1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto-fallback: " fmt
11 
12 #include <crypto/skcipher.h>
13 #include <linux/blk-cgroup.h>
14 #include <linux/blk-crypto.h>
15 #include <linux/blkdev.h>
16 #include <linux/crypto.h>
17 #include <linux/keyslot-manager.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/random.h>
21 
22 #include "blk-crypto-internal.h"
23 
24 static unsigned int num_prealloc_bounce_pg = 32;
25 module_param(num_prealloc_bounce_pg, uint, 0);
26 MODULE_PARM_DESC(num_prealloc_bounce_pg,
27 		 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
28 
29 static unsigned int blk_crypto_num_keyslots = 100;
30 module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
31 MODULE_PARM_DESC(num_keyslots,
32 		 "Number of keyslots for the blk-crypto crypto API fallback");
33 
34 static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
35 module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
36 MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
37 		 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
38 
39 struct bio_fallback_crypt_ctx {
40 	struct bio_crypt_ctx crypt_ctx;
41 	/*
42 	 * Copy of the bvec_iter when this bio was submitted.
43 	 * We only want to en/decrypt the part of the bio as described by the
44 	 * bvec_iter upon submission because bio might be split before being
45 	 * resubmitted
46 	 */
47 	struct bvec_iter crypt_iter;
48 	union {
49 		struct {
50 			struct work_struct work;
51 			struct bio *bio;
52 		};
53 		struct {
54 			void *bi_private_orig;
55 			bio_end_io_t *bi_end_io_orig;
56 		};
57 	};
58 };
59 
60 static struct kmem_cache *bio_fallback_crypt_ctx_cache;
61 static mempool_t *bio_fallback_crypt_ctx_pool;
62 
63 /*
64  * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
65  * all of a mode's tfms when that mode starts being used. Since each mode may
66  * need all the keyslots at some point, each mode needs its own tfm for each
67  * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
68  * match the behavior of real inline encryption hardware (which only supports a
69  * single encryption context per keyslot), we only allow one tfm per keyslot to
70  * be used at a time - the rest of the unused tfms have their keys cleared.
71  */
72 static DEFINE_MUTEX(tfms_init_lock);
73 static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
74 
75 static struct blk_crypto_keyslot {
76 	enum blk_crypto_mode_num crypto_mode;
77 	struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
78 } *blk_crypto_keyslots;
79 
80 static struct blk_keyslot_manager blk_crypto_ksm;
81 static struct workqueue_struct *blk_crypto_wq;
82 static mempool_t *blk_crypto_bounce_page_pool;
83 static struct bio_set crypto_bio_split;
84 
85 /*
86  * This is the key we set when evicting a keyslot. This *should* be the all 0's
87  * key, but AES-XTS rejects that key, so we use some random bytes instead.
88  */
89 static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
90 
blk_crypto_evict_keyslot(unsigned int slot)91 static void blk_crypto_evict_keyslot(unsigned int slot)
92 {
93 	struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
94 	enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
95 	int err;
96 
97 	WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
98 
99 	/* Clear the key in the skcipher */
100 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
101 				     blk_crypto_modes[crypto_mode].keysize);
102 	WARN_ON(err);
103 	slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
104 }
105 
blk_crypto_keyslot_program(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key,unsigned int slot)106 static int blk_crypto_keyslot_program(struct blk_keyslot_manager *ksm,
107 				      const struct blk_crypto_key *key,
108 				      unsigned int slot)
109 {
110 	struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
111 	const enum blk_crypto_mode_num crypto_mode =
112 						key->crypto_cfg.crypto_mode;
113 	int err;
114 
115 	if (crypto_mode != slotp->crypto_mode &&
116 	    slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
117 		blk_crypto_evict_keyslot(slot);
118 
119 	slotp->crypto_mode = crypto_mode;
120 	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
121 				     key->size);
122 	if (err) {
123 		blk_crypto_evict_keyslot(slot);
124 		return err;
125 	}
126 	return 0;
127 }
128 
blk_crypto_keyslot_evict(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key,unsigned int slot)129 static int blk_crypto_keyslot_evict(struct blk_keyslot_manager *ksm,
130 				    const struct blk_crypto_key *key,
131 				    unsigned int slot)
132 {
133 	blk_crypto_evict_keyslot(slot);
134 	return 0;
135 }
136 
137 /*
138  * The crypto API fallback KSM ops - only used for a bio when it specifies a
139  * blk_crypto_key that was not supported by the device's inline encryption
140  * hardware.
141  */
142 static const struct blk_ksm_ll_ops blk_crypto_ksm_ll_ops = {
143 	.keyslot_program	= blk_crypto_keyslot_program,
144 	.keyslot_evict		= blk_crypto_keyslot_evict,
145 };
146 
blk_crypto_fallback_encrypt_endio(struct bio * enc_bio)147 static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
148 {
149 	struct bio *src_bio = enc_bio->bi_private;
150 	int i;
151 
152 	for (i = 0; i < enc_bio->bi_vcnt; i++)
153 		mempool_free(enc_bio->bi_io_vec[i].bv_page,
154 			     blk_crypto_bounce_page_pool);
155 
156 	src_bio->bi_status = enc_bio->bi_status;
157 
158 	bio_put(enc_bio);
159 	bio_endio(src_bio);
160 }
161 
blk_crypto_clone_bio(struct bio * bio_src)162 static struct bio *blk_crypto_clone_bio(struct bio *bio_src)
163 {
164 	struct bvec_iter iter;
165 	struct bio_vec bv;
166 	struct bio *bio;
167 
168 	bio = bio_kmalloc(GFP_NOIO, bio_segments(bio_src));
169 	if (!bio)
170 		return NULL;
171 	bio->bi_bdev		= bio_src->bi_bdev;
172 	if (bio_flagged(bio_src, BIO_REMAPPED))
173 		bio_set_flag(bio, BIO_REMAPPED);
174 	bio->bi_opf		= bio_src->bi_opf;
175 	bio->bi_ioprio		= bio_src->bi_ioprio;
176 	bio->bi_write_hint	= bio_src->bi_write_hint;
177 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
178 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
179 
180 	bio_for_each_segment(bv, bio_src, iter)
181 		bio->bi_io_vec[bio->bi_vcnt++] = bv;
182 
183 	bio_clone_blkg_association(bio, bio_src);
184 	blkcg_bio_issue_init(bio);
185 
186 	return bio;
187 }
188 
blk_crypto_alloc_cipher_req(struct blk_ksm_keyslot * slot,struct skcipher_request ** ciph_req_ret,struct crypto_wait * wait)189 static bool blk_crypto_alloc_cipher_req(struct blk_ksm_keyslot *slot,
190 					struct skcipher_request **ciph_req_ret,
191 					struct crypto_wait *wait)
192 {
193 	struct skcipher_request *ciph_req;
194 	const struct blk_crypto_keyslot *slotp;
195 	int keyslot_idx = blk_ksm_get_slot_idx(slot);
196 
197 	slotp = &blk_crypto_keyslots[keyslot_idx];
198 	ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
199 					  GFP_NOIO);
200 	if (!ciph_req)
201 		return false;
202 
203 	skcipher_request_set_callback(ciph_req,
204 				      CRYPTO_TFM_REQ_MAY_BACKLOG |
205 				      CRYPTO_TFM_REQ_MAY_SLEEP,
206 				      crypto_req_done, wait);
207 	*ciph_req_ret = ciph_req;
208 
209 	return true;
210 }
211 
blk_crypto_split_bio_if_needed(struct bio ** bio_ptr)212 static bool blk_crypto_split_bio_if_needed(struct bio **bio_ptr)
213 {
214 	struct bio *bio = *bio_ptr;
215 	unsigned int i = 0;
216 	unsigned int num_sectors = 0;
217 	struct bio_vec bv;
218 	struct bvec_iter iter;
219 
220 	bio_for_each_segment(bv, bio, iter) {
221 		num_sectors += bv.bv_len >> SECTOR_SHIFT;
222 		if (++i == BIO_MAX_VECS)
223 			break;
224 	}
225 	if (num_sectors < bio_sectors(bio)) {
226 		struct bio *split_bio;
227 
228 		split_bio = bio_split(bio, num_sectors, GFP_NOIO,
229 				      &crypto_bio_split);
230 		if (!split_bio) {
231 			bio->bi_status = BLK_STS_RESOURCE;
232 			return false;
233 		}
234 		bio_chain(split_bio, bio);
235 		submit_bio_noacct(bio);
236 		*bio_ptr = split_bio;
237 	}
238 
239 	return true;
240 }
241 
242 union blk_crypto_iv {
243 	__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
244 	u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
245 };
246 
blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],union blk_crypto_iv * iv)247 static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
248 				 union blk_crypto_iv *iv)
249 {
250 	int i;
251 
252 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
253 		iv->dun[i] = cpu_to_le64(dun[i]);
254 }
255 
256 /*
257  * The crypto API fallback's encryption routine.
258  * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
259  * and replace *bio_ptr with the bounce bio. May split input bio if it's too
260  * large. Returns true on success. Returns false and sets bio->bi_status on
261  * error.
262  */
blk_crypto_fallback_encrypt_bio(struct bio ** bio_ptr)263 static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
264 {
265 	struct bio *src_bio, *enc_bio;
266 	struct bio_crypt_ctx *bc;
267 	struct blk_ksm_keyslot *slot;
268 	int data_unit_size;
269 	struct skcipher_request *ciph_req = NULL;
270 	DECLARE_CRYPTO_WAIT(wait);
271 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
272 	struct scatterlist src, dst;
273 	union blk_crypto_iv iv;
274 	unsigned int i, j;
275 	bool ret = false;
276 	blk_status_t blk_st;
277 
278 	/* Split the bio if it's too big for single page bvec */
279 	if (!blk_crypto_split_bio_if_needed(bio_ptr))
280 		return false;
281 
282 	src_bio = *bio_ptr;
283 	bc = src_bio->bi_crypt_context;
284 	data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
285 
286 	/* Allocate bounce bio for encryption */
287 	enc_bio = blk_crypto_clone_bio(src_bio);
288 	if (!enc_bio) {
289 		src_bio->bi_status = BLK_STS_RESOURCE;
290 		return false;
291 	}
292 
293 	/*
294 	 * Use the crypto API fallback keyslot manager to get a crypto_skcipher
295 	 * for the algorithm and key specified for this bio.
296 	 */
297 	blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
298 	if (blk_st != BLK_STS_OK) {
299 		src_bio->bi_status = blk_st;
300 		goto out_put_enc_bio;
301 	}
302 
303 	/* and then allocate an skcipher_request for it */
304 	if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) {
305 		src_bio->bi_status = BLK_STS_RESOURCE;
306 		goto out_release_keyslot;
307 	}
308 
309 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
310 	sg_init_table(&src, 1);
311 	sg_init_table(&dst, 1);
312 
313 	skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
314 				   iv.bytes);
315 
316 	/* Encrypt each page in the bounce bio */
317 	for (i = 0; i < enc_bio->bi_vcnt; i++) {
318 		struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
319 		struct page *plaintext_page = enc_bvec->bv_page;
320 		struct page *ciphertext_page =
321 			mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
322 
323 		enc_bvec->bv_page = ciphertext_page;
324 
325 		if (!ciphertext_page) {
326 			src_bio->bi_status = BLK_STS_RESOURCE;
327 			goto out_free_bounce_pages;
328 		}
329 
330 		sg_set_page(&src, plaintext_page, data_unit_size,
331 			    enc_bvec->bv_offset);
332 		sg_set_page(&dst, ciphertext_page, data_unit_size,
333 			    enc_bvec->bv_offset);
334 
335 		/* Encrypt each data unit in this page */
336 		for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
337 			blk_crypto_dun_to_iv(curr_dun, &iv);
338 			if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
339 					    &wait)) {
340 				i++;
341 				src_bio->bi_status = BLK_STS_IOERR;
342 				goto out_free_bounce_pages;
343 			}
344 			bio_crypt_dun_increment(curr_dun, 1);
345 			src.offset += data_unit_size;
346 			dst.offset += data_unit_size;
347 		}
348 	}
349 
350 	enc_bio->bi_private = src_bio;
351 	enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
352 	*bio_ptr = enc_bio;
353 	ret = true;
354 
355 	enc_bio = NULL;
356 	goto out_free_ciph_req;
357 
358 out_free_bounce_pages:
359 	while (i > 0)
360 		mempool_free(enc_bio->bi_io_vec[--i].bv_page,
361 			     blk_crypto_bounce_page_pool);
362 out_free_ciph_req:
363 	skcipher_request_free(ciph_req);
364 out_release_keyslot:
365 	blk_ksm_put_slot(slot);
366 out_put_enc_bio:
367 	if (enc_bio)
368 		bio_put(enc_bio);
369 
370 	return ret;
371 }
372 
373 /*
374  * The crypto API fallback's main decryption routine.
375  * Decrypts input bio in place, and calls bio_endio on the bio.
376  */
blk_crypto_fallback_decrypt_bio(struct work_struct * work)377 static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
378 {
379 	struct bio_fallback_crypt_ctx *f_ctx =
380 		container_of(work, struct bio_fallback_crypt_ctx, work);
381 	struct bio *bio = f_ctx->bio;
382 	struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
383 	struct blk_ksm_keyslot *slot;
384 	struct skcipher_request *ciph_req = NULL;
385 	DECLARE_CRYPTO_WAIT(wait);
386 	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
387 	union blk_crypto_iv iv;
388 	struct scatterlist sg;
389 	struct bio_vec bv;
390 	struct bvec_iter iter;
391 	const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
392 	unsigned int i;
393 	blk_status_t blk_st;
394 
395 	/*
396 	 * Use the crypto API fallback keyslot manager to get a crypto_skcipher
397 	 * for the algorithm and key specified for this bio.
398 	 */
399 	blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot);
400 	if (blk_st != BLK_STS_OK) {
401 		bio->bi_status = blk_st;
402 		goto out_no_keyslot;
403 	}
404 
405 	/* and then allocate an skcipher_request for it */
406 	if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) {
407 		bio->bi_status = BLK_STS_RESOURCE;
408 		goto out;
409 	}
410 
411 	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
412 	sg_init_table(&sg, 1);
413 	skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
414 				   iv.bytes);
415 
416 	/* Decrypt each segment in the bio */
417 	__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
418 		struct page *page = bv.bv_page;
419 
420 		sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
421 
422 		/* Decrypt each data unit in the segment */
423 		for (i = 0; i < bv.bv_len; i += data_unit_size) {
424 			blk_crypto_dun_to_iv(curr_dun, &iv);
425 			if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
426 					    &wait)) {
427 				bio->bi_status = BLK_STS_IOERR;
428 				goto out;
429 			}
430 			bio_crypt_dun_increment(curr_dun, 1);
431 			sg.offset += data_unit_size;
432 		}
433 	}
434 
435 out:
436 	skcipher_request_free(ciph_req);
437 	blk_ksm_put_slot(slot);
438 out_no_keyslot:
439 	mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
440 	bio_endio(bio);
441 }
442 
443 /**
444  * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
445  *
446  * @bio: the bio to queue
447  *
448  * Restore bi_private and bi_end_io, and queue the bio for decryption into a
449  * workqueue, since this function will be called from an atomic context.
450  */
blk_crypto_fallback_decrypt_endio(struct bio * bio)451 static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
452 {
453 	struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
454 
455 	bio->bi_private = f_ctx->bi_private_orig;
456 	bio->bi_end_io = f_ctx->bi_end_io_orig;
457 
458 	/* If there was an IO error, don't queue for decrypt. */
459 	if (bio->bi_status) {
460 		mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
461 		bio_endio(bio);
462 		return;
463 	}
464 
465 	INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
466 	f_ctx->bio = bio;
467 	queue_work(blk_crypto_wq, &f_ctx->work);
468 }
469 
470 /**
471  * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
472  *
473  * @bio_ptr: pointer to the bio to prepare
474  *
475  * If bio is doing a WRITE operation, this splits the bio into two parts if it's
476  * too big (see blk_crypto_split_bio_if_needed). It then allocates a bounce bio
477  * for the first part, encrypts it, and update bio_ptr to point to the bounce
478  * bio.
479  *
480  * For a READ operation, we mark the bio for decryption by using bi_private and
481  * bi_end_io.
482  *
483  * In either case, this function will make the bio look like a regular bio (i.e.
484  * as if no encryption context was ever specified) for the purposes of the rest
485  * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
486  * currently supported together).
487  *
488  * Return: true on success. Sets bio->bi_status and returns false on error.
489  */
blk_crypto_fallback_bio_prep(struct bio ** bio_ptr)490 bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
491 {
492 	struct bio *bio = *bio_ptr;
493 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
494 	struct bio_fallback_crypt_ctx *f_ctx;
495 
496 	if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
497 		/* User didn't call blk_crypto_start_using_key() first */
498 		bio->bi_status = BLK_STS_IOERR;
499 		return false;
500 	}
501 
502 	if (!blk_ksm_crypto_cfg_supported(&blk_crypto_ksm,
503 					  &bc->bc_key->crypto_cfg)) {
504 		bio->bi_status = BLK_STS_NOTSUPP;
505 		return false;
506 	}
507 
508 	if (bio_data_dir(bio) == WRITE)
509 		return blk_crypto_fallback_encrypt_bio(bio_ptr);
510 
511 	/*
512 	 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
513 	 * bi_end_io appropriately to trigger decryption when the bio is ended.
514 	 */
515 	f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
516 	f_ctx->crypt_ctx = *bc;
517 	f_ctx->crypt_iter = bio->bi_iter;
518 	f_ctx->bi_private_orig = bio->bi_private;
519 	f_ctx->bi_end_io_orig = bio->bi_end_io;
520 	bio->bi_private = (void *)f_ctx;
521 	bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
522 	bio_crypt_free_ctx(bio);
523 
524 	return true;
525 }
526 
blk_crypto_fallback_evict_key(const struct blk_crypto_key * key)527 int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
528 {
529 	return blk_ksm_evict_key(&blk_crypto_ksm, key);
530 }
531 
532 static bool blk_crypto_fallback_inited;
blk_crypto_fallback_init(void)533 static int blk_crypto_fallback_init(void)
534 {
535 	int i;
536 	int err;
537 
538 	if (blk_crypto_fallback_inited)
539 		return 0;
540 
541 	prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
542 
543 	err = bioset_init(&crypto_bio_split, 64, 0, 0);
544 	if (err)
545 		goto out;
546 
547 	err = blk_ksm_init(&blk_crypto_ksm, blk_crypto_num_keyslots);
548 	if (err)
549 		goto fail_free_bioset;
550 	err = -ENOMEM;
551 
552 	blk_crypto_ksm.ksm_ll_ops = blk_crypto_ksm_ll_ops;
553 	blk_crypto_ksm.max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
554 
555 	/* All blk-crypto modes have a crypto API fallback. */
556 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
557 		blk_crypto_ksm.crypto_modes_supported[i] = 0xFFFFFFFF;
558 	blk_crypto_ksm.crypto_modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
559 
560 	blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
561 					WQ_UNBOUND | WQ_HIGHPRI |
562 					WQ_MEM_RECLAIM, num_online_cpus());
563 	if (!blk_crypto_wq)
564 		goto fail_free_ksm;
565 
566 	blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
567 				      sizeof(blk_crypto_keyslots[0]),
568 				      GFP_KERNEL);
569 	if (!blk_crypto_keyslots)
570 		goto fail_free_wq;
571 
572 	blk_crypto_bounce_page_pool =
573 		mempool_create_page_pool(num_prealloc_bounce_pg, 0);
574 	if (!blk_crypto_bounce_page_pool)
575 		goto fail_free_keyslots;
576 
577 	bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
578 	if (!bio_fallback_crypt_ctx_cache)
579 		goto fail_free_bounce_page_pool;
580 
581 	bio_fallback_crypt_ctx_pool =
582 		mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
583 					 bio_fallback_crypt_ctx_cache);
584 	if (!bio_fallback_crypt_ctx_pool)
585 		goto fail_free_crypt_ctx_cache;
586 
587 	blk_crypto_fallback_inited = true;
588 
589 	return 0;
590 fail_free_crypt_ctx_cache:
591 	kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
592 fail_free_bounce_page_pool:
593 	mempool_destroy(blk_crypto_bounce_page_pool);
594 fail_free_keyslots:
595 	kfree(blk_crypto_keyslots);
596 fail_free_wq:
597 	destroy_workqueue(blk_crypto_wq);
598 fail_free_ksm:
599 	blk_ksm_destroy(&blk_crypto_ksm);
600 fail_free_bioset:
601 	bioset_exit(&crypto_bio_split);
602 out:
603 	return err;
604 }
605 
606 /*
607  * Prepare blk-crypto-fallback for the specified crypto mode.
608  * Returns -ENOPKG if the needed crypto API support is missing.
609  */
blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)610 int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
611 {
612 	const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
613 	struct blk_crypto_keyslot *slotp;
614 	unsigned int i;
615 	int err = 0;
616 
617 	/*
618 	 * Fast path
619 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
620 	 * for each i are visible before we try to access them.
621 	 */
622 	if (likely(smp_load_acquire(&tfms_inited[mode_num])))
623 		return 0;
624 
625 	mutex_lock(&tfms_init_lock);
626 	if (tfms_inited[mode_num])
627 		goto out;
628 
629 	err = blk_crypto_fallback_init();
630 	if (err)
631 		goto out;
632 
633 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
634 		slotp = &blk_crypto_keyslots[i];
635 		slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
636 		if (IS_ERR(slotp->tfms[mode_num])) {
637 			err = PTR_ERR(slotp->tfms[mode_num]);
638 			if (err == -ENOENT) {
639 				pr_warn_once("Missing crypto API support for \"%s\"\n",
640 					     cipher_str);
641 				err = -ENOPKG;
642 			}
643 			slotp->tfms[mode_num] = NULL;
644 			goto out_free_tfms;
645 		}
646 
647 		crypto_skcipher_set_flags(slotp->tfms[mode_num],
648 					  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
649 	}
650 
651 	/*
652 	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
653 	 * for each i are visible before we set tfms_inited[mode_num].
654 	 */
655 	smp_store_release(&tfms_inited[mode_num], true);
656 	goto out;
657 
658 out_free_tfms:
659 	for (i = 0; i < blk_crypto_num_keyslots; i++) {
660 		slotp = &blk_crypto_keyslots[i];
661 		crypto_free_skcipher(slotp->tfms[mode_num]);
662 		slotp->tfms[mode_num] = NULL;
663 	}
664 out:
665 	mutex_unlock(&tfms_init_lock);
666 	return err;
667 }
668