device_post_work(device, RS_START);
1702 }
1703 
do_start_resync(struct drbd_device * device)1704 static void do_start_resync(struct drbd_device *device)
1705 {
1706 	if (atomic_read(&device->unacked_cnt) || atomic_read(&device->rs_pending_cnt)) {
1707 		drbd_warn(device, "postponing start_resync ...\n");
1708 		device->start_resync_timer.expires = jiffies + HZ/10;
1709 		add_timer(&device->start_resync_timer);
1710 		return;
1711 	}
1712 
1713 	drbd_start_resync(device, C_SYNC_SOURCE);
1714 	clear_bit(AHEAD_TO_SYNC_SOURCE, &device->flags);
1715 }
1716 
use_checksum_based_resync(struct drbd_connection * connection,struct drbd_device * device)1717 static bool use_checksum_based_resync(struct drbd_connection *connection, struct drbd_device *device)
1718 {
1719 	bool csums_after_crash_only;
1720 	rcu_read_lock();
1721 	csums_after_crash_only = rcu_dereference(connection->net_conf)->csums_after_crash_only;
1722 	rcu_read_unlock();
1723 	return connection->agreed_pro_version >= 89 &&		/* supported? */
1724 		connection->csums_tfm &&			/* configured? */
1725 		(csums_after_crash_only == false		/* use for each resync? */
1726 		 || test_bit(CRASHED_PRIMARY, &device->flags));	/* or only after Primary crash? */
1727 }
1728 
1729 /**
1730  * drbd_start_resync() - Start the resync process
1731  * @device:	DRBD device.
1732  * @side:	Either C_SYNC_SOURCE or C_SYNC_TARGET
1733  *
1734  * This function might bring you directly into one of the
1735  * C_PAUSED_SYNC_* states.
1736  */
drbd_start_resync(struct drbd_device * device,enum drbd_conns side)1737 void drbd_start_resync(struct drbd_device *device, enum drbd_conns side)
1738 {
1739 	struct drbd_peer_device *peer_device = first_peer_device(device);
1740 	struct drbd_connection *connection = peer_device ? peer_device->connection : NULL;
1741 	union drbd_state ns;
1742 	int r;
1743 
1744 	if (device->state.conn >= C_SYNC_SOURCE && device->state.conn < C_AHEAD) {
1745 		drbd_err(device, "Resync already running!\n");
1746 		return;
1747 	}
1748 
1749 	if (!connection) {
1750 		drbd_err(device, "No connection to peer, aborting!\n");
1751 		return;
1752 	}
1753 
1754 	if (!test_bit(B_RS_H_DONE, &device->flags)) {
1755 		if (side == C_SYNC_TARGET) {
1756 			/* Since application IO was locked out during C_WF_BITMAP_T and
1757 			   C_WF_SYNC_UUID we are still unmodified. Before going to C_SYNC_TARGET
1758 			   we check that we might make the data inconsistent. */
1759 			r = drbd_khelper(device, "before-resync-target");
1760 			r = (r >> 8) & 0xff;
1761 			if (r > 0) {
1762 				drbd_info(device, "before-resync-target handler returned %d, "
1763 					 "dropping connection.\n", r);
1764 				conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
1765 				return;
1766 			}
1767 		} else /* C_SYNC_SOURCE */ {
1768 			r = drbd_khelper(device, "before-resync-source");
1769 			r = (r >> 8) & 0xff;
1770 			if (r > 0) {
1771 				if (r == 3) {
1772 					drbd_info(device, "before-resync-source handler returned %d, "
1773 						 "ignoring. Old userland tools?", r);
1774 				} else {
1775 					drbd_info(device, "before-resync-source handler returned %d, "
1776 						 "dropping connection.\n", r);
1777 					conn_request_state(connection,
1778 							   NS(conn, C_DISCONNECTING), CS_HARD);
1779 					return;
1780 				}
1781 			}
1782 		}
1783 	}
1784 
1785 	if (current == connection->worker.task) {
1786 		/* The worker should not sleep waiting for state_mutex,
1787 		   that can take long */
1788 		if (!mutex_trylock(device->state_mutex)) {
1789 			set_bit(B_RS_H_DONE, &device->flags);
1790 			device->start_resync_timer.expires = jiffies + HZ/5;
1791 			add_timer(&device->start_resync_timer);
1792 			return;
1793 		}
1794 	} else {
1795 		mutex_lock(device->state_mutex);
1796 	}
1797 
1798 	lock_all_resources();
1799 	clear_bit(B_RS_H_DONE, &device->flags);
1800 	/* Did some connection breakage or IO error race with us? */
1801 	if (device->state.conn < C_CONNECTED
1802 	|| !get_ldev_if_state(device, D_NEGOTIATING)) {
1803 		unlock_all_resources();
1804 		goto out;
1805 	}
1806 
1807 	ns = drbd_read_state(device);
1808 
1809 	ns.aftr_isp = !_drbd_may_sync_now(device);
1810 
1811 	ns.conn = side;
1812 
1813 	if (side == C_SYNC_TARGET)
1814 		ns.disk = D_INCONSISTENT;
1815 	else /* side == C_SYNC_SOURCE */
1816 		ns.pdsk = D_INCONSISTENT;
1817 
1818 	r = _drbd_set_state(device, ns, CS_VERBOSE, NULL);
1819 	ns = drbd_read_state(device);
1820 
1821 	if (ns.conn < C_CONNECTED)
1822 		r = SS_UNKNOWN_ERROR;
1823 
1824 	if (r == SS_SUCCESS) {
1825 		unsigned long tw = drbd_bm_total_weight(device);
1826 		unsigned long now = jiffies;
1827 		int i;
1828 
1829 		device->rs_failed    = 0;
1830 		device->rs_paused    = 0;
1831 		device->rs_same_csum = 0;
1832 		device->rs_last_sect_ev = 0;
1833 		device->rs_total     = tw;
1834 		device->rs_start     = now;
1835 		for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1836 			device->rs_mark_left[i] = tw;
1837 			device->rs_mark_time[i] = now;
1838 		}
1839 		drbd_pause_after(device);
1840 		/* Forget potentially stale cached per resync extent bit-counts.
1841 		 * Open coded drbd_rs_cancel_all(device), we already have IRQs
1842 		 * disabled, and know the disk state is ok. */
1843 		spin_lock(&device->al_lock);
1844 		lc_reset(device->resync);
1845 		device->resync_locked = 0;
1846 		device->resync_wenr = LC_FREE;
1847 		spin_unlock(&device->al_lock);
1848 	}
1849 	unlock_all_resources();
1850 
1851 	if (r == SS_SUCCESS) {
1852 		wake_up(&device->al_wait); /* for lc_reset() above */
1853 		/* reset rs_last_bcast when a resync or verify is started,
1854 		 * to deal with potential jiffies wrap. */
1855 		device->rs_last_bcast = jiffies - HZ;
1856 
1857 		drbd_info(device, "Began resync as %s (will sync %lu KB [%lu bits set]).\n",
1858 		     drbd_conn_str(ns.conn),
1859 		     (unsigned long) device->rs_total << (BM_BLOCK_SHIFT-10),
1860 		     (unsigned long) device->rs_total);
1861 		if (side == C_SYNC_TARGET) {
1862 			device->bm_resync_fo = 0;
1863 			device->use_csums = use_checksum_based_resync(connection, device);
1864 		} else {
1865 			device->use_csums = false;
1866 		}
1867 
1868 		/* Since protocol 96, we must serialize drbd_gen_and_send_sync_uuid
1869 		 * with w_send_oos, or the sync target will get confused as to
1870 		 * how much bits to resync.  We cannot do that always, because for an
1871 		 * empty resync and protocol < 95, we need to do it here, as we call
1872 		 * drbd_resync_finished from here in that case.
1873 		 * We drbd_gen_and_send_sync_uuid here for protocol < 96,
1874 		 * and from after_state_ch otherwise. */
1875 		if (side == C_SYNC_SOURCE && connection->agreed_pro_version < 96)
1876 			drbd_gen_and_send_sync_uuid(peer_device);
1877 
1878 		if (connection->agreed_pro_version < 95 && device->rs_total == 0) {
1879 			/* This still has a race (about when exactly the peers
1880 			 * detect connection loss) that can lead to a full sync
1881 			 * on next handshake. In 8.3.9 we fixed this with explicit
1882 			 * resync-finished notifications, but the fix
1883 			 * introduces a protocol change.  Sleeping for some
1884 			 * time longer than the ping interval + timeout on the
1885 			 * SyncSource, to give the SyncTarget the chance to
1886 			 * detect connection loss, then waiting for a ping
1887 			 * response (implicit in drbd_resync_finished) reduces
1888 			 * the race considerably, but does not solve it. */
1889 			if (side == C_SYNC_SOURCE) {
1890 				struct net_conf *nc;
1891 				int timeo;
1892 
1893 				rcu_read_lock();
1894 				nc = rcu_dereference(connection->net_conf);
1895 				timeo = nc->ping_int * HZ + nc->ping_timeo * HZ / 9;
1896 				rcu_read_unlock();
1897 				schedule_timeout_interruptible(timeo);
1898 			}
1899 			drbd_resync_finished(device);
1900 		}
1901 
1902 		drbd_rs_controller_reset(device);
1903 		/* ns.conn may already be != device->state.conn,
1904 		 * we may have been paused in between, or become paused until
1905 		 * the timer triggers.
1906 		 * No matter, that is handled in resync_timer_fn() */
1907 		if (ns.conn == C_SYNC_TARGET)
1908 			mod_timer(&device->resync_timer, jiffies);
1909 
1910 		drbd_md_sync(device);
1911 	}
1912 	put_ldev(device);
1913 out:
1914 	mutex_unlock(device->state_mutex);
1915 }
1916 
update_on_disk_bitmap(struct drbd_device * device,bool resync_done)1917 static void update_on_disk_bitmap(struct drbd_device *device, bool resync_done)
1918 {
1919 	struct sib_info sib = { .sib_reason = SIB_SYNC_PROGRESS, };
1920 	device->rs_last_bcast = jiffies;
1921 
1922 	if (!get_ldev(device))
1923 		return;
1924 
1925 	drbd_bm_write_lazy(device, 0);
1926 	if (resync_done && is_sync_state(device->state.conn))
1927 		drbd_resync_finished(device);
1928 
1929 	drbd_bcast_event(device, &sib);
1930 	/* update timestamp, in case it took a while to write out stuff */
1931 	device->rs_last_bcast = jiffies;
1932 	put_ldev(device);
1933 }
1934 
drbd_ldev_destroy(struct drbd_device * device)1935 static void drbd_ldev_destroy(struct drbd_device *device)
1936 {
1937 	lc_destroy(device->resync);
1938 	device->resync = NULL;
1939 	lc_destroy(device->act_log);
1940 	device->act_log = NULL;
1941 
1942 	__acquire(local);
1943 	drbd_backing_dev_free(device, device->ldev);
1944 	device->ldev = NULL;
1945 	__release(local);
1946 
1947 	clear_bit(GOING_DISKLESS, &device->flags);
1948 	wake_up(&device->misc_wait);
1949 }
1950 
go_diskless(struct drbd_device * device)1951 static void go_diskless(struct drbd_device *device)
1952 {
1953 	D_ASSERT(device, device->state.disk == D_FAILED);
1954 	/* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
1955 	 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
1956 	 * the protected members anymore, though, so once put_ldev reaches zero
1957 	 * again, it will be safe to free them. */
1958 
1959 	/* Try to write changed bitmap pages, read errors may have just
1960 	 * set some bits outside the area covered by the activity log.
1961 	 *
1962 	 * If we have an IO error during the bitmap writeout,
1963 	 * we will want a full sync next time, just in case.
1964 	 * (Do we want a specific meta data flag for this?)
1965 	 *
1966 	 * If that does not make it to stable storage either,
1967 	 * we cannot do anything about that anymore.
1968 	 *
1969 	 * We still need to check if both bitmap and ldev are present, we may
1970 	 * end up here after a failed attach, before ldev was even assigned.
1971 	 */
1972 	if (device->bitmap && device->ldev) {
1973 		/* An interrupted resync or similar is allowed to recounts bits
1974 		 * while we detach.
1975 		 * Any modifications would not be expected anymore, though.
1976 		 */
1977 		if (drbd_bitmap_io_from_worker(device, drbd_bm_write,
1978 					"detach", BM_LOCKED_TEST_ALLOWED)) {
1979 			if (test_bit(WAS_READ_ERROR, &device->flags)) {
1980 				drbd_md_set_flag(device, MDF_FULL_SYNC);
1981 				drbd_md_sync(device);
1982 			}
1983 		}
1984 	}
1985 
1986 	drbd_force_state(device, NS(disk, D_DISKLESS));
1987 }
1988 
do_md_sync(struct drbd_device * device)1989 static int do_md_sync(struct drbd_device *device)
1990 {
1991 	drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
1992 	drbd_md_sync(device);
1993 	return 0;
1994 }
1995 
1996 /* only called from drbd_worker thread, no locking */
__update_timing_details(struct drbd_thread_timing_details * tdp,unsigned int * cb_nr,void * cb,const char * fn,const unsigned int line)1997 void __update_timing_details(
1998 		struct drbd_thread_timing_details *tdp,
1999 		unsigned int *cb_nr,
2000 		void *cb,
2001 		const char *fn, const unsigned int line)
2002 {
2003 	unsigned int i = *cb_nr % DRBD_THREAD_DETAILS_HIST;
2004 	struct drbd_thread_timing_details *td = tdp + i;
2005 
2006 	td->start_jif = jiffies;
2007 	td->cb_addr = cb;
2008 	td->caller_fn = fn;
2009 	td->line = line;
2010 	td->cb_nr = *cb_nr;
2011 
2012 	i = (i+1) % DRBD_THREAD_DETAILS_HIST;
2013 	td = tdp + i;
2014 	memset(td, 0, sizeof(*td));
2015 
2016 	++(*cb_nr);
2017 }
2018 
do_device_work(struct drbd_device * device,const unsigned long todo)2019 static void do_device_work(struct drbd_device *device, const unsigned long todo)
2020 {
2021 	if (test_bit(MD_SYNC, &todo))
2022 		do_md_sync(device);
2023 	if (test_bit(RS_DONE, &todo) ||
2024 	    test_bit(RS_PROGRESS, &todo))
2025 		update_on_disk_bitmap(device, test_bit(RS_DONE, &todo));
2026 	if (test_bit(GO_DISKLESS, &todo))
2027 		go_diskless(device);
2028 	if (test_bit(DESTROY_DISK, &todo))
2029 		drbd_ldev_destroy(device);
2030 	if (test_bit(RS_START, &todo))
2031 		do_start_resync(device);
2032 }
2033 
2034 #define DRBD_DEVICE_WORK_MASK	\
2035 	((1UL << GO_DISKLESS)	\
2036 	|(1UL << DESTROY_DISK)	\
2037 	|(1UL << MD_SYNC)	\
2038 	|(1UL << RS_START)	\
2039 	|(1UL << RS_PROGRESS)	\
2040 	|(1UL << RS_DONE)	\
2041 	)
2042 
get_work_bits(unsigned long * flags)2043 static unsigned long get_work_bits(unsigned long *flags)
2044 {
2045 	unsigned long old, new;
2046 	do {
2047 		old = *flags;
2048 		new = old & ~DRBD_DEVICE_WORK_MASK;
2049 	} while (cmpxchg(flags, old, new) != old);
2050 	return old & DRBD_DEVICE_WORK_MASK;
2051 }
2052 
do_unqueued_work(struct drbd_connection * connection)2053 static void do_unqueued_work(struct drbd_connection *connection)
2054 {
2055 	struct drbd_peer_device *peer_device;
2056 	int vnr;
2057 
2058 	rcu_read_lock();
2059 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2060 		struct drbd_device *device = peer_device->device;
2061 		unsigned long todo = get_work_bits(&device->flags);
2062 		if (!todo)
2063 			continue;
2064 
2065 		kref_get(&device->kref);
2066 		rcu_read_unlock();
2067 		do_device_work(device, todo);
2068 		kref_put(&device->kref, drbd_destroy_device);
2069 		rcu_read_lock();
2070 	}
2071 	rcu_read_unlock();
2072 }
2073 
dequeue_work_batch(struct drbd_work_queue * queue,struct list_head * work_list)2074 static bool dequeue_work_batch(struct drbd_work_queue *queue, struct list_head *work_list)
2075 {
2076 	spin_lock_irq(&queue->q_lock);
2077 	list_splice_tail_init(&queue->q, work_list);
2078 	spin_unlock_irq(&queue->q_lock);
2079 	return !list_empty(work_list);
2080 }
2081 
wait_for_work(struct drbd_connection * connection,struct list_head * work_list)2082 static void wait_for_work(struct drbd_connection *connection, struct list_head *work_list)
2083 {
2084 	DEFINE_WAIT(wait);
2085 	struct net_conf *nc;
2086 	int uncork, cork;
2087 
2088 	dequeue_work_batch(&connection->sender_work, work_list);
2089 	if (!list_empty(work_list))
2090 		return;
2091 
2092 	/* Still nothing to do?
2093 	 * Maybe we still need to close the current epoch,
2094 	 * even if no new requests are queued yet.
2095 	 *
2096 	 * Also, poke TCP, just in case.
2097 	 * Then wait for new work (or signal). */
2098 	rcu_read_lock();
2099 	nc = rcu_dereference(connection->net_conf);
2100 	uncork = nc ? nc->tcp_cork : 0;
2101 	rcu_read_unlock();
2102 	if (uncork) {
2103 		mutex_lock(&connection->data.mutex);
2104 		if (connection->data.socket)
2105 			tcp_sock_set_cork(connection->data.socket->sk, false);
2106 		mutex_unlock(&connection->data.mutex);
2107 	}
2108 
2109 	for (;;) {
2110 		int send_barrier;
2111 		prepare_to_wait(&connection->sender_work.q_wait, &wait, TASK_INTERRUPTIBLE);
2112 		spin_lock_irq(&connection->resource->req_lock);
2113 		spin_lock(&connection->sender_work.q_lock);	/* FIXME get rid of this one? */
2114 		if (!list_empty(&connection->sender_work.q))
2115 			list_splice_tail_init(&connection->sender_work.q, work_list);
2116 		spin_unlock(&connection->sender_work.q_lock);	/* FIXME get rid of this one? */
2117 		if (!list_empty(work_list) || signal_pending(current)) {
2118 			spin_unlock_irq(&connection->resource->req_lock);
2119 			break;
2120 		}
2121 
2122 		/* We found nothing new to do, no to-be-communicated request,
2123 		 * no other work item.  We may still need to close the last
2124 		 * epoch.  Next incoming request epoch will be connection ->
2125 		 * current transfer log epoch number.  If that is different
2126 		 * from the epoch of the last request we communicated, it is
2127 		 * safe to send the epoch separating barrier now.
2128 		 */
2129 		send_barrier =
2130 			atomic_read(&connection->current_tle_nr) !=
2131 			connection->send.current_epoch_nr;
2132 		spin_unlock_irq(&connection->resource->req_lock);
2133 
2134 		if (send_barrier)
2135 			maybe_send_barrier(connection,
2136 					connection->send.current_epoch_nr + 1);
2137 
2138 		if (test_bit(DEVICE_WORK_PENDING, &connection->flags))
2139 			break;
2140 
2141 		/* drbd_send() may have called flush_signals() */
2142 		if (get_t_state(&connection->worker) != RUNNING)
2143 			break;
2144 
2145 		schedule();
2146 		/* may be woken up for other things but new work, too,
2147 		 * e.g. if the current epoch got closed.
2148 		 * In which case we send the barrier above. */
2149 	}
2150 	finish_wait(&connection->sender_work.q_wait, &wait);
2151 
2152 	/* someone may have changed the config while we have been waiting above. */
2153 	rcu_read_lock();
2154 	nc = rcu_dereference(connection->net_conf);
2155 	cork = nc ? nc->tcp_cork : 0;
2156 	rcu_read_unlock();
2157 	mutex_lock(&connection->data.mutex);
2158 	if (connection->data.socket) {
2159 		if (cork)
2160 			tcp_sock_set_cork(connection->data.socket->sk, true);
2161 		else if (!uncork)
2162 			tcp_sock_set_cork(connection->data.socket->sk, false);
2163 	}
2164 	mutex_unlock(&connection->data.mutex);
2165 }
2166 
drbd_worker(struct drbd_thread * thi)2167 int drbd_worker(struct drbd_thread *thi)
2168 {
2169 	struct drbd_connection *connection = thi->connection;
2170 	struct drbd_work *w = NULL;
2171 	struct drbd_peer_device *peer_device;
2172 	LIST_HEAD(work_list);
2173 	int vnr;
2174 
2175 	while (get_t_state(thi) == RUNNING) {
2176 		drbd_thread_current_set_cpu(thi);
2177 
2178 		if (list_empty(&work_list)) {
2179 			update_worker_timing_details(connection, wait_for_work);
2180 			wait_for_work(connection, &work_list);
2181 		}
2182 
2183 		if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) {
2184 			update_worker_timing_details(connection, do_unqueued_work);
2185 			do_unqueued_work(connection);
2186 		}
2187 
2188 		if (signal_pending(current)) {
2189 			flush_signals(current);
2190 			if (get_t_state(thi) == RUNNING) {
2191 				drbd_warn(connection, "Worker got an unexpected signal\n");
2192 				continue;
2193 			}
2194 			break;
2195 		}
2196 
2197 		if (get_t_state(thi) != RUNNING)
2198 			break;
2199 
2200 		if (!list_empty(&work_list)) {
2201 			w = list_first_entry(&work_list, struct drbd_work, list);
2202 			list_del_init(&w->list);
2203 			update_worker_timing_details(connection, w->cb);
2204 			if (w->cb(w, connection->cstate < C_WF_REPORT_PARAMS) == 0)
2205 				continue;
2206 			if (connection->cstate >= C_WF_REPORT_PARAMS)
2207 				conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
2208 		}
2209 	}
2210 
2211 	do {
2212 		if (test_and_clear_bit(DEVICE_WORK_PENDING, &connection->flags)) {
2213 			update_worker_timing_details(connection, do_unqueued_work);
2214 			do_unqueued_work(connection);
2215 		}
2216 		if (!list_empty(&work_list)) {
2217 			w = list_first_entry(&work_list, struct drbd_work, list);
2218 			list_del_init(&w->list);
2219 			update_worker_timing_details(connection, w->cb);
2220 			w->cb(w, 1);
2221 		} else
2222 			dequeue_work_batch(&connection->sender_work, &work_list);
2223 	} while (!list_empty(&work_list) || test_bit(DEVICE_WORK_PENDING, &connection->flags));
2224 
2225 	rcu_read_lock();
2226 	idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2227 		struct drbd_device *device = peer_device->device;
2228 		D_ASSERT(device, device->state.disk == D_DISKLESS && device->state.conn == C_STANDALONE);
2229 		kref_get(&device->kref);
2230 		rcu_read_unlock();
2231 		drbd_device_cleanup(device);
2232 		kref_put(&device->kref, drbd_destroy_device);
2233 		rcu_read_lock();
2234 	}
2235 	rcu_read_unlock();
2236 
2237 	return 0;
2238 }
2239