1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
blk_mq_poll_stats_bkt(const struct request * rq)49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct block_device *part;
99 	unsigned int inflight[2];
100 };
101 
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->bd_partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
blk_mq_in_flight(struct request_queue * q,struct block_device * part)115 unsigned int blk_mq_in_flight(struct request_queue *q,
116 		struct block_device *part)
117 {
118 	struct mq_inflight mi = { .part = part };
119 
120 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 
122 	return mi.inflight[0] + mi.inflight[1];
123 }
124 
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])125 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
126 		unsigned int inflight[2])
127 {
128 	struct mq_inflight mi = { .part = part };
129 
130 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
131 	inflight[0] = mi.inflight[0];
132 	inflight[1] = mi.inflight[1];
133 }
134 
blk_freeze_queue_start(struct request_queue * q)135 void blk_freeze_queue_start(struct request_queue *q)
136 {
137 	mutex_lock(&q->mq_freeze_lock);
138 	if (++q->mq_freeze_depth == 1) {
139 		percpu_ref_kill(&q->q_usage_counter);
140 		mutex_unlock(&q->mq_freeze_lock);
141 		if (queue_is_mq(q))
142 			blk_mq_run_hw_queues(q, false);
143 	} else {
144 		mutex_unlock(&q->mq_freeze_lock);
145 	}
146 }
147 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
148 
blk_mq_freeze_queue_wait(struct request_queue * q)149 void blk_mq_freeze_queue_wait(struct request_queue *q)
150 {
151 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
154 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)155 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
156 				     unsigned long timeout)
157 {
158 	return wait_event_timeout(q->mq_freeze_wq,
159 					percpu_ref_is_zero(&q->q_usage_counter),
160 					timeout);
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
163 
164 /*
165  * Guarantee no request is in use, so we can change any data structure of
166  * the queue afterward.
167  */
blk_freeze_queue(struct request_queue * q)168 void blk_freeze_queue(struct request_queue *q)
169 {
170 	/*
171 	 * In the !blk_mq case we are only calling this to kill the
172 	 * q_usage_counter, otherwise this increases the freeze depth
173 	 * and waits for it to return to zero.  For this reason there is
174 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
175 	 * exported to drivers as the only user for unfreeze is blk_mq.
176 	 */
177 	blk_freeze_queue_start(q);
178 	blk_mq_freeze_queue_wait(q);
179 }
180 
blk_mq_freeze_queue(struct request_queue * q)181 void blk_mq_freeze_queue(struct request_queue *q)
182 {
183 	/*
184 	 * ...just an alias to keep freeze and unfreeze actions balanced
185 	 * in the blk_mq_* namespace
186 	 */
187 	blk_freeze_queue(q);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
190 
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)191 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
192 {
193 	mutex_lock(&q->mq_freeze_lock);
194 	if (force_atomic)
195 		q->q_usage_counter.data->force_atomic = true;
196 	q->mq_freeze_depth--;
197 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
198 	if (!q->mq_freeze_depth) {
199 		percpu_ref_resurrect(&q->q_usage_counter);
200 		wake_up_all(&q->mq_freeze_wq);
201 	}
202 	mutex_unlock(&q->mq_freeze_lock);
203 }
204 
blk_mq_unfreeze_queue(struct request_queue * q)205 void blk_mq_unfreeze_queue(struct request_queue *q)
206 {
207 	__blk_mq_unfreeze_queue(q, false);
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210 
211 /*
212  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213  * mpt3sas driver such that this function can be removed.
214  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220 
221 /**
222  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223  * @q: request queue.
224  *
225  * Note: this function does not prevent that the struct request end_io()
226  * callback function is invoked. Once this function is returned, we make
227  * sure no dispatch can happen until the queue is unquiesced via
228  * blk_mq_unquiesce_queue().
229  */
blk_mq_quiesce_queue(struct request_queue * q)230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232 	struct blk_mq_hw_ctx *hctx;
233 	unsigned int i;
234 	bool rcu = false;
235 
236 	blk_mq_quiesce_queue_nowait(q);
237 
238 	queue_for_each_hw_ctx(q, hctx, i) {
239 		if (hctx->flags & BLK_MQ_F_BLOCKING)
240 			synchronize_srcu(hctx->srcu);
241 		else
242 			rcu = true;
243 	}
244 	if (rcu)
245 		synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248 
249 /*
250  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251  * @q: request queue.
252  *
253  * This function recovers queue into the state before quiescing
254  * which is done by blk_mq_quiesce_queue.
255  */
blk_mq_unquiesce_queue(struct request_queue * q)256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259 
260 	/* dispatch requests which are inserted during quiescing */
261 	blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264 
blk_mq_wake_waiters(struct request_queue * q)265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267 	struct blk_mq_hw_ctx *hctx;
268 	unsigned int i;
269 
270 	queue_for_each_hw_ctx(q, hctx, i)
271 		if (blk_mq_hw_queue_mapped(hctx))
272 			blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274 
275 /*
276  * Only need start/end time stamping if we have iostat or
277  * blk stats enabled, or using an IO scheduler.
278  */
blk_mq_need_time_stamp(struct request * rq)279 static inline bool blk_mq_need_time_stamp(struct request *rq)
280 {
281 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
282 }
283 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,u64 alloc_time_ns)284 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
285 		unsigned int tag, u64 alloc_time_ns)
286 {
287 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
288 	struct request *rq = tags->static_rqs[tag];
289 
290 	if (data->q->elevator) {
291 		rq->tag = BLK_MQ_NO_TAG;
292 		rq->internal_tag = tag;
293 	} else {
294 		rq->tag = tag;
295 		rq->internal_tag = BLK_MQ_NO_TAG;
296 	}
297 
298 	/* csd/requeue_work/fifo_time is initialized before use */
299 	rq->q = data->q;
300 	rq->mq_ctx = data->ctx;
301 	rq->mq_hctx = data->hctx;
302 	rq->rq_flags = 0;
303 	rq->cmd_flags = data->cmd_flags;
304 	if (data->flags & BLK_MQ_REQ_PM)
305 		rq->rq_flags |= RQF_PM;
306 	if (blk_queue_io_stat(data->q))
307 		rq->rq_flags |= RQF_IO_STAT;
308 	INIT_LIST_HEAD(&rq->queuelist);
309 	INIT_HLIST_NODE(&rq->hash);
310 	RB_CLEAR_NODE(&rq->rb_node);
311 	rq->rq_disk = NULL;
312 	rq->part = NULL;
313 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
314 	rq->alloc_time_ns = alloc_time_ns;
315 #endif
316 	if (blk_mq_need_time_stamp(rq))
317 		rq->start_time_ns = ktime_get_ns();
318 	else
319 		rq->start_time_ns = 0;
320 	rq->io_start_time_ns = 0;
321 	rq->stats_sectors = 0;
322 	rq->nr_phys_segments = 0;
323 #if defined(CONFIG_BLK_DEV_INTEGRITY)
324 	rq->nr_integrity_segments = 0;
325 #endif
326 	blk_crypto_rq_set_defaults(rq);
327 	/* tag was already set */
328 	WRITE_ONCE(rq->deadline, 0);
329 
330 	rq->timeout = 0;
331 
332 	rq->end_io = NULL;
333 	rq->end_io_data = NULL;
334 
335 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
336 	refcount_set(&rq->ref, 1);
337 
338 	if (!op_is_flush(data->cmd_flags)) {
339 		struct elevator_queue *e = data->q->elevator;
340 
341 		rq->elv.icq = NULL;
342 		if (e && e->type->ops.prepare_request) {
343 			if (e->type->icq_cache)
344 				blk_mq_sched_assign_ioc(rq);
345 
346 			e->type->ops.prepare_request(rq);
347 			rq->rq_flags |= RQF_ELVPRIV;
348 		}
349 	}
350 
351 	data->hctx->queued++;
352 	return rq;
353 }
354 
__blk_mq_alloc_request(struct blk_mq_alloc_data * data)355 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
356 {
357 	struct request_queue *q = data->q;
358 	struct elevator_queue *e = q->elevator;
359 	u64 alloc_time_ns = 0;
360 	unsigned int tag;
361 
362 	/* alloc_time includes depth and tag waits */
363 	if (blk_queue_rq_alloc_time(q))
364 		alloc_time_ns = ktime_get_ns();
365 
366 	if (data->cmd_flags & REQ_NOWAIT)
367 		data->flags |= BLK_MQ_REQ_NOWAIT;
368 
369 	if (e) {
370 		/*
371 		 * Flush/passthrough requests are special and go directly to the
372 		 * dispatch list. Don't include reserved tags in the
373 		 * limiting, as it isn't useful.
374 		 */
375 		if (!op_is_flush(data->cmd_flags) &&
376 		    !blk_op_is_passthrough(data->cmd_flags) &&
377 		    e->type->ops.limit_depth &&
378 		    !(data->flags & BLK_MQ_REQ_RESERVED))
379 			e->type->ops.limit_depth(data->cmd_flags, data);
380 	}
381 
382 retry:
383 	data->ctx = blk_mq_get_ctx(q);
384 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
385 	if (!e)
386 		blk_mq_tag_busy(data->hctx);
387 
388 	/*
389 	 * Waiting allocations only fail because of an inactive hctx.  In that
390 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
391 	 * should have migrated us to an online CPU by now.
392 	 */
393 	tag = blk_mq_get_tag(data);
394 	if (tag == BLK_MQ_NO_TAG) {
395 		if (data->flags & BLK_MQ_REQ_NOWAIT)
396 			return NULL;
397 
398 		/*
399 		 * Give up the CPU and sleep for a random short time to ensure
400 		 * that thread using a realtime scheduling class are migrated
401 		 * off the CPU, and thus off the hctx that is going away.
402 		 */
403 		msleep(3);
404 		goto retry;
405 	}
406 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
407 }
408 
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)409 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
410 		blk_mq_req_flags_t flags)
411 {
412 	struct blk_mq_alloc_data data = {
413 		.q		= q,
414 		.flags		= flags,
415 		.cmd_flags	= op,
416 	};
417 	struct request *rq;
418 	int ret;
419 
420 	ret = blk_queue_enter(q, flags);
421 	if (ret)
422 		return ERR_PTR(ret);
423 
424 	rq = __blk_mq_alloc_request(&data);
425 	if (!rq)
426 		goto out_queue_exit;
427 	rq->__data_len = 0;
428 	rq->__sector = (sector_t) -1;
429 	rq->bio = rq->biotail = NULL;
430 	return rq;
431 out_queue_exit:
432 	blk_queue_exit(q);
433 	return ERR_PTR(-EWOULDBLOCK);
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436 
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440 	struct blk_mq_alloc_data data = {
441 		.q		= q,
442 		.flags		= flags,
443 		.cmd_flags	= op,
444 	};
445 	u64 alloc_time_ns = 0;
446 	unsigned int cpu;
447 	unsigned int tag;
448 	int ret;
449 
450 	/* alloc_time includes depth and tag waits */
451 	if (blk_queue_rq_alloc_time(q))
452 		alloc_time_ns = ktime_get_ns();
453 
454 	/*
455 	 * If the tag allocator sleeps we could get an allocation for a
456 	 * different hardware context.  No need to complicate the low level
457 	 * allocator for this for the rare use case of a command tied to
458 	 * a specific queue.
459 	 */
460 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
461 		return ERR_PTR(-EINVAL);
462 
463 	if (hctx_idx >= q->nr_hw_queues)
464 		return ERR_PTR(-EIO);
465 
466 	ret = blk_queue_enter(q, flags);
467 	if (ret)
468 		return ERR_PTR(ret);
469 
470 	/*
471 	 * Check if the hardware context is actually mapped to anything.
472 	 * If not tell the caller that it should skip this queue.
473 	 */
474 	ret = -EXDEV;
475 	data.hctx = q->queue_hw_ctx[hctx_idx];
476 	if (!blk_mq_hw_queue_mapped(data.hctx))
477 		goto out_queue_exit;
478 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
479 	data.ctx = __blk_mq_get_ctx(q, cpu);
480 
481 	if (!q->elevator)
482 		blk_mq_tag_busy(data.hctx);
483 
484 	ret = -EWOULDBLOCK;
485 	tag = blk_mq_get_tag(&data);
486 	if (tag == BLK_MQ_NO_TAG)
487 		goto out_queue_exit;
488 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
489 
490 out_queue_exit:
491 	blk_queue_exit(q);
492 	return ERR_PTR(ret);
493 }
494 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
495 
__blk_mq_free_request(struct request * rq)496 static void __blk_mq_free_request(struct request *rq)
497 {
498 	struct request_queue *q = rq->q;
499 	struct blk_mq_ctx *ctx = rq->mq_ctx;
500 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
501 	const int sched_tag = rq->internal_tag;
502 
503 	blk_crypto_free_request(rq);
504 	blk_pm_mark_last_busy(rq);
505 	rq->mq_hctx = NULL;
506 	if (rq->tag != BLK_MQ_NO_TAG)
507 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
508 	if (sched_tag != BLK_MQ_NO_TAG)
509 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
510 	blk_mq_sched_restart(hctx);
511 	blk_queue_exit(q);
512 }
513 
blk_mq_free_request(struct request * rq)514 void blk_mq_free_request(struct request *rq)
515 {
516 	struct request_queue *q = rq->q;
517 	struct elevator_queue *e = q->elevator;
518 	struct blk_mq_ctx *ctx = rq->mq_ctx;
519 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
520 
521 	if (rq->rq_flags & RQF_ELVPRIV) {
522 		if (e && e->type->ops.finish_request)
523 			e->type->ops.finish_request(rq);
524 		if (rq->elv.icq) {
525 			put_io_context(rq->elv.icq->ioc);
526 			rq->elv.icq = NULL;
527 		}
528 	}
529 
530 	ctx->rq_completed[rq_is_sync(rq)]++;
531 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
532 		__blk_mq_dec_active_requests(hctx);
533 
534 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
535 		laptop_io_completion(q->disk->bdi);
536 
537 	rq_qos_done(q, rq);
538 
539 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
540 	if (refcount_dec_and_test(&rq->ref))
541 		__blk_mq_free_request(rq);
542 }
543 EXPORT_SYMBOL_GPL(blk_mq_free_request);
544 
__blk_mq_end_request(struct request * rq,blk_status_t error)545 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
546 {
547 	u64 now = 0;
548 
549 	if (blk_mq_need_time_stamp(rq))
550 		now = ktime_get_ns();
551 
552 	if (rq->rq_flags & RQF_STATS) {
553 		blk_mq_poll_stats_start(rq->q);
554 		blk_stat_add(rq, now);
555 	}
556 
557 	blk_mq_sched_completed_request(rq, now);
558 
559 	blk_account_io_done(rq, now);
560 
561 	if (rq->end_io) {
562 		rq_qos_done(rq->q, rq);
563 		rq->end_io(rq, error);
564 	} else {
565 		blk_mq_free_request(rq);
566 	}
567 }
568 EXPORT_SYMBOL(__blk_mq_end_request);
569 
blk_mq_end_request(struct request * rq,blk_status_t error)570 void blk_mq_end_request(struct request *rq, blk_status_t error)
571 {
572 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
573 		BUG();
574 	__blk_mq_end_request(rq, error);
575 }
576 EXPORT_SYMBOL(blk_mq_end_request);
577 
blk_complete_reqs(struct llist_head * list)578 static void blk_complete_reqs(struct llist_head *list)
579 {
580 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
581 	struct request *rq, *next;
582 
583 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
584 		rq->q->mq_ops->complete(rq);
585 }
586 
blk_done_softirq(struct softirq_action * h)587 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
588 {
589 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
590 }
591 
blk_softirq_cpu_dead(unsigned int cpu)592 static int blk_softirq_cpu_dead(unsigned int cpu)
593 {
594 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
595 	return 0;
596 }
597 
__blk_mq_complete_request_remote(void * data)598 static void __blk_mq_complete_request_remote(void *data)
599 {
600 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
601 }
602 
blk_mq_complete_need_ipi(struct request * rq)603 static inline bool blk_mq_complete_need_ipi(struct request *rq)
604 {
605 	int cpu = raw_smp_processor_id();
606 
607 	if (!IS_ENABLED(CONFIG_SMP) ||
608 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
609 		return false;
610 	/*
611 	 * With force threaded interrupts enabled, raising softirq from an SMP
612 	 * function call will always result in waking the ksoftirqd thread.
613 	 * This is probably worse than completing the request on a different
614 	 * cache domain.
615 	 */
616 	if (force_irqthreads())
617 		return false;
618 
619 	/* same CPU or cache domain?  Complete locally */
620 	if (cpu == rq->mq_ctx->cpu ||
621 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
622 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
623 		return false;
624 
625 	/* don't try to IPI to an offline CPU */
626 	return cpu_online(rq->mq_ctx->cpu);
627 }
628 
blk_mq_complete_send_ipi(struct request * rq)629 static void blk_mq_complete_send_ipi(struct request *rq)
630 {
631 	struct llist_head *list;
632 	unsigned int cpu;
633 
634 	cpu = rq->mq_ctx->cpu;
635 	list = &per_cpu(blk_cpu_done, cpu);
636 	if (llist_add(&rq->ipi_list, list)) {
637 		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
638 		smp_call_function_single_async(cpu, &rq->csd);
639 	}
640 }
641 
blk_mq_raise_softirq(struct request * rq)642 static void blk_mq_raise_softirq(struct request *rq)
643 {
644 	struct llist_head *list;
645 
646 	preempt_disable();
647 	list = this_cpu_ptr(&blk_cpu_done);
648 	if (llist_add(&rq->ipi_list, list))
649 		raise_softirq(BLOCK_SOFTIRQ);
650 	preempt_enable();
651 }
652 
blk_mq_complete_request_remote(struct request * rq)653 bool blk_mq_complete_request_remote(struct request *rq)
654 {
655 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
656 
657 	/*
658 	 * For a polled request, always complete locallly, it's pointless
659 	 * to redirect the completion.
660 	 */
661 	if (rq->cmd_flags & REQ_HIPRI)
662 		return false;
663 
664 	if (blk_mq_complete_need_ipi(rq)) {
665 		blk_mq_complete_send_ipi(rq);
666 		return true;
667 	}
668 
669 	if (rq->q->nr_hw_queues == 1) {
670 		blk_mq_raise_softirq(rq);
671 		return true;
672 	}
673 	return false;
674 }
675 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
676 
677 /**
678  * blk_mq_complete_request - end I/O on a request
679  * @rq:		the request being processed
680  *
681  * Description:
682  *	Complete a request by scheduling the ->complete_rq operation.
683  **/
blk_mq_complete_request(struct request * rq)684 void blk_mq_complete_request(struct request *rq)
685 {
686 	if (!blk_mq_complete_request_remote(rq))
687 		rq->q->mq_ops->complete(rq);
688 }
689 EXPORT_SYMBOL(blk_mq_complete_request);
690 
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)691 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
692 	__releases(hctx->srcu)
693 {
694 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
695 		rcu_read_unlock();
696 	else
697 		srcu_read_unlock(hctx->srcu, srcu_idx);
698 }
699 
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)700 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
701 	__acquires(hctx->srcu)
702 {
703 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
704 		/* shut up gcc false positive */
705 		*srcu_idx = 0;
706 		rcu_read_lock();
707 	} else
708 		*srcu_idx = srcu_read_lock(hctx->srcu);
709 }
710 
711 /**
712  * blk_mq_start_request - Start processing a request
713  * @rq: Pointer to request to be started
714  *
715  * Function used by device drivers to notify the block layer that a request
716  * is going to be processed now, so blk layer can do proper initializations
717  * such as starting the timeout timer.
718  */
blk_mq_start_request(struct request * rq)719 void blk_mq_start_request(struct request *rq)
720 {
721 	struct request_queue *q = rq->q;
722 
723 	trace_block_rq_issue(rq);
724 
725 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
726 		rq->io_start_time_ns = ktime_get_ns();
727 		rq->stats_sectors = blk_rq_sectors(rq);
728 		rq->rq_flags |= RQF_STATS;
729 		rq_qos_issue(q, rq);
730 	}
731 
732 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
733 
734 	blk_add_timer(rq);
735 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
736 
737 #ifdef CONFIG_BLK_DEV_INTEGRITY
738 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
739 		q->integrity.profile->prepare_fn(rq);
740 #endif
741 }
742 EXPORT_SYMBOL(blk_mq_start_request);
743 
__blk_mq_requeue_request(struct request * rq)744 static void __blk_mq_requeue_request(struct request *rq)
745 {
746 	struct request_queue *q = rq->q;
747 
748 	blk_mq_put_driver_tag(rq);
749 
750 	trace_block_rq_requeue(rq);
751 	rq_qos_requeue(q, rq);
752 
753 	if (blk_mq_request_started(rq)) {
754 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
755 		rq->rq_flags &= ~RQF_TIMED_OUT;
756 	}
757 }
758 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)759 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
760 {
761 	__blk_mq_requeue_request(rq);
762 
763 	/* this request will be re-inserted to io scheduler queue */
764 	blk_mq_sched_requeue_request(rq);
765 
766 	BUG_ON(!list_empty(&rq->queuelist));
767 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
768 }
769 EXPORT_SYMBOL(blk_mq_requeue_request);
770 
blk_mq_requeue_work(struct work_struct * work)771 static void blk_mq_requeue_work(struct work_struct *work)
772 {
773 	struct request_queue *q =
774 		container_of(work, struct request_queue, requeue_work.work);
775 	LIST_HEAD(rq_list);
776 	struct request *rq, *next;
777 
778 	spin_lock_irq(&q->requeue_lock);
779 	list_splice_init(&q->requeue_list, &rq_list);
780 	spin_unlock_irq(&q->requeue_lock);
781 
782 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
783 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
784 			continue;
785 
786 		rq->rq_flags &= ~RQF_SOFTBARRIER;
787 		list_del_init(&rq->queuelist);
788 		/*
789 		 * If RQF_DONTPREP, rq has contained some driver specific
790 		 * data, so insert it to hctx dispatch list to avoid any
791 		 * merge.
792 		 */
793 		if (rq->rq_flags & RQF_DONTPREP)
794 			blk_mq_request_bypass_insert(rq, false, false);
795 		else
796 			blk_mq_sched_insert_request(rq, true, false, false);
797 	}
798 
799 	while (!list_empty(&rq_list)) {
800 		rq = list_entry(rq_list.next, struct request, queuelist);
801 		list_del_init(&rq->queuelist);
802 		blk_mq_sched_insert_request(rq, false, false, false);
803 	}
804 
805 	blk_mq_run_hw_queues(q, false);
806 }
807 
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)808 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
809 				bool kick_requeue_list)
810 {
811 	struct request_queue *q = rq->q;
812 	unsigned long flags;
813 
814 	/*
815 	 * We abuse this flag that is otherwise used by the I/O scheduler to
816 	 * request head insertion from the workqueue.
817 	 */
818 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
819 
820 	spin_lock_irqsave(&q->requeue_lock, flags);
821 	if (at_head) {
822 		rq->rq_flags |= RQF_SOFTBARRIER;
823 		list_add(&rq->queuelist, &q->requeue_list);
824 	} else {
825 		list_add_tail(&rq->queuelist, &q->requeue_list);
826 	}
827 	spin_unlock_irqrestore(&q->requeue_lock, flags);
828 
829 	if (kick_requeue_list)
830 		blk_mq_kick_requeue_list(q);
831 }
832 
blk_mq_kick_requeue_list(struct request_queue * q)833 void blk_mq_kick_requeue_list(struct request_queue *q)
834 {
835 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
836 }
837 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
838 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)839 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
840 				    unsigned long msecs)
841 {
842 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
843 				    msecs_to_jiffies(msecs));
844 }
845 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
846 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)847 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
848 {
849 	if (tag < tags->nr_tags) {
850 		prefetch(tags->rqs[tag]);
851 		return tags->rqs[tag];
852 	}
853 
854 	return NULL;
855 }
856 EXPORT_SYMBOL(blk_mq_tag_to_rq);
857 
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)858 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
859 			       void *priv, bool reserved)
860 {
861 	/*
862 	 * If we find a request that isn't idle and the queue matches,
863 	 * we know the queue is busy. Return false to stop the iteration.
864 	 */
865 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
866 		bool *busy = priv;
867 
868 		*busy = true;
869 		return false;
870 	}
871 
872 	return true;
873 }
874 
blk_mq_queue_inflight(struct request_queue * q)875 bool blk_mq_queue_inflight(struct request_queue *q)
876 {
877 	bool busy = false;
878 
879 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
880 	return busy;
881 }
882 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
883 
blk_mq_rq_timed_out(struct request * req,bool reserved)884 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
885 {
886 	req->rq_flags |= RQF_TIMED_OUT;
887 	if (req->q->mq_ops->timeout) {
888 		enum blk_eh_timer_return ret;
889 
890 		ret = req->q->mq_ops->timeout(req, reserved);
891 		if (ret == BLK_EH_DONE)
892 			return;
893 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
894 	}
895 
896 	blk_add_timer(req);
897 }
898 
blk_mq_req_expired(struct request * rq,unsigned long * next)899 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
900 {
901 	unsigned long deadline;
902 
903 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
904 		return false;
905 	if (rq->rq_flags & RQF_TIMED_OUT)
906 		return false;
907 
908 	deadline = READ_ONCE(rq->deadline);
909 	if (time_after_eq(jiffies, deadline))
910 		return true;
911 
912 	if (*next == 0)
913 		*next = deadline;
914 	else if (time_after(*next, deadline))
915 		*next = deadline;
916 	return false;
917 }
918 
blk_mq_put_rq_ref(struct request * rq)919 void blk_mq_put_rq_ref(struct request *rq)
920 {
921 	if (is_flush_rq(rq))
922 		rq->end_io(rq, 0);
923 	else if (refcount_dec_and_test(&rq->ref))
924 		__blk_mq_free_request(rq);
925 }
926 
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)927 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
928 		struct request *rq, void *priv, bool reserved)
929 {
930 	unsigned long *next = priv;
931 
932 	/*
933 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
934 	 * be reallocated underneath the timeout handler's processing, then
935 	 * the expire check is reliable. If the request is not expired, then
936 	 * it was completed and reallocated as a new request after returning
937 	 * from blk_mq_check_expired().
938 	 */
939 	if (blk_mq_req_expired(rq, next))
940 		blk_mq_rq_timed_out(rq, reserved);
941 	return true;
942 }
943 
blk_mq_timeout_work(struct work_struct * work)944 static void blk_mq_timeout_work(struct work_struct *work)
945 {
946 	struct request_queue *q =
947 		container_of(work, struct request_queue, timeout_work);
948 	unsigned long next = 0;
949 	struct blk_mq_hw_ctx *hctx;
950 	int i;
951 
952 	/* A deadlock might occur if a request is stuck requiring a
953 	 * timeout at the same time a queue freeze is waiting
954 	 * completion, since the timeout code would not be able to
955 	 * acquire the queue reference here.
956 	 *
957 	 * That's why we don't use blk_queue_enter here; instead, we use
958 	 * percpu_ref_tryget directly, because we need to be able to
959 	 * obtain a reference even in the short window between the queue
960 	 * starting to freeze, by dropping the first reference in
961 	 * blk_freeze_queue_start, and the moment the last request is
962 	 * consumed, marked by the instant q_usage_counter reaches
963 	 * zero.
964 	 */
965 	if (!percpu_ref_tryget(&q->q_usage_counter))
966 		return;
967 
968 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
969 
970 	if (next != 0) {
971 		mod_timer(&q->timeout, next);
972 	} else {
973 		/*
974 		 * Request timeouts are handled as a forward rolling timer. If
975 		 * we end up here it means that no requests are pending and
976 		 * also that no request has been pending for a while. Mark
977 		 * each hctx as idle.
978 		 */
979 		queue_for_each_hw_ctx(q, hctx, i) {
980 			/* the hctx may be unmapped, so check it here */
981 			if (blk_mq_hw_queue_mapped(hctx))
982 				blk_mq_tag_idle(hctx);
983 		}
984 	}
985 	blk_queue_exit(q);
986 }
987 
988 struct flush_busy_ctx_data {
989 	struct blk_mq_hw_ctx *hctx;
990 	struct list_head *list;
991 };
992 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)993 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
994 {
995 	struct flush_busy_ctx_data *flush_data = data;
996 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
997 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
998 	enum hctx_type type = hctx->type;
999 
1000 	spin_lock(&ctx->lock);
1001 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1002 	sbitmap_clear_bit(sb, bitnr);
1003 	spin_unlock(&ctx->lock);
1004 	return true;
1005 }
1006 
1007 /*
1008  * Process software queues that have been marked busy, splicing them
1009  * to the for-dispatch
1010  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1011 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1012 {
1013 	struct flush_busy_ctx_data data = {
1014 		.hctx = hctx,
1015 		.list = list,
1016 	};
1017 
1018 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1019 }
1020 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1021 
1022 struct dispatch_rq_data {
1023 	struct blk_mq_hw_ctx *hctx;
1024 	struct request *rq;
1025 };
1026 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1027 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1028 		void *data)
1029 {
1030 	struct dispatch_rq_data *dispatch_data = data;
1031 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1032 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1033 	enum hctx_type type = hctx->type;
1034 
1035 	spin_lock(&ctx->lock);
1036 	if (!list_empty(&ctx->rq_lists[type])) {
1037 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1038 		list_del_init(&dispatch_data->rq->queuelist);
1039 		if (list_empty(&ctx->rq_lists[type]))
1040 			sbitmap_clear_bit(sb, bitnr);
1041 	}
1042 	spin_unlock(&ctx->lock);
1043 
1044 	return !dispatch_data->rq;
1045 }
1046 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1047 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1048 					struct blk_mq_ctx *start)
1049 {
1050 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1051 	struct dispatch_rq_data data = {
1052 		.hctx = hctx,
1053 		.rq   = NULL,
1054 	};
1055 
1056 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1057 			       dispatch_rq_from_ctx, &data);
1058 
1059 	return data.rq;
1060 }
1061 
queued_to_index(unsigned int queued)1062 static inline unsigned int queued_to_index(unsigned int queued)
1063 {
1064 	if (!queued)
1065 		return 0;
1066 
1067 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1068 }
1069 
__blk_mq_get_driver_tag(struct request * rq)1070 static bool __blk_mq_get_driver_tag(struct request *rq)
1071 {
1072 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1073 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1074 	int tag;
1075 
1076 	blk_mq_tag_busy(rq->mq_hctx);
1077 
1078 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1079 		bt = rq->mq_hctx->tags->breserved_tags;
1080 		tag_offset = 0;
1081 	} else {
1082 		if (!hctx_may_queue(rq->mq_hctx, bt))
1083 			return false;
1084 	}
1085 
1086 	tag = __sbitmap_queue_get(bt);
1087 	if (tag == BLK_MQ_NO_TAG)
1088 		return false;
1089 
1090 	rq->tag = tag + tag_offset;
1091 	return true;
1092 }
1093 
blk_mq_get_driver_tag(struct request * rq)1094 bool blk_mq_get_driver_tag(struct request *rq)
1095 {
1096 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1097 
1098 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1099 		return false;
1100 
1101 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1102 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1103 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1104 		__blk_mq_inc_active_requests(hctx);
1105 	}
1106 	hctx->tags->rqs[rq->tag] = rq;
1107 	return true;
1108 }
1109 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1110 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1111 				int flags, void *key)
1112 {
1113 	struct blk_mq_hw_ctx *hctx;
1114 
1115 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1116 
1117 	spin_lock(&hctx->dispatch_wait_lock);
1118 	if (!list_empty(&wait->entry)) {
1119 		struct sbitmap_queue *sbq;
1120 
1121 		list_del_init(&wait->entry);
1122 		sbq = hctx->tags->bitmap_tags;
1123 		atomic_dec(&sbq->ws_active);
1124 	}
1125 	spin_unlock(&hctx->dispatch_wait_lock);
1126 
1127 	blk_mq_run_hw_queue(hctx, true);
1128 	return 1;
1129 }
1130 
1131 /*
1132  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1133  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1134  * restart. For both cases, take care to check the condition again after
1135  * marking us as waiting.
1136  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1137 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1138 				 struct request *rq)
1139 {
1140 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1141 	struct wait_queue_head *wq;
1142 	wait_queue_entry_t *wait;
1143 	bool ret;
1144 
1145 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1146 		blk_mq_sched_mark_restart_hctx(hctx);
1147 
1148 		/*
1149 		 * It's possible that a tag was freed in the window between the
1150 		 * allocation failure and adding the hardware queue to the wait
1151 		 * queue.
1152 		 *
1153 		 * Don't clear RESTART here, someone else could have set it.
1154 		 * At most this will cost an extra queue run.
1155 		 */
1156 		return blk_mq_get_driver_tag(rq);
1157 	}
1158 
1159 	wait = &hctx->dispatch_wait;
1160 	if (!list_empty_careful(&wait->entry))
1161 		return false;
1162 
1163 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1164 
1165 	spin_lock_irq(&wq->lock);
1166 	spin_lock(&hctx->dispatch_wait_lock);
1167 	if (!list_empty(&wait->entry)) {
1168 		spin_unlock(&hctx->dispatch_wait_lock);
1169 		spin_unlock_irq(&wq->lock);
1170 		return false;
1171 	}
1172 
1173 	atomic_inc(&sbq->ws_active);
1174 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1175 	__add_wait_queue(wq, wait);
1176 
1177 	/*
1178 	 * It's possible that a tag was freed in the window between the
1179 	 * allocation failure and adding the hardware queue to the wait
1180 	 * queue.
1181 	 */
1182 	ret = blk_mq_get_driver_tag(rq);
1183 	if (!ret) {
1184 		spin_unlock(&hctx->dispatch_wait_lock);
1185 		spin_unlock_irq(&wq->lock);
1186 		return false;
1187 	}
1188 
1189 	/*
1190 	 * We got a tag, remove ourselves from the wait queue to ensure
1191 	 * someone else gets the wakeup.
1192 	 */
1193 	list_del_init(&wait->entry);
1194 	atomic_dec(&sbq->ws_active);
1195 	spin_unlock(&hctx->dispatch_wait_lock);
1196 	spin_unlock_irq(&wq->lock);
1197 
1198 	return true;
1199 }
1200 
1201 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1202 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1203 /*
1204  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1205  * - EWMA is one simple way to compute running average value
1206  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1207  * - take 4 as factor for avoiding to get too small(0) result, and this
1208  *   factor doesn't matter because EWMA decreases exponentially
1209  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1210 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1211 {
1212 	unsigned int ewma;
1213 
1214 	ewma = hctx->dispatch_busy;
1215 
1216 	if (!ewma && !busy)
1217 		return;
1218 
1219 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1220 	if (busy)
1221 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1222 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1223 
1224 	hctx->dispatch_busy = ewma;
1225 }
1226 
1227 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1228 
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1229 static void blk_mq_handle_dev_resource(struct request *rq,
1230 				       struct list_head *list)
1231 {
1232 	struct request *next =
1233 		list_first_entry_or_null(list, struct request, queuelist);
1234 
1235 	/*
1236 	 * If an I/O scheduler has been configured and we got a driver tag for
1237 	 * the next request already, free it.
1238 	 */
1239 	if (next)
1240 		blk_mq_put_driver_tag(next);
1241 
1242 	list_add(&rq->queuelist, list);
1243 	__blk_mq_requeue_request(rq);
1244 }
1245 
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1246 static void blk_mq_handle_zone_resource(struct request *rq,
1247 					struct list_head *zone_list)
1248 {
1249 	/*
1250 	 * If we end up here it is because we cannot dispatch a request to a
1251 	 * specific zone due to LLD level zone-write locking or other zone
1252 	 * related resource not being available. In this case, set the request
1253 	 * aside in zone_list for retrying it later.
1254 	 */
1255 	list_add(&rq->queuelist, zone_list);
1256 	__blk_mq_requeue_request(rq);
1257 }
1258 
1259 enum prep_dispatch {
1260 	PREP_DISPATCH_OK,
1261 	PREP_DISPATCH_NO_TAG,
1262 	PREP_DISPATCH_NO_BUDGET,
1263 };
1264 
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1265 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1266 						  bool need_budget)
1267 {
1268 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1269 	int budget_token = -1;
1270 
1271 	if (need_budget) {
1272 		budget_token = blk_mq_get_dispatch_budget(rq->q);
1273 		if (budget_token < 0) {
1274 			blk_mq_put_driver_tag(rq);
1275 			return PREP_DISPATCH_NO_BUDGET;
1276 		}
1277 		blk_mq_set_rq_budget_token(rq, budget_token);
1278 	}
1279 
1280 	if (!blk_mq_get_driver_tag(rq)) {
1281 		/*
1282 		 * The initial allocation attempt failed, so we need to
1283 		 * rerun the hardware queue when a tag is freed. The
1284 		 * waitqueue takes care of that. If the queue is run
1285 		 * before we add this entry back on the dispatch list,
1286 		 * we'll re-run it below.
1287 		 */
1288 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1289 			/*
1290 			 * All budgets not got from this function will be put
1291 			 * together during handling partial dispatch
1292 			 */
1293 			if (need_budget)
1294 				blk_mq_put_dispatch_budget(rq->q, budget_token);
1295 			return PREP_DISPATCH_NO_TAG;
1296 		}
1297 	}
1298 
1299 	return PREP_DISPATCH_OK;
1300 }
1301 
1302 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)1303 static void blk_mq_release_budgets(struct request_queue *q,
1304 		struct list_head *list)
1305 {
1306 	struct request *rq;
1307 
1308 	list_for_each_entry(rq, list, queuelist) {
1309 		int budget_token = blk_mq_get_rq_budget_token(rq);
1310 
1311 		if (budget_token >= 0)
1312 			blk_mq_put_dispatch_budget(q, budget_token);
1313 	}
1314 }
1315 
1316 /*
1317  * Returns true if we did some work AND can potentially do more.
1318  */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1319 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1320 			     unsigned int nr_budgets)
1321 {
1322 	enum prep_dispatch prep;
1323 	struct request_queue *q = hctx->queue;
1324 	struct request *rq, *nxt;
1325 	int errors, queued;
1326 	blk_status_t ret = BLK_STS_OK;
1327 	LIST_HEAD(zone_list);
1328 	bool needs_resource = false;
1329 
1330 	if (list_empty(list))
1331 		return false;
1332 
1333 	/*
1334 	 * Now process all the entries, sending them to the driver.
1335 	 */
1336 	errors = queued = 0;
1337 	do {
1338 		struct blk_mq_queue_data bd;
1339 
1340 		rq = list_first_entry(list, struct request, queuelist);
1341 
1342 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1343 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1344 		if (prep != PREP_DISPATCH_OK)
1345 			break;
1346 
1347 		list_del_init(&rq->queuelist);
1348 
1349 		bd.rq = rq;
1350 
1351 		/*
1352 		 * Flag last if we have no more requests, or if we have more
1353 		 * but can't assign a driver tag to it.
1354 		 */
1355 		if (list_empty(list))
1356 			bd.last = true;
1357 		else {
1358 			nxt = list_first_entry(list, struct request, queuelist);
1359 			bd.last = !blk_mq_get_driver_tag(nxt);
1360 		}
1361 
1362 		/*
1363 		 * once the request is queued to lld, no need to cover the
1364 		 * budget any more
1365 		 */
1366 		if (nr_budgets)
1367 			nr_budgets--;
1368 		ret = q->mq_ops->queue_rq(hctx, &bd);
1369 		switch (ret) {
1370 		case BLK_STS_OK:
1371 			queued++;
1372 			break;
1373 		case BLK_STS_RESOURCE:
1374 			needs_resource = true;
1375 			fallthrough;
1376 		case BLK_STS_DEV_RESOURCE:
1377 			blk_mq_handle_dev_resource(rq, list);
1378 			goto out;
1379 		case BLK_STS_ZONE_RESOURCE:
1380 			/*
1381 			 * Move the request to zone_list and keep going through
1382 			 * the dispatch list to find more requests the drive can
1383 			 * accept.
1384 			 */
1385 			blk_mq_handle_zone_resource(rq, &zone_list);
1386 			needs_resource = true;
1387 			break;
1388 		default:
1389 			errors++;
1390 			blk_mq_end_request(rq, ret);
1391 		}
1392 	} while (!list_empty(list));
1393 out:
1394 	if (!list_empty(&zone_list))
1395 		list_splice_tail_init(&zone_list, list);
1396 
1397 	hctx->dispatched[queued_to_index(queued)]++;
1398 
1399 	/* If we didn't flush the entire list, we could have told the driver
1400 	 * there was more coming, but that turned out to be a lie.
1401 	 */
1402 	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1403 		q->mq_ops->commit_rqs(hctx);
1404 	/*
1405 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1406 	 * that is where we will continue on next queue run.
1407 	 */
1408 	if (!list_empty(list)) {
1409 		bool needs_restart;
1410 		/* For non-shared tags, the RESTART check will suffice */
1411 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1412 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1413 
1414 		if (nr_budgets)
1415 			blk_mq_release_budgets(q, list);
1416 
1417 		spin_lock(&hctx->lock);
1418 		list_splice_tail_init(list, &hctx->dispatch);
1419 		spin_unlock(&hctx->lock);
1420 
1421 		/*
1422 		 * Order adding requests to hctx->dispatch and checking
1423 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1424 		 * in blk_mq_sched_restart(). Avoid restart code path to
1425 		 * miss the new added requests to hctx->dispatch, meantime
1426 		 * SCHED_RESTART is observed here.
1427 		 */
1428 		smp_mb();
1429 
1430 		/*
1431 		 * If SCHED_RESTART was set by the caller of this function and
1432 		 * it is no longer set that means that it was cleared by another
1433 		 * thread and hence that a queue rerun is needed.
1434 		 *
1435 		 * If 'no_tag' is set, that means that we failed getting
1436 		 * a driver tag with an I/O scheduler attached. If our dispatch
1437 		 * waitqueue is no longer active, ensure that we run the queue
1438 		 * AFTER adding our entries back to the list.
1439 		 *
1440 		 * If no I/O scheduler has been configured it is possible that
1441 		 * the hardware queue got stopped and restarted before requests
1442 		 * were pushed back onto the dispatch list. Rerun the queue to
1443 		 * avoid starvation. Notes:
1444 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1445 		 *   been stopped before rerunning a queue.
1446 		 * - Some but not all block drivers stop a queue before
1447 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1448 		 *   and dm-rq.
1449 		 *
1450 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1451 		 * bit is set, run queue after a delay to avoid IO stalls
1452 		 * that could otherwise occur if the queue is idle.  We'll do
1453 		 * similar if we couldn't get budget or couldn't lock a zone
1454 		 * and SCHED_RESTART is set.
1455 		 */
1456 		needs_restart = blk_mq_sched_needs_restart(hctx);
1457 		if (prep == PREP_DISPATCH_NO_BUDGET)
1458 			needs_resource = true;
1459 		if (!needs_restart ||
1460 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1461 			blk_mq_run_hw_queue(hctx, true);
1462 		else if (needs_restart && needs_resource)
1463 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1464 
1465 		blk_mq_update_dispatch_busy(hctx, true);
1466 		return false;
1467 	} else
1468 		blk_mq_update_dispatch_busy(hctx, false);
1469 
1470 	return (queued + errors) != 0;
1471 }
1472 
1473 /**
1474  * __blk_mq_run_hw_queue - Run a hardware queue.
1475  * @hctx: Pointer to the hardware queue to run.
1476  *
1477  * Send pending requests to the hardware.
1478  */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1479 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1480 {
1481 	int srcu_idx;
1482 
1483 	/*
1484 	 * We can't run the queue inline with ints disabled. Ensure that
1485 	 * we catch bad users of this early.
1486 	 */
1487 	WARN_ON_ONCE(in_interrupt());
1488 
1489 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1490 
1491 	hctx_lock(hctx, &srcu_idx);
1492 	blk_mq_sched_dispatch_requests(hctx);
1493 	hctx_unlock(hctx, srcu_idx);
1494 }
1495 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1496 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1497 {
1498 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1499 
1500 	if (cpu >= nr_cpu_ids)
1501 		cpu = cpumask_first(hctx->cpumask);
1502 	return cpu;
1503 }
1504 
1505 /*
1506  * It'd be great if the workqueue API had a way to pass
1507  * in a mask and had some smarts for more clever placement.
1508  * For now we just round-robin here, switching for every
1509  * BLK_MQ_CPU_WORK_BATCH queued items.
1510  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1511 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1512 {
1513 	bool tried = false;
1514 	int next_cpu = hctx->next_cpu;
1515 
1516 	if (hctx->queue->nr_hw_queues == 1)
1517 		return WORK_CPU_UNBOUND;
1518 
1519 	if (--hctx->next_cpu_batch <= 0) {
1520 select_cpu:
1521 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1522 				cpu_online_mask);
1523 		if (next_cpu >= nr_cpu_ids)
1524 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1525 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1526 	}
1527 
1528 	/*
1529 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1530 	 * and it should only happen in the path of handling CPU DEAD.
1531 	 */
1532 	if (!cpu_online(next_cpu)) {
1533 		if (!tried) {
1534 			tried = true;
1535 			goto select_cpu;
1536 		}
1537 
1538 		/*
1539 		 * Make sure to re-select CPU next time once after CPUs
1540 		 * in hctx->cpumask become online again.
1541 		 */
1542 		hctx->next_cpu = next_cpu;
1543 		hctx->next_cpu_batch = 1;
1544 		return WORK_CPU_UNBOUND;
1545 	}
1546 
1547 	hctx->next_cpu = next_cpu;
1548 	return next_cpu;
1549 }
1550 
1551 /**
1552  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1553  * @hctx: Pointer to the hardware queue to run.
1554  * @async: If we want to run the queue asynchronously.
1555  * @msecs: Milliseconds of delay to wait before running the queue.
1556  *
1557  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1558  * with a delay of @msecs.
1559  */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1560 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1561 					unsigned long msecs)
1562 {
1563 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1564 		return;
1565 
1566 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1567 		int cpu = get_cpu();
1568 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1569 			__blk_mq_run_hw_queue(hctx);
1570 			put_cpu();
1571 			return;
1572 		}
1573 
1574 		put_cpu();
1575 	}
1576 
1577 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1578 				    msecs_to_jiffies(msecs));
1579 }
1580 
1581 /**
1582  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1583  * @hctx: Pointer to the hardware queue to run.
1584  * @msecs: Milliseconds of delay to wait before running the queue.
1585  *
1586  * Run a hardware queue asynchronously with a delay of @msecs.
1587  */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1588 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1589 {
1590 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1591 }
1592 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1593 
1594 /**
1595  * blk_mq_run_hw_queue - Start to run a hardware queue.
1596  * @hctx: Pointer to the hardware queue to run.
1597  * @async: If we want to run the queue asynchronously.
1598  *
1599  * Check if the request queue is not in a quiesced state and if there are
1600  * pending requests to be sent. If this is true, run the queue to send requests
1601  * to hardware.
1602  */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1603 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1604 {
1605 	int srcu_idx;
1606 	bool need_run;
1607 
1608 	/*
1609 	 * When queue is quiesced, we may be switching io scheduler, or
1610 	 * updating nr_hw_queues, or other things, and we can't run queue
1611 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1612 	 *
1613 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1614 	 * quiesced.
1615 	 */
1616 	hctx_lock(hctx, &srcu_idx);
1617 	need_run = !blk_queue_quiesced(hctx->queue) &&
1618 		blk_mq_hctx_has_pending(hctx);
1619 	hctx_unlock(hctx, srcu_idx);
1620 
1621 	if (need_run)
1622 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1623 }
1624 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1625 
1626 /*
1627  * Is the request queue handled by an IO scheduler that does not respect
1628  * hardware queues when dispatching?
1629  */
blk_mq_has_sqsched(struct request_queue * q)1630 static bool blk_mq_has_sqsched(struct request_queue *q)
1631 {
1632 	struct elevator_queue *e = q->elevator;
1633 
1634 	if (e && e->type->ops.dispatch_request &&
1635 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1636 		return true;
1637 	return false;
1638 }
1639 
1640 /*
1641  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1642  * scheduler.
1643  */
blk_mq_get_sq_hctx(struct request_queue * q)1644 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1645 {
1646 	struct blk_mq_hw_ctx *hctx;
1647 
1648 	/*
1649 	 * If the IO scheduler does not respect hardware queues when
1650 	 * dispatching, we just don't bother with multiple HW queues and
1651 	 * dispatch from hctx for the current CPU since running multiple queues
1652 	 * just causes lock contention inside the scheduler and pointless cache
1653 	 * bouncing.
1654 	 */
1655 	hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
1656 				     raw_smp_processor_id());
1657 	if (!blk_mq_hctx_stopped(hctx))
1658 		return hctx;
1659 	return NULL;
1660 }
1661 
1662 /**
1663  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1664  * @q: Pointer to the request queue to run.
1665  * @async: If we want to run the queue asynchronously.
1666  */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1667 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1668 {
1669 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1670 	int i;
1671 
1672 	sq_hctx = NULL;
1673 	if (blk_mq_has_sqsched(q))
1674 		sq_hctx = blk_mq_get_sq_hctx(q);
1675 	queue_for_each_hw_ctx(q, hctx, i) {
1676 		if (blk_mq_hctx_stopped(hctx))
1677 			continue;
1678 		/*
1679 		 * Dispatch from this hctx either if there's no hctx preferred
1680 		 * by IO scheduler or if it has requests that bypass the
1681 		 * scheduler.
1682 		 */
1683 		if (!sq_hctx || sq_hctx == hctx ||
1684 		    !list_empty_careful(&hctx->dispatch))
1685 			blk_mq_run_hw_queue(hctx, async);
1686 	}
1687 }
1688 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1689 
1690 /**
1691  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1692  * @q: Pointer to the request queue to run.
1693  * @msecs: Milliseconds of delay to wait before running the queues.
1694  */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1695 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1696 {
1697 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1698 	int i;
1699 
1700 	sq_hctx = NULL;
1701 	if (blk_mq_has_sqsched(q))
1702 		sq_hctx = blk_mq_get_sq_hctx(q);
1703 	queue_for_each_hw_ctx(q, hctx, i) {
1704 		if (blk_mq_hctx_stopped(hctx))
1705 			continue;
1706 		/*
1707 		 * Dispatch from this hctx either if there's no hctx preferred
1708 		 * by IO scheduler or if it has requests that bypass the
1709 		 * scheduler.
1710 		 */
1711 		if (!sq_hctx || sq_hctx == hctx ||
1712 		    !list_empty_careful(&hctx->dispatch))
1713 			blk_mq_delay_run_hw_queue(hctx, msecs);
1714 	}
1715 }
1716 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1717 
1718 /**
1719  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1720  * @q: request queue.
1721  *
1722  * The caller is responsible for serializing this function against
1723  * blk_mq_{start,stop}_hw_queue().
1724  */
blk_mq_queue_stopped(struct request_queue * q)1725 bool blk_mq_queue_stopped(struct request_queue *q)
1726 {
1727 	struct blk_mq_hw_ctx *hctx;
1728 	int i;
1729 
1730 	queue_for_each_hw_ctx(q, hctx, i)
1731 		if (blk_mq_hctx_stopped(hctx))
1732 			return true;
1733 
1734 	return false;
1735 }
1736 EXPORT_SYMBOL(blk_mq_queue_stopped);
1737 
1738 /*
1739  * This function is often used for pausing .queue_rq() by driver when
1740  * there isn't enough resource or some conditions aren't satisfied, and
1741  * BLK_STS_RESOURCE is usually returned.
1742  *
1743  * We do not guarantee that dispatch can be drained or blocked
1744  * after blk_mq_stop_hw_queue() returns. Please use
1745  * blk_mq_quiesce_queue() for that requirement.
1746  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1747 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1748 {
1749 	cancel_delayed_work(&hctx->run_work);
1750 
1751 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1752 }
1753 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1754 
1755 /*
1756  * This function is often used for pausing .queue_rq() by driver when
1757  * there isn't enough resource or some conditions aren't satisfied, and
1758  * BLK_STS_RESOURCE is usually returned.
1759  *
1760  * We do not guarantee that dispatch can be drained or blocked
1761  * after blk_mq_stop_hw_queues() returns. Please use
1762  * blk_mq_quiesce_queue() for that requirement.
1763  */
blk_mq_stop_hw_queues(struct request_queue * q)1764 void blk_mq_stop_hw_queues(struct request_queue *q)
1765 {
1766 	struct blk_mq_hw_ctx *hctx;
1767 	int i;
1768 
1769 	queue_for_each_hw_ctx(q, hctx, i)
1770 		blk_mq_stop_hw_queue(hctx);
1771 }
1772 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1773 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1774 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1775 {
1776 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1777 
1778 	blk_mq_run_hw_queue(hctx, false);
1779 }
1780 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1781 
blk_mq_start_hw_queues(struct request_queue * q)1782 void blk_mq_start_hw_queues(struct request_queue *q)
1783 {
1784 	struct blk_mq_hw_ctx *hctx;
1785 	int i;
1786 
1787 	queue_for_each_hw_ctx(q, hctx, i)
1788 		blk_mq_start_hw_queue(hctx);
1789 }
1790 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1791 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1792 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1793 {
1794 	if (!blk_mq_hctx_stopped(hctx))
1795 		return;
1796 
1797 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1798 	blk_mq_run_hw_queue(hctx, async);
1799 }
1800 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1801 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1802 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1803 {
1804 	struct blk_mq_hw_ctx *hctx;
1805 	int i;
1806 
1807 	queue_for_each_hw_ctx(q, hctx, i)
1808 		blk_mq_start_stopped_hw_queue(hctx, async);
1809 }
1810 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1811 
blk_mq_run_work_fn(struct work_struct * work)1812 static void blk_mq_run_work_fn(struct work_struct *work)
1813 {
1814 	struct blk_mq_hw_ctx *hctx;
1815 
1816 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1817 
1818 	/*
1819 	 * If we are stopped, don't run the queue.
1820 	 */
1821 	if (blk_mq_hctx_stopped(hctx))
1822 		return;
1823 
1824 	__blk_mq_run_hw_queue(hctx);
1825 }
1826 
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1827 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1828 					    struct request *rq,
1829 					    bool at_head)
1830 {
1831 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1832 	enum hctx_type type = hctx->type;
1833 
1834 	lockdep_assert_held(&ctx->lock);
1835 
1836 	trace_block_rq_insert(rq);
1837 
1838 	if (at_head)
1839 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1840 	else
1841 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1842 }
1843 
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1844 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1845 			     bool at_head)
1846 {
1847 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1848 
1849 	lockdep_assert_held(&ctx->lock);
1850 
1851 	__blk_mq_insert_req_list(hctx, rq, at_head);
1852 	blk_mq_hctx_mark_pending(hctx, ctx);
1853 }
1854 
1855 /**
1856  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1857  * @rq: Pointer to request to be inserted.
1858  * @at_head: true if the request should be inserted at the head of the list.
1859  * @run_queue: If we should run the hardware queue after inserting the request.
1860  *
1861  * Should only be used carefully, when the caller knows we want to
1862  * bypass a potential IO scheduler on the target device.
1863  */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)1864 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1865 				  bool run_queue)
1866 {
1867 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1868 
1869 	spin_lock(&hctx->lock);
1870 	if (at_head)
1871 		list_add(&rq->queuelist, &hctx->dispatch);
1872 	else
1873 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1874 	spin_unlock(&hctx->lock);
1875 
1876 	if (run_queue)
1877 		blk_mq_run_hw_queue(hctx, false);
1878 }
1879 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1880 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1881 			    struct list_head *list)
1882 
1883 {
1884 	struct request *rq;
1885 	enum hctx_type type = hctx->type;
1886 
1887 	/*
1888 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1889 	 * offline now
1890 	 */
1891 	list_for_each_entry(rq, list, queuelist) {
1892 		BUG_ON(rq->mq_ctx != ctx);
1893 		trace_block_rq_insert(rq);
1894 	}
1895 
1896 	spin_lock(&ctx->lock);
1897 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1898 	blk_mq_hctx_mark_pending(hctx, ctx);
1899 	spin_unlock(&ctx->lock);
1900 }
1901 
plug_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)1902 static int plug_rq_cmp(void *priv, const struct list_head *a,
1903 		       const struct list_head *b)
1904 {
1905 	struct request *rqa = container_of(a, struct request, queuelist);
1906 	struct request *rqb = container_of(b, struct request, queuelist);
1907 
1908 	if (rqa->mq_ctx != rqb->mq_ctx)
1909 		return rqa->mq_ctx > rqb->mq_ctx;
1910 	if (rqa->mq_hctx != rqb->mq_hctx)
1911 		return rqa->mq_hctx > rqb->mq_hctx;
1912 
1913 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1914 }
1915 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1916 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1917 {
1918 	LIST_HEAD(list);
1919 
1920 	if (list_empty(&plug->mq_list))
1921 		return;
1922 	list_splice_init(&plug->mq_list, &list);
1923 
1924 	if (plug->rq_count > 2 && plug->multiple_queues)
1925 		list_sort(NULL, &list, plug_rq_cmp);
1926 
1927 	plug->rq_count = 0;
1928 
1929 	do {
1930 		struct list_head rq_list;
1931 		struct request *rq, *head_rq = list_entry_rq(list.next);
1932 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1933 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1934 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1935 		unsigned int depth = 1;
1936 
1937 		list_for_each_continue(pos, &list) {
1938 			rq = list_entry_rq(pos);
1939 			BUG_ON(!rq->q);
1940 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1941 				break;
1942 			depth++;
1943 		}
1944 
1945 		list_cut_before(&rq_list, &list, pos);
1946 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1947 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1948 						from_schedule);
1949 	} while(!list_empty(&list));
1950 }
1951 
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)1952 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1953 		unsigned int nr_segs)
1954 {
1955 	int err;
1956 
1957 	if (bio->bi_opf & REQ_RAHEAD)
1958 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1959 
1960 	rq->__sector = bio->bi_iter.bi_sector;
1961 	rq->write_hint = bio->bi_write_hint;
1962 	blk_rq_bio_prep(rq, bio, nr_segs);
1963 
1964 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1965 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1966 	WARN_ON_ONCE(err);
1967 
1968 	blk_account_io_start(rq);
1969 }
1970 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool last)1971 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1972 					    struct request *rq,
1973 					    blk_qc_t *cookie, bool last)
1974 {
1975 	struct request_queue *q = rq->q;
1976 	struct blk_mq_queue_data bd = {
1977 		.rq = rq,
1978 		.last = last,
1979 	};
1980 	blk_qc_t new_cookie;
1981 	blk_status_t ret;
1982 
1983 	new_cookie = request_to_qc_t(hctx, rq);
1984 
1985 	/*
1986 	 * For OK queue, we are done. For error, caller may kill it.
1987 	 * Any other error (busy), just add it to our list as we
1988 	 * previously would have done.
1989 	 */
1990 	ret = q->mq_ops->queue_rq(hctx, &bd);
1991 	switch (ret) {
1992 	case BLK_STS_OK:
1993 		blk_mq_update_dispatch_busy(hctx, false);
1994 		*cookie = new_cookie;
1995 		break;
1996 	case BLK_STS_RESOURCE:
1997 	case BLK_STS_DEV_RESOURCE:
1998 		blk_mq_update_dispatch_busy(hctx, true);
1999 		__blk_mq_requeue_request(rq);
2000 		break;
2001 	default:
2002 		blk_mq_update_dispatch_busy(hctx, false);
2003 		*cookie = BLK_QC_T_NONE;
2004 		break;
2005 	}
2006 
2007 	return ret;
2008 }
2009 
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert,bool last)2010 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2011 						struct request *rq,
2012 						blk_qc_t *cookie,
2013 						bool bypass_insert, bool last)
2014 {
2015 	struct request_queue *q = rq->q;
2016 	bool run_queue = true;
2017 	int budget_token;
2018 
2019 	/*
2020 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2021 	 *
2022 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2023 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2024 	 * and avoid driver to try to dispatch again.
2025 	 */
2026 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2027 		run_queue = false;
2028 		bypass_insert = false;
2029 		goto insert;
2030 	}
2031 
2032 	if (q->elevator && !bypass_insert)
2033 		goto insert;
2034 
2035 	budget_token = blk_mq_get_dispatch_budget(q);
2036 	if (budget_token < 0)
2037 		goto insert;
2038 
2039 	blk_mq_set_rq_budget_token(rq, budget_token);
2040 
2041 	if (!blk_mq_get_driver_tag(rq)) {
2042 		blk_mq_put_dispatch_budget(q, budget_token);
2043 		goto insert;
2044 	}
2045 
2046 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2047 insert:
2048 	if (bypass_insert)
2049 		return BLK_STS_RESOURCE;
2050 
2051 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2052 
2053 	return BLK_STS_OK;
2054 }
2055 
2056 /**
2057  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2058  * @hctx: Pointer of the associated hardware queue.
2059  * @rq: Pointer to request to be sent.
2060  * @cookie: Request queue cookie.
2061  *
2062  * If the device has enough resources to accept a new request now, send the
2063  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2064  * we can try send it another time in the future. Requests inserted at this
2065  * queue have higher priority.
2066  */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)2067 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2068 		struct request *rq, blk_qc_t *cookie)
2069 {
2070 	blk_status_t ret;
2071 	int srcu_idx;
2072 
2073 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2074 
2075 	hctx_lock(hctx, &srcu_idx);
2076 
2077 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2078 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2079 		blk_mq_request_bypass_insert(rq, false, true);
2080 	else if (ret != BLK_STS_OK)
2081 		blk_mq_end_request(rq, ret);
2082 
2083 	hctx_unlock(hctx, srcu_idx);
2084 }
2085 
blk_mq_request_issue_directly(struct request * rq,bool last)2086 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2087 {
2088 	blk_status_t ret;
2089 	int srcu_idx;
2090 	blk_qc_t unused_cookie;
2091 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2092 
2093 	hctx_lock(hctx, &srcu_idx);
2094 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2095 	hctx_unlock(hctx, srcu_idx);
2096 
2097 	return ret;
2098 }
2099 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2100 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2101 		struct list_head *list)
2102 {
2103 	int queued = 0;
2104 	int errors = 0;
2105 
2106 	while (!list_empty(list)) {
2107 		blk_status_t ret;
2108 		struct request *rq = list_first_entry(list, struct request,
2109 				queuelist);
2110 
2111 		list_del_init(&rq->queuelist);
2112 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2113 		if (ret != BLK_STS_OK) {
2114 			if (ret == BLK_STS_RESOURCE ||
2115 					ret == BLK_STS_DEV_RESOURCE) {
2116 				blk_mq_request_bypass_insert(rq, false,
2117 							list_empty(list));
2118 				break;
2119 			}
2120 			blk_mq_end_request(rq, ret);
2121 			errors++;
2122 		} else
2123 			queued++;
2124 	}
2125 
2126 	/*
2127 	 * If we didn't flush the entire list, we could have told
2128 	 * the driver there was more coming, but that turned out to
2129 	 * be a lie.
2130 	 */
2131 	if ((!list_empty(list) || errors) &&
2132 	     hctx->queue->mq_ops->commit_rqs && queued)
2133 		hctx->queue->mq_ops->commit_rqs(hctx);
2134 }
2135 
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2136 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2137 {
2138 	list_add_tail(&rq->queuelist, &plug->mq_list);
2139 	plug->rq_count++;
2140 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2141 		struct request *tmp;
2142 
2143 		tmp = list_first_entry(&plug->mq_list, struct request,
2144 						queuelist);
2145 		if (tmp->q != rq->q)
2146 			plug->multiple_queues = true;
2147 	}
2148 }
2149 
2150 /*
2151  * Allow 4x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2152  * queues. This is important for md arrays to benefit from merging
2153  * requests.
2154  */
blk_plug_max_rq_count(struct blk_plug * plug)2155 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2156 {
2157 	if (plug->multiple_queues)
2158 		return BLK_MAX_REQUEST_COUNT * 4;
2159 	return BLK_MAX_REQUEST_COUNT;
2160 }
2161 
2162 /**
2163  * blk_mq_submit_bio - Create and send a request to block device.
2164  * @bio: Bio pointer.
2165  *
2166  * Builds up a request structure from @q and @bio and send to the device. The
2167  * request may not be queued directly to hardware if:
2168  * * This request can be merged with another one
2169  * * We want to place request at plug queue for possible future merging
2170  * * There is an IO scheduler active at this queue
2171  *
2172  * It will not queue the request if there is an error with the bio, or at the
2173  * request creation.
2174  *
2175  * Returns: Request queue cookie.
2176  */
blk_mq_submit_bio(struct bio * bio)2177 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2178 {
2179 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2180 	const int is_sync = op_is_sync(bio->bi_opf);
2181 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2182 	struct blk_mq_alloc_data data = {
2183 		.q		= q,
2184 	};
2185 	struct request *rq;
2186 	struct blk_plug *plug;
2187 	struct request *same_queue_rq = NULL;
2188 	unsigned int nr_segs;
2189 	blk_qc_t cookie;
2190 	blk_status_t ret;
2191 	bool hipri;
2192 
2193 	blk_queue_bounce(q, &bio);
2194 	__blk_queue_split(&bio, &nr_segs);
2195 
2196 	if (!bio_integrity_prep(bio))
2197 		goto queue_exit;
2198 
2199 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2200 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2201 		goto queue_exit;
2202 
2203 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2204 		goto queue_exit;
2205 
2206 	rq_qos_throttle(q, bio);
2207 
2208 	hipri = bio->bi_opf & REQ_HIPRI;
2209 
2210 	data.cmd_flags = bio->bi_opf;
2211 	rq = __blk_mq_alloc_request(&data);
2212 	if (unlikely(!rq)) {
2213 		rq_qos_cleanup(q, bio);
2214 		if (bio->bi_opf & REQ_NOWAIT)
2215 			bio_wouldblock_error(bio);
2216 		goto queue_exit;
2217 	}
2218 
2219 	trace_block_getrq(bio);
2220 
2221 	rq_qos_track(q, rq, bio);
2222 
2223 	cookie = request_to_qc_t(data.hctx, rq);
2224 
2225 	blk_mq_bio_to_request(rq, bio, nr_segs);
2226 
2227 	ret = blk_crypto_init_request(rq);
2228 	if (ret != BLK_STS_OK) {
2229 		bio->bi_status = ret;
2230 		bio_endio(bio);
2231 		blk_mq_free_request(rq);
2232 		return BLK_QC_T_NONE;
2233 	}
2234 
2235 	plug = blk_mq_plug(q, bio);
2236 	if (unlikely(is_flush_fua)) {
2237 		/* Bypass scheduler for flush requests */
2238 		blk_insert_flush(rq);
2239 		blk_mq_run_hw_queue(data.hctx, true);
2240 	} else if (plug && (q->nr_hw_queues == 1 ||
2241 		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2242 		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2243 		/*
2244 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2245 		 * we know the driver uses bd->last in a smart fashion.
2246 		 *
2247 		 * Use normal plugging if this disk is slow HDD, as sequential
2248 		 * IO may benefit a lot from plug merging.
2249 		 */
2250 		unsigned int request_count = plug->rq_count;
2251 		struct request *last = NULL;
2252 
2253 		if (!request_count)
2254 			trace_block_plug(q);
2255 		else
2256 			last = list_entry_rq(plug->mq_list.prev);
2257 
2258 		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2259 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2260 			blk_flush_plug_list(plug, false);
2261 			trace_block_plug(q);
2262 		}
2263 
2264 		blk_add_rq_to_plug(plug, rq);
2265 	} else if (q->elevator) {
2266 		/* Insert the request at the IO scheduler queue */
2267 		blk_mq_sched_insert_request(rq, false, true, true);
2268 	} else if (plug && !blk_queue_nomerges(q)) {
2269 		/*
2270 		 * We do limited plugging. If the bio can be merged, do that.
2271 		 * Otherwise the existing request in the plug list will be
2272 		 * issued. So the plug list will have one request at most
2273 		 * The plug list might get flushed before this. If that happens,
2274 		 * the plug list is empty, and same_queue_rq is invalid.
2275 		 */
2276 		if (list_empty(&plug->mq_list))
2277 			same_queue_rq = NULL;
2278 		if (same_queue_rq) {
2279 			list_del_init(&same_queue_rq->queuelist);
2280 			plug->rq_count--;
2281 		}
2282 		blk_add_rq_to_plug(plug, rq);
2283 		trace_block_plug(q);
2284 
2285 		if (same_queue_rq) {
2286 			data.hctx = same_queue_rq->mq_hctx;
2287 			trace_block_unplug(q, 1, true);
2288 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2289 					&cookie);
2290 		}
2291 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2292 			!data.hctx->dispatch_busy) {
2293 		/*
2294 		 * There is no scheduler and we can try to send directly
2295 		 * to the hardware.
2296 		 */
2297 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2298 	} else {
2299 		/* Default case. */
2300 		blk_mq_sched_insert_request(rq, false, true, true);
2301 	}
2302 
2303 	if (!hipri)
2304 		return BLK_QC_T_NONE;
2305 	return cookie;
2306 queue_exit:
2307 	blk_queue_exit(q);
2308 	return BLK_QC_T_NONE;
2309 }
2310 
order_to_size(unsigned int order)2311 static size_t order_to_size(unsigned int order)
2312 {
2313 	return (size_t)PAGE_SIZE << order;
2314 }
2315 
2316 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2317 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2318 		struct blk_mq_tags *tags, unsigned int hctx_idx)
2319 {
2320 	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2321 	struct page *page;
2322 	unsigned long flags;
2323 
2324 	list_for_each_entry(page, &tags->page_list, lru) {
2325 		unsigned long start = (unsigned long)page_address(page);
2326 		unsigned long end = start + order_to_size(page->private);
2327 		int i;
2328 
2329 		for (i = 0; i < set->queue_depth; i++) {
2330 			struct request *rq = drv_tags->rqs[i];
2331 			unsigned long rq_addr = (unsigned long)rq;
2332 
2333 			if (rq_addr >= start && rq_addr < end) {
2334 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2335 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2336 			}
2337 		}
2338 	}
2339 
2340 	/*
2341 	 * Wait until all pending iteration is done.
2342 	 *
2343 	 * Request reference is cleared and it is guaranteed to be observed
2344 	 * after the ->lock is released.
2345 	 */
2346 	spin_lock_irqsave(&drv_tags->lock, flags);
2347 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2348 }
2349 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2350 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2351 		     unsigned int hctx_idx)
2352 {
2353 	struct page *page;
2354 
2355 	if (tags->rqs && set->ops->exit_request) {
2356 		int i;
2357 
2358 		for (i = 0; i < tags->nr_tags; i++) {
2359 			struct request *rq = tags->static_rqs[i];
2360 
2361 			if (!rq)
2362 				continue;
2363 			set->ops->exit_request(set, rq, hctx_idx);
2364 			tags->static_rqs[i] = NULL;
2365 		}
2366 	}
2367 
2368 	blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2369 
2370 	while (!list_empty(&tags->page_list)) {
2371 		page = list_first_entry(&tags->page_list, struct page, lru);
2372 		list_del_init(&page->lru);
2373 		/*
2374 		 * Remove kmemleak object previously allocated in
2375 		 * blk_mq_alloc_rqs().
2376 		 */
2377 		kmemleak_free(page_address(page));
2378 		__free_pages(page, page->private);
2379 	}
2380 }
2381 
blk_mq_free_rq_map(struct blk_mq_tags * tags,unsigned int flags)2382 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2383 {
2384 	kfree(tags->rqs);
2385 	tags->rqs = NULL;
2386 	kfree(tags->static_rqs);
2387 	tags->static_rqs = NULL;
2388 
2389 	blk_mq_free_tags(tags, flags);
2390 }
2391 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags,unsigned int flags)2392 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2393 					unsigned int hctx_idx,
2394 					unsigned int nr_tags,
2395 					unsigned int reserved_tags,
2396 					unsigned int flags)
2397 {
2398 	struct blk_mq_tags *tags;
2399 	int node;
2400 
2401 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2402 	if (node == NUMA_NO_NODE)
2403 		node = set->numa_node;
2404 
2405 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2406 	if (!tags)
2407 		return NULL;
2408 
2409 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2410 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2411 				 node);
2412 	if (!tags->rqs) {
2413 		blk_mq_free_tags(tags, flags);
2414 		return NULL;
2415 	}
2416 
2417 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2418 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2419 					node);
2420 	if (!tags->static_rqs) {
2421 		kfree(tags->rqs);
2422 		blk_mq_free_tags(tags, flags);
2423 		return NULL;
2424 	}
2425 
2426 	return tags;
2427 }
2428 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2429 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2430 			       unsigned int hctx_idx, int node)
2431 {
2432 	int ret;
2433 
2434 	if (set->ops->init_request) {
2435 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2436 		if (ret)
2437 			return ret;
2438 	}
2439 
2440 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2441 	return 0;
2442 }
2443 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2444 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2445 		     unsigned int hctx_idx, unsigned int depth)
2446 {
2447 	unsigned int i, j, entries_per_page, max_order = 4;
2448 	size_t rq_size, left;
2449 	int node;
2450 
2451 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2452 	if (node == NUMA_NO_NODE)
2453 		node = set->numa_node;
2454 
2455 	INIT_LIST_HEAD(&tags->page_list);
2456 
2457 	/*
2458 	 * rq_size is the size of the request plus driver payload, rounded
2459 	 * to the cacheline size
2460 	 */
2461 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2462 				cache_line_size());
2463 	left = rq_size * depth;
2464 
2465 	for (i = 0; i < depth; ) {
2466 		int this_order = max_order;
2467 		struct page *page;
2468 		int to_do;
2469 		void *p;
2470 
2471 		while (this_order && left < order_to_size(this_order - 1))
2472 			this_order--;
2473 
2474 		do {
2475 			page = alloc_pages_node(node,
2476 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2477 				this_order);
2478 			if (page)
2479 				break;
2480 			if (!this_order--)
2481 				break;
2482 			if (order_to_size(this_order) < rq_size)
2483 				break;
2484 		} while (1);
2485 
2486 		if (!page)
2487 			goto fail;
2488 
2489 		page->private = this_order;
2490 		list_add_tail(&page->lru, &tags->page_list);
2491 
2492 		p = page_address(page);
2493 		/*
2494 		 * Allow kmemleak to scan these pages as they contain pointers
2495 		 * to additional allocations like via ops->init_request().
2496 		 */
2497 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2498 		entries_per_page = order_to_size(this_order) / rq_size;
2499 		to_do = min(entries_per_page, depth - i);
2500 		left -= to_do * rq_size;
2501 		for (j = 0; j < to_do; j++) {
2502 			struct request *rq = p;
2503 
2504 			tags->static_rqs[i] = rq;
2505 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2506 				tags->static_rqs[i] = NULL;
2507 				goto fail;
2508 			}
2509 
2510 			p += rq_size;
2511 			i++;
2512 		}
2513 	}
2514 	return 0;
2515 
2516 fail:
2517 	blk_mq_free_rqs(set, tags, hctx_idx);
2518 	return -ENOMEM;
2519 }
2520 
2521 struct rq_iter_data {
2522 	struct blk_mq_hw_ctx *hctx;
2523 	bool has_rq;
2524 };
2525 
blk_mq_has_request(struct request * rq,void * data,bool reserved)2526 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2527 {
2528 	struct rq_iter_data *iter_data = data;
2529 
2530 	if (rq->mq_hctx != iter_data->hctx)
2531 		return true;
2532 	iter_data->has_rq = true;
2533 	return false;
2534 }
2535 
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2536 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2537 {
2538 	struct blk_mq_tags *tags = hctx->sched_tags ?
2539 			hctx->sched_tags : hctx->tags;
2540 	struct rq_iter_data data = {
2541 		.hctx	= hctx,
2542 	};
2543 
2544 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2545 	return data.has_rq;
2546 }
2547 
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2548 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2549 		struct blk_mq_hw_ctx *hctx)
2550 {
2551 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2552 		return false;
2553 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2554 		return false;
2555 	return true;
2556 }
2557 
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2558 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2559 {
2560 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2561 			struct blk_mq_hw_ctx, cpuhp_online);
2562 
2563 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2564 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2565 		return 0;
2566 
2567 	/*
2568 	 * Prevent new request from being allocated on the current hctx.
2569 	 *
2570 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2571 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2572 	 * seen once we return from the tag allocator.
2573 	 */
2574 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2575 	smp_mb__after_atomic();
2576 
2577 	/*
2578 	 * Try to grab a reference to the queue and wait for any outstanding
2579 	 * requests.  If we could not grab a reference the queue has been
2580 	 * frozen and there are no requests.
2581 	 */
2582 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2583 		while (blk_mq_hctx_has_requests(hctx))
2584 			msleep(5);
2585 		percpu_ref_put(&hctx->queue->q_usage_counter);
2586 	}
2587 
2588 	return 0;
2589 }
2590 
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)2591 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2592 {
2593 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2594 			struct blk_mq_hw_ctx, cpuhp_online);
2595 
2596 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2597 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2598 	return 0;
2599 }
2600 
2601 /*
2602  * 'cpu' is going away. splice any existing rq_list entries from this
2603  * software queue to the hw queue dispatch list, and ensure that it
2604  * gets run.
2605  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2606 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2607 {
2608 	struct blk_mq_hw_ctx *hctx;
2609 	struct blk_mq_ctx *ctx;
2610 	LIST_HEAD(tmp);
2611 	enum hctx_type type;
2612 
2613 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2614 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2615 		return 0;
2616 
2617 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2618 	type = hctx->type;
2619 
2620 	spin_lock(&ctx->lock);
2621 	if (!list_empty(&ctx->rq_lists[type])) {
2622 		list_splice_init(&ctx->rq_lists[type], &tmp);
2623 		blk_mq_hctx_clear_pending(hctx, ctx);
2624 	}
2625 	spin_unlock(&ctx->lock);
2626 
2627 	if (list_empty(&tmp))
2628 		return 0;
2629 
2630 	spin_lock(&hctx->lock);
2631 	list_splice_tail_init(&tmp, &hctx->dispatch);
2632 	spin_unlock(&hctx->lock);
2633 
2634 	blk_mq_run_hw_queue(hctx, true);
2635 	return 0;
2636 }
2637 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2638 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2639 {
2640 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2641 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2642 						    &hctx->cpuhp_online);
2643 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2644 					    &hctx->cpuhp_dead);
2645 }
2646 
2647 /*
2648  * Before freeing hw queue, clearing the flush request reference in
2649  * tags->rqs[] for avoiding potential UAF.
2650  */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)2651 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2652 		unsigned int queue_depth, struct request *flush_rq)
2653 {
2654 	int i;
2655 	unsigned long flags;
2656 
2657 	/* The hw queue may not be mapped yet */
2658 	if (!tags)
2659 		return;
2660 
2661 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2662 
2663 	for (i = 0; i < queue_depth; i++)
2664 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
2665 
2666 	/*
2667 	 * Wait until all pending iteration is done.
2668 	 *
2669 	 * Request reference is cleared and it is guaranteed to be observed
2670 	 * after the ->lock is released.
2671 	 */
2672 	spin_lock_irqsave(&tags->lock, flags);
2673 	spin_unlock_irqrestore(&tags->lock, flags);
2674 }
2675 
2676 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2677 static void blk_mq_exit_hctx(struct request_queue *q,
2678 		struct blk_mq_tag_set *set,
2679 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2680 {
2681 	struct request *flush_rq = hctx->fq->flush_rq;
2682 
2683 	if (blk_mq_hw_queue_mapped(hctx))
2684 		blk_mq_tag_idle(hctx);
2685 
2686 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2687 			set->queue_depth, flush_rq);
2688 	if (set->ops->exit_request)
2689 		set->ops->exit_request(set, flush_rq, hctx_idx);
2690 
2691 	if (set->ops->exit_hctx)
2692 		set->ops->exit_hctx(hctx, hctx_idx);
2693 
2694 	blk_mq_remove_cpuhp(hctx);
2695 
2696 	spin_lock(&q->unused_hctx_lock);
2697 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2698 	spin_unlock(&q->unused_hctx_lock);
2699 }
2700 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2701 static void blk_mq_exit_hw_queues(struct request_queue *q,
2702 		struct blk_mq_tag_set *set, int nr_queue)
2703 {
2704 	struct blk_mq_hw_ctx *hctx;
2705 	unsigned int i;
2706 
2707 	queue_for_each_hw_ctx(q, hctx, i) {
2708 		if (i == nr_queue)
2709 			break;
2710 		blk_mq_debugfs_unregister_hctx(hctx);
2711 		blk_mq_exit_hctx(q, set, hctx, i);
2712 	}
2713 }
2714 
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2715 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2716 {
2717 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2718 
2719 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2720 			   __alignof__(struct blk_mq_hw_ctx)) !=
2721 		     sizeof(struct blk_mq_hw_ctx));
2722 
2723 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2724 		hw_ctx_size += sizeof(struct srcu_struct);
2725 
2726 	return hw_ctx_size;
2727 }
2728 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2729 static int blk_mq_init_hctx(struct request_queue *q,
2730 		struct blk_mq_tag_set *set,
2731 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2732 {
2733 	hctx->queue_num = hctx_idx;
2734 
2735 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2736 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2737 				&hctx->cpuhp_online);
2738 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2739 
2740 	hctx->tags = set->tags[hctx_idx];
2741 
2742 	if (set->ops->init_hctx &&
2743 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2744 		goto unregister_cpu_notifier;
2745 
2746 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2747 				hctx->numa_node))
2748 		goto exit_hctx;
2749 	return 0;
2750 
2751  exit_hctx:
2752 	if (set->ops->exit_hctx)
2753 		set->ops->exit_hctx(hctx, hctx_idx);
2754  unregister_cpu_notifier:
2755 	blk_mq_remove_cpuhp(hctx);
2756 	return -1;
2757 }
2758 
2759 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)2760 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2761 		int node)
2762 {
2763 	struct blk_mq_hw_ctx *hctx;
2764 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2765 
2766 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2767 	if (!hctx)
2768 		goto fail_alloc_hctx;
2769 
2770 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2771 		goto free_hctx;
2772 
2773 	atomic_set(&hctx->nr_active, 0);
2774 	if (node == NUMA_NO_NODE)
2775 		node = set->numa_node;
2776 	hctx->numa_node = node;
2777 
2778 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2779 	spin_lock_init(&hctx->lock);
2780 	INIT_LIST_HEAD(&hctx->dispatch);
2781 	hctx->queue = q;
2782 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2783 
2784 	INIT_LIST_HEAD(&hctx->hctx_list);
2785 
2786 	/*
2787 	 * Allocate space for all possible cpus to avoid allocation at
2788 	 * runtime
2789 	 */
2790 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2791 			gfp, node);
2792 	if (!hctx->ctxs)
2793 		goto free_cpumask;
2794 
2795 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2796 				gfp, node, false, false))
2797 		goto free_ctxs;
2798 	hctx->nr_ctx = 0;
2799 
2800 	spin_lock_init(&hctx->dispatch_wait_lock);
2801 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2802 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2803 
2804 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2805 	if (!hctx->fq)
2806 		goto free_bitmap;
2807 
2808 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2809 		init_srcu_struct(hctx->srcu);
2810 	blk_mq_hctx_kobj_init(hctx);
2811 
2812 	return hctx;
2813 
2814  free_bitmap:
2815 	sbitmap_free(&hctx->ctx_map);
2816  free_ctxs:
2817 	kfree(hctx->ctxs);
2818  free_cpumask:
2819 	free_cpumask_var(hctx->cpumask);
2820  free_hctx:
2821 	kfree(hctx);
2822  fail_alloc_hctx:
2823 	return NULL;
2824 }
2825 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2826 static void blk_mq_init_cpu_queues(struct request_queue *q,
2827 				   unsigned int nr_hw_queues)
2828 {
2829 	struct blk_mq_tag_set *set = q->tag_set;
2830 	unsigned int i, j;
2831 
2832 	for_each_possible_cpu(i) {
2833 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2834 		struct blk_mq_hw_ctx *hctx;
2835 		int k;
2836 
2837 		__ctx->cpu = i;
2838 		spin_lock_init(&__ctx->lock);
2839 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2840 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2841 
2842 		__ctx->queue = q;
2843 
2844 		/*
2845 		 * Set local node, IFF we have more than one hw queue. If
2846 		 * not, we remain on the home node of the device
2847 		 */
2848 		for (j = 0; j < set->nr_maps; j++) {
2849 			hctx = blk_mq_map_queue_type(q, j, i);
2850 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2851 				hctx->numa_node = cpu_to_node(i);
2852 		}
2853 	}
2854 }
2855 
__blk_mq_alloc_map_and_request(struct blk_mq_tag_set * set,int hctx_idx)2856 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2857 					int hctx_idx)
2858 {
2859 	unsigned int flags = set->flags;
2860 	int ret = 0;
2861 
2862 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2863 					set->queue_depth, set->reserved_tags, flags);
2864 	if (!set->tags[hctx_idx])
2865 		return false;
2866 
2867 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2868 				set->queue_depth);
2869 	if (!ret)
2870 		return true;
2871 
2872 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2873 	set->tags[hctx_idx] = NULL;
2874 	return false;
2875 }
2876 
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2877 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2878 					 unsigned int hctx_idx)
2879 {
2880 	unsigned int flags = set->flags;
2881 
2882 	if (set->tags && set->tags[hctx_idx]) {
2883 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2884 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2885 		set->tags[hctx_idx] = NULL;
2886 	}
2887 }
2888 
blk_mq_map_swqueue(struct request_queue * q)2889 static void blk_mq_map_swqueue(struct request_queue *q)
2890 {
2891 	unsigned int i, j, hctx_idx;
2892 	struct blk_mq_hw_ctx *hctx;
2893 	struct blk_mq_ctx *ctx;
2894 	struct blk_mq_tag_set *set = q->tag_set;
2895 
2896 	queue_for_each_hw_ctx(q, hctx, i) {
2897 		cpumask_clear(hctx->cpumask);
2898 		hctx->nr_ctx = 0;
2899 		hctx->dispatch_from = NULL;
2900 	}
2901 
2902 	/*
2903 	 * Map software to hardware queues.
2904 	 *
2905 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2906 	 */
2907 	for_each_possible_cpu(i) {
2908 
2909 		ctx = per_cpu_ptr(q->queue_ctx, i);
2910 		for (j = 0; j < set->nr_maps; j++) {
2911 			if (!set->map[j].nr_queues) {
2912 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2913 						HCTX_TYPE_DEFAULT, i);
2914 				continue;
2915 			}
2916 			hctx_idx = set->map[j].mq_map[i];
2917 			/* unmapped hw queue can be remapped after CPU topo changed */
2918 			if (!set->tags[hctx_idx] &&
2919 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2920 				/*
2921 				 * If tags initialization fail for some hctx,
2922 				 * that hctx won't be brought online.  In this
2923 				 * case, remap the current ctx to hctx[0] which
2924 				 * is guaranteed to always have tags allocated
2925 				 */
2926 				set->map[j].mq_map[i] = 0;
2927 			}
2928 
2929 			hctx = blk_mq_map_queue_type(q, j, i);
2930 			ctx->hctxs[j] = hctx;
2931 			/*
2932 			 * If the CPU is already set in the mask, then we've
2933 			 * mapped this one already. This can happen if
2934 			 * devices share queues across queue maps.
2935 			 */
2936 			if (cpumask_test_cpu(i, hctx->cpumask))
2937 				continue;
2938 
2939 			cpumask_set_cpu(i, hctx->cpumask);
2940 			hctx->type = j;
2941 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2942 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2943 
2944 			/*
2945 			 * If the nr_ctx type overflows, we have exceeded the
2946 			 * amount of sw queues we can support.
2947 			 */
2948 			BUG_ON(!hctx->nr_ctx);
2949 		}
2950 
2951 		for (; j < HCTX_MAX_TYPES; j++)
2952 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2953 					HCTX_TYPE_DEFAULT, i);
2954 	}
2955 
2956 	queue_for_each_hw_ctx(q, hctx, i) {
2957 		/*
2958 		 * If no software queues are mapped to this hardware queue,
2959 		 * disable it and free the request entries.
2960 		 */
2961 		if (!hctx->nr_ctx) {
2962 			/* Never unmap queue 0.  We need it as a
2963 			 * fallback in case of a new remap fails
2964 			 * allocation
2965 			 */
2966 			if (i && set->tags[i])
2967 				blk_mq_free_map_and_requests(set, i);
2968 
2969 			hctx->tags = NULL;
2970 			continue;
2971 		}
2972 
2973 		hctx->tags = set->tags[i];
2974 		WARN_ON(!hctx->tags);
2975 
2976 		/*
2977 		 * Set the map size to the number of mapped software queues.
2978 		 * This is more accurate and more efficient than looping
2979 		 * over all possibly mapped software queues.
2980 		 */
2981 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2982 
2983 		/*
2984 		 * Initialize batch roundrobin counts
2985 		 */
2986 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2987 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2988 	}
2989 }
2990 
2991 /*
2992  * Caller needs to ensure that we're either frozen/quiesced, or that
2993  * the queue isn't live yet.
2994  */
queue_set_hctx_shared(struct request_queue * q,bool shared)2995 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2996 {
2997 	struct blk_mq_hw_ctx *hctx;
2998 	int i;
2999 
3000 	queue_for_each_hw_ctx(q, hctx, i) {
3001 		if (shared) {
3002 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3003 		} else {
3004 			blk_mq_tag_idle(hctx);
3005 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3006 		}
3007 	}
3008 }
3009 
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)3010 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3011 					 bool shared)
3012 {
3013 	struct request_queue *q;
3014 
3015 	lockdep_assert_held(&set->tag_list_lock);
3016 
3017 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3018 		blk_mq_freeze_queue(q);
3019 		queue_set_hctx_shared(q, shared);
3020 		blk_mq_unfreeze_queue(q);
3021 	}
3022 }
3023 
blk_mq_del_queue_tag_set(struct request_queue * q)3024 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3025 {
3026 	struct blk_mq_tag_set *set = q->tag_set;
3027 
3028 	mutex_lock(&set->tag_list_lock);
3029 	list_del(&q->tag_set_list);
3030 	if (list_is_singular(&set->tag_list)) {
3031 		/* just transitioned to unshared */
3032 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3033 		/* update existing queue */
3034 		blk_mq_update_tag_set_shared(set, false);
3035 	}
3036 	mutex_unlock(&set->tag_list_lock);
3037 	INIT_LIST_HEAD(&q->tag_set_list);
3038 }
3039 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3040 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3041 				     struct request_queue *q)
3042 {
3043 	mutex_lock(&set->tag_list_lock);
3044 
3045 	/*
3046 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3047 	 */
3048 	if (!list_empty(&set->tag_list) &&
3049 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3050 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3051 		/* update existing queue */
3052 		blk_mq_update_tag_set_shared(set, true);
3053 	}
3054 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3055 		queue_set_hctx_shared(q, true);
3056 	list_add_tail(&q->tag_set_list, &set->tag_list);
3057 
3058 	mutex_unlock(&set->tag_list_lock);
3059 }
3060 
3061 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3062 static int blk_mq_alloc_ctxs(struct request_queue *q)
3063 {
3064 	struct blk_mq_ctxs *ctxs;
3065 	int cpu;
3066 
3067 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3068 	if (!ctxs)
3069 		return -ENOMEM;
3070 
3071 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3072 	if (!ctxs->queue_ctx)
3073 		goto fail;
3074 
3075 	for_each_possible_cpu(cpu) {
3076 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3077 		ctx->ctxs = ctxs;
3078 	}
3079 
3080 	q->mq_kobj = &ctxs->kobj;
3081 	q->queue_ctx = ctxs->queue_ctx;
3082 
3083 	return 0;
3084  fail:
3085 	kfree(ctxs);
3086 	return -ENOMEM;
3087 }
3088 
3089 /*
3090  * It is the actual release handler for mq, but we do it from
3091  * request queue's release handler for avoiding use-after-free
3092  * and headache because q->mq_kobj shouldn't have been introduced,
3093  * but we can't group ctx/kctx kobj without it.
3094  */
blk_mq_release(struct request_queue * q)3095 void blk_mq_release(struct request_queue *q)
3096 {
3097 	struct blk_mq_hw_ctx *hctx, *next;
3098 	int i;
3099 
3100 	queue_for_each_hw_ctx(q, hctx, i)
3101 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3102 
3103 	/* all hctx are in .unused_hctx_list now */
3104 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3105 		list_del_init(&hctx->hctx_list);
3106 		kobject_put(&hctx->kobj);
3107 	}
3108 
3109 	kfree(q->queue_hw_ctx);
3110 
3111 	/*
3112 	 * release .mq_kobj and sw queue's kobject now because
3113 	 * both share lifetime with request queue.
3114 	 */
3115 	blk_mq_sysfs_deinit(q);
3116 }
3117 
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3118 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3119 		void *queuedata)
3120 {
3121 	struct request_queue *q;
3122 	int ret;
3123 
3124 	q = blk_alloc_queue(set->numa_node);
3125 	if (!q)
3126 		return ERR_PTR(-ENOMEM);
3127 	q->queuedata = queuedata;
3128 	ret = blk_mq_init_allocated_queue(set, q);
3129 	if (ret) {
3130 		blk_cleanup_queue(q);
3131 		return ERR_PTR(ret);
3132 	}
3133 	return q;
3134 }
3135 
blk_mq_init_queue(struct blk_mq_tag_set * set)3136 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3137 {
3138 	return blk_mq_init_queue_data(set, NULL);
3139 }
3140 EXPORT_SYMBOL(blk_mq_init_queue);
3141 
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,void * queuedata,struct lock_class_key * lkclass)3142 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3143 		struct lock_class_key *lkclass)
3144 {
3145 	struct request_queue *q;
3146 	struct gendisk *disk;
3147 
3148 	q = blk_mq_init_queue_data(set, queuedata);
3149 	if (IS_ERR(q))
3150 		return ERR_CAST(q);
3151 
3152 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
3153 	if (!disk) {
3154 		blk_cleanup_queue(q);
3155 		return ERR_PTR(-ENOMEM);
3156 	}
3157 	return disk;
3158 }
3159 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3160 
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3161 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3162 		struct blk_mq_tag_set *set, struct request_queue *q,
3163 		int hctx_idx, int node)
3164 {
3165 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3166 
3167 	/* reuse dead hctx first */
3168 	spin_lock(&q->unused_hctx_lock);
3169 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3170 		if (tmp->numa_node == node) {
3171 			hctx = tmp;
3172 			break;
3173 		}
3174 	}
3175 	if (hctx)
3176 		list_del_init(&hctx->hctx_list);
3177 	spin_unlock(&q->unused_hctx_lock);
3178 
3179 	if (!hctx)
3180 		hctx = blk_mq_alloc_hctx(q, set, node);
3181 	if (!hctx)
3182 		goto fail;
3183 
3184 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3185 		goto free_hctx;
3186 
3187 	return hctx;
3188 
3189  free_hctx:
3190 	kobject_put(&hctx->kobj);
3191  fail:
3192 	return NULL;
3193 }
3194 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3195 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3196 						struct request_queue *q)
3197 {
3198 	int i, j, end;
3199 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3200 
3201 	if (q->nr_hw_queues < set->nr_hw_queues) {
3202 		struct blk_mq_hw_ctx **new_hctxs;
3203 
3204 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3205 				       sizeof(*new_hctxs), GFP_KERNEL,
3206 				       set->numa_node);
3207 		if (!new_hctxs)
3208 			return;
3209 		if (hctxs)
3210 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3211 			       sizeof(*hctxs));
3212 		q->queue_hw_ctx = new_hctxs;
3213 		kfree(hctxs);
3214 		hctxs = new_hctxs;
3215 	}
3216 
3217 	/* protect against switching io scheduler  */
3218 	mutex_lock(&q->sysfs_lock);
3219 	for (i = 0; i < set->nr_hw_queues; i++) {
3220 		int node;
3221 		struct blk_mq_hw_ctx *hctx;
3222 
3223 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3224 		/*
3225 		 * If the hw queue has been mapped to another numa node,
3226 		 * we need to realloc the hctx. If allocation fails, fallback
3227 		 * to use the previous one.
3228 		 */
3229 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3230 			continue;
3231 
3232 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3233 		if (hctx) {
3234 			if (hctxs[i])
3235 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3236 			hctxs[i] = hctx;
3237 		} else {
3238 			if (hctxs[i])
3239 				pr_warn("Allocate new hctx on node %d fails,\
3240 						fallback to previous one on node %d\n",
3241 						node, hctxs[i]->numa_node);
3242 			else
3243 				break;
3244 		}
3245 	}
3246 	/*
3247 	 * Increasing nr_hw_queues fails. Free the newly allocated
3248 	 * hctxs and keep the previous q->nr_hw_queues.
3249 	 */
3250 	if (i != set->nr_hw_queues) {
3251 		j = q->nr_hw_queues;
3252 		end = i;
3253 	} else {
3254 		j = i;
3255 		end = q->nr_hw_queues;
3256 		q->nr_hw_queues = set->nr_hw_queues;
3257 	}
3258 
3259 	for (; j < end; j++) {
3260 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3261 
3262 		if (hctx) {
3263 			if (hctx->tags)
3264 				blk_mq_free_map_and_requests(set, j);
3265 			blk_mq_exit_hctx(q, set, hctx, j);
3266 			hctxs[j] = NULL;
3267 		}
3268 	}
3269 	mutex_unlock(&q->sysfs_lock);
3270 }
3271 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)3272 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3273 		struct request_queue *q)
3274 {
3275 	/* mark the queue as mq asap */
3276 	q->mq_ops = set->ops;
3277 
3278 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3279 					     blk_mq_poll_stats_bkt,
3280 					     BLK_MQ_POLL_STATS_BKTS, q);
3281 	if (!q->poll_cb)
3282 		goto err_exit;
3283 
3284 	if (blk_mq_alloc_ctxs(q))
3285 		goto err_poll;
3286 
3287 	/* init q->mq_kobj and sw queues' kobjects */
3288 	blk_mq_sysfs_init(q);
3289 
3290 	INIT_LIST_HEAD(&q->unused_hctx_list);
3291 	spin_lock_init(&q->unused_hctx_lock);
3292 
3293 	blk_mq_realloc_hw_ctxs(set, q);
3294 	if (!q->nr_hw_queues)
3295 		goto err_hctxs;
3296 
3297 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3298 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3299 
3300 	q->tag_set = set;
3301 
3302 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3303 	if (set->nr_maps > HCTX_TYPE_POLL &&
3304 	    set->map[HCTX_TYPE_POLL].nr_queues)
3305 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3306 
3307 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3308 	INIT_LIST_HEAD(&q->requeue_list);
3309 	spin_lock_init(&q->requeue_lock);
3310 
3311 	q->nr_requests = set->queue_depth;
3312 
3313 	/*
3314 	 * Default to classic polling
3315 	 */
3316 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3317 
3318 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3319 	blk_mq_add_queue_tag_set(set, q);
3320 	blk_mq_map_swqueue(q);
3321 	return 0;
3322 
3323 err_hctxs:
3324 	kfree(q->queue_hw_ctx);
3325 	q->nr_hw_queues = 0;
3326 	blk_mq_sysfs_deinit(q);
3327 err_poll:
3328 	blk_stat_free_callback(q->poll_cb);
3329 	q->poll_cb = NULL;
3330 err_exit:
3331 	q->mq_ops = NULL;
3332 	return -ENOMEM;
3333 }
3334 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3335 
3336 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3337 void blk_mq_exit_queue(struct request_queue *q)
3338 {
3339 	struct blk_mq_tag_set *set = q->tag_set;
3340 
3341 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3342 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3343 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3344 	blk_mq_del_queue_tag_set(q);
3345 }
3346 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3347 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3348 {
3349 	int i;
3350 
3351 	for (i = 0; i < set->nr_hw_queues; i++) {
3352 		if (!__blk_mq_alloc_map_and_request(set, i))
3353 			goto out_unwind;
3354 		cond_resched();
3355 	}
3356 
3357 	return 0;
3358 
3359 out_unwind:
3360 	while (--i >= 0)
3361 		blk_mq_free_map_and_requests(set, i);
3362 
3363 	return -ENOMEM;
3364 }
3365 
3366 /*
3367  * Allocate the request maps associated with this tag_set. Note that this
3368  * may reduce the depth asked for, if memory is tight. set->queue_depth
3369  * will be updated to reflect the allocated depth.
3370  */
blk_mq_alloc_map_and_requests(struct blk_mq_tag_set * set)3371 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3372 {
3373 	unsigned int depth;
3374 	int err;
3375 
3376 	depth = set->queue_depth;
3377 	do {
3378 		err = __blk_mq_alloc_rq_maps(set);
3379 		if (!err)
3380 			break;
3381 
3382 		set->queue_depth >>= 1;
3383 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3384 			err = -ENOMEM;
3385 			break;
3386 		}
3387 	} while (set->queue_depth);
3388 
3389 	if (!set->queue_depth || err) {
3390 		pr_err("blk-mq: failed to allocate request map\n");
3391 		return -ENOMEM;
3392 	}
3393 
3394 	if (depth != set->queue_depth)
3395 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3396 						depth, set->queue_depth);
3397 
3398 	return 0;
3399 }
3400 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3401 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3402 {
3403 	/*
3404 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3405 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3406 	 * number of hardware queues.
3407 	 */
3408 	if (set->nr_maps == 1)
3409 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3410 
3411 	if (set->ops->map_queues && !is_kdump_kernel()) {
3412 		int i;
3413 
3414 		/*
3415 		 * transport .map_queues is usually done in the following
3416 		 * way:
3417 		 *
3418 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3419 		 * 	mask = get_cpu_mask(queue)
3420 		 * 	for_each_cpu(cpu, mask)
3421 		 * 		set->map[x].mq_map[cpu] = queue;
3422 		 * }
3423 		 *
3424 		 * When we need to remap, the table has to be cleared for
3425 		 * killing stale mapping since one CPU may not be mapped
3426 		 * to any hw queue.
3427 		 */
3428 		for (i = 0; i < set->nr_maps; i++)
3429 			blk_mq_clear_mq_map(&set->map[i]);
3430 
3431 		return set->ops->map_queues(set);
3432 	} else {
3433 		BUG_ON(set->nr_maps > 1);
3434 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3435 	}
3436 }
3437 
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3438 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3439 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3440 {
3441 	struct blk_mq_tags **new_tags;
3442 
3443 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3444 		return 0;
3445 
3446 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3447 				GFP_KERNEL, set->numa_node);
3448 	if (!new_tags)
3449 		return -ENOMEM;
3450 
3451 	if (set->tags)
3452 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3453 		       sizeof(*set->tags));
3454 	kfree(set->tags);
3455 	set->tags = new_tags;
3456 	set->nr_hw_queues = new_nr_hw_queues;
3457 
3458 	return 0;
3459 }
3460 
blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)3461 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
3462 				int new_nr_hw_queues)
3463 {
3464 	return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
3465 }
3466 
3467 /*
3468  * Alloc a tag set to be associated with one or more request queues.
3469  * May fail with EINVAL for various error conditions. May adjust the
3470  * requested depth down, if it's too large. In that case, the set
3471  * value will be stored in set->queue_depth.
3472  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3473 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3474 {
3475 	int i, ret;
3476 
3477 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3478 
3479 	if (!set->nr_hw_queues)
3480 		return -EINVAL;
3481 	if (!set->queue_depth)
3482 		return -EINVAL;
3483 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3484 		return -EINVAL;
3485 
3486 	if (!set->ops->queue_rq)
3487 		return -EINVAL;
3488 
3489 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3490 		return -EINVAL;
3491 
3492 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3493 		pr_info("blk-mq: reduced tag depth to %u\n",
3494 			BLK_MQ_MAX_DEPTH);
3495 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3496 	}
3497 
3498 	if (!set->nr_maps)
3499 		set->nr_maps = 1;
3500 	else if (set->nr_maps > HCTX_MAX_TYPES)
3501 		return -EINVAL;
3502 
3503 	/*
3504 	 * If a crashdump is active, then we are potentially in a very
3505 	 * memory constrained environment. Limit us to 1 queue and
3506 	 * 64 tags to prevent using too much memory.
3507 	 */
3508 	if (is_kdump_kernel()) {
3509 		set->nr_hw_queues = 1;
3510 		set->nr_maps = 1;
3511 		set->queue_depth = min(64U, set->queue_depth);
3512 	}
3513 	/*
3514 	 * There is no use for more h/w queues than cpus if we just have
3515 	 * a single map
3516 	 */
3517 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3518 		set->nr_hw_queues = nr_cpu_ids;
3519 
3520 	if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
3521 		return -ENOMEM;
3522 
3523 	ret = -ENOMEM;
3524 	for (i = 0; i < set->nr_maps; i++) {
3525 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3526 						  sizeof(set->map[i].mq_map[0]),
3527 						  GFP_KERNEL, set->numa_node);
3528 		if (!set->map[i].mq_map)
3529 			goto out_free_mq_map;
3530 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3531 	}
3532 
3533 	ret = blk_mq_update_queue_map(set);
3534 	if (ret)
3535 		goto out_free_mq_map;
3536 
3537 	ret = blk_mq_alloc_map_and_requests(set);
3538 	if (ret)
3539 		goto out_free_mq_map;
3540 
3541 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3542 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3543 
3544 		if (blk_mq_init_shared_sbitmap(set)) {
3545 			ret = -ENOMEM;
3546 			goto out_free_mq_rq_maps;
3547 		}
3548 	}
3549 
3550 	mutex_init(&set->tag_list_lock);
3551 	INIT_LIST_HEAD(&set->tag_list);
3552 
3553 	return 0;
3554 
3555 out_free_mq_rq_maps:
3556 	for (i = 0; i < set->nr_hw_queues; i++)
3557 		blk_mq_free_map_and_requests(set, i);
3558 out_free_mq_map:
3559 	for (i = 0; i < set->nr_maps; i++) {
3560 		kfree(set->map[i].mq_map);
3561 		set->map[i].mq_map = NULL;
3562 	}
3563 	kfree(set->tags);
3564 	set->tags = NULL;
3565 	return ret;
3566 }
3567 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3568 
3569 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)3570 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
3571 		const struct blk_mq_ops *ops, unsigned int queue_depth,
3572 		unsigned int set_flags)
3573 {
3574 	memset(set, 0, sizeof(*set));
3575 	set->ops = ops;
3576 	set->nr_hw_queues = 1;
3577 	set->nr_maps = 1;
3578 	set->queue_depth = queue_depth;
3579 	set->numa_node = NUMA_NO_NODE;
3580 	set->flags = set_flags;
3581 	return blk_mq_alloc_tag_set(set);
3582 }
3583 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
3584 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)3585 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3586 {
3587 	int i, j;
3588 
3589 	for (i = 0; i < set->nr_hw_queues; i++)
3590 		blk_mq_free_map_and_requests(set, i);
3591 
3592 	if (blk_mq_is_sbitmap_shared(set->flags))
3593 		blk_mq_exit_shared_sbitmap(set);
3594 
3595 	for (j = 0; j < set->nr_maps; j++) {
3596 		kfree(set->map[j].mq_map);
3597 		set->map[j].mq_map = NULL;
3598 	}
3599 
3600 	kfree(set->tags);
3601 	set->tags = NULL;
3602 }
3603 EXPORT_SYMBOL(blk_mq_free_tag_set);
3604 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)3605 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3606 {
3607 	struct blk_mq_tag_set *set = q->tag_set;
3608 	struct blk_mq_hw_ctx *hctx;
3609 	int i, ret;
3610 
3611 	if (!set)
3612 		return -EINVAL;
3613 
3614 	if (q->nr_requests == nr)
3615 		return 0;
3616 
3617 	blk_mq_freeze_queue(q);
3618 	blk_mq_quiesce_queue(q);
3619 
3620 	ret = 0;
3621 	queue_for_each_hw_ctx(q, hctx, i) {
3622 		if (!hctx->tags)
3623 			continue;
3624 		/*
3625 		 * If we're using an MQ scheduler, just update the scheduler
3626 		 * queue depth. This is similar to what the old code would do.
3627 		 */
3628 		if (!hctx->sched_tags) {
3629 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3630 							false);
3631 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3632 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3633 		} else {
3634 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3635 							nr, true);
3636 			if (blk_mq_is_sbitmap_shared(set->flags)) {
3637 				hctx->sched_tags->bitmap_tags =
3638 					&q->sched_bitmap_tags;
3639 				hctx->sched_tags->breserved_tags =
3640 					&q->sched_breserved_tags;
3641 			}
3642 		}
3643 		if (ret)
3644 			break;
3645 		if (q->elevator && q->elevator->type->ops.depth_updated)
3646 			q->elevator->type->ops.depth_updated(hctx);
3647 	}
3648 	if (!ret) {
3649 		q->nr_requests = nr;
3650 		if (q->elevator && blk_mq_is_sbitmap_shared(set->flags))
3651 			sbitmap_queue_resize(&q->sched_bitmap_tags,
3652 					     nr - set->reserved_tags);
3653 	}
3654 
3655 	blk_mq_unquiesce_queue(q);
3656 	blk_mq_unfreeze_queue(q);
3657 
3658 	return ret;
3659 }
3660 
3661 /*
3662  * request_queue and elevator_type pair.
3663  * It is just used by __blk_mq_update_nr_hw_queues to cache
3664  * the elevator_type associated with a request_queue.
3665  */
3666 struct blk_mq_qe_pair {
3667 	struct list_head node;
3668 	struct request_queue *q;
3669 	struct elevator_type *type;
3670 };
3671 
3672 /*
3673  * Cache the elevator_type in qe pair list and switch the
3674  * io scheduler to 'none'
3675  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)3676 static bool blk_mq_elv_switch_none(struct list_head *head,
3677 		struct request_queue *q)
3678 {
3679 	struct blk_mq_qe_pair *qe;
3680 
3681 	if (!q->elevator)
3682 		return true;
3683 
3684 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3685 	if (!qe)
3686 		return false;
3687 
3688 	INIT_LIST_HEAD(&qe->node);
3689 	qe->q = q;
3690 	qe->type = q->elevator->type;
3691 	list_add(&qe->node, head);
3692 
3693 	mutex_lock(&q->sysfs_lock);
3694 	/*
3695 	 * After elevator_switch_mq, the previous elevator_queue will be
3696 	 * released by elevator_release. The reference of the io scheduler
3697 	 * module get by elevator_get will also be put. So we need to get
3698 	 * a reference of the io scheduler module here to prevent it to be
3699 	 * removed.
3700 	 */
3701 	__module_get(qe->type->elevator_owner);
3702 	elevator_switch_mq(q, NULL);
3703 	mutex_unlock(&q->sysfs_lock);
3704 
3705 	return true;
3706 }
3707 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)3708 static void blk_mq_elv_switch_back(struct list_head *head,
3709 		struct request_queue *q)
3710 {
3711 	struct blk_mq_qe_pair *qe;
3712 	struct elevator_type *t = NULL;
3713 
3714 	list_for_each_entry(qe, head, node)
3715 		if (qe->q == q) {
3716 			t = qe->type;
3717 			break;
3718 		}
3719 
3720 	if (!t)
3721 		return;
3722 
3723 	list_del(&qe->node);
3724 	kfree(qe);
3725 
3726 	mutex_lock(&q->sysfs_lock);
3727 	elevator_switch_mq(q, t);
3728 	mutex_unlock(&q->sysfs_lock);
3729 }
3730 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3731 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3732 							int nr_hw_queues)
3733 {
3734 	struct request_queue *q;
3735 	LIST_HEAD(head);
3736 	int prev_nr_hw_queues;
3737 
3738 	lockdep_assert_held(&set->tag_list_lock);
3739 
3740 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3741 		nr_hw_queues = nr_cpu_ids;
3742 	if (nr_hw_queues < 1)
3743 		return;
3744 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3745 		return;
3746 
3747 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3748 		blk_mq_freeze_queue(q);
3749 	/*
3750 	 * Switch IO scheduler to 'none', cleaning up the data associated
3751 	 * with the previous scheduler. We will switch back once we are done
3752 	 * updating the new sw to hw queue mappings.
3753 	 */
3754 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3755 		if (!blk_mq_elv_switch_none(&head, q))
3756 			goto switch_back;
3757 
3758 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3759 		blk_mq_debugfs_unregister_hctxs(q);
3760 		blk_mq_sysfs_unregister(q);
3761 	}
3762 
3763 	prev_nr_hw_queues = set->nr_hw_queues;
3764 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3765 	    0)
3766 		goto reregister;
3767 
3768 	set->nr_hw_queues = nr_hw_queues;
3769 fallback:
3770 	blk_mq_update_queue_map(set);
3771 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3772 		blk_mq_realloc_hw_ctxs(set, q);
3773 		if (q->nr_hw_queues != set->nr_hw_queues) {
3774 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3775 					nr_hw_queues, prev_nr_hw_queues);
3776 			set->nr_hw_queues = prev_nr_hw_queues;
3777 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3778 			goto fallback;
3779 		}
3780 		blk_mq_map_swqueue(q);
3781 	}
3782 
3783 reregister:
3784 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3785 		blk_mq_sysfs_register(q);
3786 		blk_mq_debugfs_register_hctxs(q);
3787 	}
3788 
3789 switch_back:
3790 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3791 		blk_mq_elv_switch_back(&head, q);
3792 
3793 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3794 		blk_mq_unfreeze_queue(q);
3795 }
3796 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3797 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3798 {
3799 	mutex_lock(&set->tag_list_lock);
3800 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3801 	mutex_unlock(&set->tag_list_lock);
3802 }
3803 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3804 
3805 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3806 static bool blk_poll_stats_enable(struct request_queue *q)
3807 {
3808 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3809 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3810 		return true;
3811 	blk_stat_add_callback(q, q->poll_cb);
3812 	return false;
3813 }
3814 
blk_mq_poll_stats_start(struct request_queue * q)3815 static void blk_mq_poll_stats_start(struct request_queue *q)
3816 {
3817 	/*
3818 	 * We don't arm the callback if polling stats are not enabled or the
3819 	 * callback is already active.
3820 	 */
3821 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3822 	    blk_stat_is_active(q->poll_cb))
3823 		return;
3824 
3825 	blk_stat_activate_msecs(q->poll_cb, 100);
3826 }
3827 
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3828 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3829 {
3830 	struct request_queue *q = cb->data;
3831 	int bucket;
3832 
3833 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3834 		if (cb->stat[bucket].nr_samples)
3835 			q->poll_stat[bucket] = cb->stat[bucket];
3836 	}
3837 }
3838 
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)3839 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3840 				       struct request *rq)
3841 {
3842 	unsigned long ret = 0;
3843 	int bucket;
3844 
3845 	/*
3846 	 * If stats collection isn't on, don't sleep but turn it on for
3847 	 * future users
3848 	 */
3849 	if (!blk_poll_stats_enable(q))
3850 		return 0;
3851 
3852 	/*
3853 	 * As an optimistic guess, use half of the mean service time
3854 	 * for this type of request. We can (and should) make this smarter.
3855 	 * For instance, if the completion latencies are tight, we can
3856 	 * get closer than just half the mean. This is especially
3857 	 * important on devices where the completion latencies are longer
3858 	 * than ~10 usec. We do use the stats for the relevant IO size
3859 	 * if available which does lead to better estimates.
3860 	 */
3861 	bucket = blk_mq_poll_stats_bkt(rq);
3862 	if (bucket < 0)
3863 		return ret;
3864 
3865 	if (q->poll_stat[bucket].nr_samples)
3866 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3867 
3868 	return ret;
3869 }
3870 
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct request * rq)3871 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3872 				     struct request *rq)
3873 {
3874 	struct hrtimer_sleeper hs;
3875 	enum hrtimer_mode mode;
3876 	unsigned int nsecs;
3877 	ktime_t kt;
3878 
3879 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3880 		return false;
3881 
3882 	/*
3883 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3884 	 *
3885 	 *  0:	use half of prev avg
3886 	 * >0:	use this specific value
3887 	 */
3888 	if (q->poll_nsec > 0)
3889 		nsecs = q->poll_nsec;
3890 	else
3891 		nsecs = blk_mq_poll_nsecs(q, rq);
3892 
3893 	if (!nsecs)
3894 		return false;
3895 
3896 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3897 
3898 	/*
3899 	 * This will be replaced with the stats tracking code, using
3900 	 * 'avg_completion_time / 2' as the pre-sleep target.
3901 	 */
3902 	kt = nsecs;
3903 
3904 	mode = HRTIMER_MODE_REL;
3905 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3906 	hrtimer_set_expires(&hs.timer, kt);
3907 
3908 	do {
3909 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3910 			break;
3911 		set_current_state(TASK_UNINTERRUPTIBLE);
3912 		hrtimer_sleeper_start_expires(&hs, mode);
3913 		if (hs.task)
3914 			io_schedule();
3915 		hrtimer_cancel(&hs.timer);
3916 		mode = HRTIMER_MODE_ABS;
3917 	} while (hs.task && !signal_pending(current));
3918 
3919 	__set_current_state(TASK_RUNNING);
3920 	destroy_hrtimer_on_stack(&hs.timer);
3921 	return true;
3922 }
3923 
blk_mq_poll_hybrid(struct request_queue * q,struct blk_mq_hw_ctx * hctx,blk_qc_t cookie)3924 static bool blk_mq_poll_hybrid(struct request_queue *q,
3925 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3926 {
3927 	struct request *rq;
3928 
3929 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3930 		return false;
3931 
3932 	if (!blk_qc_t_is_internal(cookie))
3933 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3934 	else {
3935 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3936 		/*
3937 		 * With scheduling, if the request has completed, we'll
3938 		 * get a NULL return here, as we clear the sched tag when
3939 		 * that happens. The request still remains valid, like always,
3940 		 * so we should be safe with just the NULL check.
3941 		 */
3942 		if (!rq)
3943 			return false;
3944 	}
3945 
3946 	return blk_mq_poll_hybrid_sleep(q, rq);
3947 }
3948 
3949 /**
3950  * blk_poll - poll for IO completions
3951  * @q:  the queue
3952  * @cookie: cookie passed back at IO submission time
3953  * @spin: whether to spin for completions
3954  *
3955  * Description:
3956  *    Poll for completions on the passed in queue. Returns number of
3957  *    completed entries found. If @spin is true, then blk_poll will continue
3958  *    looping until at least one completion is found, unless the task is
3959  *    otherwise marked running (or we need to reschedule).
3960  */
blk_poll(struct request_queue * q,blk_qc_t cookie,bool spin)3961 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3962 {
3963 	struct blk_mq_hw_ctx *hctx;
3964 	unsigned int state;
3965 
3966 	if (!blk_qc_t_valid(cookie) ||
3967 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3968 		return 0;
3969 
3970 	if (current->plug)
3971 		blk_flush_plug_list(current->plug, false);
3972 
3973 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3974 
3975 	/*
3976 	 * If we sleep, have the caller restart the poll loop to reset
3977 	 * the state. Like for the other success return cases, the
3978 	 * caller is responsible for checking if the IO completed. If
3979 	 * the IO isn't complete, we'll get called again and will go
3980 	 * straight to the busy poll loop. If specified not to spin,
3981 	 * we also should not sleep.
3982 	 */
3983 	if (spin && blk_mq_poll_hybrid(q, hctx, cookie))
3984 		return 1;
3985 
3986 	hctx->poll_considered++;
3987 
3988 	state = get_current_state();
3989 	do {
3990 		int ret;
3991 
3992 		hctx->poll_invoked++;
3993 
3994 		ret = q->mq_ops->poll(hctx);
3995 		if (ret > 0) {
3996 			hctx->poll_success++;
3997 			__set_current_state(TASK_RUNNING);
3998 			return ret;
3999 		}
4000 
4001 		if (signal_pending_state(state, current))
4002 			__set_current_state(TASK_RUNNING);
4003 
4004 		if (task_is_running(current))
4005 			return 1;
4006 		if (ret < 0 || !spin)
4007 			break;
4008 		cpu_relax();
4009 	} while (!need_resched());
4010 
4011 	__set_current_state(TASK_RUNNING);
4012 	return 0;
4013 }
4014 EXPORT_SYMBOL_GPL(blk_poll);
4015 
blk_mq_rq_cpu(struct request * rq)4016 unsigned int blk_mq_rq_cpu(struct request *rq)
4017 {
4018 	return rq->mq_ctx->cpu;
4019 }
4020 EXPORT_SYMBOL(blk_mq_rq_cpu);
4021 
blk_mq_init(void)4022 static int __init blk_mq_init(void)
4023 {
4024 	int i;
4025 
4026 	for_each_possible_cpu(i)
4027 		init_llist_head(&per_cpu(blk_cpu_done, i));
4028 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4029 
4030 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4031 				  "block/softirq:dead", NULL,
4032 				  blk_softirq_cpu_dead);
4033 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4034 				blk_mq_hctx_notify_dead);
4035 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4036 				blk_mq_hctx_notify_online,
4037 				blk_mq_hctx_notify_offline);
4038 	return 0;
4039 }
4040 subsys_initcall(blk_mq_init);
4041