1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26
27 #include "internal.h"
28
29 #ifdef CONFIG_X86_INTEL_LPSS
30
31 #include <asm/cpu_device_id.h>
32 #include <asm/intel-family.h>
33 #include <asm/iosf_mbi.h>
34
35 #define LPSS_ADDR(desc) ((unsigned long)&desc)
36
37 #define LPSS_CLK_SIZE 0x04
38 #define LPSS_LTR_SIZE 0x18
39
40 /* Offsets relative to LPSS_PRIVATE_OFFSET */
41 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
42 #define LPSS_RESETS 0x04
43 #define LPSS_RESETS_RESET_FUNC BIT(0)
44 #define LPSS_RESETS_RESET_APB BIT(1)
45 #define LPSS_GENERAL 0x08
46 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
47 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
48 #define LPSS_SW_LTR 0x10
49 #define LPSS_AUTO_LTR 0x14
50 #define LPSS_LTR_SNOOP_REQ BIT(15)
51 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
52 #define LPSS_LTR_SNOOP_LAT_1US 0x800
53 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
54 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
55 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
56 #define LPSS_LTR_MAX_VAL 0x3FF
57 #define LPSS_TX_INT 0x20
58 #define LPSS_TX_INT_MASK BIT(1)
59
60 #define LPSS_PRV_REG_COUNT 9
61
62 /* LPSS Flags */
63 #define LPSS_CLK BIT(0)
64 #define LPSS_CLK_GATE BIT(1)
65 #define LPSS_CLK_DIVIDER BIT(2)
66 #define LPSS_LTR BIT(3)
67 #define LPSS_SAVE_CTX BIT(4)
68 /*
69 * For some devices the DSDT AML code for another device turns off the device
70 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
71 * as ctx register values.
72 * Luckily these devices always use the same ctx register values, so we can
73 * work around this by saving the ctx registers once on activation.
74 */
75 #define LPSS_SAVE_CTX_ONCE BIT(5)
76 #define LPSS_NO_D3_DELAY BIT(6)
77
78 struct lpss_private_data;
79
80 struct lpss_device_desc {
81 unsigned int flags;
82 const char *clk_con_id;
83 unsigned int prv_offset;
84 size_t prv_size_override;
85 struct property_entry *properties;
86 void (*setup)(struct lpss_private_data *pdata);
87 bool resume_from_noirq;
88 };
89
90 static const struct lpss_device_desc lpss_dma_desc = {
91 .flags = LPSS_CLK,
92 };
93
94 struct lpss_private_data {
95 struct acpi_device *adev;
96 void __iomem *mmio_base;
97 resource_size_t mmio_size;
98 unsigned int fixed_clk_rate;
99 struct clk *clk;
100 const struct lpss_device_desc *dev_desc;
101 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102 };
103
104 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105 static u32 pmc_atom_d3_mask = 0xfe000ffe;
106
107 /* LPSS run time quirks */
108 static unsigned int lpss_quirks;
109
110 /*
111 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
112 *
113 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114 * it can be powered off automatically whenever the last LPSS device goes down.
115 * In case of no power any access to the DMA controller will hang the system.
116 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117 * well as on ASuS T100TA transformer.
118 *
119 * This quirk overrides power state of entire LPSS island to keep DMA powered
120 * on whenever we have at least one other device in use.
121 */
122 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
123
124 /* UART Component Parameter Register */
125 #define LPSS_UART_CPR 0xF4
126 #define LPSS_UART_CPR_AFCE BIT(4)
127
lpss_uart_setup(struct lpss_private_data * pdata)128 static void lpss_uart_setup(struct lpss_private_data *pdata)
129 {
130 unsigned int offset;
131 u32 val;
132
133 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134 val = readl(pdata->mmio_base + offset);
135 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
136
137 val = readl(pdata->mmio_base + LPSS_UART_CPR);
138 if (!(val & LPSS_UART_CPR_AFCE)) {
139 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140 val = readl(pdata->mmio_base + offset);
141 val |= LPSS_GENERAL_UART_RTS_OVRD;
142 writel(val, pdata->mmio_base + offset);
143 }
144 }
145
lpss_deassert_reset(struct lpss_private_data * pdata)146 static void lpss_deassert_reset(struct lpss_private_data *pdata)
147 {
148 unsigned int offset;
149 u32 val;
150
151 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152 val = readl(pdata->mmio_base + offset);
153 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154 writel(val, pdata->mmio_base + offset);
155 }
156
157 /*
158 * BYT PWM used for backlight control by the i915 driver on systems without
159 * the Crystal Cove PMIC.
160 */
161 static struct pwm_lookup byt_pwm_lookup[] = {
162 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
164 "pwm-lpss-platform"),
165 };
166
byt_pwm_setup(struct lpss_private_data * pdata)167 static void byt_pwm_setup(struct lpss_private_data *pdata)
168 {
169 struct acpi_device *adev = pdata->adev;
170
171 /* Only call pwm_add_table for the first PWM controller */
172 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173 return;
174
175 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
176 }
177
178 #define LPSS_I2C_ENABLE 0x6c
179
byt_i2c_setup(struct lpss_private_data * pdata)180 static void byt_i2c_setup(struct lpss_private_data *pdata)
181 {
182 const char *uid_str = acpi_device_uid(pdata->adev);
183 acpi_handle handle = pdata->adev->handle;
184 unsigned long long shared_host = 0;
185 acpi_status status;
186 long uid = 0;
187
188 /* Expected to always be true, but better safe then sorry */
189 if (uid_str && !kstrtol(uid_str, 10, &uid) && uid) {
190 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
191 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
192 if (ACPI_SUCCESS(status) && shared_host)
193 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
194 }
195
196 lpss_deassert_reset(pdata);
197
198 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199 pdata->fixed_clk_rate = 133000000;
200
201 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
202 }
203
204 /* BSW PWM used for backlight control by the i915 driver */
205 static struct pwm_lookup bsw_pwm_lookup[] = {
206 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
207 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
208 "pwm-lpss-platform"),
209 };
210
bsw_pwm_setup(struct lpss_private_data * pdata)211 static void bsw_pwm_setup(struct lpss_private_data *pdata)
212 {
213 struct acpi_device *adev = pdata->adev;
214
215 /* Only call pwm_add_table for the first PWM controller */
216 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
217 return;
218
219 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221
222 static const struct lpss_device_desc lpt_dev_desc = {
223 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
224 | LPSS_SAVE_CTX,
225 .prv_offset = 0x800,
226 };
227
228 static const struct lpss_device_desc lpt_i2c_dev_desc = {
229 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
230 .prv_offset = 0x800,
231 };
232
233 static struct property_entry uart_properties[] = {
234 PROPERTY_ENTRY_U32("reg-io-width", 4),
235 PROPERTY_ENTRY_U32("reg-shift", 2),
236 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
237 { },
238 };
239
240 static const struct lpss_device_desc lpt_uart_dev_desc = {
241 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
242 | LPSS_SAVE_CTX,
243 .clk_con_id = "baudclk",
244 .prv_offset = 0x800,
245 .setup = lpss_uart_setup,
246 .properties = uart_properties,
247 };
248
249 static const struct lpss_device_desc lpt_sdio_dev_desc = {
250 .flags = LPSS_LTR,
251 .prv_offset = 0x1000,
252 .prv_size_override = 0x1018,
253 };
254
255 static const struct lpss_device_desc byt_pwm_dev_desc = {
256 .flags = LPSS_SAVE_CTX,
257 .prv_offset = 0x800,
258 .setup = byt_pwm_setup,
259 };
260
261 static const struct lpss_device_desc bsw_pwm_dev_desc = {
262 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
263 .prv_offset = 0x800,
264 .setup = bsw_pwm_setup,
265 .resume_from_noirq = true,
266 };
267
268 static const struct lpss_device_desc byt_uart_dev_desc = {
269 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
270 .clk_con_id = "baudclk",
271 .prv_offset = 0x800,
272 .setup = lpss_uart_setup,
273 .properties = uart_properties,
274 };
275
276 static const struct lpss_device_desc bsw_uart_dev_desc = {
277 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
278 | LPSS_NO_D3_DELAY,
279 .clk_con_id = "baudclk",
280 .prv_offset = 0x800,
281 .setup = lpss_uart_setup,
282 .properties = uart_properties,
283 };
284
285 static const struct lpss_device_desc byt_spi_dev_desc = {
286 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
287 .prv_offset = 0x400,
288 };
289
290 static const struct lpss_device_desc byt_sdio_dev_desc = {
291 .flags = LPSS_CLK,
292 };
293
294 static const struct lpss_device_desc byt_i2c_dev_desc = {
295 .flags = LPSS_CLK | LPSS_SAVE_CTX,
296 .prv_offset = 0x800,
297 .setup = byt_i2c_setup,
298 .resume_from_noirq = true,
299 };
300
301 static const struct lpss_device_desc bsw_i2c_dev_desc = {
302 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
303 .prv_offset = 0x800,
304 .setup = byt_i2c_setup,
305 .resume_from_noirq = true,
306 };
307
308 static const struct lpss_device_desc bsw_spi_dev_desc = {
309 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
310 | LPSS_NO_D3_DELAY,
311 .prv_offset = 0x400,
312 .setup = lpss_deassert_reset,
313 };
314
315 static const struct x86_cpu_id lpss_cpu_ids[] = {
316 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, NULL),
317 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, NULL),
318 {}
319 };
320
321 #else
322
323 #define LPSS_ADDR(desc) (0UL)
324
325 #endif /* CONFIG_X86_INTEL_LPSS */
326
327 static const struct acpi_device_id acpi_lpss_device_ids[] = {
328 /* Generic LPSS devices */
329 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
330
331 /* Lynxpoint LPSS devices */
332 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
333 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
334 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
335 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
336 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
337 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
338 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
339 { "INT33C7", },
340
341 /* BayTrail LPSS devices */
342 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
343 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
344 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
345 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
346 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
347 { "INT33B2", },
348 { "INT33FC", },
349
350 /* Braswell LPSS devices */
351 { "80862286", LPSS_ADDR(lpss_dma_desc) },
352 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
353 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
354 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
355 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
356 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
357
358 /* Broadwell LPSS devices */
359 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
360 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
361 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
362 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
363 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
364 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
365 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
366 { "INT3437", },
367
368 /* Wildcat Point LPSS devices */
369 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
370
371 { }
372 };
373
374 #ifdef CONFIG_X86_INTEL_LPSS
375
is_memory(struct acpi_resource * res,void * not_used)376 static int is_memory(struct acpi_resource *res, void *not_used)
377 {
378 struct resource r;
379
380 return !acpi_dev_resource_memory(res, &r);
381 }
382
383 /* LPSS main clock device. */
384 static struct platform_device *lpss_clk_dev;
385
lpt_register_clock_device(void)386 static inline void lpt_register_clock_device(void)
387 {
388 lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
389 PLATFORM_DEVID_NONE,
390 NULL, 0);
391 }
392
register_device_clock(struct acpi_device * adev,struct lpss_private_data * pdata)393 static int register_device_clock(struct acpi_device *adev,
394 struct lpss_private_data *pdata)
395 {
396 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
397 const char *devname = dev_name(&adev->dev);
398 struct clk *clk;
399 struct lpss_clk_data *clk_data;
400 const char *parent, *clk_name;
401 void __iomem *prv_base;
402
403 if (!lpss_clk_dev)
404 lpt_register_clock_device();
405
406 clk_data = platform_get_drvdata(lpss_clk_dev);
407 if (!clk_data)
408 return -ENODEV;
409 clk = clk_data->clk;
410
411 if (!pdata->mmio_base
412 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
413 return -ENODATA;
414
415 parent = clk_data->name;
416 prv_base = pdata->mmio_base + dev_desc->prv_offset;
417
418 if (pdata->fixed_clk_rate) {
419 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
420 pdata->fixed_clk_rate);
421 goto out;
422 }
423
424 if (dev_desc->flags & LPSS_CLK_GATE) {
425 clk = clk_register_gate(NULL, devname, parent, 0,
426 prv_base, 0, 0, NULL);
427 parent = devname;
428 }
429
430 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
431 /* Prevent division by zero */
432 if (!readl(prv_base))
433 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
434
435 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
436 if (!clk_name)
437 return -ENOMEM;
438 clk = clk_register_fractional_divider(NULL, clk_name, parent,
439 CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
440 prv_base, 1, 15, 16, 15, 0, NULL);
441 parent = clk_name;
442
443 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
444 if (!clk_name) {
445 kfree(parent);
446 return -ENOMEM;
447 }
448 clk = clk_register_gate(NULL, clk_name, parent,
449 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
450 prv_base, 31, 0, NULL);
451 kfree(parent);
452 kfree(clk_name);
453 }
454 out:
455 if (IS_ERR(clk))
456 return PTR_ERR(clk);
457
458 pdata->clk = clk;
459 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
460 return 0;
461 }
462
463 struct lpss_device_links {
464 const char *supplier_hid;
465 const char *supplier_uid;
466 const char *consumer_hid;
467 const char *consumer_uid;
468 u32 flags;
469 const struct dmi_system_id *dep_missing_ids;
470 };
471
472 /* Please keep this list sorted alphabetically by vendor and model */
473 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
474 {
475 .matches = {
476 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
477 DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
478 },
479 },
480 {}
481 };
482
483 /*
484 * The _DEP method is used to identify dependencies but instead of creating
485 * device links for every handle in _DEP, only links in the following list are
486 * created. That is necessary because, in the general case, _DEP can refer to
487 * devices that might not have drivers, or that are on different buses, or where
488 * the supplier is not enumerated until after the consumer is probed.
489 */
490 static const struct lpss_device_links lpss_device_links[] = {
491 /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
492 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
493 /* CHT iGPU depends on PMIC I2C controller */
494 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
495 /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
496 {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
497 i2c1_dep_missing_dmi_ids},
498 /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
499 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
500 /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
501 {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
502 };
503
acpi_lpss_is_supplier(struct acpi_device * adev,const struct lpss_device_links * link)504 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
505 const struct lpss_device_links *link)
506 {
507 return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
508 }
509
acpi_lpss_is_consumer(struct acpi_device * adev,const struct lpss_device_links * link)510 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
511 const struct lpss_device_links *link)
512 {
513 return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
514 }
515
516 struct hid_uid {
517 const char *hid;
518 const char *uid;
519 };
520
match_hid_uid(struct device * dev,const void * data)521 static int match_hid_uid(struct device *dev, const void *data)
522 {
523 struct acpi_device *adev = ACPI_COMPANION(dev);
524 const struct hid_uid *id = data;
525
526 if (!adev)
527 return 0;
528
529 return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
530 }
531
acpi_lpss_find_device(const char * hid,const char * uid)532 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
533 {
534 struct device *dev;
535
536 struct hid_uid data = {
537 .hid = hid,
538 .uid = uid,
539 };
540
541 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
542 if (dev)
543 return dev;
544
545 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
546 }
547
acpi_lpss_dep(struct acpi_device * adev,acpi_handle handle)548 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
549 {
550 struct acpi_handle_list dep_devices;
551 acpi_status status;
552 int i;
553
554 if (!acpi_has_method(adev->handle, "_DEP"))
555 return false;
556
557 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
558 &dep_devices);
559 if (ACPI_FAILURE(status)) {
560 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
561 return false;
562 }
563
564 for (i = 0; i < dep_devices.count; i++) {
565 if (dep_devices.handles[i] == handle)
566 return true;
567 }
568
569 return false;
570 }
571
acpi_lpss_link_consumer(struct device * dev1,const struct lpss_device_links * link)572 static void acpi_lpss_link_consumer(struct device *dev1,
573 const struct lpss_device_links *link)
574 {
575 struct device *dev2;
576
577 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
578 if (!dev2)
579 return;
580
581 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
582 || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
583 device_link_add(dev2, dev1, link->flags);
584
585 put_device(dev2);
586 }
587
acpi_lpss_link_supplier(struct device * dev1,const struct lpss_device_links * link)588 static void acpi_lpss_link_supplier(struct device *dev1,
589 const struct lpss_device_links *link)
590 {
591 struct device *dev2;
592
593 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
594 if (!dev2)
595 return;
596
597 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
598 || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
599 device_link_add(dev1, dev2, link->flags);
600
601 put_device(dev2);
602 }
603
acpi_lpss_create_device_links(struct acpi_device * adev,struct platform_device * pdev)604 static void acpi_lpss_create_device_links(struct acpi_device *adev,
605 struct platform_device *pdev)
606 {
607 int i;
608
609 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
610 const struct lpss_device_links *link = &lpss_device_links[i];
611
612 if (acpi_lpss_is_supplier(adev, link))
613 acpi_lpss_link_consumer(&pdev->dev, link);
614
615 if (acpi_lpss_is_consumer(adev, link))
616 acpi_lpss_link_supplier(&pdev->dev, link);
617 }
618 }
619
acpi_lpss_create_device(struct acpi_device * adev,const struct acpi_device_id * id)620 static int acpi_lpss_create_device(struct acpi_device *adev,
621 const struct acpi_device_id *id)
622 {
623 const struct lpss_device_desc *dev_desc;
624 struct lpss_private_data *pdata;
625 struct resource_entry *rentry;
626 struct list_head resource_list;
627 struct platform_device *pdev;
628 int ret;
629
630 dev_desc = (const struct lpss_device_desc *)id->driver_data;
631 if (!dev_desc) {
632 pdev = acpi_create_platform_device(adev, NULL);
633 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
634 }
635 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
636 if (!pdata)
637 return -ENOMEM;
638
639 INIT_LIST_HEAD(&resource_list);
640 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
641 if (ret < 0)
642 goto err_out;
643
644 list_for_each_entry(rentry, &resource_list, node)
645 if (resource_type(rentry->res) == IORESOURCE_MEM) {
646 if (dev_desc->prv_size_override)
647 pdata->mmio_size = dev_desc->prv_size_override;
648 else
649 pdata->mmio_size = resource_size(rentry->res);
650 pdata->mmio_base = ioremap(rentry->res->start,
651 pdata->mmio_size);
652 break;
653 }
654
655 acpi_dev_free_resource_list(&resource_list);
656
657 if (!pdata->mmio_base) {
658 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
659 adev->pnp.type.platform_id = 0;
660 /* Skip the device, but continue the namespace scan. */
661 ret = 0;
662 goto err_out;
663 }
664
665 pdata->adev = adev;
666 pdata->dev_desc = dev_desc;
667
668 if (dev_desc->setup)
669 dev_desc->setup(pdata);
670
671 if (dev_desc->flags & LPSS_CLK) {
672 ret = register_device_clock(adev, pdata);
673 if (ret) {
674 /* Skip the device, but continue the namespace scan. */
675 ret = 0;
676 goto err_out;
677 }
678 }
679
680 /*
681 * This works around a known issue in ACPI tables where LPSS devices
682 * have _PS0 and _PS3 without _PSC (and no power resources), so
683 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
684 */
685 acpi_device_fix_up_power(adev);
686
687 adev->driver_data = pdata;
688 pdev = acpi_create_platform_device(adev, dev_desc->properties);
689 if (!IS_ERR_OR_NULL(pdev)) {
690 acpi_lpss_create_device_links(adev, pdev);
691 return 1;
692 }
693
694 ret = PTR_ERR(pdev);
695 adev->driver_data = NULL;
696
697 err_out:
698 kfree(pdata);
699 return ret;
700 }
701
__lpss_reg_read(struct lpss_private_data * pdata,unsigned int reg)702 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
703 {
704 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
705 }
706
__lpss_reg_write(u32 val,struct lpss_private_data * pdata,unsigned int reg)707 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
708 unsigned int reg)
709 {
710 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
711 }
712
lpss_reg_read(struct device * dev,unsigned int reg,u32 * val)713 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
714 {
715 struct acpi_device *adev;
716 struct lpss_private_data *pdata;
717 unsigned long flags;
718 int ret;
719
720 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
721 if (WARN_ON(ret))
722 return ret;
723
724 spin_lock_irqsave(&dev->power.lock, flags);
725 if (pm_runtime_suspended(dev)) {
726 ret = -EAGAIN;
727 goto out;
728 }
729 pdata = acpi_driver_data(adev);
730 if (WARN_ON(!pdata || !pdata->mmio_base)) {
731 ret = -ENODEV;
732 goto out;
733 }
734 *val = __lpss_reg_read(pdata, reg);
735
736 out:
737 spin_unlock_irqrestore(&dev->power.lock, flags);
738 return ret;
739 }
740
lpss_ltr_show(struct device * dev,struct device_attribute * attr,char * buf)741 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
742 char *buf)
743 {
744 u32 ltr_value = 0;
745 unsigned int reg;
746 int ret;
747
748 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
749 ret = lpss_reg_read(dev, reg, <r_value);
750 if (ret)
751 return ret;
752
753 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
754 }
755
lpss_ltr_mode_show(struct device * dev,struct device_attribute * attr,char * buf)756 static ssize_t lpss_ltr_mode_show(struct device *dev,
757 struct device_attribute *attr, char *buf)
758 {
759 u32 ltr_mode = 0;
760 char *outstr;
761 int ret;
762
763 ret = lpss_reg_read(dev, LPSS_GENERAL, <r_mode);
764 if (ret)
765 return ret;
766
767 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
768 return sprintf(buf, "%s\n", outstr);
769 }
770
771 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
772 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
773 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
774
775 static struct attribute *lpss_attrs[] = {
776 &dev_attr_auto_ltr.attr,
777 &dev_attr_sw_ltr.attr,
778 &dev_attr_ltr_mode.attr,
779 NULL,
780 };
781
782 static const struct attribute_group lpss_attr_group = {
783 .attrs = lpss_attrs,
784 .name = "lpss_ltr",
785 };
786
acpi_lpss_set_ltr(struct device * dev,s32 val)787 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
788 {
789 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
790 u32 ltr_mode, ltr_val;
791
792 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
793 if (val < 0) {
794 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
795 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
796 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
797 }
798 return;
799 }
800 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
801 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
802 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
803 val = LPSS_LTR_MAX_VAL;
804 } else if (val > LPSS_LTR_MAX_VAL) {
805 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
806 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
807 } else {
808 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
809 }
810 ltr_val |= val;
811 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
812 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
813 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
814 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
815 }
816 }
817
818 #ifdef CONFIG_PM
819 /**
820 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
821 * @dev: LPSS device
822 * @pdata: pointer to the private data of the LPSS device
823 *
824 * Most LPSS devices have private registers which may loose their context when
825 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
826 * prv_reg_ctx array.
827 */
acpi_lpss_save_ctx(struct device * dev,struct lpss_private_data * pdata)828 static void acpi_lpss_save_ctx(struct device *dev,
829 struct lpss_private_data *pdata)
830 {
831 unsigned int i;
832
833 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
834 unsigned long offset = i * sizeof(u32);
835
836 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
837 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
838 pdata->prv_reg_ctx[i], offset);
839 }
840 }
841
842 /**
843 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
844 * @dev: LPSS device
845 * @pdata: pointer to the private data of the LPSS device
846 *
847 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
848 */
acpi_lpss_restore_ctx(struct device * dev,struct lpss_private_data * pdata)849 static void acpi_lpss_restore_ctx(struct device *dev,
850 struct lpss_private_data *pdata)
851 {
852 unsigned int i;
853
854 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
855 unsigned long offset = i * sizeof(u32);
856
857 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
858 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
859 pdata->prv_reg_ctx[i], offset);
860 }
861 }
862
acpi_lpss_d3_to_d0_delay(struct lpss_private_data * pdata)863 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
864 {
865 /*
866 * The following delay is needed or the subsequent write operations may
867 * fail. The LPSS devices are actually PCI devices and the PCI spec
868 * expects 10ms delay before the device can be accessed after D3 to D0
869 * transition. However some platforms like BSW does not need this delay.
870 */
871 unsigned int delay = 10; /* default 10ms delay */
872
873 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
874 delay = 0;
875
876 msleep(delay);
877 }
878
acpi_lpss_activate(struct device * dev)879 static int acpi_lpss_activate(struct device *dev)
880 {
881 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
882 int ret;
883
884 ret = acpi_dev_resume(dev);
885 if (ret)
886 return ret;
887
888 acpi_lpss_d3_to_d0_delay(pdata);
889
890 /*
891 * This is called only on ->probe() stage where a device is either in
892 * known state defined by BIOS or most likely powered off. Due to this
893 * we have to deassert reset line to be sure that ->probe() will
894 * recognize the device.
895 */
896 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
897 lpss_deassert_reset(pdata);
898
899 #ifdef CONFIG_PM
900 if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
901 acpi_lpss_save_ctx(dev, pdata);
902 #endif
903
904 return 0;
905 }
906
acpi_lpss_dismiss(struct device * dev)907 static void acpi_lpss_dismiss(struct device *dev)
908 {
909 acpi_dev_suspend(dev, false);
910 }
911
912 /* IOSF SB for LPSS island */
913 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
914 #define LPSS_IOSF_UNIT_LPIO1 0xAB
915 #define LPSS_IOSF_UNIT_LPIO2 0xAC
916
917 #define LPSS_IOSF_PMCSR 0x84
918 #define LPSS_PMCSR_D0 0
919 #define LPSS_PMCSR_D3hot 3
920 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
921
922 #define LPSS_IOSF_GPIODEF0 0x154
923 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
924 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
925 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
926 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
927
928 static DEFINE_MUTEX(lpss_iosf_mutex);
929 static bool lpss_iosf_d3_entered = true;
930
lpss_iosf_enter_d3_state(void)931 static void lpss_iosf_enter_d3_state(void)
932 {
933 u32 value1 = 0;
934 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
935 u32 value2 = LPSS_PMCSR_D3hot;
936 u32 mask2 = LPSS_PMCSR_Dx_MASK;
937 /*
938 * PMC provides an information about actual status of the LPSS devices.
939 * Here we read the values related to LPSS power island, i.e. LPSS
940 * devices, excluding both LPSS DMA controllers, along with SCC domain.
941 */
942 u32 func_dis, d3_sts_0, pmc_status;
943 int ret;
944
945 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
946 if (ret)
947 return;
948
949 mutex_lock(&lpss_iosf_mutex);
950
951 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
952 if (ret)
953 goto exit;
954
955 /*
956 * Get the status of entire LPSS power island per device basis.
957 * Shutdown both LPSS DMA controllers if and only if all other devices
958 * are already in D3hot.
959 */
960 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
961 if (pmc_status)
962 goto exit;
963
964 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
965 LPSS_IOSF_PMCSR, value2, mask2);
966
967 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
968 LPSS_IOSF_PMCSR, value2, mask2);
969
970 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
971 LPSS_IOSF_GPIODEF0, value1, mask1);
972
973 lpss_iosf_d3_entered = true;
974
975 exit:
976 mutex_unlock(&lpss_iosf_mutex);
977 }
978
lpss_iosf_exit_d3_state(void)979 static void lpss_iosf_exit_d3_state(void)
980 {
981 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
982 LPSS_GPIODEF0_DMA_LLP;
983 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
984 u32 value2 = LPSS_PMCSR_D0;
985 u32 mask2 = LPSS_PMCSR_Dx_MASK;
986
987 mutex_lock(&lpss_iosf_mutex);
988
989 if (!lpss_iosf_d3_entered)
990 goto exit;
991
992 lpss_iosf_d3_entered = false;
993
994 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
995 LPSS_IOSF_GPIODEF0, value1, mask1);
996
997 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
998 LPSS_IOSF_PMCSR, value2, mask2);
999
1000 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1001 LPSS_IOSF_PMCSR, value2, mask2);
1002
1003 exit:
1004 mutex_unlock(&lpss_iosf_mutex);
1005 }
1006
acpi_lpss_suspend(struct device * dev,bool wakeup)1007 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1008 {
1009 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1010 int ret;
1011
1012 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1013 acpi_lpss_save_ctx(dev, pdata);
1014
1015 ret = acpi_dev_suspend(dev, wakeup);
1016
1017 /*
1018 * This call must be last in the sequence, otherwise PMC will return
1019 * wrong status for devices being about to be powered off. See
1020 * lpss_iosf_enter_d3_state() for further information.
1021 */
1022 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1023 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1024 lpss_iosf_enter_d3_state();
1025
1026 return ret;
1027 }
1028
acpi_lpss_resume(struct device * dev)1029 static int acpi_lpss_resume(struct device *dev)
1030 {
1031 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1032 int ret;
1033
1034 /*
1035 * This call is kept first to be in symmetry with
1036 * acpi_lpss_runtime_suspend() one.
1037 */
1038 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1039 lpss_iosf_exit_d3_state();
1040
1041 ret = acpi_dev_resume(dev);
1042 if (ret)
1043 return ret;
1044
1045 acpi_lpss_d3_to_d0_delay(pdata);
1046
1047 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1048 acpi_lpss_restore_ctx(dev, pdata);
1049
1050 return 0;
1051 }
1052
1053 #ifdef CONFIG_PM_SLEEP
acpi_lpss_do_suspend_late(struct device * dev)1054 static int acpi_lpss_do_suspend_late(struct device *dev)
1055 {
1056 int ret;
1057
1058 if (dev_pm_skip_suspend(dev))
1059 return 0;
1060
1061 ret = pm_generic_suspend_late(dev);
1062 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1063 }
1064
acpi_lpss_suspend_late(struct device * dev)1065 static int acpi_lpss_suspend_late(struct device *dev)
1066 {
1067 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1068
1069 if (pdata->dev_desc->resume_from_noirq)
1070 return 0;
1071
1072 return acpi_lpss_do_suspend_late(dev);
1073 }
1074
acpi_lpss_suspend_noirq(struct device * dev)1075 static int acpi_lpss_suspend_noirq(struct device *dev)
1076 {
1077 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1078 int ret;
1079
1080 if (pdata->dev_desc->resume_from_noirq) {
1081 /*
1082 * The driver's ->suspend_late callback will be invoked by
1083 * acpi_lpss_do_suspend_late(), with the assumption that the
1084 * driver really wanted to run that code in ->suspend_noirq, but
1085 * it could not run after acpi_dev_suspend() and the driver
1086 * expected the latter to be called in the "late" phase.
1087 */
1088 ret = acpi_lpss_do_suspend_late(dev);
1089 if (ret)
1090 return ret;
1091 }
1092
1093 return acpi_subsys_suspend_noirq(dev);
1094 }
1095
acpi_lpss_do_resume_early(struct device * dev)1096 static int acpi_lpss_do_resume_early(struct device *dev)
1097 {
1098 int ret = acpi_lpss_resume(dev);
1099
1100 return ret ? ret : pm_generic_resume_early(dev);
1101 }
1102
acpi_lpss_resume_early(struct device * dev)1103 static int acpi_lpss_resume_early(struct device *dev)
1104 {
1105 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1106
1107 if (pdata->dev_desc->resume_from_noirq)
1108 return 0;
1109
1110 if (dev_pm_skip_resume(dev))
1111 return 0;
1112
1113 return acpi_lpss_do_resume_early(dev);
1114 }
1115
acpi_lpss_resume_noirq(struct device * dev)1116 static int acpi_lpss_resume_noirq(struct device *dev)
1117 {
1118 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1119 int ret;
1120
1121 /* Follow acpi_subsys_resume_noirq(). */
1122 if (dev_pm_skip_resume(dev))
1123 return 0;
1124
1125 ret = pm_generic_resume_noirq(dev);
1126 if (ret)
1127 return ret;
1128
1129 if (!pdata->dev_desc->resume_from_noirq)
1130 return 0;
1131
1132 /*
1133 * The driver's ->resume_early callback will be invoked by
1134 * acpi_lpss_do_resume_early(), with the assumption that the driver
1135 * really wanted to run that code in ->resume_noirq, but it could not
1136 * run before acpi_dev_resume() and the driver expected the latter to be
1137 * called in the "early" phase.
1138 */
1139 return acpi_lpss_do_resume_early(dev);
1140 }
1141
acpi_lpss_do_restore_early(struct device * dev)1142 static int acpi_lpss_do_restore_early(struct device *dev)
1143 {
1144 int ret = acpi_lpss_resume(dev);
1145
1146 return ret ? ret : pm_generic_restore_early(dev);
1147 }
1148
acpi_lpss_restore_early(struct device * dev)1149 static int acpi_lpss_restore_early(struct device *dev)
1150 {
1151 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1152
1153 if (pdata->dev_desc->resume_from_noirq)
1154 return 0;
1155
1156 return acpi_lpss_do_restore_early(dev);
1157 }
1158
acpi_lpss_restore_noirq(struct device * dev)1159 static int acpi_lpss_restore_noirq(struct device *dev)
1160 {
1161 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1162 int ret;
1163
1164 ret = pm_generic_restore_noirq(dev);
1165 if (ret)
1166 return ret;
1167
1168 if (!pdata->dev_desc->resume_from_noirq)
1169 return 0;
1170
1171 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1172 return acpi_lpss_do_restore_early(dev);
1173 }
1174
acpi_lpss_do_poweroff_late(struct device * dev)1175 static int acpi_lpss_do_poweroff_late(struct device *dev)
1176 {
1177 int ret = pm_generic_poweroff_late(dev);
1178
1179 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1180 }
1181
acpi_lpss_poweroff_late(struct device * dev)1182 static int acpi_lpss_poweroff_late(struct device *dev)
1183 {
1184 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1185
1186 if (dev_pm_skip_suspend(dev))
1187 return 0;
1188
1189 if (pdata->dev_desc->resume_from_noirq)
1190 return 0;
1191
1192 return acpi_lpss_do_poweroff_late(dev);
1193 }
1194
acpi_lpss_poweroff_noirq(struct device * dev)1195 static int acpi_lpss_poweroff_noirq(struct device *dev)
1196 {
1197 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1198
1199 if (dev_pm_skip_suspend(dev))
1200 return 0;
1201
1202 if (pdata->dev_desc->resume_from_noirq) {
1203 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1204 int ret = acpi_lpss_do_poweroff_late(dev);
1205
1206 if (ret)
1207 return ret;
1208 }
1209
1210 return pm_generic_poweroff_noirq(dev);
1211 }
1212 #endif /* CONFIG_PM_SLEEP */
1213
acpi_lpss_runtime_suspend(struct device * dev)1214 static int acpi_lpss_runtime_suspend(struct device *dev)
1215 {
1216 int ret = pm_generic_runtime_suspend(dev);
1217
1218 return ret ? ret : acpi_lpss_suspend(dev, true);
1219 }
1220
acpi_lpss_runtime_resume(struct device * dev)1221 static int acpi_lpss_runtime_resume(struct device *dev)
1222 {
1223 int ret = acpi_lpss_resume(dev);
1224
1225 return ret ? ret : pm_generic_runtime_resume(dev);
1226 }
1227 #endif /* CONFIG_PM */
1228
1229 static struct dev_pm_domain acpi_lpss_pm_domain = {
1230 #ifdef CONFIG_PM
1231 .activate = acpi_lpss_activate,
1232 .dismiss = acpi_lpss_dismiss,
1233 #endif
1234 .ops = {
1235 #ifdef CONFIG_PM
1236 #ifdef CONFIG_PM_SLEEP
1237 .prepare = acpi_subsys_prepare,
1238 .complete = acpi_subsys_complete,
1239 .suspend = acpi_subsys_suspend,
1240 .suspend_late = acpi_lpss_suspend_late,
1241 .suspend_noirq = acpi_lpss_suspend_noirq,
1242 .resume_noirq = acpi_lpss_resume_noirq,
1243 .resume_early = acpi_lpss_resume_early,
1244 .freeze = acpi_subsys_freeze,
1245 .poweroff = acpi_subsys_poweroff,
1246 .poweroff_late = acpi_lpss_poweroff_late,
1247 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1248 .restore_noirq = acpi_lpss_restore_noirq,
1249 .restore_early = acpi_lpss_restore_early,
1250 #endif
1251 .runtime_suspend = acpi_lpss_runtime_suspend,
1252 .runtime_resume = acpi_lpss_runtime_resume,
1253 #endif
1254 },
1255 };
1256
acpi_lpss_platform_notify(struct notifier_block * nb,unsigned long action,void * data)1257 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1258 unsigned long action, void *data)
1259 {
1260 struct platform_device *pdev = to_platform_device(data);
1261 struct lpss_private_data *pdata;
1262 struct acpi_device *adev;
1263 const struct acpi_device_id *id;
1264
1265 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1266 if (!id || !id->driver_data)
1267 return 0;
1268
1269 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1270 return 0;
1271
1272 pdata = acpi_driver_data(adev);
1273 if (!pdata)
1274 return 0;
1275
1276 if (pdata->mmio_base &&
1277 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1278 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1279 return 0;
1280 }
1281
1282 switch (action) {
1283 case BUS_NOTIFY_BIND_DRIVER:
1284 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1285 break;
1286 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1287 case BUS_NOTIFY_UNBOUND_DRIVER:
1288 dev_pm_domain_set(&pdev->dev, NULL);
1289 break;
1290 case BUS_NOTIFY_ADD_DEVICE:
1291 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1292 if (pdata->dev_desc->flags & LPSS_LTR)
1293 return sysfs_create_group(&pdev->dev.kobj,
1294 &lpss_attr_group);
1295 break;
1296 case BUS_NOTIFY_DEL_DEVICE:
1297 if (pdata->dev_desc->flags & LPSS_LTR)
1298 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1299 dev_pm_domain_set(&pdev->dev, NULL);
1300 break;
1301 default:
1302 break;
1303 }
1304
1305 return 0;
1306 }
1307
1308 static struct notifier_block acpi_lpss_nb = {
1309 .notifier_call = acpi_lpss_platform_notify,
1310 };
1311
acpi_lpss_bind(struct device * dev)1312 static void acpi_lpss_bind(struct device *dev)
1313 {
1314 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1315
1316 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1317 return;
1318
1319 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1320 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1321 else
1322 dev_err(dev, "MMIO size insufficient to access LTR\n");
1323 }
1324
acpi_lpss_unbind(struct device * dev)1325 static void acpi_lpss_unbind(struct device *dev)
1326 {
1327 dev->power.set_latency_tolerance = NULL;
1328 }
1329
1330 static struct acpi_scan_handler lpss_handler = {
1331 .ids = acpi_lpss_device_ids,
1332 .attach = acpi_lpss_create_device,
1333 .bind = acpi_lpss_bind,
1334 .unbind = acpi_lpss_unbind,
1335 };
1336
acpi_lpss_init(void)1337 void __init acpi_lpss_init(void)
1338 {
1339 const struct x86_cpu_id *id;
1340 int ret;
1341
1342 ret = lpss_atom_clk_init();
1343 if (ret)
1344 return;
1345
1346 id = x86_match_cpu(lpss_cpu_ids);
1347 if (id)
1348 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1349
1350 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1351 acpi_scan_add_handler(&lpss_handler);
1352 }
1353
1354 #else
1355
1356 static struct acpi_scan_handler lpss_handler = {
1357 .ids = acpi_lpss_device_ids,
1358 };
1359
acpi_lpss_init(void)1360 void __init acpi_lpss_init(void)
1361 {
1362 acpi_scan_add_handler(&lpss_handler);
1363 }
1364
1365 #endif /* CONFIG_X86_INTEL_LPSS */
1366