1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Handle async block request by crypto hardware engine.
4 *
5 * Copyright (C) 2016 Linaro, Inc.
6 *
7 * Author: Baolin Wang <baolin.wang@linaro.org>
8 */
9
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <crypto/engine.h>
14 #include <uapi/linux/sched/types.h>
15 #include "internal.h"
16
17 #define CRYPTO_ENGINE_MAX_QLEN 10
18
19 /**
20 * crypto_finalize_request - finalize one request if the request is done
21 * @engine: the hardware engine
22 * @req: the request need to be finalized
23 * @err: error number
24 */
crypto_finalize_request(struct crypto_engine * engine,struct crypto_async_request * req,int err)25 static void crypto_finalize_request(struct crypto_engine *engine,
26 struct crypto_async_request *req, int err)
27 {
28 unsigned long flags;
29 bool finalize_req = false;
30 int ret;
31 struct crypto_engine_ctx *enginectx;
32
33 /*
34 * If hardware cannot enqueue more requests
35 * and retry mechanism is not supported
36 * make sure we are completing the current request
37 */
38 if (!engine->retry_support) {
39 spin_lock_irqsave(&engine->queue_lock, flags);
40 if (engine->cur_req == req) {
41 finalize_req = true;
42 engine->cur_req = NULL;
43 }
44 spin_unlock_irqrestore(&engine->queue_lock, flags);
45 }
46
47 if (finalize_req || engine->retry_support) {
48 enginectx = crypto_tfm_ctx(req->tfm);
49 if (enginectx->op.prepare_request &&
50 enginectx->op.unprepare_request) {
51 ret = enginectx->op.unprepare_request(engine, req);
52 if (ret)
53 dev_err(engine->dev, "failed to unprepare request\n");
54 }
55 }
56 req->complete(req, err);
57
58 kthread_queue_work(engine->kworker, &engine->pump_requests);
59 }
60
61 /**
62 * crypto_pump_requests - dequeue one request from engine queue to process
63 * @engine: the hardware engine
64 * @in_kthread: true if we are in the context of the request pump thread
65 *
66 * This function checks if there is any request in the engine queue that
67 * needs processing and if so call out to the driver to initialize hardware
68 * and handle each request.
69 */
crypto_pump_requests(struct crypto_engine * engine,bool in_kthread)70 static void crypto_pump_requests(struct crypto_engine *engine,
71 bool in_kthread)
72 {
73 struct crypto_async_request *async_req, *backlog;
74 unsigned long flags;
75 bool was_busy = false;
76 int ret;
77 struct crypto_engine_ctx *enginectx;
78
79 spin_lock_irqsave(&engine->queue_lock, flags);
80
81 /* Make sure we are not already running a request */
82 if (!engine->retry_support && engine->cur_req)
83 goto out;
84
85 /* If another context is idling then defer */
86 if (engine->idling) {
87 kthread_queue_work(engine->kworker, &engine->pump_requests);
88 goto out;
89 }
90
91 /* Check if the engine queue is idle */
92 if (!crypto_queue_len(&engine->queue) || !engine->running) {
93 if (!engine->busy)
94 goto out;
95
96 /* Only do teardown in the thread */
97 if (!in_kthread) {
98 kthread_queue_work(engine->kworker,
99 &engine->pump_requests);
100 goto out;
101 }
102
103 engine->busy = false;
104 engine->idling = true;
105 spin_unlock_irqrestore(&engine->queue_lock, flags);
106
107 if (engine->unprepare_crypt_hardware &&
108 engine->unprepare_crypt_hardware(engine))
109 dev_err(engine->dev, "failed to unprepare crypt hardware\n");
110
111 spin_lock_irqsave(&engine->queue_lock, flags);
112 engine->idling = false;
113 goto out;
114 }
115
116 start_request:
117 /* Get the fist request from the engine queue to handle */
118 backlog = crypto_get_backlog(&engine->queue);
119 async_req = crypto_dequeue_request(&engine->queue);
120 if (!async_req)
121 goto out;
122
123 /*
124 * If hardware doesn't support the retry mechanism,
125 * keep track of the request we are processing now.
126 * We'll need it on completion (crypto_finalize_request).
127 */
128 if (!engine->retry_support)
129 engine->cur_req = async_req;
130
131 if (backlog)
132 backlog->complete(backlog, -EINPROGRESS);
133
134 if (engine->busy)
135 was_busy = true;
136 else
137 engine->busy = true;
138
139 spin_unlock_irqrestore(&engine->queue_lock, flags);
140
141 /* Until here we get the request need to be encrypted successfully */
142 if (!was_busy && engine->prepare_crypt_hardware) {
143 ret = engine->prepare_crypt_hardware(engine);
144 if (ret) {
145 dev_err(engine->dev, "failed to prepare crypt hardware\n");
146 goto req_err_2;
147 }
148 }
149
150 enginectx = crypto_tfm_ctx(async_req->tfm);
151
152 if (enginectx->op.prepare_request) {
153 ret = enginectx->op.prepare_request(engine, async_req);
154 if (ret) {
155 dev_err(engine->dev, "failed to prepare request: %d\n",
156 ret);
157 goto req_err_2;
158 }
159 }
160 if (!enginectx->op.do_one_request) {
161 dev_err(engine->dev, "failed to do request\n");
162 ret = -EINVAL;
163 goto req_err_1;
164 }
165
166 ret = enginectx->op.do_one_request(engine, async_req);
167
168 /* Request unsuccessfully executed by hardware */
169 if (ret < 0) {
170 /*
171 * If hardware queue is full (-ENOSPC), requeue request
172 * regardless of backlog flag.
173 * Otherwise, unprepare and complete the request.
174 */
175 if (!engine->retry_support ||
176 (ret != -ENOSPC)) {
177 dev_err(engine->dev,
178 "Failed to do one request from queue: %d\n",
179 ret);
180 goto req_err_1;
181 }
182 /*
183 * If retry mechanism is supported,
184 * unprepare current request and
185 * enqueue it back into crypto-engine queue.
186 */
187 if (enginectx->op.unprepare_request) {
188 ret = enginectx->op.unprepare_request(engine,
189 async_req);
190 if (ret)
191 dev_err(engine->dev,
192 "failed to unprepare request\n");
193 }
194 spin_lock_irqsave(&engine->queue_lock, flags);
195 /*
196 * If hardware was unable to execute request, enqueue it
197 * back in front of crypto-engine queue, to keep the order
198 * of requests.
199 */
200 crypto_enqueue_request_head(&engine->queue, async_req);
201
202 kthread_queue_work(engine->kworker, &engine->pump_requests);
203 goto out;
204 }
205
206 goto retry;
207
208 req_err_1:
209 if (enginectx->op.unprepare_request) {
210 ret = enginectx->op.unprepare_request(engine, async_req);
211 if (ret)
212 dev_err(engine->dev, "failed to unprepare request\n");
213 }
214
215 req_err_2:
216 async_req->complete(async_req, ret);
217
218 retry:
219 /* If retry mechanism is supported, send new requests to engine */
220 if (engine->retry_support) {
221 spin_lock_irqsave(&engine->queue_lock, flags);
222 goto start_request;
223 }
224 return;
225
226 out:
227 spin_unlock_irqrestore(&engine->queue_lock, flags);
228
229 /*
230 * Batch requests is possible only if
231 * hardware can enqueue multiple requests
232 */
233 if (engine->do_batch_requests) {
234 ret = engine->do_batch_requests(engine);
235 if (ret)
236 dev_err(engine->dev, "failed to do batch requests: %d\n",
237 ret);
238 }
239
240 return;
241 }
242
crypto_pump_work(struct kthread_work * work)243 static void crypto_pump_work(struct kthread_work *work)
244 {
245 struct crypto_engine *engine =
246 container_of(work, struct crypto_engine, pump_requests);
247
248 crypto_pump_requests(engine, true);
249 }
250
251 /**
252 * crypto_transfer_request - transfer the new request into the engine queue
253 * @engine: the hardware engine
254 * @req: the request need to be listed into the engine queue
255 */
crypto_transfer_request(struct crypto_engine * engine,struct crypto_async_request * req,bool need_pump)256 static int crypto_transfer_request(struct crypto_engine *engine,
257 struct crypto_async_request *req,
258 bool need_pump)
259 {
260 unsigned long flags;
261 int ret;
262
263 spin_lock_irqsave(&engine->queue_lock, flags);
264
265 if (!engine->running) {
266 spin_unlock_irqrestore(&engine->queue_lock, flags);
267 return -ESHUTDOWN;
268 }
269
270 ret = crypto_enqueue_request(&engine->queue, req);
271
272 if (!engine->busy && need_pump)
273 kthread_queue_work(engine->kworker, &engine->pump_requests);
274
275 spin_unlock_irqrestore(&engine->queue_lock, flags);
276 return ret;
277 }
278
279 /**
280 * crypto_transfer_request_to_engine - transfer one request to list
281 * into the engine queue
282 * @engine: the hardware engine
283 * @req: the request need to be listed into the engine queue
284 */
crypto_transfer_request_to_engine(struct crypto_engine * engine,struct crypto_async_request * req)285 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
286 struct crypto_async_request *req)
287 {
288 return crypto_transfer_request(engine, req, true);
289 }
290
291 /**
292 * crypto_transfer_aead_request_to_engine - transfer one aead_request
293 * to list into the engine queue
294 * @engine: the hardware engine
295 * @req: the request need to be listed into the engine queue
296 */
crypto_transfer_aead_request_to_engine(struct crypto_engine * engine,struct aead_request * req)297 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
298 struct aead_request *req)
299 {
300 return crypto_transfer_request_to_engine(engine, &req->base);
301 }
302 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
303
304 /**
305 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
306 * to list into the engine queue
307 * @engine: the hardware engine
308 * @req: the request need to be listed into the engine queue
309 */
crypto_transfer_akcipher_request_to_engine(struct crypto_engine * engine,struct akcipher_request * req)310 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
311 struct akcipher_request *req)
312 {
313 return crypto_transfer_request_to_engine(engine, &req->base);
314 }
315 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
316
317 /**
318 * crypto_transfer_hash_request_to_engine - transfer one ahash_request
319 * to list into the engine queue
320 * @engine: the hardware engine
321 * @req: the request need to be listed into the engine queue
322 */
crypto_transfer_hash_request_to_engine(struct crypto_engine * engine,struct ahash_request * req)323 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
324 struct ahash_request *req)
325 {
326 return crypto_transfer_request_to_engine(engine, &req->base);
327 }
328 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
329
330 /**
331 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
332 * to list into the engine queue
333 * @engine: the hardware engine
334 * @req: the request need to be listed into the engine queue
335 */
crypto_transfer_skcipher_request_to_engine(struct crypto_engine * engine,struct skcipher_request * req)336 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
337 struct skcipher_request *req)
338 {
339 return crypto_transfer_request_to_engine(engine, &req->base);
340 }
341 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
342
343 /**
344 * crypto_finalize_aead_request - finalize one aead_request if
345 * the request is done
346 * @engine: the hardware engine
347 * @req: the request need to be finalized
348 * @err: error number
349 */
crypto_finalize_aead_request(struct crypto_engine * engine,struct aead_request * req,int err)350 void crypto_finalize_aead_request(struct crypto_engine *engine,
351 struct aead_request *req, int err)
352 {
353 return crypto_finalize_request(engine, &req->base, err);
354 }
355 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
356
357 /**
358 * crypto_finalize_akcipher_request - finalize one akcipher_request if
359 * the request is done
360 * @engine: the hardware engine
361 * @req: the request need to be finalized
362 * @err: error number
363 */
crypto_finalize_akcipher_request(struct crypto_engine * engine,struct akcipher_request * req,int err)364 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
365 struct akcipher_request *req, int err)
366 {
367 return crypto_finalize_request(engine, &req->base, err);
368 }
369 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
370
371 /**
372 * crypto_finalize_hash_request - finalize one ahash_request if
373 * the request is done
374 * @engine: the hardware engine
375 * @req: the request need to be finalized
376 * @err: error number
377 */
crypto_finalize_hash_request(struct crypto_engine * engine,struct ahash_request * req,int err)378 void crypto_finalize_hash_request(struct crypto_engine *engine,
379 struct ahash_request *req, int err)
380 {
381 return crypto_finalize_request(engine, &req->base, err);
382 }
383 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
384
385 /**
386 * crypto_finalize_skcipher_request - finalize one skcipher_request if
387 * the request is done
388 * @engine: the hardware engine
389 * @req: the request need to be finalized
390 * @err: error number
391 */
crypto_finalize_skcipher_request(struct crypto_engine * engine,struct skcipher_request * req,int err)392 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
393 struct skcipher_request *req, int err)
394 {
395 return crypto_finalize_request(engine, &req->base, err);
396 }
397 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
398
399 /**
400 * crypto_engine_start - start the hardware engine
401 * @engine: the hardware engine need to be started
402 *
403 * Return 0 on success, else on fail.
404 */
crypto_engine_start(struct crypto_engine * engine)405 int crypto_engine_start(struct crypto_engine *engine)
406 {
407 unsigned long flags;
408
409 spin_lock_irqsave(&engine->queue_lock, flags);
410
411 if (engine->running || engine->busy) {
412 spin_unlock_irqrestore(&engine->queue_lock, flags);
413 return -EBUSY;
414 }
415
416 engine->running = true;
417 spin_unlock_irqrestore(&engine->queue_lock, flags);
418
419 kthread_queue_work(engine->kworker, &engine->pump_requests);
420
421 return 0;
422 }
423 EXPORT_SYMBOL_GPL(crypto_engine_start);
424
425 /**
426 * crypto_engine_stop - stop the hardware engine
427 * @engine: the hardware engine need to be stopped
428 *
429 * Return 0 on success, else on fail.
430 */
crypto_engine_stop(struct crypto_engine * engine)431 int crypto_engine_stop(struct crypto_engine *engine)
432 {
433 unsigned long flags;
434 unsigned int limit = 500;
435 int ret = 0;
436
437 spin_lock_irqsave(&engine->queue_lock, flags);
438
439 /*
440 * If the engine queue is not empty or the engine is on busy state,
441 * we need to wait for a while to pump the requests of engine queue.
442 */
443 while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
444 spin_unlock_irqrestore(&engine->queue_lock, flags);
445 msleep(20);
446 spin_lock_irqsave(&engine->queue_lock, flags);
447 }
448
449 if (crypto_queue_len(&engine->queue) || engine->busy)
450 ret = -EBUSY;
451 else
452 engine->running = false;
453
454 spin_unlock_irqrestore(&engine->queue_lock, flags);
455
456 if (ret)
457 dev_warn(engine->dev, "could not stop engine\n");
458
459 return ret;
460 }
461 EXPORT_SYMBOL_GPL(crypto_engine_stop);
462
463 /**
464 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
465 * and initialize it by setting the maximum number of entries in the software
466 * crypto-engine queue.
467 * @dev: the device attached with one hardware engine
468 * @retry_support: whether hardware has support for retry mechanism
469 * @cbk_do_batch: pointer to a callback function to be invoked when executing
470 * a batch of requests.
471 * This has the form:
472 * callback(struct crypto_engine *engine)
473 * where:
474 * @engine: the crypto engine structure.
475 * @rt: whether this queue is set to run as a realtime task
476 * @qlen: maximum size of the crypto-engine queue
477 *
478 * This must be called from context that can sleep.
479 * Return: the crypto engine structure on success, else NULL.
480 */
crypto_engine_alloc_init_and_set(struct device * dev,bool retry_support,int (* cbk_do_batch)(struct crypto_engine * engine),bool rt,int qlen)481 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
482 bool retry_support,
483 int (*cbk_do_batch)(struct crypto_engine *engine),
484 bool rt, int qlen)
485 {
486 struct crypto_engine *engine;
487
488 if (!dev)
489 return NULL;
490
491 engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
492 if (!engine)
493 return NULL;
494
495 engine->dev = dev;
496 engine->rt = rt;
497 engine->running = false;
498 engine->busy = false;
499 engine->idling = false;
500 engine->retry_support = retry_support;
501 engine->priv_data = dev;
502 /*
503 * Batch requests is possible only if
504 * hardware has support for retry mechanism.
505 */
506 engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
507
508 snprintf(engine->name, sizeof(engine->name),
509 "%s-engine", dev_name(dev));
510
511 crypto_init_queue(&engine->queue, qlen);
512 spin_lock_init(&engine->queue_lock);
513
514 engine->kworker = kthread_create_worker(0, "%s", engine->name);
515 if (IS_ERR(engine->kworker)) {
516 dev_err(dev, "failed to create crypto request pump task\n");
517 return NULL;
518 }
519 kthread_init_work(&engine->pump_requests, crypto_pump_work);
520
521 if (engine->rt) {
522 dev_info(dev, "will run requests pump with realtime priority\n");
523 sched_set_fifo(engine->kworker->task);
524 }
525
526 return engine;
527 }
528 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
529
530 /**
531 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
532 * initialize it.
533 * @dev: the device attached with one hardware engine
534 * @rt: whether this queue is set to run as a realtime task
535 *
536 * This must be called from context that can sleep.
537 * Return: the crypto engine structure on success, else NULL.
538 */
crypto_engine_alloc_init(struct device * dev,bool rt)539 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
540 {
541 return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
542 CRYPTO_ENGINE_MAX_QLEN);
543 }
544 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
545
546 /**
547 * crypto_engine_exit - free the resources of hardware engine when exit
548 * @engine: the hardware engine need to be freed
549 *
550 * Return 0 for success.
551 */
crypto_engine_exit(struct crypto_engine * engine)552 int crypto_engine_exit(struct crypto_engine *engine)
553 {
554 int ret;
555
556 ret = crypto_engine_stop(engine);
557 if (ret)
558 return ret;
559
560 kthread_destroy_worker(engine->kworker);
561
562 return 0;
563 }
564 EXPORT_SYMBOL_GPL(crypto_engine_exit);
565
566 MODULE_LICENSE("GPL");
567 MODULE_DESCRIPTION("Crypto hardware engine framework");
568