1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/blk-pm.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47 
48 #include "blk.h"
49 #include "blk-mq.h"
50 #include "blk-mq-sched.h"
51 #include "blk-pm.h"
52 
53 struct dentry *blk_debugfs_root;
54 
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
61 
62 DEFINE_IDA(blk_queue_ida);
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84 
85 /**
86  * blk_queue_flag_clear - atomically clear a queue flag
87  * @flag: flag to be cleared
88  * @q: request queue
89  */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 	clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95 
96 /**
97  * blk_queue_flag_test_and_set - atomically test and set a queue flag
98  * @flag: flag to be set
99  * @q: request queue
100  *
101  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102  * the flag was already set.
103  */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 	return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109 
blk_rq_init(struct request_queue * q,struct request * rq)110 void blk_rq_init(struct request_queue *q, struct request *rq)
111 {
112 	memset(rq, 0, sizeof(*rq));
113 
114 	INIT_LIST_HEAD(&rq->queuelist);
115 	rq->q = q;
116 	rq->__sector = (sector_t) -1;
117 	INIT_HLIST_NODE(&rq->hash);
118 	RB_CLEAR_NODE(&rq->rb_node);
119 	rq->tag = BLK_MQ_NO_TAG;
120 	rq->internal_tag = BLK_MQ_NO_TAG;
121 	rq->start_time_ns = ktime_get_ns();
122 	rq->part = NULL;
123 	blk_crypto_rq_set_defaults(rq);
124 }
125 EXPORT_SYMBOL(blk_rq_init);
126 
127 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
128 static const char *const blk_op_name[] = {
129 	REQ_OP_NAME(READ),
130 	REQ_OP_NAME(WRITE),
131 	REQ_OP_NAME(FLUSH),
132 	REQ_OP_NAME(DISCARD),
133 	REQ_OP_NAME(SECURE_ERASE),
134 	REQ_OP_NAME(ZONE_RESET),
135 	REQ_OP_NAME(ZONE_RESET_ALL),
136 	REQ_OP_NAME(ZONE_OPEN),
137 	REQ_OP_NAME(ZONE_CLOSE),
138 	REQ_OP_NAME(ZONE_FINISH),
139 	REQ_OP_NAME(ZONE_APPEND),
140 	REQ_OP_NAME(WRITE_SAME),
141 	REQ_OP_NAME(WRITE_ZEROES),
142 	REQ_OP_NAME(DRV_IN),
143 	REQ_OP_NAME(DRV_OUT),
144 };
145 #undef REQ_OP_NAME
146 
147 /**
148  * blk_op_str - Return string XXX in the REQ_OP_XXX.
149  * @op: REQ_OP_XXX.
150  *
151  * Description: Centralize block layer function to convert REQ_OP_XXX into
152  * string format. Useful in the debugging and tracing bio or request. For
153  * invalid REQ_OP_XXX it returns string "UNKNOWN".
154  */
blk_op_str(unsigned int op)155 inline const char *blk_op_str(unsigned int op)
156 {
157 	const char *op_str = "UNKNOWN";
158 
159 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
160 		op_str = blk_op_name[op];
161 
162 	return op_str;
163 }
164 EXPORT_SYMBOL_GPL(blk_op_str);
165 
166 static const struct {
167 	int		errno;
168 	const char	*name;
169 } blk_errors[] = {
170 	[BLK_STS_OK]		= { 0,		"" },
171 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
172 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
173 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
174 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
175 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
176 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
177 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
178 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
179 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
180 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
181 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
182 
183 	/* device mapper special case, should not leak out: */
184 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
185 
186 	/* zone device specific errors */
187 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
188 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
189 
190 	/* everything else not covered above: */
191 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
192 };
193 
errno_to_blk_status(int errno)194 blk_status_t errno_to_blk_status(int errno)
195 {
196 	int i;
197 
198 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
199 		if (blk_errors[i].errno == errno)
200 			return (__force blk_status_t)i;
201 	}
202 
203 	return BLK_STS_IOERR;
204 }
205 EXPORT_SYMBOL_GPL(errno_to_blk_status);
206 
blk_status_to_errno(blk_status_t status)207 int blk_status_to_errno(blk_status_t status)
208 {
209 	int idx = (__force int)status;
210 
211 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
212 		return -EIO;
213 	return blk_errors[idx].errno;
214 }
215 EXPORT_SYMBOL_GPL(blk_status_to_errno);
216 
print_req_error(struct request * req,blk_status_t status,const char * caller)217 static void print_req_error(struct request *req, blk_status_t status,
218 		const char *caller)
219 {
220 	int idx = (__force int)status;
221 
222 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
223 		return;
224 
225 	printk_ratelimited(KERN_ERR
226 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
227 		"phys_seg %u prio class %u\n",
228 		caller, blk_errors[idx].name,
229 		req->rq_disk ? req->rq_disk->disk_name : "?",
230 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
231 		req->cmd_flags & ~REQ_OP_MASK,
232 		req->nr_phys_segments,
233 		IOPRIO_PRIO_CLASS(req->ioprio));
234 }
235 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)236 static void req_bio_endio(struct request *rq, struct bio *bio,
237 			  unsigned int nbytes, blk_status_t error)
238 {
239 	if (error)
240 		bio->bi_status = error;
241 
242 	if (unlikely(rq->rq_flags & RQF_QUIET))
243 		bio_set_flag(bio, BIO_QUIET);
244 
245 	bio_advance(bio, nbytes);
246 
247 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
248 		/*
249 		 * Partial zone append completions cannot be supported as the
250 		 * BIO fragments may end up not being written sequentially.
251 		 */
252 		if (bio->bi_iter.bi_size)
253 			bio->bi_status = BLK_STS_IOERR;
254 		else
255 			bio->bi_iter.bi_sector = rq->__sector;
256 	}
257 
258 	/* don't actually finish bio if it's part of flush sequence */
259 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
260 		bio_endio(bio);
261 }
262 
blk_dump_rq_flags(struct request * rq,char * msg)263 void blk_dump_rq_flags(struct request *rq, char *msg)
264 {
265 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
266 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
267 		(unsigned long long) rq->cmd_flags);
268 
269 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
270 	       (unsigned long long)blk_rq_pos(rq),
271 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
272 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
273 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
274 }
275 EXPORT_SYMBOL(blk_dump_rq_flags);
276 
277 /**
278  * blk_sync_queue - cancel any pending callbacks on a queue
279  * @q: the queue
280  *
281  * Description:
282  *     The block layer may perform asynchronous callback activity
283  *     on a queue, such as calling the unplug function after a timeout.
284  *     A block device may call blk_sync_queue to ensure that any
285  *     such activity is cancelled, thus allowing it to release resources
286  *     that the callbacks might use. The caller must already have made sure
287  *     that its ->submit_bio will not re-add plugging prior to calling
288  *     this function.
289  *
290  *     This function does not cancel any asynchronous activity arising
291  *     out of elevator or throttling code. That would require elevator_exit()
292  *     and blkcg_exit_queue() to be called with queue lock initialized.
293  *
294  */
blk_sync_queue(struct request_queue * q)295 void blk_sync_queue(struct request_queue *q)
296 {
297 	del_timer_sync(&q->timeout);
298 	cancel_work_sync(&q->timeout_work);
299 }
300 EXPORT_SYMBOL(blk_sync_queue);
301 
302 /**
303  * blk_set_pm_only - increment pm_only counter
304  * @q: request queue pointer
305  */
blk_set_pm_only(struct request_queue * q)306 void blk_set_pm_only(struct request_queue *q)
307 {
308 	atomic_inc(&q->pm_only);
309 }
310 EXPORT_SYMBOL_GPL(blk_set_pm_only);
311 
blk_clear_pm_only(struct request_queue * q)312 void blk_clear_pm_only(struct request_queue *q)
313 {
314 	int pm_only;
315 
316 	pm_only = atomic_dec_return(&q->pm_only);
317 	WARN_ON_ONCE(pm_only < 0);
318 	if (pm_only == 0)
319 		wake_up_all(&q->mq_freeze_wq);
320 }
321 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
322 
323 /**
324  * blk_put_queue - decrement the request_queue refcount
325  * @q: the request_queue structure to decrement the refcount for
326  *
327  * Decrements the refcount of the request_queue kobject. When this reaches 0
328  * we'll have blk_release_queue() called.
329  *
330  * Context: Any context, but the last reference must not be dropped from
331  *          atomic context.
332  */
blk_put_queue(struct request_queue * q)333 void blk_put_queue(struct request_queue *q)
334 {
335 	kobject_put(&q->kobj);
336 }
337 EXPORT_SYMBOL(blk_put_queue);
338 
blk_queue_start_drain(struct request_queue * q)339 void blk_queue_start_drain(struct request_queue *q)
340 {
341 	/*
342 	 * When queue DYING flag is set, we need to block new req
343 	 * entering queue, so we call blk_freeze_queue_start() to
344 	 * prevent I/O from crossing blk_queue_enter().
345 	 */
346 	blk_freeze_queue_start(q);
347 	if (queue_is_mq(q))
348 		blk_mq_wake_waiters(q);
349 	/* Make blk_queue_enter() reexamine the DYING flag. */
350 	wake_up_all(&q->mq_freeze_wq);
351 }
352 
blk_set_queue_dying(struct request_queue * q)353 void blk_set_queue_dying(struct request_queue *q)
354 {
355 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
356 	blk_queue_start_drain(q);
357 }
358 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
359 
360 /**
361  * blk_cleanup_queue - shutdown a request queue
362  * @q: request queue to shutdown
363  *
364  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
365  * put it.  All future requests will be failed immediately with -ENODEV.
366  *
367  * Context: can sleep
368  */
blk_cleanup_queue(struct request_queue * q)369 void blk_cleanup_queue(struct request_queue *q)
370 {
371 	/* cannot be called from atomic context */
372 	might_sleep();
373 
374 	WARN_ON_ONCE(blk_queue_registered(q));
375 
376 	/* mark @q DYING, no new request or merges will be allowed afterwards */
377 	blk_set_queue_dying(q);
378 
379 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
380 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
381 
382 	/*
383 	 * Drain all requests queued before DYING marking. Set DEAD flag to
384 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
385 	 * after draining finished.
386 	 */
387 	blk_freeze_queue(q);
388 
389 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
390 
391 	blk_sync_queue(q);
392 	if (queue_is_mq(q))
393 		blk_mq_exit_queue(q);
394 
395 	/*
396 	 * In theory, request pool of sched_tags belongs to request queue.
397 	 * However, the current implementation requires tag_set for freeing
398 	 * requests, so free the pool now.
399 	 *
400 	 * Queue has become frozen, there can't be any in-queue requests, so
401 	 * it is safe to free requests now.
402 	 */
403 	mutex_lock(&q->sysfs_lock);
404 	if (q->elevator)
405 		blk_mq_sched_free_requests(q);
406 	mutex_unlock(&q->sysfs_lock);
407 
408 	percpu_ref_exit(&q->q_usage_counter);
409 
410 	/* @q is and will stay empty, shutdown and put */
411 	blk_put_queue(q);
412 }
413 EXPORT_SYMBOL(blk_cleanup_queue);
414 
blk_try_enter_queue(struct request_queue * q,bool pm)415 static bool blk_try_enter_queue(struct request_queue *q, bool pm)
416 {
417 	rcu_read_lock();
418 	if (!percpu_ref_tryget_live(&q->q_usage_counter))
419 		goto fail;
420 
421 	/*
422 	 * The code that increments the pm_only counter must ensure that the
423 	 * counter is globally visible before the queue is unfrozen.
424 	 */
425 	if (blk_queue_pm_only(q) &&
426 	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
427 		goto fail_put;
428 
429 	rcu_read_unlock();
430 	return true;
431 
432 fail_put:
433 	percpu_ref_put(&q->q_usage_counter);
434 fail:
435 	rcu_read_unlock();
436 	return false;
437 }
438 
439 /**
440  * blk_queue_enter() - try to increase q->q_usage_counter
441  * @q: request queue pointer
442  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
443  */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)444 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
445 {
446 	const bool pm = flags & BLK_MQ_REQ_PM;
447 
448 	while (!blk_try_enter_queue(q, pm)) {
449 		if (flags & BLK_MQ_REQ_NOWAIT)
450 			return -EBUSY;
451 
452 		/*
453 		 * read pair of barrier in blk_freeze_queue_start(), we need to
454 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
455 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
456 		 * following wait may never return if the two reads are
457 		 * reordered.
458 		 */
459 		smp_rmb();
460 		wait_event(q->mq_freeze_wq,
461 			   (!q->mq_freeze_depth &&
462 			    blk_pm_resume_queue(pm, q)) ||
463 			   blk_queue_dying(q));
464 		if (blk_queue_dying(q))
465 			return -ENODEV;
466 	}
467 
468 	return 0;
469 }
470 
bio_queue_enter(struct bio * bio)471 static inline int bio_queue_enter(struct bio *bio)
472 {
473 	struct gendisk *disk = bio->bi_bdev->bd_disk;
474 	struct request_queue *q = disk->queue;
475 
476 	while (!blk_try_enter_queue(q, false)) {
477 		if (bio->bi_opf & REQ_NOWAIT) {
478 			if (test_bit(GD_DEAD, &disk->state))
479 				goto dead;
480 			bio_wouldblock_error(bio);
481 			return -EBUSY;
482 		}
483 
484 		/*
485 		 * read pair of barrier in blk_freeze_queue_start(), we need to
486 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
487 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
488 		 * following wait may never return if the two reads are
489 		 * reordered.
490 		 */
491 		smp_rmb();
492 		wait_event(q->mq_freeze_wq,
493 			   (!q->mq_freeze_depth &&
494 			    blk_pm_resume_queue(false, q)) ||
495 			   test_bit(GD_DEAD, &disk->state));
496 		if (test_bit(GD_DEAD, &disk->state))
497 			goto dead;
498 	}
499 
500 	return 0;
501 dead:
502 	bio_io_error(bio);
503 	return -ENODEV;
504 }
505 
blk_queue_exit(struct request_queue * q)506 void blk_queue_exit(struct request_queue *q)
507 {
508 	percpu_ref_put(&q->q_usage_counter);
509 }
510 
blk_queue_usage_counter_release(struct percpu_ref * ref)511 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
512 {
513 	struct request_queue *q =
514 		container_of(ref, struct request_queue, q_usage_counter);
515 
516 	wake_up_all(&q->mq_freeze_wq);
517 }
518 
blk_rq_timed_out_timer(struct timer_list * t)519 static void blk_rq_timed_out_timer(struct timer_list *t)
520 {
521 	struct request_queue *q = from_timer(q, t, timeout);
522 
523 	kblockd_schedule_work(&q->timeout_work);
524 }
525 
blk_timeout_work(struct work_struct * work)526 static void blk_timeout_work(struct work_struct *work)
527 {
528 }
529 
blk_alloc_queue(int node_id)530 struct request_queue *blk_alloc_queue(int node_id)
531 {
532 	struct request_queue *q;
533 	int ret;
534 
535 	q = kmem_cache_alloc_node(blk_requestq_cachep,
536 				GFP_KERNEL | __GFP_ZERO, node_id);
537 	if (!q)
538 		return NULL;
539 
540 	q->last_merge = NULL;
541 
542 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
543 	if (q->id < 0)
544 		goto fail_q;
545 
546 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
547 	if (ret)
548 		goto fail_id;
549 
550 	q->stats = blk_alloc_queue_stats();
551 	if (!q->stats)
552 		goto fail_split;
553 
554 	q->node = node_id;
555 
556 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
557 
558 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
559 	INIT_WORK(&q->timeout_work, blk_timeout_work);
560 	INIT_LIST_HEAD(&q->icq_list);
561 #ifdef CONFIG_BLK_CGROUP
562 	INIT_LIST_HEAD(&q->blkg_list);
563 #endif
564 
565 	kobject_init(&q->kobj, &blk_queue_ktype);
566 
567 	mutex_init(&q->debugfs_mutex);
568 	mutex_init(&q->sysfs_lock);
569 	mutex_init(&q->sysfs_dir_lock);
570 	spin_lock_init(&q->queue_lock);
571 
572 	init_waitqueue_head(&q->mq_freeze_wq);
573 	mutex_init(&q->mq_freeze_lock);
574 
575 	/*
576 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
577 	 * See blk_register_queue() for details.
578 	 */
579 	if (percpu_ref_init(&q->q_usage_counter,
580 				blk_queue_usage_counter_release,
581 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
582 		goto fail_stats;
583 
584 	if (blkcg_init_queue(q))
585 		goto fail_ref;
586 
587 	blk_queue_dma_alignment(q, 511);
588 	blk_set_default_limits(&q->limits);
589 	q->nr_requests = BLKDEV_MAX_RQ;
590 
591 	return q;
592 
593 fail_ref:
594 	percpu_ref_exit(&q->q_usage_counter);
595 fail_stats:
596 	blk_free_queue_stats(q->stats);
597 fail_split:
598 	bioset_exit(&q->bio_split);
599 fail_id:
600 	ida_simple_remove(&blk_queue_ida, q->id);
601 fail_q:
602 	kmem_cache_free(blk_requestq_cachep, q);
603 	return NULL;
604 }
605 
606 /**
607  * blk_get_queue - increment the request_queue refcount
608  * @q: the request_queue structure to increment the refcount for
609  *
610  * Increment the refcount of the request_queue kobject.
611  *
612  * Context: Any context.
613  */
blk_get_queue(struct request_queue * q)614 bool blk_get_queue(struct request_queue *q)
615 {
616 	if (likely(!blk_queue_dying(q))) {
617 		__blk_get_queue(q);
618 		return true;
619 	}
620 
621 	return false;
622 }
623 EXPORT_SYMBOL(blk_get_queue);
624 
625 /**
626  * blk_get_request - allocate a request
627  * @q: request queue to allocate a request for
628  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
629  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
630  */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)631 struct request *blk_get_request(struct request_queue *q, unsigned int op,
632 				blk_mq_req_flags_t flags)
633 {
634 	struct request *req;
635 
636 	WARN_ON_ONCE(op & REQ_NOWAIT);
637 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
638 
639 	req = blk_mq_alloc_request(q, op, flags);
640 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
641 		q->mq_ops->initialize_rq_fn(req);
642 
643 	return req;
644 }
645 EXPORT_SYMBOL(blk_get_request);
646 
blk_put_request(struct request * req)647 void blk_put_request(struct request *req)
648 {
649 	blk_mq_free_request(req);
650 }
651 EXPORT_SYMBOL(blk_put_request);
652 
handle_bad_sector(struct bio * bio,sector_t maxsector)653 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
654 {
655 	char b[BDEVNAME_SIZE];
656 
657 	pr_info_ratelimited("attempt to access beyond end of device\n"
658 			    "%s: rw=%d, want=%llu, limit=%llu\n",
659 			    bio_devname(bio, b), bio->bi_opf,
660 			    bio_end_sector(bio), maxsector);
661 }
662 
663 #ifdef CONFIG_FAIL_MAKE_REQUEST
664 
665 static DECLARE_FAULT_ATTR(fail_make_request);
666 
setup_fail_make_request(char * str)667 static int __init setup_fail_make_request(char *str)
668 {
669 	return setup_fault_attr(&fail_make_request, str);
670 }
671 __setup("fail_make_request=", setup_fail_make_request);
672 
should_fail_request(struct block_device * part,unsigned int bytes)673 static bool should_fail_request(struct block_device *part, unsigned int bytes)
674 {
675 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
676 }
677 
fail_make_request_debugfs(void)678 static int __init fail_make_request_debugfs(void)
679 {
680 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
681 						NULL, &fail_make_request);
682 
683 	return PTR_ERR_OR_ZERO(dir);
684 }
685 
686 late_initcall(fail_make_request_debugfs);
687 
688 #else /* CONFIG_FAIL_MAKE_REQUEST */
689 
should_fail_request(struct block_device * part,unsigned int bytes)690 static inline bool should_fail_request(struct block_device *part,
691 					unsigned int bytes)
692 {
693 	return false;
694 }
695 
696 #endif /* CONFIG_FAIL_MAKE_REQUEST */
697 
bio_check_ro(struct bio * bio)698 static inline bool bio_check_ro(struct bio *bio)
699 {
700 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
701 		char b[BDEVNAME_SIZE];
702 
703 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
704 			return false;
705 
706 		WARN_ONCE(1,
707 		       "Trying to write to read-only block-device %s (partno %d)\n",
708 			bio_devname(bio, b), bio->bi_bdev->bd_partno);
709 		/* Older lvm-tools actually trigger this */
710 		return false;
711 	}
712 
713 	return false;
714 }
715 
should_fail_bio(struct bio * bio)716 static noinline int should_fail_bio(struct bio *bio)
717 {
718 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
719 		return -EIO;
720 	return 0;
721 }
722 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
723 
724 /*
725  * Check whether this bio extends beyond the end of the device or partition.
726  * This may well happen - the kernel calls bread() without checking the size of
727  * the device, e.g., when mounting a file system.
728  */
bio_check_eod(struct bio * bio)729 static inline int bio_check_eod(struct bio *bio)
730 {
731 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
732 	unsigned int nr_sectors = bio_sectors(bio);
733 
734 	if (nr_sectors && maxsector &&
735 	    (nr_sectors > maxsector ||
736 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
737 		handle_bad_sector(bio, maxsector);
738 		return -EIO;
739 	}
740 	return 0;
741 }
742 
743 /*
744  * Remap block n of partition p to block n+start(p) of the disk.
745  */
blk_partition_remap(struct bio * bio)746 static int blk_partition_remap(struct bio *bio)
747 {
748 	struct block_device *p = bio->bi_bdev;
749 
750 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
751 		return -EIO;
752 	if (bio_sectors(bio)) {
753 		bio->bi_iter.bi_sector += p->bd_start_sect;
754 		trace_block_bio_remap(bio, p->bd_dev,
755 				      bio->bi_iter.bi_sector -
756 				      p->bd_start_sect);
757 	}
758 	bio_set_flag(bio, BIO_REMAPPED);
759 	return 0;
760 }
761 
762 /*
763  * Check write append to a zoned block device.
764  */
blk_check_zone_append(struct request_queue * q,struct bio * bio)765 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
766 						 struct bio *bio)
767 {
768 	sector_t pos = bio->bi_iter.bi_sector;
769 	int nr_sectors = bio_sectors(bio);
770 
771 	/* Only applicable to zoned block devices */
772 	if (!blk_queue_is_zoned(q))
773 		return BLK_STS_NOTSUPP;
774 
775 	/* The bio sector must point to the start of a sequential zone */
776 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
777 	    !blk_queue_zone_is_seq(q, pos))
778 		return BLK_STS_IOERR;
779 
780 	/*
781 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
782 	 * split and could result in non-contiguous sectors being written in
783 	 * different zones.
784 	 */
785 	if (nr_sectors > q->limits.chunk_sectors)
786 		return BLK_STS_IOERR;
787 
788 	/* Make sure the BIO is small enough and will not get split */
789 	if (nr_sectors > q->limits.max_zone_append_sectors)
790 		return BLK_STS_IOERR;
791 
792 	bio->bi_opf |= REQ_NOMERGE;
793 
794 	return BLK_STS_OK;
795 }
796 
submit_bio_checks(struct bio * bio)797 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
798 {
799 	struct block_device *bdev = bio->bi_bdev;
800 	struct request_queue *q = bdev->bd_disk->queue;
801 	blk_status_t status = BLK_STS_IOERR;
802 	struct blk_plug *plug;
803 
804 	might_sleep();
805 
806 	plug = blk_mq_plug(q, bio);
807 	if (plug && plug->nowait)
808 		bio->bi_opf |= REQ_NOWAIT;
809 
810 	/*
811 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
812 	 * if queue does not support NOWAIT.
813 	 */
814 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
815 		goto not_supported;
816 
817 	if (should_fail_bio(bio))
818 		goto end_io;
819 	if (unlikely(bio_check_ro(bio)))
820 		goto end_io;
821 	if (!bio_flagged(bio, BIO_REMAPPED)) {
822 		if (unlikely(bio_check_eod(bio)))
823 			goto end_io;
824 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
825 			goto end_io;
826 	}
827 
828 	/*
829 	 * Filter flush bio's early so that bio based drivers without flush
830 	 * support don't have to worry about them.
831 	 */
832 	if (op_is_flush(bio->bi_opf) &&
833 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
834 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
835 		if (!bio_sectors(bio)) {
836 			status = BLK_STS_OK;
837 			goto end_io;
838 		}
839 	}
840 
841 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
842 		bio_clear_hipri(bio);
843 
844 	switch (bio_op(bio)) {
845 	case REQ_OP_DISCARD:
846 		if (!blk_queue_discard(q))
847 			goto not_supported;
848 		break;
849 	case REQ_OP_SECURE_ERASE:
850 		if (!blk_queue_secure_erase(q))
851 			goto not_supported;
852 		break;
853 	case REQ_OP_WRITE_SAME:
854 		if (!q->limits.max_write_same_sectors)
855 			goto not_supported;
856 		break;
857 	case REQ_OP_ZONE_APPEND:
858 		status = blk_check_zone_append(q, bio);
859 		if (status != BLK_STS_OK)
860 			goto end_io;
861 		break;
862 	case REQ_OP_ZONE_RESET:
863 	case REQ_OP_ZONE_OPEN:
864 	case REQ_OP_ZONE_CLOSE:
865 	case REQ_OP_ZONE_FINISH:
866 		if (!blk_queue_is_zoned(q))
867 			goto not_supported;
868 		break;
869 	case REQ_OP_ZONE_RESET_ALL:
870 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
871 			goto not_supported;
872 		break;
873 	case REQ_OP_WRITE_ZEROES:
874 		if (!q->limits.max_write_zeroes_sectors)
875 			goto not_supported;
876 		break;
877 	default:
878 		break;
879 	}
880 
881 	/*
882 	 * Various block parts want %current->io_context, so allocate it up
883 	 * front rather than dealing with lots of pain to allocate it only
884 	 * where needed. This may fail and the block layer knows how to live
885 	 * with it.
886 	 */
887 	if (unlikely(!current->io_context))
888 		create_task_io_context(current, GFP_ATOMIC, q->node);
889 
890 	if (blk_throtl_bio(bio)) {
891 		blkcg_bio_issue_init(bio);
892 		return false;
893 	}
894 
895 	blk_cgroup_bio_start(bio);
896 	blkcg_bio_issue_init(bio);
897 
898 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
899 		trace_block_bio_queue(bio);
900 		/* Now that enqueuing has been traced, we need to trace
901 		 * completion as well.
902 		 */
903 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
904 	}
905 	return true;
906 
907 not_supported:
908 	status = BLK_STS_NOTSUPP;
909 end_io:
910 	bio->bi_status = status;
911 	bio_endio(bio);
912 	return false;
913 }
914 
__submit_bio(struct bio * bio)915 static blk_qc_t __submit_bio(struct bio *bio)
916 {
917 	struct gendisk *disk = bio->bi_bdev->bd_disk;
918 	blk_qc_t ret = BLK_QC_T_NONE;
919 
920 	if (unlikely(bio_queue_enter(bio) != 0))
921 		return BLK_QC_T_NONE;
922 
923 	if (!submit_bio_checks(bio) || !blk_crypto_bio_prep(&bio))
924 		goto queue_exit;
925 	if (disk->fops->submit_bio) {
926 		ret = disk->fops->submit_bio(bio);
927 		goto queue_exit;
928 	}
929 	return blk_mq_submit_bio(bio);
930 
931 queue_exit:
932 	blk_queue_exit(disk->queue);
933 	return ret;
934 }
935 
936 /*
937  * The loop in this function may be a bit non-obvious, and so deserves some
938  * explanation:
939  *
940  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
941  *    that), so we have a list with a single bio.
942  *  - We pretend that we have just taken it off a longer list, so we assign
943  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
944  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
945  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
946  *    non-NULL value in bio_list and re-enter the loop from the top.
947  *  - In this case we really did just take the bio of the top of the list (no
948  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
949  *    again.
950  *
951  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
952  * bio_list_on_stack[1] contains bios that were submitted before the current
953  *	->submit_bio_bio, but that haven't been processed yet.
954  */
__submit_bio_noacct(struct bio * bio)955 static blk_qc_t __submit_bio_noacct(struct bio *bio)
956 {
957 	struct bio_list bio_list_on_stack[2];
958 	blk_qc_t ret = BLK_QC_T_NONE;
959 
960 	BUG_ON(bio->bi_next);
961 
962 	bio_list_init(&bio_list_on_stack[0]);
963 	current->bio_list = bio_list_on_stack;
964 
965 	do {
966 		struct request_queue *q = bio->bi_bdev->bd_disk->queue;
967 		struct bio_list lower, same;
968 
969 		/*
970 		 * Create a fresh bio_list for all subordinate requests.
971 		 */
972 		bio_list_on_stack[1] = bio_list_on_stack[0];
973 		bio_list_init(&bio_list_on_stack[0]);
974 
975 		ret = __submit_bio(bio);
976 
977 		/*
978 		 * Sort new bios into those for a lower level and those for the
979 		 * same level.
980 		 */
981 		bio_list_init(&lower);
982 		bio_list_init(&same);
983 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
984 			if (q == bio->bi_bdev->bd_disk->queue)
985 				bio_list_add(&same, bio);
986 			else
987 				bio_list_add(&lower, bio);
988 
989 		/*
990 		 * Now assemble so we handle the lowest level first.
991 		 */
992 		bio_list_merge(&bio_list_on_stack[0], &lower);
993 		bio_list_merge(&bio_list_on_stack[0], &same);
994 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
995 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
996 
997 	current->bio_list = NULL;
998 	return ret;
999 }
1000 
__submit_bio_noacct_mq(struct bio * bio)1001 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1002 {
1003 	struct bio_list bio_list[2] = { };
1004 	blk_qc_t ret;
1005 
1006 	current->bio_list = bio_list;
1007 
1008 	do {
1009 		ret = __submit_bio(bio);
1010 	} while ((bio = bio_list_pop(&bio_list[0])));
1011 
1012 	current->bio_list = NULL;
1013 	return ret;
1014 }
1015 
1016 /**
1017  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1018  * @bio:  The bio describing the location in memory and on the device.
1019  *
1020  * This is a version of submit_bio() that shall only be used for I/O that is
1021  * resubmitted to lower level drivers by stacking block drivers.  All file
1022  * systems and other upper level users of the block layer should use
1023  * submit_bio() instead.
1024  */
submit_bio_noacct(struct bio * bio)1025 blk_qc_t submit_bio_noacct(struct bio *bio)
1026 {
1027 	/*
1028 	 * We only want one ->submit_bio to be active at a time, else stack
1029 	 * usage with stacked devices could be a problem.  Use current->bio_list
1030 	 * to collect a list of requests submited by a ->submit_bio method while
1031 	 * it is active, and then process them after it returned.
1032 	 */
1033 	if (current->bio_list) {
1034 		bio_list_add(&current->bio_list[0], bio);
1035 		return BLK_QC_T_NONE;
1036 	}
1037 
1038 	if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1039 		return __submit_bio_noacct_mq(bio);
1040 	return __submit_bio_noacct(bio);
1041 }
1042 EXPORT_SYMBOL(submit_bio_noacct);
1043 
1044 /**
1045  * submit_bio - submit a bio to the block device layer for I/O
1046  * @bio: The &struct bio which describes the I/O
1047  *
1048  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1049  * fully set up &struct bio that describes the I/O that needs to be done.  The
1050  * bio will be send to the device described by the bi_bdev field.
1051  *
1052  * The success/failure status of the request, along with notification of
1053  * completion, is delivered asynchronously through the ->bi_end_io() callback
1054  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1055  * been called.
1056  */
submit_bio(struct bio * bio)1057 blk_qc_t submit_bio(struct bio *bio)
1058 {
1059 	if (blkcg_punt_bio_submit(bio))
1060 		return BLK_QC_T_NONE;
1061 
1062 	/*
1063 	 * If it's a regular read/write or a barrier with data attached,
1064 	 * go through the normal accounting stuff before submission.
1065 	 */
1066 	if (bio_has_data(bio)) {
1067 		unsigned int count;
1068 
1069 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1070 			count = queue_logical_block_size(
1071 					bio->bi_bdev->bd_disk->queue) >> 9;
1072 		else
1073 			count = bio_sectors(bio);
1074 
1075 		if (op_is_write(bio_op(bio))) {
1076 			count_vm_events(PGPGOUT, count);
1077 		} else {
1078 			task_io_account_read(bio->bi_iter.bi_size);
1079 			count_vm_events(PGPGIN, count);
1080 		}
1081 	}
1082 
1083 	/*
1084 	 * If we're reading data that is part of the userspace workingset, count
1085 	 * submission time as memory stall.  When the device is congested, or
1086 	 * the submitting cgroup IO-throttled, submission can be a significant
1087 	 * part of overall IO time.
1088 	 */
1089 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1090 	    bio_flagged(bio, BIO_WORKINGSET))) {
1091 		unsigned long pflags;
1092 		blk_qc_t ret;
1093 
1094 		psi_memstall_enter(&pflags);
1095 		ret = submit_bio_noacct(bio);
1096 		psi_memstall_leave(&pflags);
1097 
1098 		return ret;
1099 	}
1100 
1101 	return submit_bio_noacct(bio);
1102 }
1103 EXPORT_SYMBOL(submit_bio);
1104 
1105 /**
1106  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1107  *                              for the new queue limits
1108  * @q:  the queue
1109  * @rq: the request being checked
1110  *
1111  * Description:
1112  *    @rq may have been made based on weaker limitations of upper-level queues
1113  *    in request stacking drivers, and it may violate the limitation of @q.
1114  *    Since the block layer and the underlying device driver trust @rq
1115  *    after it is inserted to @q, it should be checked against @q before
1116  *    the insertion using this generic function.
1117  *
1118  *    Request stacking drivers like request-based dm may change the queue
1119  *    limits when retrying requests on other queues. Those requests need
1120  *    to be checked against the new queue limits again during dispatch.
1121  */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1122 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1123 				      struct request *rq)
1124 {
1125 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1126 
1127 	if (blk_rq_sectors(rq) > max_sectors) {
1128 		/*
1129 		 * SCSI device does not have a good way to return if
1130 		 * Write Same/Zero is actually supported. If a device rejects
1131 		 * a non-read/write command (discard, write same,etc.) the
1132 		 * low-level device driver will set the relevant queue limit to
1133 		 * 0 to prevent blk-lib from issuing more of the offending
1134 		 * operations. Commands queued prior to the queue limit being
1135 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1136 		 * errors being propagated to upper layers.
1137 		 */
1138 		if (max_sectors == 0)
1139 			return BLK_STS_NOTSUPP;
1140 
1141 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1142 			__func__, blk_rq_sectors(rq), max_sectors);
1143 		return BLK_STS_IOERR;
1144 	}
1145 
1146 	/*
1147 	 * The queue settings related to segment counting may differ from the
1148 	 * original queue.
1149 	 */
1150 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1151 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1152 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1153 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1154 		return BLK_STS_IOERR;
1155 	}
1156 
1157 	return BLK_STS_OK;
1158 }
1159 
1160 /**
1161  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1162  * @q:  the queue to submit the request
1163  * @rq: the request being queued
1164  */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1165 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1166 {
1167 	blk_status_t ret;
1168 
1169 	ret = blk_cloned_rq_check_limits(q, rq);
1170 	if (ret != BLK_STS_OK)
1171 		return ret;
1172 
1173 	if (rq->rq_disk &&
1174 	    should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1175 		return BLK_STS_IOERR;
1176 
1177 	if (blk_crypto_insert_cloned_request(rq))
1178 		return BLK_STS_IOERR;
1179 
1180 	if (blk_queue_io_stat(q))
1181 		blk_account_io_start(rq);
1182 
1183 	/*
1184 	 * Since we have a scheduler attached on the top device,
1185 	 * bypass a potential scheduler on the bottom device for
1186 	 * insert.
1187 	 */
1188 	return blk_mq_request_issue_directly(rq, true);
1189 }
1190 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1191 
1192 /**
1193  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1194  * @rq: request to examine
1195  *
1196  * Description:
1197  *     A request could be merge of IOs which require different failure
1198  *     handling.  This function determines the number of bytes which
1199  *     can be failed from the beginning of the request without
1200  *     crossing into area which need to be retried further.
1201  *
1202  * Return:
1203  *     The number of bytes to fail.
1204  */
blk_rq_err_bytes(const struct request * rq)1205 unsigned int blk_rq_err_bytes(const struct request *rq)
1206 {
1207 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1208 	unsigned int bytes = 0;
1209 	struct bio *bio;
1210 
1211 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1212 		return blk_rq_bytes(rq);
1213 
1214 	/*
1215 	 * Currently the only 'mixing' which can happen is between
1216 	 * different fastfail types.  We can safely fail portions
1217 	 * which have all the failfast bits that the first one has -
1218 	 * the ones which are at least as eager to fail as the first
1219 	 * one.
1220 	 */
1221 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1222 		if ((bio->bi_opf & ff) != ff)
1223 			break;
1224 		bytes += bio->bi_iter.bi_size;
1225 	}
1226 
1227 	/* this could lead to infinite loop */
1228 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1229 	return bytes;
1230 }
1231 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1232 
update_io_ticks(struct block_device * part,unsigned long now,bool end)1233 static void update_io_ticks(struct block_device *part, unsigned long now,
1234 		bool end)
1235 {
1236 	unsigned long stamp;
1237 again:
1238 	stamp = READ_ONCE(part->bd_stamp);
1239 	if (unlikely(time_after(now, stamp))) {
1240 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1241 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1242 	}
1243 	if (part->bd_partno) {
1244 		part = bdev_whole(part);
1245 		goto again;
1246 	}
1247 }
1248 
blk_account_io_completion(struct request * req,unsigned int bytes)1249 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1250 {
1251 	if (req->part && blk_do_io_stat(req)) {
1252 		const int sgrp = op_stat_group(req_op(req));
1253 
1254 		part_stat_lock();
1255 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1256 		part_stat_unlock();
1257 	}
1258 }
1259 
blk_account_io_done(struct request * req,u64 now)1260 void blk_account_io_done(struct request *req, u64 now)
1261 {
1262 	/*
1263 	 * Account IO completion.  flush_rq isn't accounted as a
1264 	 * normal IO on queueing nor completion.  Accounting the
1265 	 * containing request is enough.
1266 	 */
1267 	if (req->part && blk_do_io_stat(req) &&
1268 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1269 		const int sgrp = op_stat_group(req_op(req));
1270 
1271 		part_stat_lock();
1272 		update_io_ticks(req->part, jiffies, true);
1273 		part_stat_inc(req->part, ios[sgrp]);
1274 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1275 		part_stat_unlock();
1276 	}
1277 }
1278 
blk_account_io_start(struct request * rq)1279 void blk_account_io_start(struct request *rq)
1280 {
1281 	if (!blk_do_io_stat(rq))
1282 		return;
1283 
1284 	/* passthrough requests can hold bios that do not have ->bi_bdev set */
1285 	if (rq->bio && rq->bio->bi_bdev)
1286 		rq->part = rq->bio->bi_bdev;
1287 	else
1288 		rq->part = rq->rq_disk->part0;
1289 
1290 	part_stat_lock();
1291 	update_io_ticks(rq->part, jiffies, false);
1292 	part_stat_unlock();
1293 }
1294 
__part_start_io_acct(struct block_device * part,unsigned int sectors,unsigned int op)1295 static unsigned long __part_start_io_acct(struct block_device *part,
1296 					  unsigned int sectors, unsigned int op)
1297 {
1298 	const int sgrp = op_stat_group(op);
1299 	unsigned long now = READ_ONCE(jiffies);
1300 
1301 	part_stat_lock();
1302 	update_io_ticks(part, now, false);
1303 	part_stat_inc(part, ios[sgrp]);
1304 	part_stat_add(part, sectors[sgrp], sectors);
1305 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1306 	part_stat_unlock();
1307 
1308 	return now;
1309 }
1310 
1311 /**
1312  * bio_start_io_acct - start I/O accounting for bio based drivers
1313  * @bio:	bio to start account for
1314  *
1315  * Returns the start time that should be passed back to bio_end_io_acct().
1316  */
bio_start_io_acct(struct bio * bio)1317 unsigned long bio_start_io_acct(struct bio *bio)
1318 {
1319 	return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1320 }
1321 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1322 
disk_start_io_acct(struct gendisk * disk,unsigned int sectors,unsigned int op)1323 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1324 				 unsigned int op)
1325 {
1326 	return __part_start_io_acct(disk->part0, sectors, op);
1327 }
1328 EXPORT_SYMBOL(disk_start_io_acct);
1329 
__part_end_io_acct(struct block_device * part,unsigned int op,unsigned long start_time)1330 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1331 			       unsigned long start_time)
1332 {
1333 	const int sgrp = op_stat_group(op);
1334 	unsigned long now = READ_ONCE(jiffies);
1335 	unsigned long duration = now - start_time;
1336 
1337 	part_stat_lock();
1338 	update_io_ticks(part, now, true);
1339 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1340 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1341 	part_stat_unlock();
1342 }
1343 
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1344 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1345 		struct block_device *orig_bdev)
1346 {
1347 	__part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1348 }
1349 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1350 
disk_end_io_acct(struct gendisk * disk,unsigned int op,unsigned long start_time)1351 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1352 		      unsigned long start_time)
1353 {
1354 	__part_end_io_acct(disk->part0, op, start_time);
1355 }
1356 EXPORT_SYMBOL(disk_end_io_acct);
1357 
1358 /*
1359  * Steal bios from a request and add them to a bio list.
1360  * The request must not have been partially completed before.
1361  */
blk_steal_bios(struct bio_list * list,struct request * rq)1362 void blk_steal_bios(struct bio_list *list, struct request *rq)
1363 {
1364 	if (rq->bio) {
1365 		if (list->tail)
1366 			list->tail->bi_next = rq->bio;
1367 		else
1368 			list->head = rq->bio;
1369 		list->tail = rq->biotail;
1370 
1371 		rq->bio = NULL;
1372 		rq->biotail = NULL;
1373 	}
1374 
1375 	rq->__data_len = 0;
1376 }
1377 EXPORT_SYMBOL_GPL(blk_steal_bios);
1378 
1379 /**
1380  * blk_update_request - Complete multiple bytes without completing the request
1381  * @req:      the request being processed
1382  * @error:    block status code
1383  * @nr_bytes: number of bytes to complete for @req
1384  *
1385  * Description:
1386  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1387  *     the request structure even if @req doesn't have leftover.
1388  *     If @req has leftover, sets it up for the next range of segments.
1389  *
1390  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1391  *     %false return from this function.
1392  *
1393  * Note:
1394  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1395  *      except in the consistency check at the end of this function.
1396  *
1397  * Return:
1398  *     %false - this request doesn't have any more data
1399  *     %true  - this request has more data
1400  **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1401 bool blk_update_request(struct request *req, blk_status_t error,
1402 		unsigned int nr_bytes)
1403 {
1404 	int total_bytes;
1405 
1406 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1407 
1408 	if (!req->bio)
1409 		return false;
1410 
1411 #ifdef CONFIG_BLK_DEV_INTEGRITY
1412 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1413 	    error == BLK_STS_OK)
1414 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1415 #endif
1416 
1417 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1418 		     !(req->rq_flags & RQF_QUIET)))
1419 		print_req_error(req, error, __func__);
1420 
1421 	blk_account_io_completion(req, nr_bytes);
1422 
1423 	total_bytes = 0;
1424 	while (req->bio) {
1425 		struct bio *bio = req->bio;
1426 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1427 
1428 		if (bio_bytes == bio->bi_iter.bi_size)
1429 			req->bio = bio->bi_next;
1430 
1431 		/* Completion has already been traced */
1432 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1433 		req_bio_endio(req, bio, bio_bytes, error);
1434 
1435 		total_bytes += bio_bytes;
1436 		nr_bytes -= bio_bytes;
1437 
1438 		if (!nr_bytes)
1439 			break;
1440 	}
1441 
1442 	/*
1443 	 * completely done
1444 	 */
1445 	if (!req->bio) {
1446 		/*
1447 		 * Reset counters so that the request stacking driver
1448 		 * can find how many bytes remain in the request
1449 		 * later.
1450 		 */
1451 		req->__data_len = 0;
1452 		return false;
1453 	}
1454 
1455 	req->__data_len -= total_bytes;
1456 
1457 	/* update sector only for requests with clear definition of sector */
1458 	if (!blk_rq_is_passthrough(req))
1459 		req->__sector += total_bytes >> 9;
1460 
1461 	/* mixed attributes always follow the first bio */
1462 	if (req->rq_flags & RQF_MIXED_MERGE) {
1463 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1464 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1465 	}
1466 
1467 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1468 		/*
1469 		 * If total number of sectors is less than the first segment
1470 		 * size, something has gone terribly wrong.
1471 		 */
1472 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1473 			blk_dump_rq_flags(req, "request botched");
1474 			req->__data_len = blk_rq_cur_bytes(req);
1475 		}
1476 
1477 		/* recalculate the number of segments */
1478 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1479 	}
1480 
1481 	return true;
1482 }
1483 EXPORT_SYMBOL_GPL(blk_update_request);
1484 
1485 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1486 /**
1487  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1488  * @rq: the request to be flushed
1489  *
1490  * Description:
1491  *     Flush all pages in @rq.
1492  */
rq_flush_dcache_pages(struct request * rq)1493 void rq_flush_dcache_pages(struct request *rq)
1494 {
1495 	struct req_iterator iter;
1496 	struct bio_vec bvec;
1497 
1498 	rq_for_each_segment(bvec, rq, iter)
1499 		flush_dcache_page(bvec.bv_page);
1500 }
1501 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1502 #endif
1503 
1504 /**
1505  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1506  * @q : the queue of the device being checked
1507  *
1508  * Description:
1509  *    Check if underlying low-level drivers of a device are busy.
1510  *    If the drivers want to export their busy state, they must set own
1511  *    exporting function using blk_queue_lld_busy() first.
1512  *
1513  *    Basically, this function is used only by request stacking drivers
1514  *    to stop dispatching requests to underlying devices when underlying
1515  *    devices are busy.  This behavior helps more I/O merging on the queue
1516  *    of the request stacking driver and prevents I/O throughput regression
1517  *    on burst I/O load.
1518  *
1519  * Return:
1520  *    0 - Not busy (The request stacking driver should dispatch request)
1521  *    1 - Busy (The request stacking driver should stop dispatching request)
1522  */
blk_lld_busy(struct request_queue * q)1523 int blk_lld_busy(struct request_queue *q)
1524 {
1525 	if (queue_is_mq(q) && q->mq_ops->busy)
1526 		return q->mq_ops->busy(q);
1527 
1528 	return 0;
1529 }
1530 EXPORT_SYMBOL_GPL(blk_lld_busy);
1531 
1532 /**
1533  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1534  * @rq: the clone request to be cleaned up
1535  *
1536  * Description:
1537  *     Free all bios in @rq for a cloned request.
1538  */
blk_rq_unprep_clone(struct request * rq)1539 void blk_rq_unprep_clone(struct request *rq)
1540 {
1541 	struct bio *bio;
1542 
1543 	while ((bio = rq->bio) != NULL) {
1544 		rq->bio = bio->bi_next;
1545 
1546 		bio_put(bio);
1547 	}
1548 }
1549 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1550 
1551 /**
1552  * blk_rq_prep_clone - Helper function to setup clone request
1553  * @rq: the request to be setup
1554  * @rq_src: original request to be cloned
1555  * @bs: bio_set that bios for clone are allocated from
1556  * @gfp_mask: memory allocation mask for bio
1557  * @bio_ctr: setup function to be called for each clone bio.
1558  *           Returns %0 for success, non %0 for failure.
1559  * @data: private data to be passed to @bio_ctr
1560  *
1561  * Description:
1562  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1563  *     Also, pages which the original bios are pointing to are not copied
1564  *     and the cloned bios just point same pages.
1565  *     So cloned bios must be completed before original bios, which means
1566  *     the caller must complete @rq before @rq_src.
1567  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1568 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1569 		      struct bio_set *bs, gfp_t gfp_mask,
1570 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1571 		      void *data)
1572 {
1573 	struct bio *bio, *bio_src;
1574 
1575 	if (!bs)
1576 		bs = &fs_bio_set;
1577 
1578 	__rq_for_each_bio(bio_src, rq_src) {
1579 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1580 		if (!bio)
1581 			goto free_and_out;
1582 
1583 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1584 			goto free_and_out;
1585 
1586 		if (rq->bio) {
1587 			rq->biotail->bi_next = bio;
1588 			rq->biotail = bio;
1589 		} else {
1590 			rq->bio = rq->biotail = bio;
1591 		}
1592 		bio = NULL;
1593 	}
1594 
1595 	/* Copy attributes of the original request to the clone request. */
1596 	rq->__sector = blk_rq_pos(rq_src);
1597 	rq->__data_len = blk_rq_bytes(rq_src);
1598 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1599 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1600 		rq->special_vec = rq_src->special_vec;
1601 	}
1602 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1603 	rq->ioprio = rq_src->ioprio;
1604 
1605 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1606 		goto free_and_out;
1607 
1608 	return 0;
1609 
1610 free_and_out:
1611 	if (bio)
1612 		bio_put(bio);
1613 	blk_rq_unprep_clone(rq);
1614 
1615 	return -ENOMEM;
1616 }
1617 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1618 
kblockd_schedule_work(struct work_struct * work)1619 int kblockd_schedule_work(struct work_struct *work)
1620 {
1621 	return queue_work(kblockd_workqueue, work);
1622 }
1623 EXPORT_SYMBOL(kblockd_schedule_work);
1624 
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1625 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1626 				unsigned long delay)
1627 {
1628 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1629 }
1630 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1631 
1632 /**
1633  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1634  * @plug:	The &struct blk_plug that needs to be initialized
1635  *
1636  * Description:
1637  *   blk_start_plug() indicates to the block layer an intent by the caller
1638  *   to submit multiple I/O requests in a batch.  The block layer may use
1639  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1640  *   is called.  However, the block layer may choose to submit requests
1641  *   before a call to blk_finish_plug() if the number of queued I/Os
1642  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1643  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1644  *   the task schedules (see below).
1645  *
1646  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1647  *   pending I/O should the task end up blocking between blk_start_plug() and
1648  *   blk_finish_plug(). This is important from a performance perspective, but
1649  *   also ensures that we don't deadlock. For instance, if the task is blocking
1650  *   for a memory allocation, memory reclaim could end up wanting to free a
1651  *   page belonging to that request that is currently residing in our private
1652  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1653  *   this kind of deadlock.
1654  */
blk_start_plug(struct blk_plug * plug)1655 void blk_start_plug(struct blk_plug *plug)
1656 {
1657 	struct task_struct *tsk = current;
1658 
1659 	/*
1660 	 * If this is a nested plug, don't actually assign it.
1661 	 */
1662 	if (tsk->plug)
1663 		return;
1664 
1665 	INIT_LIST_HEAD(&plug->mq_list);
1666 	INIT_LIST_HEAD(&plug->cb_list);
1667 	plug->rq_count = 0;
1668 	plug->multiple_queues = false;
1669 	plug->nowait = false;
1670 
1671 	/*
1672 	 * Store ordering should not be needed here, since a potential
1673 	 * preempt will imply a full memory barrier
1674 	 */
1675 	tsk->plug = plug;
1676 }
1677 EXPORT_SYMBOL(blk_start_plug);
1678 
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1679 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1680 {
1681 	LIST_HEAD(callbacks);
1682 
1683 	while (!list_empty(&plug->cb_list)) {
1684 		list_splice_init(&plug->cb_list, &callbacks);
1685 
1686 		while (!list_empty(&callbacks)) {
1687 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1688 							  struct blk_plug_cb,
1689 							  list);
1690 			list_del(&cb->list);
1691 			cb->callback(cb, from_schedule);
1692 		}
1693 	}
1694 }
1695 
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1696 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1697 				      int size)
1698 {
1699 	struct blk_plug *plug = current->plug;
1700 	struct blk_plug_cb *cb;
1701 
1702 	if (!plug)
1703 		return NULL;
1704 
1705 	list_for_each_entry(cb, &plug->cb_list, list)
1706 		if (cb->callback == unplug && cb->data == data)
1707 			return cb;
1708 
1709 	/* Not currently on the callback list */
1710 	BUG_ON(size < sizeof(*cb));
1711 	cb = kzalloc(size, GFP_ATOMIC);
1712 	if (cb) {
1713 		cb->data = data;
1714 		cb->callback = unplug;
1715 		list_add(&cb->list, &plug->cb_list);
1716 	}
1717 	return cb;
1718 }
1719 EXPORT_SYMBOL(blk_check_plugged);
1720 
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1721 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1722 {
1723 	flush_plug_callbacks(plug, from_schedule);
1724 
1725 	if (!list_empty(&plug->mq_list))
1726 		blk_mq_flush_plug_list(plug, from_schedule);
1727 }
1728 
1729 /**
1730  * blk_finish_plug - mark the end of a batch of submitted I/O
1731  * @plug:	The &struct blk_plug passed to blk_start_plug()
1732  *
1733  * Description:
1734  * Indicate that a batch of I/O submissions is complete.  This function
1735  * must be paired with an initial call to blk_start_plug().  The intent
1736  * is to allow the block layer to optimize I/O submission.  See the
1737  * documentation for blk_start_plug() for more information.
1738  */
blk_finish_plug(struct blk_plug * plug)1739 void blk_finish_plug(struct blk_plug *plug)
1740 {
1741 	if (plug != current->plug)
1742 		return;
1743 	blk_flush_plug_list(plug, false);
1744 
1745 	current->plug = NULL;
1746 }
1747 EXPORT_SYMBOL(blk_finish_plug);
1748 
blk_io_schedule(void)1749 void blk_io_schedule(void)
1750 {
1751 	/* Prevent hang_check timer from firing at us during very long I/O */
1752 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1753 
1754 	if (timeout)
1755 		io_schedule_timeout(timeout);
1756 	else
1757 		io_schedule();
1758 }
1759 EXPORT_SYMBOL_GPL(blk_io_schedule);
1760 
blk_dev_init(void)1761 int __init blk_dev_init(void)
1762 {
1763 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1764 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1765 			sizeof_field(struct request, cmd_flags));
1766 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1767 			sizeof_field(struct bio, bi_opf));
1768 
1769 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1770 	kblockd_workqueue = alloc_workqueue("kblockd",
1771 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1772 	if (!kblockd_workqueue)
1773 		panic("Failed to create kblockd\n");
1774 
1775 	blk_requestq_cachep = kmem_cache_create("request_queue",
1776 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1777 
1778 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1779 
1780 	return 0;
1781 }
1782