1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "sgx.h"
15 #include "trace.h"
16 #include "vmx.h"
17 #include "x86.h"
18
19 static bool __read_mostly enable_shadow_vmcs = 1;
20 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
21
22 static bool __read_mostly nested_early_check = 0;
23 module_param(nested_early_check, bool, S_IRUGO);
24
25 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
26
27 /*
28 * Hyper-V requires all of these, so mark them as supported even though
29 * they are just treated the same as all-context.
30 */
31 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
32 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
33 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
34 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
35 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
36
37 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
38
39 enum {
40 VMX_VMREAD_BITMAP,
41 VMX_VMWRITE_BITMAP,
42 VMX_BITMAP_NR
43 };
44 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
45
46 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
47 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
48
49 struct shadow_vmcs_field {
50 u16 encoding;
51 u16 offset;
52 };
53 static struct shadow_vmcs_field shadow_read_only_fields[] = {
54 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55 #include "vmcs_shadow_fields.h"
56 };
57 static int max_shadow_read_only_fields =
58 ARRAY_SIZE(shadow_read_only_fields);
59
60 static struct shadow_vmcs_field shadow_read_write_fields[] = {
61 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
62 #include "vmcs_shadow_fields.h"
63 };
64 static int max_shadow_read_write_fields =
65 ARRAY_SIZE(shadow_read_write_fields);
66
init_vmcs_shadow_fields(void)67 static void init_vmcs_shadow_fields(void)
68 {
69 int i, j;
70
71 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
72 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
73
74 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
75 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
76 u16 field = entry.encoding;
77
78 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
79 (i + 1 == max_shadow_read_only_fields ||
80 shadow_read_only_fields[i + 1].encoding != field + 1))
81 pr_err("Missing field from shadow_read_only_field %x\n",
82 field + 1);
83
84 clear_bit(field, vmx_vmread_bitmap);
85 if (field & 1)
86 #ifdef CONFIG_X86_64
87 continue;
88 #else
89 entry.offset += sizeof(u32);
90 #endif
91 shadow_read_only_fields[j++] = entry;
92 }
93 max_shadow_read_only_fields = j;
94
95 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
96 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
97 u16 field = entry.encoding;
98
99 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
100 (i + 1 == max_shadow_read_write_fields ||
101 shadow_read_write_fields[i + 1].encoding != field + 1))
102 pr_err("Missing field from shadow_read_write_field %x\n",
103 field + 1);
104
105 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
106 field <= GUEST_TR_AR_BYTES,
107 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
108
109 /*
110 * PML and the preemption timer can be emulated, but the
111 * processor cannot vmwrite to fields that don't exist
112 * on bare metal.
113 */
114 switch (field) {
115 case GUEST_PML_INDEX:
116 if (!cpu_has_vmx_pml())
117 continue;
118 break;
119 case VMX_PREEMPTION_TIMER_VALUE:
120 if (!cpu_has_vmx_preemption_timer())
121 continue;
122 break;
123 case GUEST_INTR_STATUS:
124 if (!cpu_has_vmx_apicv())
125 continue;
126 break;
127 default:
128 break;
129 }
130
131 clear_bit(field, vmx_vmwrite_bitmap);
132 clear_bit(field, vmx_vmread_bitmap);
133 if (field & 1)
134 #ifdef CONFIG_X86_64
135 continue;
136 #else
137 entry.offset += sizeof(u32);
138 #endif
139 shadow_read_write_fields[j++] = entry;
140 }
141 max_shadow_read_write_fields = j;
142 }
143
144 /*
145 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
146 * set the success or error code of an emulated VMX instruction (as specified
147 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
148 * instruction.
149 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)150 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
151 {
152 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
153 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
154 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
155 return kvm_skip_emulated_instruction(vcpu);
156 }
157
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)158 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
159 {
160 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
161 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
162 X86_EFLAGS_SF | X86_EFLAGS_OF))
163 | X86_EFLAGS_CF);
164 return kvm_skip_emulated_instruction(vcpu);
165 }
166
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)167 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
168 u32 vm_instruction_error)
169 {
170 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
171 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
172 X86_EFLAGS_SF | X86_EFLAGS_OF))
173 | X86_EFLAGS_ZF);
174 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
175 /*
176 * We don't need to force sync to shadow VMCS because
177 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
178 * fields and thus must be synced.
179 */
180 if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
181 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
182
183 return kvm_skip_emulated_instruction(vcpu);
184 }
185
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)186 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
187 {
188 struct vcpu_vmx *vmx = to_vmx(vcpu);
189
190 /*
191 * failValid writes the error number to the current VMCS, which
192 * can't be done if there isn't a current VMCS.
193 */
194 if (vmx->nested.current_vmptr == -1ull &&
195 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
196 return nested_vmx_failInvalid(vcpu);
197
198 return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203 /* TODO: not to reset guest simply here. */
204 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207
vmx_control_verify(u32 control,u32 low,u32 high)208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210 return fixed_bits_valid(control, low, high);
211 }
212
vmx_control_msr(u32 low,u32 high)213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215 return low | ((u64)high << 32);
216 }
217
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221 vmcs_write64(VMCS_LINK_POINTER, -1ull);
222 vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224
nested_release_evmcs(struct kvm_vcpu * vcpu)225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227 struct vcpu_vmx *vmx = to_vmx(vcpu);
228
229 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
230 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
231 vmx->nested.hv_evmcs = NULL;
232 }
233
234 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
235 }
236
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238 struct loaded_vmcs *prev)
239 {
240 struct vmcs_host_state *dest, *src;
241
242 if (unlikely(!vmx->guest_state_loaded))
243 return;
244
245 src = &prev->host_state;
246 dest = &vmx->loaded_vmcs->host_state;
247
248 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249 dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251 dest->ds_sel = src->ds_sel;
252 dest->es_sel = src->es_sel;
253 #endif
254 }
255
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258 struct vcpu_vmx *vmx = to_vmx(vcpu);
259 struct loaded_vmcs *prev;
260 int cpu;
261
262 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263 return;
264
265 cpu = get_cpu();
266 prev = vmx->loaded_vmcs;
267 vmx->loaded_vmcs = vmcs;
268 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269 vmx_sync_vmcs_host_state(vmx, prev);
270 put_cpu();
271
272 vmx_register_cache_reset(vcpu);
273 }
274
275 /*
276 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277 * just stops using VMX.
278 */
free_nested(struct kvm_vcpu * vcpu)279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281 struct vcpu_vmx *vmx = to_vmx(vcpu);
282
283 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285
286 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287 return;
288
289 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290
291 vmx->nested.vmxon = false;
292 vmx->nested.smm.vmxon = false;
293 free_vpid(vmx->nested.vpid02);
294 vmx->nested.posted_intr_nv = -1;
295 vmx->nested.current_vmptr = -1ull;
296 if (enable_shadow_vmcs) {
297 vmx_disable_shadow_vmcs(vmx);
298 vmcs_clear(vmx->vmcs01.shadow_vmcs);
299 free_vmcs(vmx->vmcs01.shadow_vmcs);
300 vmx->vmcs01.shadow_vmcs = NULL;
301 }
302 kfree(vmx->nested.cached_vmcs12);
303 vmx->nested.cached_vmcs12 = NULL;
304 kfree(vmx->nested.cached_shadow_vmcs12);
305 vmx->nested.cached_shadow_vmcs12 = NULL;
306 /* Unpin physical memory we referred to in the vmcs02 */
307 if (vmx->nested.apic_access_page) {
308 kvm_release_page_clean(vmx->nested.apic_access_page);
309 vmx->nested.apic_access_page = NULL;
310 }
311 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313 vmx->nested.pi_desc = NULL;
314
315 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
316
317 nested_release_evmcs(vcpu);
318
319 free_loaded_vmcs(&vmx->nested.vmcs02);
320 }
321
322 /*
323 * Ensure that the current vmcs of the logical processor is the
324 * vmcs01 of the vcpu before calling free_nested().
325 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
327 {
328 vcpu_load(vcpu);
329 vmx_leave_nested(vcpu);
330 vcpu_put(vcpu);
331 }
332
333 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
334
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)335 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
336 {
337 return VALID_PAGE(root_hpa) &&
338 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
339 }
340
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)341 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
342 gpa_t addr)
343 {
344 uint i;
345 struct kvm_mmu_root_info *cached_root;
346
347 WARN_ON_ONCE(!mmu_is_nested(vcpu));
348
349 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
350 cached_root = &vcpu->arch.mmu->prev_roots[i];
351
352 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
353 eptp))
354 vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
355 }
356 }
357
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)358 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
359 struct x86_exception *fault)
360 {
361 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
362 struct vcpu_vmx *vmx = to_vmx(vcpu);
363 u32 vm_exit_reason;
364 unsigned long exit_qualification = vcpu->arch.exit_qualification;
365
366 if (vmx->nested.pml_full) {
367 vm_exit_reason = EXIT_REASON_PML_FULL;
368 vmx->nested.pml_full = false;
369 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
370 } else {
371 if (fault->error_code & PFERR_RSVD_MASK)
372 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
373 else
374 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
375
376 /*
377 * Although the caller (kvm_inject_emulated_page_fault) would
378 * have already synced the faulting address in the shadow EPT
379 * tables for the current EPTP12, we also need to sync it for
380 * any other cached EPTP02s based on the same EP4TA, since the
381 * TLB associates mappings to the EP4TA rather than the full EPTP.
382 */
383 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
384 fault->address);
385 }
386
387 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
388 vmcs12->guest_physical_address = fault->address;
389 }
390
nested_ept_new_eptp(struct kvm_vcpu * vcpu)391 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
392 {
393 kvm_init_shadow_ept_mmu(vcpu,
394 to_vmx(vcpu)->nested.msrs.ept_caps &
395 VMX_EPT_EXECUTE_ONLY_BIT,
396 nested_ept_ad_enabled(vcpu),
397 nested_ept_get_eptp(vcpu));
398 }
399
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)400 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
401 {
402 WARN_ON(mmu_is_nested(vcpu));
403
404 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
405 nested_ept_new_eptp(vcpu);
406 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
407 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
408 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
409
410 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
411 }
412
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)413 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
414 {
415 vcpu->arch.mmu = &vcpu->arch.root_mmu;
416 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
417 }
418
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)419 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
420 u16 error_code)
421 {
422 bool inequality, bit;
423
424 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
425 inequality =
426 (error_code & vmcs12->page_fault_error_code_mask) !=
427 vmcs12->page_fault_error_code_match;
428 return inequality ^ bit;
429 }
430
431
432 /*
433 * KVM wants to inject page-faults which it got to the guest. This function
434 * checks whether in a nested guest, we need to inject them to L1 or L2.
435 */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned long * exit_qual)436 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
437 {
438 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
439 unsigned int nr = vcpu->arch.exception.nr;
440 bool has_payload = vcpu->arch.exception.has_payload;
441 unsigned long payload = vcpu->arch.exception.payload;
442
443 if (nr == PF_VECTOR) {
444 if (vcpu->arch.exception.nested_apf) {
445 *exit_qual = vcpu->arch.apf.nested_apf_token;
446 return 1;
447 }
448 if (nested_vmx_is_page_fault_vmexit(vmcs12,
449 vcpu->arch.exception.error_code)) {
450 *exit_qual = has_payload ? payload : vcpu->arch.cr2;
451 return 1;
452 }
453 } else if (vmcs12->exception_bitmap & (1u << nr)) {
454 if (nr == DB_VECTOR) {
455 if (!has_payload) {
456 payload = vcpu->arch.dr6;
457 payload &= ~DR6_BT;
458 payload ^= DR6_ACTIVE_LOW;
459 }
460 *exit_qual = payload;
461 } else
462 *exit_qual = 0;
463 return 1;
464 }
465
466 return 0;
467 }
468
469
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)470 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
471 struct x86_exception *fault)
472 {
473 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
474
475 WARN_ON(!is_guest_mode(vcpu));
476
477 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
478 !to_vmx(vcpu)->nested.nested_run_pending) {
479 vmcs12->vm_exit_intr_error_code = fault->error_code;
480 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
481 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
482 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
483 fault->address);
484 } else {
485 kvm_inject_page_fault(vcpu, fault);
486 }
487 }
488
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)489 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
490 struct vmcs12 *vmcs12)
491 {
492 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
493 return 0;
494
495 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
496 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
497 return -EINVAL;
498
499 return 0;
500 }
501
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)502 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
503 struct vmcs12 *vmcs12)
504 {
505 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
506 return 0;
507
508 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
509 return -EINVAL;
510
511 return 0;
512 }
513
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)514 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
515 struct vmcs12 *vmcs12)
516 {
517 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
518 return 0;
519
520 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
521 return -EINVAL;
522
523 return 0;
524 }
525
526 /*
527 * Check if MSR is intercepted for L01 MSR bitmap.
528 */
msr_write_intercepted_l01(struct kvm_vcpu * vcpu,u32 msr)529 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
530 {
531 unsigned long *msr_bitmap;
532 int f = sizeof(unsigned long);
533
534 if (!cpu_has_vmx_msr_bitmap())
535 return true;
536
537 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
538
539 if (msr <= 0x1fff) {
540 return !!test_bit(msr, msr_bitmap + 0x800 / f);
541 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
542 msr &= 0x1fff;
543 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
544 }
545
546 return true;
547 }
548
549 /*
550 * If a msr is allowed by L0, we should check whether it is allowed by L1.
551 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
552 */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)553 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
554 unsigned long *msr_bitmap_nested,
555 u32 msr, int type)
556 {
557 int f = sizeof(unsigned long);
558
559 /*
560 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
561 * have the write-low and read-high bitmap offsets the wrong way round.
562 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
563 */
564 if (msr <= 0x1fff) {
565 if (type & MSR_TYPE_R &&
566 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
567 /* read-low */
568 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
569
570 if (type & MSR_TYPE_W &&
571 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
572 /* write-low */
573 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
574
575 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
576 msr &= 0x1fff;
577 if (type & MSR_TYPE_R &&
578 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
579 /* read-high */
580 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
581
582 if (type & MSR_TYPE_W &&
583 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
584 /* write-high */
585 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
586
587 }
588 }
589
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)590 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
591 {
592 int msr;
593
594 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
595 unsigned word = msr / BITS_PER_LONG;
596
597 msr_bitmap[word] = ~0;
598 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
599 }
600 }
601
602 /*
603 * Merge L0's and L1's MSR bitmap, return false to indicate that
604 * we do not use the hardware.
605 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)606 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
607 struct vmcs12 *vmcs12)
608 {
609 int msr;
610 unsigned long *msr_bitmap_l1;
611 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
612 struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
613
614 /* Nothing to do if the MSR bitmap is not in use. */
615 if (!cpu_has_vmx_msr_bitmap() ||
616 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
617 return false;
618
619 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
620 return false;
621
622 msr_bitmap_l1 = (unsigned long *)map->hva;
623
624 /*
625 * To keep the control flow simple, pay eight 8-byte writes (sixteen
626 * 4-byte writes on 32-bit systems) up front to enable intercepts for
627 * the x2APIC MSR range and selectively disable them below.
628 */
629 enable_x2apic_msr_intercepts(msr_bitmap_l0);
630
631 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
632 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
633 /*
634 * L0 need not intercept reads for MSRs between 0x800
635 * and 0x8ff, it just lets the processor take the value
636 * from the virtual-APIC page; take those 256 bits
637 * directly from the L1 bitmap.
638 */
639 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
640 unsigned word = msr / BITS_PER_LONG;
641
642 msr_bitmap_l0[word] = msr_bitmap_l1[word];
643 }
644 }
645
646 nested_vmx_disable_intercept_for_msr(
647 msr_bitmap_l1, msr_bitmap_l0,
648 X2APIC_MSR(APIC_TASKPRI),
649 MSR_TYPE_R | MSR_TYPE_W);
650
651 if (nested_cpu_has_vid(vmcs12)) {
652 nested_vmx_disable_intercept_for_msr(
653 msr_bitmap_l1, msr_bitmap_l0,
654 X2APIC_MSR(APIC_EOI),
655 MSR_TYPE_W);
656 nested_vmx_disable_intercept_for_msr(
657 msr_bitmap_l1, msr_bitmap_l0,
658 X2APIC_MSR(APIC_SELF_IPI),
659 MSR_TYPE_W);
660 }
661 }
662
663 /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
664 #ifdef CONFIG_X86_64
665 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
666 MSR_FS_BASE, MSR_TYPE_RW);
667
668 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
669 MSR_GS_BASE, MSR_TYPE_RW);
670
671 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
672 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
673 #endif
674
675 /*
676 * Checking the L0->L1 bitmap is trying to verify two things:
677 *
678 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
679 * ensures that we do not accidentally generate an L02 MSR bitmap
680 * from the L12 MSR bitmap that is too permissive.
681 * 2. That L1 or L2s have actually used the MSR. This avoids
682 * unnecessarily merging of the bitmap if the MSR is unused. This
683 * works properly because we only update the L01 MSR bitmap lazily.
684 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
685 * updated to reflect this when L1 (or its L2s) actually write to
686 * the MSR.
687 */
688 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
689 nested_vmx_disable_intercept_for_msr(
690 msr_bitmap_l1, msr_bitmap_l0,
691 MSR_IA32_SPEC_CTRL,
692 MSR_TYPE_R | MSR_TYPE_W);
693
694 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
695 nested_vmx_disable_intercept_for_msr(
696 msr_bitmap_l1, msr_bitmap_l0,
697 MSR_IA32_PRED_CMD,
698 MSR_TYPE_W);
699
700 kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
701
702 return true;
703 }
704
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)705 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
706 struct vmcs12 *vmcs12)
707 {
708 struct kvm_host_map map;
709 struct vmcs12 *shadow;
710
711 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
712 vmcs12->vmcs_link_pointer == -1ull)
713 return;
714
715 shadow = get_shadow_vmcs12(vcpu);
716
717 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
718 return;
719
720 memcpy(shadow, map.hva, VMCS12_SIZE);
721 kvm_vcpu_unmap(vcpu, &map, false);
722 }
723
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)724 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
725 struct vmcs12 *vmcs12)
726 {
727 struct vcpu_vmx *vmx = to_vmx(vcpu);
728
729 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
730 vmcs12->vmcs_link_pointer == -1ull)
731 return;
732
733 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
734 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
735 }
736
737 /*
738 * In nested virtualization, check if L1 has set
739 * VM_EXIT_ACK_INTR_ON_EXIT
740 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)741 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
742 {
743 return get_vmcs12(vcpu)->vm_exit_controls &
744 VM_EXIT_ACK_INTR_ON_EXIT;
745 }
746
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)747 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
748 struct vmcs12 *vmcs12)
749 {
750 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
751 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
752 return -EINVAL;
753 else
754 return 0;
755 }
756
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)757 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
758 struct vmcs12 *vmcs12)
759 {
760 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
761 !nested_cpu_has_apic_reg_virt(vmcs12) &&
762 !nested_cpu_has_vid(vmcs12) &&
763 !nested_cpu_has_posted_intr(vmcs12))
764 return 0;
765
766 /*
767 * If virtualize x2apic mode is enabled,
768 * virtualize apic access must be disabled.
769 */
770 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
771 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
772 return -EINVAL;
773
774 /*
775 * If virtual interrupt delivery is enabled,
776 * we must exit on external interrupts.
777 */
778 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
779 return -EINVAL;
780
781 /*
782 * bits 15:8 should be zero in posted_intr_nv,
783 * the descriptor address has been already checked
784 * in nested_get_vmcs12_pages.
785 *
786 * bits 5:0 of posted_intr_desc_addr should be zero.
787 */
788 if (nested_cpu_has_posted_intr(vmcs12) &&
789 (CC(!nested_cpu_has_vid(vmcs12)) ||
790 CC(!nested_exit_intr_ack_set(vcpu)) ||
791 CC((vmcs12->posted_intr_nv & 0xff00)) ||
792 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
793 return -EINVAL;
794
795 /* tpr shadow is needed by all apicv features. */
796 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
797 return -EINVAL;
798
799 return 0;
800 }
801
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)802 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
803 u32 count, u64 addr)
804 {
805 if (count == 0)
806 return 0;
807
808 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
809 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
810 return -EINVAL;
811
812 return 0;
813 }
814
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)815 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
816 struct vmcs12 *vmcs12)
817 {
818 if (CC(nested_vmx_check_msr_switch(vcpu,
819 vmcs12->vm_exit_msr_load_count,
820 vmcs12->vm_exit_msr_load_addr)) ||
821 CC(nested_vmx_check_msr_switch(vcpu,
822 vmcs12->vm_exit_msr_store_count,
823 vmcs12->vm_exit_msr_store_addr)))
824 return -EINVAL;
825
826 return 0;
827 }
828
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)829 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
830 struct vmcs12 *vmcs12)
831 {
832 if (CC(nested_vmx_check_msr_switch(vcpu,
833 vmcs12->vm_entry_msr_load_count,
834 vmcs12->vm_entry_msr_load_addr)))
835 return -EINVAL;
836
837 return 0;
838 }
839
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)840 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
841 struct vmcs12 *vmcs12)
842 {
843 if (!nested_cpu_has_pml(vmcs12))
844 return 0;
845
846 if (CC(!nested_cpu_has_ept(vmcs12)) ||
847 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
848 return -EINVAL;
849
850 return 0;
851 }
852
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)853 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
854 struct vmcs12 *vmcs12)
855 {
856 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
857 !nested_cpu_has_ept(vmcs12)))
858 return -EINVAL;
859 return 0;
860 }
861
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)862 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
863 struct vmcs12 *vmcs12)
864 {
865 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
866 !nested_cpu_has_ept(vmcs12)))
867 return -EINVAL;
868 return 0;
869 }
870
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)871 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
872 struct vmcs12 *vmcs12)
873 {
874 if (!nested_cpu_has_shadow_vmcs(vmcs12))
875 return 0;
876
877 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
878 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
879 return -EINVAL;
880
881 return 0;
882 }
883
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)884 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
885 struct vmx_msr_entry *e)
886 {
887 /* x2APIC MSR accesses are not allowed */
888 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
889 return -EINVAL;
890 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
891 CC(e->index == MSR_IA32_UCODE_REV))
892 return -EINVAL;
893 if (CC(e->reserved != 0))
894 return -EINVAL;
895 return 0;
896 }
897
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)898 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
899 struct vmx_msr_entry *e)
900 {
901 if (CC(e->index == MSR_FS_BASE) ||
902 CC(e->index == MSR_GS_BASE) ||
903 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
904 nested_vmx_msr_check_common(vcpu, e))
905 return -EINVAL;
906 return 0;
907 }
908
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)909 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
910 struct vmx_msr_entry *e)
911 {
912 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
913 nested_vmx_msr_check_common(vcpu, e))
914 return -EINVAL;
915 return 0;
916 }
917
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)918 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
919 {
920 struct vcpu_vmx *vmx = to_vmx(vcpu);
921 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
922 vmx->nested.msrs.misc_high);
923
924 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
925 }
926
927 /*
928 * Load guest's/host's msr at nested entry/exit.
929 * return 0 for success, entry index for failure.
930 *
931 * One of the failure modes for MSR load/store is when a list exceeds the
932 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
933 * as possible, process all valid entries before failing rather than precheck
934 * for a capacity violation.
935 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)936 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
937 {
938 u32 i;
939 struct vmx_msr_entry e;
940 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
941
942 for (i = 0; i < count; i++) {
943 if (unlikely(i >= max_msr_list_size))
944 goto fail;
945
946 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
947 &e, sizeof(e))) {
948 pr_debug_ratelimited(
949 "%s cannot read MSR entry (%u, 0x%08llx)\n",
950 __func__, i, gpa + i * sizeof(e));
951 goto fail;
952 }
953 if (nested_vmx_load_msr_check(vcpu, &e)) {
954 pr_debug_ratelimited(
955 "%s check failed (%u, 0x%x, 0x%x)\n",
956 __func__, i, e.index, e.reserved);
957 goto fail;
958 }
959 if (kvm_set_msr(vcpu, e.index, e.value)) {
960 pr_debug_ratelimited(
961 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
962 __func__, i, e.index, e.value);
963 goto fail;
964 }
965 }
966 return 0;
967 fail:
968 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
969 return i + 1;
970 }
971
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)972 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
973 u32 msr_index,
974 u64 *data)
975 {
976 struct vcpu_vmx *vmx = to_vmx(vcpu);
977
978 /*
979 * If the L0 hypervisor stored a more accurate value for the TSC that
980 * does not include the time taken for emulation of the L2->L1
981 * VM-exit in L0, use the more accurate value.
982 */
983 if (msr_index == MSR_IA32_TSC) {
984 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
985 MSR_IA32_TSC);
986
987 if (i >= 0) {
988 u64 val = vmx->msr_autostore.guest.val[i].value;
989
990 *data = kvm_read_l1_tsc(vcpu, val);
991 return true;
992 }
993 }
994
995 if (kvm_get_msr(vcpu, msr_index, data)) {
996 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
997 msr_index);
998 return false;
999 }
1000 return true;
1001 }
1002
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)1003 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1004 struct vmx_msr_entry *e)
1005 {
1006 if (kvm_vcpu_read_guest(vcpu,
1007 gpa + i * sizeof(*e),
1008 e, 2 * sizeof(u32))) {
1009 pr_debug_ratelimited(
1010 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1011 __func__, i, gpa + i * sizeof(*e));
1012 return false;
1013 }
1014 if (nested_vmx_store_msr_check(vcpu, e)) {
1015 pr_debug_ratelimited(
1016 "%s check failed (%u, 0x%x, 0x%x)\n",
1017 __func__, i, e->index, e->reserved);
1018 return false;
1019 }
1020 return true;
1021 }
1022
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)1023 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1024 {
1025 u64 data;
1026 u32 i;
1027 struct vmx_msr_entry e;
1028 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1029
1030 for (i = 0; i < count; i++) {
1031 if (unlikely(i >= max_msr_list_size))
1032 return -EINVAL;
1033
1034 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1035 return -EINVAL;
1036
1037 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1038 return -EINVAL;
1039
1040 if (kvm_vcpu_write_guest(vcpu,
1041 gpa + i * sizeof(e) +
1042 offsetof(struct vmx_msr_entry, value),
1043 &data, sizeof(data))) {
1044 pr_debug_ratelimited(
1045 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1046 __func__, i, e.index, data);
1047 return -EINVAL;
1048 }
1049 }
1050 return 0;
1051 }
1052
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1053 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1054 {
1055 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1056 u32 count = vmcs12->vm_exit_msr_store_count;
1057 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1058 struct vmx_msr_entry e;
1059 u32 i;
1060
1061 for (i = 0; i < count; i++) {
1062 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1063 return false;
1064
1065 if (e.index == msr_index)
1066 return true;
1067 }
1068 return false;
1069 }
1070
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1071 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1072 u32 msr_index)
1073 {
1074 struct vcpu_vmx *vmx = to_vmx(vcpu);
1075 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1076 bool in_vmcs12_store_list;
1077 int msr_autostore_slot;
1078 bool in_autostore_list;
1079 int last;
1080
1081 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1082 in_autostore_list = msr_autostore_slot >= 0;
1083 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1084
1085 if (in_vmcs12_store_list && !in_autostore_list) {
1086 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1087 /*
1088 * Emulated VMEntry does not fail here. Instead a less
1089 * accurate value will be returned by
1090 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1091 * instead of reading the value from the vmcs02 VMExit
1092 * MSR-store area.
1093 */
1094 pr_warn_ratelimited(
1095 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1096 msr_index);
1097 return;
1098 }
1099 last = autostore->nr++;
1100 autostore->val[last].index = msr_index;
1101 } else if (!in_vmcs12_store_list && in_autostore_list) {
1102 last = --autostore->nr;
1103 autostore->val[msr_autostore_slot] = autostore->val[last];
1104 }
1105 }
1106
1107 /*
1108 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1109 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1110 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1111 * @entry_failure_code.
1112 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1113 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1114 bool nested_ept, bool reload_pdptrs,
1115 enum vm_entry_failure_code *entry_failure_code)
1116 {
1117 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1118 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1119 return -EINVAL;
1120 }
1121
1122 /*
1123 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1124 * must not be dereferenced.
1125 */
1126 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1127 CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1128 *entry_failure_code = ENTRY_FAIL_PDPTE;
1129 return -EINVAL;
1130 }
1131
1132 if (!nested_ept)
1133 kvm_mmu_new_pgd(vcpu, cr3);
1134
1135 vcpu->arch.cr3 = cr3;
1136 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1137
1138 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1139 kvm_init_mmu(vcpu);
1140
1141 return 0;
1142 }
1143
1144 /*
1145 * Returns if KVM is able to config CPU to tag TLB entries
1146 * populated by L2 differently than TLB entries populated
1147 * by L1.
1148 *
1149 * If L0 uses EPT, L1 and L2 run with different EPTP because
1150 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1151 * are tagged with different EPTP.
1152 *
1153 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1154 * with different VPID (L1 entries are tagged with vmx->vpid
1155 * while L2 entries are tagged with vmx->nested.vpid02).
1156 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1157 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1158 {
1159 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1160
1161 return enable_ept ||
1162 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1163 }
1164
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1165 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1166 struct vmcs12 *vmcs12,
1167 bool is_vmenter)
1168 {
1169 struct vcpu_vmx *vmx = to_vmx(vcpu);
1170
1171 /*
1172 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1173 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1174 * full TLB flush from the guest's perspective. This is required even
1175 * if VPID is disabled in the host as KVM may need to synchronize the
1176 * MMU in response to the guest TLB flush.
1177 *
1178 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1179 * EPT is a special snowflake, as guest-physical mappings aren't
1180 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1181 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1182 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1183 * those mappings.
1184 */
1185 if (!nested_cpu_has_vpid(vmcs12)) {
1186 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1187 return;
1188 }
1189
1190 /* L2 should never have a VPID if VPID is disabled. */
1191 WARN_ON(!enable_vpid);
1192
1193 /*
1194 * If VPID is enabled and used by vmc12, but L2 does not have a unique
1195 * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1196 * a VPID for L2, flush the current context as the effective ASID is
1197 * common to both L1 and L2.
1198 *
1199 * Defer the flush so that it runs after vmcs02.EPTP has been set by
1200 * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1201 * redundant flushes further down the nested pipeline.
1202 *
1203 * If a TLB flush isn't required due to any of the above, and vpid12 is
1204 * changing then the new "virtual" VPID (vpid12) will reuse the same
1205 * "real" VPID (vpid02), and so needs to be flushed. There's no direct
1206 * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1207 * all nested vCPUs. Remember, a flush on VM-Enter does not invalidate
1208 * guest-physical mappings, so there is no need to sync the nEPT MMU.
1209 */
1210 if (!nested_has_guest_tlb_tag(vcpu)) {
1211 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1212 } else if (is_vmenter &&
1213 vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1214 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1215 vpid_sync_context(nested_get_vpid02(vcpu));
1216 }
1217 }
1218
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1219 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1220 {
1221 superset &= mask;
1222 subset &= mask;
1223
1224 return (superset | subset) == superset;
1225 }
1226
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1227 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1228 {
1229 const u64 feature_and_reserved =
1230 /* feature (except bit 48; see below) */
1231 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1232 /* reserved */
1233 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1234 u64 vmx_basic = vmx->nested.msrs.basic;
1235
1236 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1237 return -EINVAL;
1238
1239 /*
1240 * KVM does not emulate a version of VMX that constrains physical
1241 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1242 */
1243 if (data & BIT_ULL(48))
1244 return -EINVAL;
1245
1246 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1247 vmx_basic_vmcs_revision_id(data))
1248 return -EINVAL;
1249
1250 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1251 return -EINVAL;
1252
1253 vmx->nested.msrs.basic = data;
1254 return 0;
1255 }
1256
1257 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1258 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1259 {
1260 u64 supported;
1261 u32 *lowp, *highp;
1262
1263 switch (msr_index) {
1264 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1265 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1266 highp = &vmx->nested.msrs.pinbased_ctls_high;
1267 break;
1268 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1269 lowp = &vmx->nested.msrs.procbased_ctls_low;
1270 highp = &vmx->nested.msrs.procbased_ctls_high;
1271 break;
1272 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1273 lowp = &vmx->nested.msrs.exit_ctls_low;
1274 highp = &vmx->nested.msrs.exit_ctls_high;
1275 break;
1276 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1277 lowp = &vmx->nested.msrs.entry_ctls_low;
1278 highp = &vmx->nested.msrs.entry_ctls_high;
1279 break;
1280 case MSR_IA32_VMX_PROCBASED_CTLS2:
1281 lowp = &vmx->nested.msrs.secondary_ctls_low;
1282 highp = &vmx->nested.msrs.secondary_ctls_high;
1283 break;
1284 default:
1285 BUG();
1286 }
1287
1288 supported = vmx_control_msr(*lowp, *highp);
1289
1290 /* Check must-be-1 bits are still 1. */
1291 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1292 return -EINVAL;
1293
1294 /* Check must-be-0 bits are still 0. */
1295 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1296 return -EINVAL;
1297
1298 *lowp = data;
1299 *highp = data >> 32;
1300 return 0;
1301 }
1302
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1303 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1304 {
1305 const u64 feature_and_reserved_bits =
1306 /* feature */
1307 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1308 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1309 /* reserved */
1310 GENMASK_ULL(13, 9) | BIT_ULL(31);
1311 u64 vmx_misc;
1312
1313 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1314 vmx->nested.msrs.misc_high);
1315
1316 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1317 return -EINVAL;
1318
1319 if ((vmx->nested.msrs.pinbased_ctls_high &
1320 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1321 vmx_misc_preemption_timer_rate(data) !=
1322 vmx_misc_preemption_timer_rate(vmx_misc))
1323 return -EINVAL;
1324
1325 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1326 return -EINVAL;
1327
1328 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1329 return -EINVAL;
1330
1331 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1332 return -EINVAL;
1333
1334 vmx->nested.msrs.misc_low = data;
1335 vmx->nested.msrs.misc_high = data >> 32;
1336
1337 return 0;
1338 }
1339
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1340 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1341 {
1342 u64 vmx_ept_vpid_cap;
1343
1344 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1345 vmx->nested.msrs.vpid_caps);
1346
1347 /* Every bit is either reserved or a feature bit. */
1348 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1349 return -EINVAL;
1350
1351 vmx->nested.msrs.ept_caps = data;
1352 vmx->nested.msrs.vpid_caps = data >> 32;
1353 return 0;
1354 }
1355
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1356 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1357 {
1358 u64 *msr;
1359
1360 switch (msr_index) {
1361 case MSR_IA32_VMX_CR0_FIXED0:
1362 msr = &vmx->nested.msrs.cr0_fixed0;
1363 break;
1364 case MSR_IA32_VMX_CR4_FIXED0:
1365 msr = &vmx->nested.msrs.cr4_fixed0;
1366 break;
1367 default:
1368 BUG();
1369 }
1370
1371 /*
1372 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1373 * must be 1 in the restored value.
1374 */
1375 if (!is_bitwise_subset(data, *msr, -1ULL))
1376 return -EINVAL;
1377
1378 *msr = data;
1379 return 0;
1380 }
1381
1382 /*
1383 * Called when userspace is restoring VMX MSRs.
1384 *
1385 * Returns 0 on success, non-0 otherwise.
1386 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1387 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1388 {
1389 struct vcpu_vmx *vmx = to_vmx(vcpu);
1390
1391 /*
1392 * Don't allow changes to the VMX capability MSRs while the vCPU
1393 * is in VMX operation.
1394 */
1395 if (vmx->nested.vmxon)
1396 return -EBUSY;
1397
1398 switch (msr_index) {
1399 case MSR_IA32_VMX_BASIC:
1400 return vmx_restore_vmx_basic(vmx, data);
1401 case MSR_IA32_VMX_PINBASED_CTLS:
1402 case MSR_IA32_VMX_PROCBASED_CTLS:
1403 case MSR_IA32_VMX_EXIT_CTLS:
1404 case MSR_IA32_VMX_ENTRY_CTLS:
1405 /*
1406 * The "non-true" VMX capability MSRs are generated from the
1407 * "true" MSRs, so we do not support restoring them directly.
1408 *
1409 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1410 * should restore the "true" MSRs with the must-be-1 bits
1411 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1412 * DEFAULT SETTINGS".
1413 */
1414 return -EINVAL;
1415 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1416 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1417 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1418 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1419 case MSR_IA32_VMX_PROCBASED_CTLS2:
1420 return vmx_restore_control_msr(vmx, msr_index, data);
1421 case MSR_IA32_VMX_MISC:
1422 return vmx_restore_vmx_misc(vmx, data);
1423 case MSR_IA32_VMX_CR0_FIXED0:
1424 case MSR_IA32_VMX_CR4_FIXED0:
1425 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1426 case MSR_IA32_VMX_CR0_FIXED1:
1427 case MSR_IA32_VMX_CR4_FIXED1:
1428 /*
1429 * These MSRs are generated based on the vCPU's CPUID, so we
1430 * do not support restoring them directly.
1431 */
1432 return -EINVAL;
1433 case MSR_IA32_VMX_EPT_VPID_CAP:
1434 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1435 case MSR_IA32_VMX_VMCS_ENUM:
1436 vmx->nested.msrs.vmcs_enum = data;
1437 return 0;
1438 case MSR_IA32_VMX_VMFUNC:
1439 if (data & ~vmx->nested.msrs.vmfunc_controls)
1440 return -EINVAL;
1441 vmx->nested.msrs.vmfunc_controls = data;
1442 return 0;
1443 default:
1444 /*
1445 * The rest of the VMX capability MSRs do not support restore.
1446 */
1447 return -EINVAL;
1448 }
1449 }
1450
1451 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1452 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1453 {
1454 switch (msr_index) {
1455 case MSR_IA32_VMX_BASIC:
1456 *pdata = msrs->basic;
1457 break;
1458 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1459 case MSR_IA32_VMX_PINBASED_CTLS:
1460 *pdata = vmx_control_msr(
1461 msrs->pinbased_ctls_low,
1462 msrs->pinbased_ctls_high);
1463 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1464 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1465 break;
1466 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1467 case MSR_IA32_VMX_PROCBASED_CTLS:
1468 *pdata = vmx_control_msr(
1469 msrs->procbased_ctls_low,
1470 msrs->procbased_ctls_high);
1471 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1472 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1473 break;
1474 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1475 case MSR_IA32_VMX_EXIT_CTLS:
1476 *pdata = vmx_control_msr(
1477 msrs->exit_ctls_low,
1478 msrs->exit_ctls_high);
1479 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1480 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1481 break;
1482 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1483 case MSR_IA32_VMX_ENTRY_CTLS:
1484 *pdata = vmx_control_msr(
1485 msrs->entry_ctls_low,
1486 msrs->entry_ctls_high);
1487 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1488 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1489 break;
1490 case MSR_IA32_VMX_MISC:
1491 *pdata = vmx_control_msr(
1492 msrs->misc_low,
1493 msrs->misc_high);
1494 break;
1495 case MSR_IA32_VMX_CR0_FIXED0:
1496 *pdata = msrs->cr0_fixed0;
1497 break;
1498 case MSR_IA32_VMX_CR0_FIXED1:
1499 *pdata = msrs->cr0_fixed1;
1500 break;
1501 case MSR_IA32_VMX_CR4_FIXED0:
1502 *pdata = msrs->cr4_fixed0;
1503 break;
1504 case MSR_IA32_VMX_CR4_FIXED1:
1505 *pdata = msrs->cr4_fixed1;
1506 break;
1507 case MSR_IA32_VMX_VMCS_ENUM:
1508 *pdata = msrs->vmcs_enum;
1509 break;
1510 case MSR_IA32_VMX_PROCBASED_CTLS2:
1511 *pdata = vmx_control_msr(
1512 msrs->secondary_ctls_low,
1513 msrs->secondary_ctls_high);
1514 break;
1515 case MSR_IA32_VMX_EPT_VPID_CAP:
1516 *pdata = msrs->ept_caps |
1517 ((u64)msrs->vpid_caps << 32);
1518 break;
1519 case MSR_IA32_VMX_VMFUNC:
1520 *pdata = msrs->vmfunc_controls;
1521 break;
1522 default:
1523 return 1;
1524 }
1525
1526 return 0;
1527 }
1528
1529 /*
1530 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1531 * been modified by the L1 guest. Note, "writable" in this context means
1532 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1533 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1534 * VM-exit information fields (which are actually writable if the vCPU is
1535 * configured to support "VMWRITE to any supported field in the VMCS").
1536 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1537 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1538 {
1539 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1540 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1541 struct shadow_vmcs_field field;
1542 unsigned long val;
1543 int i;
1544
1545 if (WARN_ON(!shadow_vmcs))
1546 return;
1547
1548 preempt_disable();
1549
1550 vmcs_load(shadow_vmcs);
1551
1552 for (i = 0; i < max_shadow_read_write_fields; i++) {
1553 field = shadow_read_write_fields[i];
1554 val = __vmcs_readl(field.encoding);
1555 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1556 }
1557
1558 vmcs_clear(shadow_vmcs);
1559 vmcs_load(vmx->loaded_vmcs->vmcs);
1560
1561 preempt_enable();
1562 }
1563
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1564 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1565 {
1566 const struct shadow_vmcs_field *fields[] = {
1567 shadow_read_write_fields,
1568 shadow_read_only_fields
1569 };
1570 const int max_fields[] = {
1571 max_shadow_read_write_fields,
1572 max_shadow_read_only_fields
1573 };
1574 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1575 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1576 struct shadow_vmcs_field field;
1577 unsigned long val;
1578 int i, q;
1579
1580 if (WARN_ON(!shadow_vmcs))
1581 return;
1582
1583 vmcs_load(shadow_vmcs);
1584
1585 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1586 for (i = 0; i < max_fields[q]; i++) {
1587 field = fields[q][i];
1588 val = vmcs12_read_any(vmcs12, field.encoding,
1589 field.offset);
1590 __vmcs_writel(field.encoding, val);
1591 }
1592 }
1593
1594 vmcs_clear(shadow_vmcs);
1595 vmcs_load(vmx->loaded_vmcs->vmcs);
1596 }
1597
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1598 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1599 {
1600 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1601 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1602
1603 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1604 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1605 vmcs12->guest_rip = evmcs->guest_rip;
1606
1607 if (unlikely(!(hv_clean_fields &
1608 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1609 vmcs12->guest_rsp = evmcs->guest_rsp;
1610 vmcs12->guest_rflags = evmcs->guest_rflags;
1611 vmcs12->guest_interruptibility_info =
1612 evmcs->guest_interruptibility_info;
1613 }
1614
1615 if (unlikely(!(hv_clean_fields &
1616 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1617 vmcs12->cpu_based_vm_exec_control =
1618 evmcs->cpu_based_vm_exec_control;
1619 }
1620
1621 if (unlikely(!(hv_clean_fields &
1622 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1623 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1624 }
1625
1626 if (unlikely(!(hv_clean_fields &
1627 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1628 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1629 }
1630
1631 if (unlikely(!(hv_clean_fields &
1632 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1633 vmcs12->vm_entry_intr_info_field =
1634 evmcs->vm_entry_intr_info_field;
1635 vmcs12->vm_entry_exception_error_code =
1636 evmcs->vm_entry_exception_error_code;
1637 vmcs12->vm_entry_instruction_len =
1638 evmcs->vm_entry_instruction_len;
1639 }
1640
1641 if (unlikely(!(hv_clean_fields &
1642 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1643 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1644 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1645 vmcs12->host_cr0 = evmcs->host_cr0;
1646 vmcs12->host_cr3 = evmcs->host_cr3;
1647 vmcs12->host_cr4 = evmcs->host_cr4;
1648 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1649 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1650 vmcs12->host_rip = evmcs->host_rip;
1651 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1652 vmcs12->host_es_selector = evmcs->host_es_selector;
1653 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1654 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1655 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1656 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1657 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1658 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1659 }
1660
1661 if (unlikely(!(hv_clean_fields &
1662 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1663 vmcs12->pin_based_vm_exec_control =
1664 evmcs->pin_based_vm_exec_control;
1665 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1666 vmcs12->secondary_vm_exec_control =
1667 evmcs->secondary_vm_exec_control;
1668 }
1669
1670 if (unlikely(!(hv_clean_fields &
1671 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1672 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1673 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1674 }
1675
1676 if (unlikely(!(hv_clean_fields &
1677 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1678 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1679 }
1680
1681 if (unlikely(!(hv_clean_fields &
1682 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1683 vmcs12->guest_es_base = evmcs->guest_es_base;
1684 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1685 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1686 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1687 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1688 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1689 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1690 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1691 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1692 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1693 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1694 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1695 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1696 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1697 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1698 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1699 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1700 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1701 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1702 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1703 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1704 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1705 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1706 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1707 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1708 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1709 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1710 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1711 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1712 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1713 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1714 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1715 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1716 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1717 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1718 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1719 }
1720
1721 if (unlikely(!(hv_clean_fields &
1722 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1723 vmcs12->tsc_offset = evmcs->tsc_offset;
1724 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1725 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1726 }
1727
1728 if (unlikely(!(hv_clean_fields &
1729 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1730 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1731 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1732 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1733 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1734 vmcs12->guest_cr0 = evmcs->guest_cr0;
1735 vmcs12->guest_cr3 = evmcs->guest_cr3;
1736 vmcs12->guest_cr4 = evmcs->guest_cr4;
1737 vmcs12->guest_dr7 = evmcs->guest_dr7;
1738 }
1739
1740 if (unlikely(!(hv_clean_fields &
1741 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1742 vmcs12->host_fs_base = evmcs->host_fs_base;
1743 vmcs12->host_gs_base = evmcs->host_gs_base;
1744 vmcs12->host_tr_base = evmcs->host_tr_base;
1745 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1746 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1747 vmcs12->host_rsp = evmcs->host_rsp;
1748 }
1749
1750 if (unlikely(!(hv_clean_fields &
1751 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1752 vmcs12->ept_pointer = evmcs->ept_pointer;
1753 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1754 }
1755
1756 if (unlikely(!(hv_clean_fields &
1757 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1758 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1759 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1760 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1761 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1762 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1763 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1764 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1765 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1766 vmcs12->guest_pending_dbg_exceptions =
1767 evmcs->guest_pending_dbg_exceptions;
1768 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1769 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1770 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1771 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1772 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1773 }
1774
1775 /*
1776 * Not used?
1777 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1778 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1779 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1780 * vmcs12->page_fault_error_code_mask =
1781 * evmcs->page_fault_error_code_mask;
1782 * vmcs12->page_fault_error_code_match =
1783 * evmcs->page_fault_error_code_match;
1784 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1785 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1786 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1787 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1788 */
1789
1790 /*
1791 * Read only fields:
1792 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1793 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1794 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1795 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1796 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1797 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1798 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1799 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1800 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1801 * vmcs12->exit_qualification = evmcs->exit_qualification;
1802 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1803 *
1804 * Not present in struct vmcs12:
1805 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1806 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1807 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1808 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1809 */
1810
1811 return;
1812 }
1813
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1814 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1815 {
1816 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1817 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1818
1819 /*
1820 * Should not be changed by KVM:
1821 *
1822 * evmcs->host_es_selector = vmcs12->host_es_selector;
1823 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1824 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1825 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1826 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1827 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1828 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1829 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1830 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1831 * evmcs->host_cr0 = vmcs12->host_cr0;
1832 * evmcs->host_cr3 = vmcs12->host_cr3;
1833 * evmcs->host_cr4 = vmcs12->host_cr4;
1834 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1835 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1836 * evmcs->host_rip = vmcs12->host_rip;
1837 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1838 * evmcs->host_fs_base = vmcs12->host_fs_base;
1839 * evmcs->host_gs_base = vmcs12->host_gs_base;
1840 * evmcs->host_tr_base = vmcs12->host_tr_base;
1841 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1842 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1843 * evmcs->host_rsp = vmcs12->host_rsp;
1844 * sync_vmcs02_to_vmcs12() doesn't read these:
1845 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1846 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1847 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1848 * evmcs->ept_pointer = vmcs12->ept_pointer;
1849 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1850 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1851 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1852 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1853 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1854 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1855 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1856 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1857 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1858 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1859 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1860 * evmcs->page_fault_error_code_mask =
1861 * vmcs12->page_fault_error_code_mask;
1862 * evmcs->page_fault_error_code_match =
1863 * vmcs12->page_fault_error_code_match;
1864 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1865 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1866 * evmcs->tsc_offset = vmcs12->tsc_offset;
1867 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1868 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1869 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1870 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1871 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1872 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1873 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1874 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1875 *
1876 * Not present in struct vmcs12:
1877 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1878 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1879 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1880 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1881 */
1882
1883 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1884 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1885 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1886 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1887 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1888 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1889 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1890 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1891
1892 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1893 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1894 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1895 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1896 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1897 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1898 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1899 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1900 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1901 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1902
1903 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1904 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1905 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1906 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1907 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1908 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1909 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1910 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1911
1912 evmcs->guest_es_base = vmcs12->guest_es_base;
1913 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1914 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1915 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1916 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1917 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1918 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1919 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1920 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1921 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1922
1923 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1924 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1925
1926 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1927 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1928 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1929 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1930
1931 evmcs->guest_pending_dbg_exceptions =
1932 vmcs12->guest_pending_dbg_exceptions;
1933 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1934 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1935
1936 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1937 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1938
1939 evmcs->guest_cr0 = vmcs12->guest_cr0;
1940 evmcs->guest_cr3 = vmcs12->guest_cr3;
1941 evmcs->guest_cr4 = vmcs12->guest_cr4;
1942 evmcs->guest_dr7 = vmcs12->guest_dr7;
1943
1944 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1945
1946 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1947 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1948 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1949 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1950 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1951 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1952 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1953 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1954
1955 evmcs->exit_qualification = vmcs12->exit_qualification;
1956
1957 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1958 evmcs->guest_rsp = vmcs12->guest_rsp;
1959 evmcs->guest_rflags = vmcs12->guest_rflags;
1960
1961 evmcs->guest_interruptibility_info =
1962 vmcs12->guest_interruptibility_info;
1963 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1964 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1965 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1966 evmcs->vm_entry_exception_error_code =
1967 vmcs12->vm_entry_exception_error_code;
1968 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1969
1970 evmcs->guest_rip = vmcs12->guest_rip;
1971
1972 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1973
1974 return;
1975 }
1976
1977 /*
1978 * This is an equivalent of the nested hypervisor executing the vmptrld
1979 * instruction.
1980 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)1981 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1982 struct kvm_vcpu *vcpu, bool from_launch)
1983 {
1984 struct vcpu_vmx *vmx = to_vmx(vcpu);
1985 bool evmcs_gpa_changed = false;
1986 u64 evmcs_gpa;
1987
1988 if (likely(!vmx->nested.enlightened_vmcs_enabled))
1989 return EVMPTRLD_DISABLED;
1990
1991 if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1992 nested_release_evmcs(vcpu);
1993 return EVMPTRLD_DISABLED;
1994 }
1995
1996 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1997 vmx->nested.current_vmptr = -1ull;
1998
1999 nested_release_evmcs(vcpu);
2000
2001 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2002 &vmx->nested.hv_evmcs_map))
2003 return EVMPTRLD_ERROR;
2004
2005 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2006
2007 /*
2008 * Currently, KVM only supports eVMCS version 1
2009 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2010 * value to first u32 field of eVMCS which should specify eVMCS
2011 * VersionNumber.
2012 *
2013 * Guest should be aware of supported eVMCS versions by host by
2014 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2015 * expected to set this CPUID leaf according to the value
2016 * returned in vmcs_version from nested_enable_evmcs().
2017 *
2018 * However, it turns out that Microsoft Hyper-V fails to comply
2019 * to their own invented interface: When Hyper-V use eVMCS, it
2020 * just sets first u32 field of eVMCS to revision_id specified
2021 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2022 * which is one of the supported versions specified in
2023 * CPUID.0x4000000A.EAX[0:15].
2024 *
2025 * To overcome Hyper-V bug, we accept here either a supported
2026 * eVMCS version or VMCS12 revision_id as valid values for first
2027 * u32 field of eVMCS.
2028 */
2029 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2030 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2031 nested_release_evmcs(vcpu);
2032 return EVMPTRLD_VMFAIL;
2033 }
2034
2035 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2036
2037 evmcs_gpa_changed = true;
2038 /*
2039 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2040 * reloaded from guest's memory (read only fields, fields not
2041 * present in struct hv_enlightened_vmcs, ...). Make sure there
2042 * are no leftovers.
2043 */
2044 if (from_launch) {
2045 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2046 memset(vmcs12, 0, sizeof(*vmcs12));
2047 vmcs12->hdr.revision_id = VMCS12_REVISION;
2048 }
2049
2050 }
2051
2052 /*
2053 * Clean fields data can't be used on VMLAUNCH and when we switch
2054 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2055 */
2056 if (from_launch || evmcs_gpa_changed)
2057 vmx->nested.hv_evmcs->hv_clean_fields &=
2058 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2059
2060 return EVMPTRLD_SUCCEEDED;
2061 }
2062
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2063 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2064 {
2065 struct vcpu_vmx *vmx = to_vmx(vcpu);
2066
2067 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2068 copy_vmcs12_to_enlightened(vmx);
2069 else
2070 copy_vmcs12_to_shadow(vmx);
2071
2072 vmx->nested.need_vmcs12_to_shadow_sync = false;
2073 }
2074
vmx_preemption_timer_fn(struct hrtimer * timer)2075 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2076 {
2077 struct vcpu_vmx *vmx =
2078 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2079
2080 vmx->nested.preemption_timer_expired = true;
2081 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2082 kvm_vcpu_kick(&vmx->vcpu);
2083
2084 return HRTIMER_NORESTART;
2085 }
2086
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2087 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2088 {
2089 struct vcpu_vmx *vmx = to_vmx(vcpu);
2090 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2091
2092 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2093 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2094
2095 if (!vmx->nested.has_preemption_timer_deadline) {
2096 vmx->nested.preemption_timer_deadline =
2097 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2098 vmx->nested.has_preemption_timer_deadline = true;
2099 }
2100 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2101 }
2102
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2103 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2104 u64 preemption_timeout)
2105 {
2106 struct vcpu_vmx *vmx = to_vmx(vcpu);
2107
2108 /*
2109 * A timer value of zero is architecturally guaranteed to cause
2110 * a VMExit prior to executing any instructions in the guest.
2111 */
2112 if (preemption_timeout == 0) {
2113 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2114 return;
2115 }
2116
2117 if (vcpu->arch.virtual_tsc_khz == 0)
2118 return;
2119
2120 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2121 preemption_timeout *= 1000000;
2122 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2123 hrtimer_start(&vmx->nested.preemption_timer,
2124 ktime_add_ns(ktime_get(), preemption_timeout),
2125 HRTIMER_MODE_ABS_PINNED);
2126 }
2127
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2128 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2129 {
2130 if (vmx->nested.nested_run_pending &&
2131 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2132 return vmcs12->guest_ia32_efer;
2133 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2134 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2135 else
2136 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2137 }
2138
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2139 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2140 {
2141 /*
2142 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2143 * according to L0's settings (vmcs12 is irrelevant here). Host
2144 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2145 * will be set as needed prior to VMLAUNCH/VMRESUME.
2146 */
2147 if (vmx->nested.vmcs02_initialized)
2148 return;
2149 vmx->nested.vmcs02_initialized = true;
2150
2151 /*
2152 * We don't care what the EPTP value is we just need to guarantee
2153 * it's valid so we don't get a false positive when doing early
2154 * consistency checks.
2155 */
2156 if (enable_ept && nested_early_check)
2157 vmcs_write64(EPT_POINTER,
2158 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2159
2160 /* All VMFUNCs are currently emulated through L0 vmexits. */
2161 if (cpu_has_vmx_vmfunc())
2162 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2163
2164 if (cpu_has_vmx_posted_intr())
2165 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2166
2167 if (cpu_has_vmx_msr_bitmap())
2168 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2169
2170 /*
2171 * PML is emulated for L2, but never enabled in hardware as the MMU
2172 * handles A/D emulation. Disabling PML for L2 also avoids having to
2173 * deal with filtering out L2 GPAs from the buffer.
2174 */
2175 if (enable_pml) {
2176 vmcs_write64(PML_ADDRESS, 0);
2177 vmcs_write16(GUEST_PML_INDEX, -1);
2178 }
2179
2180 if (cpu_has_vmx_encls_vmexit())
2181 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2182
2183 /*
2184 * Set the MSR load/store lists to match L0's settings. Only the
2185 * addresses are constant (for vmcs02), the counts can change based
2186 * on L2's behavior, e.g. switching to/from long mode.
2187 */
2188 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2189 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2190 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2191
2192 vmx_set_constant_host_state(vmx);
2193 }
2194
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2195 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2196 struct vmcs12 *vmcs12)
2197 {
2198 prepare_vmcs02_constant_state(vmx);
2199
2200 vmcs_write64(VMCS_LINK_POINTER, -1ull);
2201
2202 if (enable_vpid) {
2203 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2204 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2205 else
2206 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2207 }
2208 }
2209
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2210 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2211 struct vmcs12 *vmcs12)
2212 {
2213 u32 exec_control;
2214 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2215
2216 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2217 prepare_vmcs02_early_rare(vmx, vmcs12);
2218
2219 /*
2220 * PIN CONTROLS
2221 */
2222 exec_control = __pin_controls_get(vmcs01);
2223 exec_control |= (vmcs12->pin_based_vm_exec_control &
2224 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2225
2226 /* Posted interrupts setting is only taken from vmcs12. */
2227 vmx->nested.pi_pending = false;
2228 if (nested_cpu_has_posted_intr(vmcs12))
2229 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2230 else
2231 exec_control &= ~PIN_BASED_POSTED_INTR;
2232 pin_controls_set(vmx, exec_control);
2233
2234 /*
2235 * EXEC CONTROLS
2236 */
2237 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2238 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2239 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2240 exec_control &= ~CPU_BASED_TPR_SHADOW;
2241 exec_control |= vmcs12->cpu_based_vm_exec_control;
2242
2243 vmx->nested.l1_tpr_threshold = -1;
2244 if (exec_control & CPU_BASED_TPR_SHADOW)
2245 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2246 #ifdef CONFIG_X86_64
2247 else
2248 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2249 CPU_BASED_CR8_STORE_EXITING;
2250 #endif
2251
2252 /*
2253 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2254 * for I/O port accesses.
2255 */
2256 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2257 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2258
2259 /*
2260 * This bit will be computed in nested_get_vmcs12_pages, because
2261 * we do not have access to L1's MSR bitmap yet. For now, keep
2262 * the same bit as before, hoping to avoid multiple VMWRITEs that
2263 * only set/clear this bit.
2264 */
2265 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2266 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2267
2268 exec_controls_set(vmx, exec_control);
2269
2270 /*
2271 * SECONDARY EXEC CONTROLS
2272 */
2273 if (cpu_has_secondary_exec_ctrls()) {
2274 exec_control = __secondary_exec_controls_get(vmcs01);
2275
2276 /* Take the following fields only from vmcs12 */
2277 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2278 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2279 SECONDARY_EXEC_ENABLE_INVPCID |
2280 SECONDARY_EXEC_ENABLE_RDTSCP |
2281 SECONDARY_EXEC_XSAVES |
2282 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2283 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2284 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2285 SECONDARY_EXEC_ENABLE_VMFUNC |
2286 SECONDARY_EXEC_TSC_SCALING |
2287 SECONDARY_EXEC_DESC);
2288
2289 if (nested_cpu_has(vmcs12,
2290 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2291 exec_control |= vmcs12->secondary_vm_exec_control;
2292
2293 /* PML is emulated and never enabled in hardware for L2. */
2294 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2295
2296 /* VMCS shadowing for L2 is emulated for now */
2297 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2298
2299 /*
2300 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2301 * will not have to rewrite the controls just for this bit.
2302 */
2303 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2304 (vmcs12->guest_cr4 & X86_CR4_UMIP))
2305 exec_control |= SECONDARY_EXEC_DESC;
2306
2307 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2308 vmcs_write16(GUEST_INTR_STATUS,
2309 vmcs12->guest_intr_status);
2310
2311 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2312 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2313
2314 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2315 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2316
2317 secondary_exec_controls_set(vmx, exec_control);
2318 }
2319
2320 /*
2321 * ENTRY CONTROLS
2322 *
2323 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2324 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2325 * on the related bits (if supported by the CPU) in the hope that
2326 * we can avoid VMWrites during vmx_set_efer().
2327 */
2328 exec_control = __vm_entry_controls_get(vmcs01);
2329 exec_control |= vmcs12->vm_entry_controls;
2330 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2331 if (cpu_has_load_ia32_efer()) {
2332 if (guest_efer & EFER_LMA)
2333 exec_control |= VM_ENTRY_IA32E_MODE;
2334 if (guest_efer != host_efer)
2335 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2336 }
2337 vm_entry_controls_set(vmx, exec_control);
2338
2339 /*
2340 * EXIT CONTROLS
2341 *
2342 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2343 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2344 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2345 */
2346 exec_control = __vm_exit_controls_get(vmcs01);
2347 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2348 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2349 else
2350 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2351 vm_exit_controls_set(vmx, exec_control);
2352
2353 /*
2354 * Interrupt/Exception Fields
2355 */
2356 if (vmx->nested.nested_run_pending) {
2357 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2358 vmcs12->vm_entry_intr_info_field);
2359 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2360 vmcs12->vm_entry_exception_error_code);
2361 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2362 vmcs12->vm_entry_instruction_len);
2363 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2364 vmcs12->guest_interruptibility_info);
2365 vmx->loaded_vmcs->nmi_known_unmasked =
2366 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2367 } else {
2368 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2369 }
2370 }
2371
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2372 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2373 {
2374 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2375
2376 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2377 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2378 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2379 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2380 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2381 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2382 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2383 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2384 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2385 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2386 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2387 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2388 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2389 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2390 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2391 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2392 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2393 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2394 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2395 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2396 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2397 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2398 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2399 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2400 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2401 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2402 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2403 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2404 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2405 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2406 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2407 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2408 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2409 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2410 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2411 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2412 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2413 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2414
2415 vmx->segment_cache.bitmask = 0;
2416 }
2417
2418 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2419 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2420 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2421 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2422 vmcs12->guest_pending_dbg_exceptions);
2423 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2424 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2425
2426 /*
2427 * L1 may access the L2's PDPTR, so save them to construct
2428 * vmcs12
2429 */
2430 if (enable_ept) {
2431 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2432 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2433 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2434 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2435 }
2436
2437 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2438 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2439 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2440 }
2441
2442 if (nested_cpu_has_xsaves(vmcs12))
2443 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2444
2445 /*
2446 * Whether page-faults are trapped is determined by a combination of
2447 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2448 * doesn't care about page faults then we should set all of these to
2449 * L1's desires. However, if L0 does care about (some) page faults, it
2450 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2451 * simply ask to exit on each and every L2 page fault. This is done by
2452 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2453 * Note that below we don't need special code to set EB.PF beyond the
2454 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2455 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2456 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2457 */
2458 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2459 /*
2460 * TODO: if both L0 and L1 need the same MASK and MATCH,
2461 * go ahead and use it?
2462 */
2463 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2464 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2465 } else {
2466 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2467 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2468 }
2469
2470 if (cpu_has_vmx_apicv()) {
2471 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2472 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2473 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2474 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2475 }
2476
2477 /*
2478 * Make sure the msr_autostore list is up to date before we set the
2479 * count in the vmcs02.
2480 */
2481 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2482
2483 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2484 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2485 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2486
2487 set_cr4_guest_host_mask(vmx);
2488 }
2489
2490 /*
2491 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2492 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2493 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2494 * guest in a way that will both be appropriate to L1's requests, and our
2495 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2496 * function also has additional necessary side-effects, like setting various
2497 * vcpu->arch fields.
2498 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2499 * is assigned to entry_failure_code on failure.
2500 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2501 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2502 bool from_vmentry,
2503 enum vm_entry_failure_code *entry_failure_code)
2504 {
2505 struct vcpu_vmx *vmx = to_vmx(vcpu);
2506 bool load_guest_pdptrs_vmcs12 = false;
2507
2508 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2509 prepare_vmcs02_rare(vmx, vmcs12);
2510 vmx->nested.dirty_vmcs12 = false;
2511
2512 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2513 !(vmx->nested.hv_evmcs->hv_clean_fields &
2514 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2515 }
2516
2517 if (vmx->nested.nested_run_pending &&
2518 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2519 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2520 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2521 } else {
2522 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2523 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2524 }
2525 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2526 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2527 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2528 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2529
2530 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2531 * bitwise-or of what L1 wants to trap for L2, and what we want to
2532 * trap. Note that CR0.TS also needs updating - we do this later.
2533 */
2534 vmx_update_exception_bitmap(vcpu);
2535 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2536 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2537
2538 if (vmx->nested.nested_run_pending &&
2539 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2540 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2541 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2542 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2543 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2544 }
2545
2546 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2547 vcpu->arch.l1_tsc_offset,
2548 vmx_get_l2_tsc_offset(vcpu),
2549 vmx_get_l2_tsc_multiplier(vcpu));
2550
2551 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2552 vcpu->arch.l1_tsc_scaling_ratio,
2553 vmx_get_l2_tsc_multiplier(vcpu));
2554
2555 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2556 if (kvm_has_tsc_control)
2557 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2558
2559 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2560
2561 if (nested_cpu_has_ept(vmcs12))
2562 nested_ept_init_mmu_context(vcpu);
2563
2564 /*
2565 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2566 * bits which we consider mandatory enabled.
2567 * The CR0_READ_SHADOW is what L2 should have expected to read given
2568 * the specifications by L1; It's not enough to take
2569 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2570 * have more bits than L1 expected.
2571 */
2572 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2573 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2574
2575 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2576 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2577
2578 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2579 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2580 vmx_set_efer(vcpu, vcpu->arch.efer);
2581
2582 /*
2583 * Guest state is invalid and unrestricted guest is disabled,
2584 * which means L1 attempted VMEntry to L2 with invalid state.
2585 * Fail the VMEntry.
2586 *
2587 * However when force loading the guest state (SMM exit or
2588 * loading nested state after migration, it is possible to
2589 * have invalid guest state now, which will be later fixed by
2590 * restoring L2 register state
2591 */
2592 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2593 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2594 return -EINVAL;
2595 }
2596
2597 /* Shadow page tables on either EPT or shadow page tables. */
2598 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2599 from_vmentry, entry_failure_code))
2600 return -EINVAL;
2601
2602 /*
2603 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2604 * on nested VM-Exit, which can occur without actually running L2 and
2605 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2606 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2607 * transition to HLT instead of running L2.
2608 */
2609 if (enable_ept)
2610 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2611
2612 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2613 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2614 is_pae_paging(vcpu)) {
2615 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2616 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2617 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2618 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2619 }
2620
2621 if (!enable_ept)
2622 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2623
2624 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2625 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2626 vmcs12->guest_ia32_perf_global_ctrl)))
2627 return -EINVAL;
2628
2629 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2630 kvm_rip_write(vcpu, vmcs12->guest_rip);
2631
2632 /*
2633 * It was observed that genuine Hyper-V running in L1 doesn't reset
2634 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2635 * bits when it changes a field in eVMCS. Mark all fields as clean
2636 * here.
2637 */
2638 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2639 vmx->nested.hv_evmcs->hv_clean_fields |=
2640 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2641
2642 return 0;
2643 }
2644
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2645 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2646 {
2647 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2648 nested_cpu_has_virtual_nmis(vmcs12)))
2649 return -EINVAL;
2650
2651 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2652 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2653 return -EINVAL;
2654
2655 return 0;
2656 }
2657
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2658 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2659 {
2660 struct vcpu_vmx *vmx = to_vmx(vcpu);
2661
2662 /* Check for memory type validity */
2663 switch (new_eptp & VMX_EPTP_MT_MASK) {
2664 case VMX_EPTP_MT_UC:
2665 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2666 return false;
2667 break;
2668 case VMX_EPTP_MT_WB:
2669 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2670 return false;
2671 break;
2672 default:
2673 return false;
2674 }
2675
2676 /* Page-walk levels validity. */
2677 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2678 case VMX_EPTP_PWL_5:
2679 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2680 return false;
2681 break;
2682 case VMX_EPTP_PWL_4:
2683 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2684 return false;
2685 break;
2686 default:
2687 return false;
2688 }
2689
2690 /* Reserved bits should not be set */
2691 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2692 return false;
2693
2694 /* AD, if set, should be supported */
2695 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2696 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2697 return false;
2698 }
2699
2700 return true;
2701 }
2702
2703 /*
2704 * Checks related to VM-Execution Control Fields
2705 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2706 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2707 struct vmcs12 *vmcs12)
2708 {
2709 struct vcpu_vmx *vmx = to_vmx(vcpu);
2710
2711 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2712 vmx->nested.msrs.pinbased_ctls_low,
2713 vmx->nested.msrs.pinbased_ctls_high)) ||
2714 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2715 vmx->nested.msrs.procbased_ctls_low,
2716 vmx->nested.msrs.procbased_ctls_high)))
2717 return -EINVAL;
2718
2719 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2720 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2721 vmx->nested.msrs.secondary_ctls_low,
2722 vmx->nested.msrs.secondary_ctls_high)))
2723 return -EINVAL;
2724
2725 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2726 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2727 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2728 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2729 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2730 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2731 nested_vmx_check_nmi_controls(vmcs12) ||
2732 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2733 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2734 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2735 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2736 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2737 return -EINVAL;
2738
2739 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2740 nested_cpu_has_save_preemption_timer(vmcs12))
2741 return -EINVAL;
2742
2743 if (nested_cpu_has_ept(vmcs12) &&
2744 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2745 return -EINVAL;
2746
2747 if (nested_cpu_has_vmfunc(vmcs12)) {
2748 if (CC(vmcs12->vm_function_control &
2749 ~vmx->nested.msrs.vmfunc_controls))
2750 return -EINVAL;
2751
2752 if (nested_cpu_has_eptp_switching(vmcs12)) {
2753 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2754 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2755 return -EINVAL;
2756 }
2757 }
2758
2759 return 0;
2760 }
2761
2762 /*
2763 * Checks related to VM-Exit Control Fields
2764 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2765 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2766 struct vmcs12 *vmcs12)
2767 {
2768 struct vcpu_vmx *vmx = to_vmx(vcpu);
2769
2770 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2771 vmx->nested.msrs.exit_ctls_low,
2772 vmx->nested.msrs.exit_ctls_high)) ||
2773 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2774 return -EINVAL;
2775
2776 return 0;
2777 }
2778
2779 /*
2780 * Checks related to VM-Entry Control Fields
2781 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2782 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2783 struct vmcs12 *vmcs12)
2784 {
2785 struct vcpu_vmx *vmx = to_vmx(vcpu);
2786
2787 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2788 vmx->nested.msrs.entry_ctls_low,
2789 vmx->nested.msrs.entry_ctls_high)))
2790 return -EINVAL;
2791
2792 /*
2793 * From the Intel SDM, volume 3:
2794 * Fields relevant to VM-entry event injection must be set properly.
2795 * These fields are the VM-entry interruption-information field, the
2796 * VM-entry exception error code, and the VM-entry instruction length.
2797 */
2798 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2799 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2800 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2801 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2802 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2803 bool should_have_error_code;
2804 bool urg = nested_cpu_has2(vmcs12,
2805 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2806 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2807
2808 /* VM-entry interruption-info field: interruption type */
2809 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2810 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2811 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2812 return -EINVAL;
2813
2814 /* VM-entry interruption-info field: vector */
2815 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2816 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2817 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2818 return -EINVAL;
2819
2820 /* VM-entry interruption-info field: deliver error code */
2821 should_have_error_code =
2822 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2823 x86_exception_has_error_code(vector);
2824 if (CC(has_error_code != should_have_error_code))
2825 return -EINVAL;
2826
2827 /* VM-entry exception error code */
2828 if (CC(has_error_code &&
2829 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2830 return -EINVAL;
2831
2832 /* VM-entry interruption-info field: reserved bits */
2833 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2834 return -EINVAL;
2835
2836 /* VM-entry instruction length */
2837 switch (intr_type) {
2838 case INTR_TYPE_SOFT_EXCEPTION:
2839 case INTR_TYPE_SOFT_INTR:
2840 case INTR_TYPE_PRIV_SW_EXCEPTION:
2841 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2842 CC(vmcs12->vm_entry_instruction_len == 0 &&
2843 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2844 return -EINVAL;
2845 }
2846 }
2847
2848 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2849 return -EINVAL;
2850
2851 return 0;
2852 }
2853
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2854 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2855 struct vmcs12 *vmcs12)
2856 {
2857 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2858 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2859 nested_check_vm_entry_controls(vcpu, vmcs12))
2860 return -EINVAL;
2861
2862 if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2863 return nested_evmcs_check_controls(vmcs12);
2864
2865 return 0;
2866 }
2867
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2868 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2869 struct vmcs12 *vmcs12)
2870 {
2871 bool ia32e;
2872
2873 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2874 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2875 CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2876 return -EINVAL;
2877
2878 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2879 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2880 return -EINVAL;
2881
2882 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2883 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2884 return -EINVAL;
2885
2886 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2887 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2888 vmcs12->host_ia32_perf_global_ctrl)))
2889 return -EINVAL;
2890
2891 #ifdef CONFIG_X86_64
2892 ia32e = !!(vcpu->arch.efer & EFER_LMA);
2893 #else
2894 ia32e = false;
2895 #endif
2896
2897 if (ia32e) {
2898 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2899 CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2900 return -EINVAL;
2901 } else {
2902 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2903 CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2904 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2905 CC((vmcs12->host_rip) >> 32))
2906 return -EINVAL;
2907 }
2908
2909 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2910 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2911 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2912 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2913 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2914 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2915 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2916 CC(vmcs12->host_cs_selector == 0) ||
2917 CC(vmcs12->host_tr_selector == 0) ||
2918 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2919 return -EINVAL;
2920
2921 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2922 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2923 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2924 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2925 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2926 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2927 return -EINVAL;
2928
2929 /*
2930 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2931 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2932 * the values of the LMA and LME bits in the field must each be that of
2933 * the host address-space size VM-exit control.
2934 */
2935 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2936 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2937 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2938 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2939 return -EINVAL;
2940 }
2941
2942 return 0;
2943 }
2944
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2945 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2946 struct vmcs12 *vmcs12)
2947 {
2948 int r = 0;
2949 struct vmcs12 *shadow;
2950 struct kvm_host_map map;
2951
2952 if (vmcs12->vmcs_link_pointer == -1ull)
2953 return 0;
2954
2955 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2956 return -EINVAL;
2957
2958 if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2959 return -EINVAL;
2960
2961 shadow = map.hva;
2962
2963 if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2964 CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2965 r = -EINVAL;
2966
2967 kvm_vcpu_unmap(vcpu, &map, false);
2968 return r;
2969 }
2970
2971 /*
2972 * Checks related to Guest Non-register State
2973 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)2974 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2975 {
2976 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2977 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2978 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2979 return -EINVAL;
2980
2981 return 0;
2982 }
2983
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)2984 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2985 struct vmcs12 *vmcs12,
2986 enum vm_entry_failure_code *entry_failure_code)
2987 {
2988 bool ia32e;
2989
2990 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2991
2992 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2993 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2994 return -EINVAL;
2995
2996 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2997 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2998 return -EINVAL;
2999
3000 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3001 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3002 return -EINVAL;
3003
3004 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3005 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3006 return -EINVAL;
3007 }
3008
3009 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3010 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3011 vmcs12->guest_ia32_perf_global_ctrl)))
3012 return -EINVAL;
3013
3014 /*
3015 * If the load IA32_EFER VM-entry control is 1, the following checks
3016 * are performed on the field for the IA32_EFER MSR:
3017 * - Bits reserved in the IA32_EFER MSR must be 0.
3018 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3019 * the IA-32e mode guest VM-exit control. It must also be identical
3020 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3021 * CR0.PG) is 1.
3022 */
3023 if (to_vmx(vcpu)->nested.nested_run_pending &&
3024 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3025 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3026 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3027 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3028 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3029 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3030 return -EINVAL;
3031 }
3032
3033 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3034 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3035 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3036 return -EINVAL;
3037
3038 if (nested_check_guest_non_reg_state(vmcs12))
3039 return -EINVAL;
3040
3041 return 0;
3042 }
3043
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3044 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3045 {
3046 struct vcpu_vmx *vmx = to_vmx(vcpu);
3047 unsigned long cr3, cr4;
3048 bool vm_fail;
3049
3050 if (!nested_early_check)
3051 return 0;
3052
3053 if (vmx->msr_autoload.host.nr)
3054 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3055 if (vmx->msr_autoload.guest.nr)
3056 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3057
3058 preempt_disable();
3059
3060 vmx_prepare_switch_to_guest(vcpu);
3061
3062 /*
3063 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3064 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3065 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3066 * there is no need to preserve other bits or save/restore the field.
3067 */
3068 vmcs_writel(GUEST_RFLAGS, 0);
3069
3070 cr3 = __get_current_cr3_fast();
3071 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3072 vmcs_writel(HOST_CR3, cr3);
3073 vmx->loaded_vmcs->host_state.cr3 = cr3;
3074 }
3075
3076 cr4 = cr4_read_shadow();
3077 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3078 vmcs_writel(HOST_CR4, cr4);
3079 vmx->loaded_vmcs->host_state.cr4 = cr4;
3080 }
3081
3082 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3083 vmx->loaded_vmcs->launched);
3084
3085 if (vmx->msr_autoload.host.nr)
3086 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3087 if (vmx->msr_autoload.guest.nr)
3088 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3089
3090 if (vm_fail) {
3091 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3092
3093 preempt_enable();
3094
3095 trace_kvm_nested_vmenter_failed(
3096 "early hardware check VM-instruction error: ", error);
3097 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3098 return 1;
3099 }
3100
3101 /*
3102 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3103 */
3104 if (hw_breakpoint_active())
3105 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3106 local_irq_enable();
3107 preempt_enable();
3108
3109 /*
3110 * A non-failing VMEntry means we somehow entered guest mode with
3111 * an illegal RIP, and that's just the tip of the iceberg. There
3112 * is no telling what memory has been modified or what state has
3113 * been exposed to unknown code. Hitting this all but guarantees
3114 * a (very critical) hardware issue.
3115 */
3116 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3117 VMX_EXIT_REASONS_FAILED_VMENTRY));
3118
3119 return 0;
3120 }
3121
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3122 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3123 {
3124 struct vcpu_vmx *vmx = to_vmx(vcpu);
3125
3126 /*
3127 * hv_evmcs may end up being not mapped after migration (when
3128 * L2 was running), map it here to make sure vmcs12 changes are
3129 * properly reflected.
3130 */
3131 if (vmx->nested.enlightened_vmcs_enabled &&
3132 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3133 enum nested_evmptrld_status evmptrld_status =
3134 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3135
3136 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3137 evmptrld_status == EVMPTRLD_ERROR)
3138 return false;
3139
3140 /*
3141 * Post migration VMCS12 always provides the most actual
3142 * information, copy it to eVMCS upon entry.
3143 */
3144 vmx->nested.need_vmcs12_to_shadow_sync = true;
3145 }
3146
3147 return true;
3148 }
3149
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3150 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3151 {
3152 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3153 struct vcpu_vmx *vmx = to_vmx(vcpu);
3154 struct kvm_host_map *map;
3155 struct page *page;
3156 u64 hpa;
3157
3158 if (!vcpu->arch.pdptrs_from_userspace &&
3159 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3160 /*
3161 * Reload the guest's PDPTRs since after a migration
3162 * the guest CR3 might be restored prior to setting the nested
3163 * state which can lead to a load of wrong PDPTRs.
3164 */
3165 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)))
3166 return false;
3167 }
3168
3169
3170 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3171 /*
3172 * Translate L1 physical address to host physical
3173 * address for vmcs02. Keep the page pinned, so this
3174 * physical address remains valid. We keep a reference
3175 * to it so we can release it later.
3176 */
3177 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3178 kvm_release_page_clean(vmx->nested.apic_access_page);
3179 vmx->nested.apic_access_page = NULL;
3180 }
3181 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3182 if (!is_error_page(page)) {
3183 vmx->nested.apic_access_page = page;
3184 hpa = page_to_phys(vmx->nested.apic_access_page);
3185 vmcs_write64(APIC_ACCESS_ADDR, hpa);
3186 } else {
3187 pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3188 __func__);
3189 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3190 vcpu->run->internal.suberror =
3191 KVM_INTERNAL_ERROR_EMULATION;
3192 vcpu->run->internal.ndata = 0;
3193 return false;
3194 }
3195 }
3196
3197 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3198 map = &vmx->nested.virtual_apic_map;
3199
3200 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3201 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3202 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3203 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3204 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3205 /*
3206 * The processor will never use the TPR shadow, simply
3207 * clear the bit from the execution control. Such a
3208 * configuration is useless, but it happens in tests.
3209 * For any other configuration, failing the vm entry is
3210 * _not_ what the processor does but it's basically the
3211 * only possibility we have.
3212 */
3213 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3214 } else {
3215 /*
3216 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3217 * force VM-Entry to fail.
3218 */
3219 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3220 }
3221 }
3222
3223 if (nested_cpu_has_posted_intr(vmcs12)) {
3224 map = &vmx->nested.pi_desc_map;
3225
3226 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3227 vmx->nested.pi_desc =
3228 (struct pi_desc *)(((void *)map->hva) +
3229 offset_in_page(vmcs12->posted_intr_desc_addr));
3230 vmcs_write64(POSTED_INTR_DESC_ADDR,
3231 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3232 } else {
3233 /*
3234 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3235 * access the contents of the VMCS12 posted interrupt
3236 * descriptor. (Note that KVM may do this when it
3237 * should not, per the architectural specification.)
3238 */
3239 vmx->nested.pi_desc = NULL;
3240 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3241 }
3242 }
3243 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3244 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3245 else
3246 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3247
3248 return true;
3249 }
3250
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3251 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3252 {
3253 if (!nested_get_evmcs_page(vcpu)) {
3254 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3255 __func__);
3256 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3257 vcpu->run->internal.suberror =
3258 KVM_INTERNAL_ERROR_EMULATION;
3259 vcpu->run->internal.ndata = 0;
3260
3261 return false;
3262 }
3263
3264 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3265 return false;
3266
3267 return true;
3268 }
3269
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3270 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3271 {
3272 struct vmcs12 *vmcs12;
3273 struct vcpu_vmx *vmx = to_vmx(vcpu);
3274 gpa_t dst;
3275
3276 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3277 return 0;
3278
3279 if (WARN_ON_ONCE(vmx->nested.pml_full))
3280 return 1;
3281
3282 /*
3283 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3284 * set is already checked as part of A/D emulation.
3285 */
3286 vmcs12 = get_vmcs12(vcpu);
3287 if (!nested_cpu_has_pml(vmcs12))
3288 return 0;
3289
3290 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3291 vmx->nested.pml_full = true;
3292 return 1;
3293 }
3294
3295 gpa &= ~0xFFFull;
3296 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3297
3298 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3299 offset_in_page(dst), sizeof(gpa)))
3300 return 0;
3301
3302 vmcs12->guest_pml_index--;
3303
3304 return 0;
3305 }
3306
3307 /*
3308 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3309 * for running VMX instructions (except VMXON, whose prerequisites are
3310 * slightly different). It also specifies what exception to inject otherwise.
3311 * Note that many of these exceptions have priority over VM exits, so they
3312 * don't have to be checked again here.
3313 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3314 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3315 {
3316 if (!to_vmx(vcpu)->nested.vmxon) {
3317 kvm_queue_exception(vcpu, UD_VECTOR);
3318 return 0;
3319 }
3320
3321 if (vmx_get_cpl(vcpu)) {
3322 kvm_inject_gp(vcpu, 0);
3323 return 0;
3324 }
3325
3326 return 1;
3327 }
3328
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3329 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3330 {
3331 u8 rvi = vmx_get_rvi();
3332 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3333
3334 return ((rvi & 0xf0) > (vppr & 0xf0));
3335 }
3336
3337 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3338 struct vmcs12 *vmcs12);
3339
3340 /*
3341 * If from_vmentry is false, this is being called from state restore (either RSM
3342 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3343 *
3344 * Returns:
3345 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3346 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3347 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3348 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3349 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3350 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3351 bool from_vmentry)
3352 {
3353 struct vcpu_vmx *vmx = to_vmx(vcpu);
3354 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3355 enum vm_entry_failure_code entry_failure_code;
3356 bool evaluate_pending_interrupts;
3357 union vmx_exit_reason exit_reason = {
3358 .basic = EXIT_REASON_INVALID_STATE,
3359 .failed_vmentry = 1,
3360 };
3361 u32 failed_index;
3362
3363 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3364 kvm_vcpu_flush_tlb_current(vcpu);
3365
3366 evaluate_pending_interrupts = exec_controls_get(vmx) &
3367 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3368 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3369 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3370
3371 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3372 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3373 if (kvm_mpx_supported() &&
3374 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3375 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3376
3377 /*
3378 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3379 * nested early checks are disabled. In the event of a "late" VM-Fail,
3380 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3381 * software model to the pre-VMEntry host state. When EPT is disabled,
3382 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3383 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3384 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3385 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3386 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3387 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3388 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3389 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3390 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3391 * path would need to manually save/restore vmcs01.GUEST_CR3.
3392 */
3393 if (!enable_ept && !nested_early_check)
3394 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3395
3396 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3397
3398 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3399
3400 if (from_vmentry) {
3401 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3402 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3403 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3404 }
3405
3406 if (nested_vmx_check_vmentry_hw(vcpu)) {
3407 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3408 return NVMX_VMENTRY_VMFAIL;
3409 }
3410
3411 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3412 &entry_failure_code)) {
3413 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3414 vmcs12->exit_qualification = entry_failure_code;
3415 goto vmentry_fail_vmexit;
3416 }
3417 }
3418
3419 enter_guest_mode(vcpu);
3420
3421 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3422 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3423 vmcs12->exit_qualification = entry_failure_code;
3424 goto vmentry_fail_vmexit_guest_mode;
3425 }
3426
3427 if (from_vmentry) {
3428 failed_index = nested_vmx_load_msr(vcpu,
3429 vmcs12->vm_entry_msr_load_addr,
3430 vmcs12->vm_entry_msr_load_count);
3431 if (failed_index) {
3432 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3433 vmcs12->exit_qualification = failed_index;
3434 goto vmentry_fail_vmexit_guest_mode;
3435 }
3436 } else {
3437 /*
3438 * The MMU is not initialized to point at the right entities yet and
3439 * "get pages" would need to read data from the guest (i.e. we will
3440 * need to perform gpa to hpa translation). Request a call
3441 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3442 * have already been set at vmentry time and should not be reset.
3443 */
3444 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3445 }
3446
3447 /*
3448 * If L1 had a pending IRQ/NMI until it executed
3449 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3450 * disallowed (e.g. interrupts disabled), L0 needs to
3451 * evaluate if this pending event should cause an exit from L2
3452 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3453 * intercept EXTERNAL_INTERRUPT).
3454 *
3455 * Usually this would be handled by the processor noticing an
3456 * IRQ/NMI window request, or checking RVI during evaluation of
3457 * pending virtual interrupts. However, this setting was done
3458 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3459 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3460 */
3461 if (unlikely(evaluate_pending_interrupts))
3462 kvm_make_request(KVM_REQ_EVENT, vcpu);
3463
3464 /*
3465 * Do not start the preemption timer hrtimer until after we know
3466 * we are successful, so that only nested_vmx_vmexit needs to cancel
3467 * the timer.
3468 */
3469 vmx->nested.preemption_timer_expired = false;
3470 if (nested_cpu_has_preemption_timer(vmcs12)) {
3471 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3472 vmx_start_preemption_timer(vcpu, timer_value);
3473 }
3474
3475 /*
3476 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3477 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3478 * returned as far as L1 is concerned. It will only return (and set
3479 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3480 */
3481 return NVMX_VMENTRY_SUCCESS;
3482
3483 /*
3484 * A failed consistency check that leads to a VMExit during L1's
3485 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3486 * 26.7 "VM-entry failures during or after loading guest state".
3487 */
3488 vmentry_fail_vmexit_guest_mode:
3489 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3490 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3491 leave_guest_mode(vcpu);
3492
3493 vmentry_fail_vmexit:
3494 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3495
3496 if (!from_vmentry)
3497 return NVMX_VMENTRY_VMEXIT;
3498
3499 load_vmcs12_host_state(vcpu, vmcs12);
3500 vmcs12->vm_exit_reason = exit_reason.full;
3501 if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3502 vmx->nested.need_vmcs12_to_shadow_sync = true;
3503 return NVMX_VMENTRY_VMEXIT;
3504 }
3505
3506 /*
3507 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3508 * for running an L2 nested guest.
3509 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3510 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3511 {
3512 struct vmcs12 *vmcs12;
3513 enum nvmx_vmentry_status status;
3514 struct vcpu_vmx *vmx = to_vmx(vcpu);
3515 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3516 enum nested_evmptrld_status evmptrld_status;
3517
3518 if (!nested_vmx_check_permission(vcpu))
3519 return 1;
3520
3521 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3522 if (evmptrld_status == EVMPTRLD_ERROR) {
3523 kvm_queue_exception(vcpu, UD_VECTOR);
3524 return 1;
3525 } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3526 return nested_vmx_failInvalid(vcpu);
3527 }
3528
3529 if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3530 vmx->nested.current_vmptr == -1ull))
3531 return nested_vmx_failInvalid(vcpu);
3532
3533 vmcs12 = get_vmcs12(vcpu);
3534
3535 /*
3536 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3537 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3538 * rather than RFLAGS.ZF, and no error number is stored to the
3539 * VM-instruction error field.
3540 */
3541 if (CC(vmcs12->hdr.shadow_vmcs))
3542 return nested_vmx_failInvalid(vcpu);
3543
3544 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3545 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3546 /* Enlightened VMCS doesn't have launch state */
3547 vmcs12->launch_state = !launch;
3548 } else if (enable_shadow_vmcs) {
3549 copy_shadow_to_vmcs12(vmx);
3550 }
3551
3552 /*
3553 * The nested entry process starts with enforcing various prerequisites
3554 * on vmcs12 as required by the Intel SDM, and act appropriately when
3555 * they fail: As the SDM explains, some conditions should cause the
3556 * instruction to fail, while others will cause the instruction to seem
3557 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3558 * To speed up the normal (success) code path, we should avoid checking
3559 * for misconfigurations which will anyway be caught by the processor
3560 * when using the merged vmcs02.
3561 */
3562 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3563 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3564
3565 if (CC(vmcs12->launch_state == launch))
3566 return nested_vmx_fail(vcpu,
3567 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3568 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3569
3570 if (nested_vmx_check_controls(vcpu, vmcs12))
3571 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3572
3573 if (nested_vmx_check_host_state(vcpu, vmcs12))
3574 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3575
3576 /*
3577 * We're finally done with prerequisite checking, and can start with
3578 * the nested entry.
3579 */
3580 vmx->nested.nested_run_pending = 1;
3581 vmx->nested.has_preemption_timer_deadline = false;
3582 status = nested_vmx_enter_non_root_mode(vcpu, true);
3583 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3584 goto vmentry_failed;
3585
3586 /* Emulate processing of posted interrupts on VM-Enter. */
3587 if (nested_cpu_has_posted_intr(vmcs12) &&
3588 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3589 vmx->nested.pi_pending = true;
3590 kvm_make_request(KVM_REQ_EVENT, vcpu);
3591 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3592 }
3593
3594 /* Hide L1D cache contents from the nested guest. */
3595 vmx->vcpu.arch.l1tf_flush_l1d = true;
3596
3597 /*
3598 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3599 * also be used as part of restoring nVMX state for
3600 * snapshot restore (migration).
3601 *
3602 * In this flow, it is assumed that vmcs12 cache was
3603 * transferred as part of captured nVMX state and should
3604 * therefore not be read from guest memory (which may not
3605 * exist on destination host yet).
3606 */
3607 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3608
3609 switch (vmcs12->guest_activity_state) {
3610 case GUEST_ACTIVITY_HLT:
3611 /*
3612 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3613 * awakened by event injection or by an NMI-window VM-exit or
3614 * by an interrupt-window VM-exit, halt the vcpu.
3615 */
3616 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3617 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3618 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3619 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3620 vmx->nested.nested_run_pending = 0;
3621 return kvm_vcpu_halt(vcpu);
3622 }
3623 break;
3624 case GUEST_ACTIVITY_WAIT_SIPI:
3625 vmx->nested.nested_run_pending = 0;
3626 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3627 break;
3628 default:
3629 break;
3630 }
3631
3632 return 1;
3633
3634 vmentry_failed:
3635 vmx->nested.nested_run_pending = 0;
3636 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3637 return 0;
3638 if (status == NVMX_VMENTRY_VMEXIT)
3639 return 1;
3640 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3641 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3642 }
3643
3644 /*
3645 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3646 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3647 * This function returns the new value we should put in vmcs12.guest_cr0.
3648 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3649 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3650 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3651 * didn't trap the bit, because if L1 did, so would L0).
3652 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3653 * been modified by L2, and L1 knows it. So just leave the old value of
3654 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3655 * isn't relevant, because if L0 traps this bit it can set it to anything.
3656 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3657 * changed these bits, and therefore they need to be updated, but L0
3658 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3659 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3660 */
3661 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3662 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3663 {
3664 return
3665 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3666 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3667 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3668 vcpu->arch.cr0_guest_owned_bits));
3669 }
3670
3671 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3672 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3673 {
3674 return
3675 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3676 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3677 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3678 vcpu->arch.cr4_guest_owned_bits));
3679 }
3680
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3681 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3682 struct vmcs12 *vmcs12)
3683 {
3684 u32 idt_vectoring;
3685 unsigned int nr;
3686
3687 if (vcpu->arch.exception.injected) {
3688 nr = vcpu->arch.exception.nr;
3689 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3690
3691 if (kvm_exception_is_soft(nr)) {
3692 vmcs12->vm_exit_instruction_len =
3693 vcpu->arch.event_exit_inst_len;
3694 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3695 } else
3696 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3697
3698 if (vcpu->arch.exception.has_error_code) {
3699 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3700 vmcs12->idt_vectoring_error_code =
3701 vcpu->arch.exception.error_code;
3702 }
3703
3704 vmcs12->idt_vectoring_info_field = idt_vectoring;
3705 } else if (vcpu->arch.nmi_injected) {
3706 vmcs12->idt_vectoring_info_field =
3707 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3708 } else if (vcpu->arch.interrupt.injected) {
3709 nr = vcpu->arch.interrupt.nr;
3710 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3711
3712 if (vcpu->arch.interrupt.soft) {
3713 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3714 vmcs12->vm_entry_instruction_len =
3715 vcpu->arch.event_exit_inst_len;
3716 } else
3717 idt_vectoring |= INTR_TYPE_EXT_INTR;
3718
3719 vmcs12->idt_vectoring_info_field = idt_vectoring;
3720 }
3721 }
3722
3723
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3724 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3725 {
3726 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3727 gfn_t gfn;
3728
3729 /*
3730 * Don't need to mark the APIC access page dirty; it is never
3731 * written to by the CPU during APIC virtualization.
3732 */
3733
3734 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3735 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3736 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3737 }
3738
3739 if (nested_cpu_has_posted_intr(vmcs12)) {
3740 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3741 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3742 }
3743 }
3744
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3745 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3746 {
3747 struct vcpu_vmx *vmx = to_vmx(vcpu);
3748 int max_irr;
3749 void *vapic_page;
3750 u16 status;
3751
3752 if (!vmx->nested.pi_pending)
3753 return 0;
3754
3755 if (!vmx->nested.pi_desc)
3756 goto mmio_needed;
3757
3758 vmx->nested.pi_pending = false;
3759
3760 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3761 return 0;
3762
3763 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3764 if (max_irr != 256) {
3765 vapic_page = vmx->nested.virtual_apic_map.hva;
3766 if (!vapic_page)
3767 goto mmio_needed;
3768
3769 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3770 vapic_page, &max_irr);
3771 status = vmcs_read16(GUEST_INTR_STATUS);
3772 if ((u8)max_irr > ((u8)status & 0xff)) {
3773 status &= ~0xff;
3774 status |= (u8)max_irr;
3775 vmcs_write16(GUEST_INTR_STATUS, status);
3776 }
3777 }
3778
3779 nested_mark_vmcs12_pages_dirty(vcpu);
3780 return 0;
3781
3782 mmio_needed:
3783 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3784 return -ENXIO;
3785 }
3786
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu,unsigned long exit_qual)3787 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3788 unsigned long exit_qual)
3789 {
3790 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3791 unsigned int nr = vcpu->arch.exception.nr;
3792 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3793
3794 if (vcpu->arch.exception.has_error_code) {
3795 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3796 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3797 }
3798
3799 if (kvm_exception_is_soft(nr))
3800 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3801 else
3802 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3803
3804 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3805 vmx_get_nmi_mask(vcpu))
3806 intr_info |= INTR_INFO_UNBLOCK_NMI;
3807
3808 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3809 }
3810
3811 /*
3812 * Returns true if a debug trap is pending delivery.
3813 *
3814 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3815 * exception may be inferred from the presence of an exception payload.
3816 */
vmx_pending_dbg_trap(struct kvm_vcpu * vcpu)3817 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3818 {
3819 return vcpu->arch.exception.pending &&
3820 vcpu->arch.exception.nr == DB_VECTOR &&
3821 vcpu->arch.exception.payload;
3822 }
3823
3824 /*
3825 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3826 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3827 * represents these debug traps with a payload that is said to be compatible
3828 * with the 'pending debug exceptions' field, write the payload to the VMCS
3829 * field if a VM-exit is delivered before the debug trap.
3830 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)3831 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3832 {
3833 if (vmx_pending_dbg_trap(vcpu))
3834 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3835 vcpu->arch.exception.payload);
3836 }
3837
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)3838 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3839 {
3840 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3841 to_vmx(vcpu)->nested.preemption_timer_expired;
3842 }
3843
vmx_check_nested_events(struct kvm_vcpu * vcpu)3844 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3845 {
3846 struct vcpu_vmx *vmx = to_vmx(vcpu);
3847 unsigned long exit_qual;
3848 bool block_nested_events =
3849 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3850 bool mtf_pending = vmx->nested.mtf_pending;
3851 struct kvm_lapic *apic = vcpu->arch.apic;
3852
3853 /*
3854 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3855 * this state is discarded.
3856 */
3857 if (!block_nested_events)
3858 vmx->nested.mtf_pending = false;
3859
3860 if (lapic_in_kernel(vcpu) &&
3861 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3862 if (block_nested_events)
3863 return -EBUSY;
3864 nested_vmx_update_pending_dbg(vcpu);
3865 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3866 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3867 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3868 return 0;
3869 }
3870
3871 if (lapic_in_kernel(vcpu) &&
3872 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3873 if (block_nested_events)
3874 return -EBUSY;
3875
3876 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3877 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3878 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3879 apic->sipi_vector & 0xFFUL);
3880 return 0;
3881 }
3882
3883 /*
3884 * Process any exceptions that are not debug traps before MTF.
3885 *
3886 * Note that only a pending nested run can block a pending exception.
3887 * Otherwise an injected NMI/interrupt should either be
3888 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3889 * while delivering the pending exception.
3890 */
3891
3892 if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3893 if (vmx->nested.nested_run_pending)
3894 return -EBUSY;
3895 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3896 goto no_vmexit;
3897 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3898 return 0;
3899 }
3900
3901 if (mtf_pending) {
3902 if (block_nested_events)
3903 return -EBUSY;
3904 nested_vmx_update_pending_dbg(vcpu);
3905 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3906 return 0;
3907 }
3908
3909 if (vcpu->arch.exception.pending) {
3910 if (vmx->nested.nested_run_pending)
3911 return -EBUSY;
3912 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3913 goto no_vmexit;
3914 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3915 return 0;
3916 }
3917
3918 if (nested_vmx_preemption_timer_pending(vcpu)) {
3919 if (block_nested_events)
3920 return -EBUSY;
3921 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3922 return 0;
3923 }
3924
3925 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3926 if (block_nested_events)
3927 return -EBUSY;
3928 goto no_vmexit;
3929 }
3930
3931 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3932 if (block_nested_events)
3933 return -EBUSY;
3934 if (!nested_exit_on_nmi(vcpu))
3935 goto no_vmexit;
3936
3937 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3938 NMI_VECTOR | INTR_TYPE_NMI_INTR |
3939 INTR_INFO_VALID_MASK, 0);
3940 /*
3941 * The NMI-triggered VM exit counts as injection:
3942 * clear this one and block further NMIs.
3943 */
3944 vcpu->arch.nmi_pending = 0;
3945 vmx_set_nmi_mask(vcpu, true);
3946 return 0;
3947 }
3948
3949 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3950 if (block_nested_events)
3951 return -EBUSY;
3952 if (!nested_exit_on_intr(vcpu))
3953 goto no_vmexit;
3954 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3955 return 0;
3956 }
3957
3958 no_vmexit:
3959 return vmx_complete_nested_posted_interrupt(vcpu);
3960 }
3961
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)3962 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3963 {
3964 ktime_t remaining =
3965 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3966 u64 value;
3967
3968 if (ktime_to_ns(remaining) <= 0)
3969 return 0;
3970
3971 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3972 do_div(value, 1000000);
3973 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3974 }
3975
is_vmcs12_ext_field(unsigned long field)3976 static bool is_vmcs12_ext_field(unsigned long field)
3977 {
3978 switch (field) {
3979 case GUEST_ES_SELECTOR:
3980 case GUEST_CS_SELECTOR:
3981 case GUEST_SS_SELECTOR:
3982 case GUEST_DS_SELECTOR:
3983 case GUEST_FS_SELECTOR:
3984 case GUEST_GS_SELECTOR:
3985 case GUEST_LDTR_SELECTOR:
3986 case GUEST_TR_SELECTOR:
3987 case GUEST_ES_LIMIT:
3988 case GUEST_CS_LIMIT:
3989 case GUEST_SS_LIMIT:
3990 case GUEST_DS_LIMIT:
3991 case GUEST_FS_LIMIT:
3992 case GUEST_GS_LIMIT:
3993 case GUEST_LDTR_LIMIT:
3994 case GUEST_TR_LIMIT:
3995 case GUEST_GDTR_LIMIT:
3996 case GUEST_IDTR_LIMIT:
3997 case GUEST_ES_AR_BYTES:
3998 case GUEST_DS_AR_BYTES:
3999 case GUEST_FS_AR_BYTES:
4000 case GUEST_GS_AR_BYTES:
4001 case GUEST_LDTR_AR_BYTES:
4002 case GUEST_TR_AR_BYTES:
4003 case GUEST_ES_BASE:
4004 case GUEST_CS_BASE:
4005 case GUEST_SS_BASE:
4006 case GUEST_DS_BASE:
4007 case GUEST_FS_BASE:
4008 case GUEST_GS_BASE:
4009 case GUEST_LDTR_BASE:
4010 case GUEST_TR_BASE:
4011 case GUEST_GDTR_BASE:
4012 case GUEST_IDTR_BASE:
4013 case GUEST_PENDING_DBG_EXCEPTIONS:
4014 case GUEST_BNDCFGS:
4015 return true;
4016 default:
4017 break;
4018 }
4019
4020 return false;
4021 }
4022
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4023 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4024 struct vmcs12 *vmcs12)
4025 {
4026 struct vcpu_vmx *vmx = to_vmx(vcpu);
4027
4028 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4029 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4030 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4031 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4032 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4033 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4034 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4035 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4036 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4037 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4038 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4039 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4040 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4041 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4042 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4043 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4044 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4045 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4046 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4047 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4048 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4049 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4050 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4051 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4052 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4053 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4054 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4055 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4056 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4057 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4058 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4059 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4060 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4061 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4062 vmcs12->guest_pending_dbg_exceptions =
4063 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4064 if (kvm_mpx_supported())
4065 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4066
4067 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4068 }
4069
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4070 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4071 struct vmcs12 *vmcs12)
4072 {
4073 struct vcpu_vmx *vmx = to_vmx(vcpu);
4074 int cpu;
4075
4076 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4077 return;
4078
4079
4080 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4081
4082 cpu = get_cpu();
4083 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4084 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4085
4086 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4087
4088 vmx->loaded_vmcs = &vmx->vmcs01;
4089 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4090 put_cpu();
4091 }
4092
4093 /*
4094 * Update the guest state fields of vmcs12 to reflect changes that
4095 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4096 * VM-entry controls is also updated, since this is really a guest
4097 * state bit.)
4098 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4099 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4100 {
4101 struct vcpu_vmx *vmx = to_vmx(vcpu);
4102
4103 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4104 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4105
4106 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4107 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4108
4109 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4110 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4111
4112 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4113 vmcs12->guest_rip = kvm_rip_read(vcpu);
4114 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4115
4116 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4117 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4118
4119 vmcs12->guest_interruptibility_info =
4120 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4121
4122 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4123 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4124 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4125 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4126 else
4127 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4128
4129 if (nested_cpu_has_preemption_timer(vmcs12) &&
4130 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4131 !vmx->nested.nested_run_pending)
4132 vmcs12->vmx_preemption_timer_value =
4133 vmx_get_preemption_timer_value(vcpu);
4134
4135 /*
4136 * In some cases (usually, nested EPT), L2 is allowed to change its
4137 * own CR3 without exiting. If it has changed it, we must keep it.
4138 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4139 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4140 *
4141 * Additionally, restore L2's PDPTR to vmcs12.
4142 */
4143 if (enable_ept) {
4144 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4145 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4146 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4147 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4148 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4149 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4150 }
4151 }
4152
4153 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4154
4155 if (nested_cpu_has_vid(vmcs12))
4156 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4157
4158 vmcs12->vm_entry_controls =
4159 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4160 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4161
4162 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4163 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4164
4165 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4166 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4167 }
4168
4169 /*
4170 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4171 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4172 * and this function updates it to reflect the changes to the guest state while
4173 * L2 was running (and perhaps made some exits which were handled directly by L0
4174 * without going back to L1), and to reflect the exit reason.
4175 * Note that we do not have to copy here all VMCS fields, just those that
4176 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4177 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4178 * which already writes to vmcs12 directly.
4179 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4180 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4181 u32 vm_exit_reason, u32 exit_intr_info,
4182 unsigned long exit_qualification)
4183 {
4184 /* update exit information fields: */
4185 vmcs12->vm_exit_reason = vm_exit_reason;
4186 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4187 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4188 vmcs12->exit_qualification = exit_qualification;
4189 vmcs12->vm_exit_intr_info = exit_intr_info;
4190
4191 vmcs12->idt_vectoring_info_field = 0;
4192 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4193 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4194
4195 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4196 vmcs12->launch_state = 1;
4197
4198 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4199 * instead of reading the real value. */
4200 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4201
4202 /*
4203 * Transfer the event that L0 or L1 may wanted to inject into
4204 * L2 to IDT_VECTORING_INFO_FIELD.
4205 */
4206 vmcs12_save_pending_event(vcpu, vmcs12);
4207
4208 /*
4209 * According to spec, there's no need to store the guest's
4210 * MSRs if the exit is due to a VM-entry failure that occurs
4211 * during or after loading the guest state. Since this exit
4212 * does not fall in that category, we need to save the MSRs.
4213 */
4214 if (nested_vmx_store_msr(vcpu,
4215 vmcs12->vm_exit_msr_store_addr,
4216 vmcs12->vm_exit_msr_store_count))
4217 nested_vmx_abort(vcpu,
4218 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4219 }
4220
4221 /*
4222 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4223 * preserved above and would only end up incorrectly in L1.
4224 */
4225 vcpu->arch.nmi_injected = false;
4226 kvm_clear_exception_queue(vcpu);
4227 kvm_clear_interrupt_queue(vcpu);
4228 }
4229
4230 /*
4231 * A part of what we need to when the nested L2 guest exits and we want to
4232 * run its L1 parent, is to reset L1's guest state to the host state specified
4233 * in vmcs12.
4234 * This function is to be called not only on normal nested exit, but also on
4235 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4236 * Failures During or After Loading Guest State").
4237 * This function should be called when the active VMCS is L1's (vmcs01).
4238 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4239 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4240 struct vmcs12 *vmcs12)
4241 {
4242 enum vm_entry_failure_code ignored;
4243 struct kvm_segment seg;
4244
4245 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4246 vcpu->arch.efer = vmcs12->host_ia32_efer;
4247 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4248 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4249 else
4250 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4251 vmx_set_efer(vcpu, vcpu->arch.efer);
4252
4253 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4254 kvm_rip_write(vcpu, vmcs12->host_rip);
4255 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4256 vmx_set_interrupt_shadow(vcpu, 0);
4257
4258 /*
4259 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4260 * actually changed, because vmx_set_cr0 refers to efer set above.
4261 *
4262 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4263 * (KVM doesn't change it);
4264 */
4265 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4266 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4267
4268 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4269 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4270 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4271
4272 nested_ept_uninit_mmu_context(vcpu);
4273
4274 /*
4275 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4276 * couldn't have changed.
4277 */
4278 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4279 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4280
4281 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4282
4283 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4284 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4285 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4286 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4287 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4288 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4289 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4290
4291 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4292 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4293 vmcs_write64(GUEST_BNDCFGS, 0);
4294
4295 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4296 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4297 vcpu->arch.pat = vmcs12->host_ia32_pat;
4298 }
4299 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4300 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4301 vmcs12->host_ia32_perf_global_ctrl));
4302
4303 /* Set L1 segment info according to Intel SDM
4304 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4305 seg = (struct kvm_segment) {
4306 .base = 0,
4307 .limit = 0xFFFFFFFF,
4308 .selector = vmcs12->host_cs_selector,
4309 .type = 11,
4310 .present = 1,
4311 .s = 1,
4312 .g = 1
4313 };
4314 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4315 seg.l = 1;
4316 else
4317 seg.db = 1;
4318 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4319 seg = (struct kvm_segment) {
4320 .base = 0,
4321 .limit = 0xFFFFFFFF,
4322 .type = 3,
4323 .present = 1,
4324 .s = 1,
4325 .db = 1,
4326 .g = 1
4327 };
4328 seg.selector = vmcs12->host_ds_selector;
4329 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4330 seg.selector = vmcs12->host_es_selector;
4331 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4332 seg.selector = vmcs12->host_ss_selector;
4333 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4334 seg.selector = vmcs12->host_fs_selector;
4335 seg.base = vmcs12->host_fs_base;
4336 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4337 seg.selector = vmcs12->host_gs_selector;
4338 seg.base = vmcs12->host_gs_base;
4339 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4340 seg = (struct kvm_segment) {
4341 .base = vmcs12->host_tr_base,
4342 .limit = 0x67,
4343 .selector = vmcs12->host_tr_selector,
4344 .type = 11,
4345 .present = 1
4346 };
4347 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4348
4349 memset(&seg, 0, sizeof(seg));
4350 seg.unusable = 1;
4351 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4352
4353 kvm_set_dr(vcpu, 7, 0x400);
4354 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4355
4356 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4357 vmcs12->vm_exit_msr_load_count))
4358 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4359
4360 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4361 }
4362
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4363 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4364 {
4365 struct vmx_uret_msr *efer_msr;
4366 unsigned int i;
4367
4368 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4369 return vmcs_read64(GUEST_IA32_EFER);
4370
4371 if (cpu_has_load_ia32_efer())
4372 return host_efer;
4373
4374 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4375 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4376 return vmx->msr_autoload.guest.val[i].value;
4377 }
4378
4379 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4380 if (efer_msr)
4381 return efer_msr->data;
4382
4383 return host_efer;
4384 }
4385
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4386 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4387 {
4388 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4389 struct vcpu_vmx *vmx = to_vmx(vcpu);
4390 struct vmx_msr_entry g, h;
4391 gpa_t gpa;
4392 u32 i, j;
4393
4394 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4395
4396 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4397 /*
4398 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4399 * as vmcs01.GUEST_DR7 contains a userspace defined value
4400 * and vcpu->arch.dr7 is not squirreled away before the
4401 * nested VMENTER (not worth adding a variable in nested_vmx).
4402 */
4403 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4404 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4405 else
4406 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4407 }
4408
4409 /*
4410 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4411 * handle a variety of side effects to KVM's software model.
4412 */
4413 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4414
4415 vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4416 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4417
4418 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4419 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4420
4421 nested_ept_uninit_mmu_context(vcpu);
4422 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4423 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4424
4425 /*
4426 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4427 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4428 * VMFail, like everything else we just need to ensure our
4429 * software model is up-to-date.
4430 */
4431 if (enable_ept && is_pae_paging(vcpu))
4432 ept_save_pdptrs(vcpu);
4433
4434 kvm_mmu_reset_context(vcpu);
4435
4436 /*
4437 * This nasty bit of open coding is a compromise between blindly
4438 * loading L1's MSRs using the exit load lists (incorrect emulation
4439 * of VMFail), leaving the nested VM's MSRs in the software model
4440 * (incorrect behavior) and snapshotting the modified MSRs (too
4441 * expensive since the lists are unbound by hardware). For each
4442 * MSR that was (prematurely) loaded from the nested VMEntry load
4443 * list, reload it from the exit load list if it exists and differs
4444 * from the guest value. The intent is to stuff host state as
4445 * silently as possible, not to fully process the exit load list.
4446 */
4447 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4448 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4449 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4450 pr_debug_ratelimited(
4451 "%s read MSR index failed (%u, 0x%08llx)\n",
4452 __func__, i, gpa);
4453 goto vmabort;
4454 }
4455
4456 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4457 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4458 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4459 pr_debug_ratelimited(
4460 "%s read MSR failed (%u, 0x%08llx)\n",
4461 __func__, j, gpa);
4462 goto vmabort;
4463 }
4464 if (h.index != g.index)
4465 continue;
4466 if (h.value == g.value)
4467 break;
4468
4469 if (nested_vmx_load_msr_check(vcpu, &h)) {
4470 pr_debug_ratelimited(
4471 "%s check failed (%u, 0x%x, 0x%x)\n",
4472 __func__, j, h.index, h.reserved);
4473 goto vmabort;
4474 }
4475
4476 if (kvm_set_msr(vcpu, h.index, h.value)) {
4477 pr_debug_ratelimited(
4478 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4479 __func__, j, h.index, h.value);
4480 goto vmabort;
4481 }
4482 }
4483 }
4484
4485 return;
4486
4487 vmabort:
4488 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4489 }
4490
4491 /*
4492 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4493 * and modify vmcs12 to make it see what it would expect to see there if
4494 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4495 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4496 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4497 u32 exit_intr_info, unsigned long exit_qualification)
4498 {
4499 struct vcpu_vmx *vmx = to_vmx(vcpu);
4500 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4501
4502 /* trying to cancel vmlaunch/vmresume is a bug */
4503 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4504
4505 /* Similarly, triple faults in L2 should never escape. */
4506 WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4507
4508 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4509 /*
4510 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4511 * Enlightened VMCS after migration and we still need to
4512 * do that when something is forcing L2->L1 exit prior to
4513 * the first L2 run.
4514 */
4515 (void)nested_get_evmcs_page(vcpu);
4516 }
4517
4518 /* Service the TLB flush request for L2 before switching to L1. */
4519 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4520 kvm_vcpu_flush_tlb_current(vcpu);
4521
4522 /*
4523 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4524 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4525 * up-to-date before switching to L1.
4526 */
4527 if (enable_ept && is_pae_paging(vcpu))
4528 vmx_ept_load_pdptrs(vcpu);
4529
4530 leave_guest_mode(vcpu);
4531
4532 if (nested_cpu_has_preemption_timer(vmcs12))
4533 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4534
4535 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4536 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4537 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4538 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4539 }
4540
4541 if (likely(!vmx->fail)) {
4542 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4543
4544 if (vm_exit_reason != -1)
4545 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4546 exit_intr_info, exit_qualification);
4547
4548 /*
4549 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4550 * also be used to capture vmcs12 cache as part of
4551 * capturing nVMX state for snapshot (migration).
4552 *
4553 * Otherwise, this flush will dirty guest memory at a
4554 * point it is already assumed by user-space to be
4555 * immutable.
4556 */
4557 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4558 } else {
4559 /*
4560 * The only expected VM-instruction error is "VM entry with
4561 * invalid control field(s)." Anything else indicates a
4562 * problem with L0. And we should never get here with a
4563 * VMFail of any type if early consistency checks are enabled.
4564 */
4565 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4566 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4567 WARN_ON_ONCE(nested_early_check);
4568 }
4569
4570 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4571
4572 /* Update any VMCS fields that might have changed while L2 ran */
4573 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4574 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4575 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4576 if (kvm_has_tsc_control)
4577 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4578
4579 if (vmx->nested.l1_tpr_threshold != -1)
4580 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4581
4582 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4583 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4584 vmx_set_virtual_apic_mode(vcpu);
4585 }
4586
4587 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4588 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4589 vmx_update_cpu_dirty_logging(vcpu);
4590 }
4591
4592 /* Unpin physical memory we referred to in vmcs02 */
4593 if (vmx->nested.apic_access_page) {
4594 kvm_release_page_clean(vmx->nested.apic_access_page);
4595 vmx->nested.apic_access_page = NULL;
4596 }
4597 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4598 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4599 vmx->nested.pi_desc = NULL;
4600
4601 if (vmx->nested.reload_vmcs01_apic_access_page) {
4602 vmx->nested.reload_vmcs01_apic_access_page = false;
4603 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4604 }
4605
4606 if ((vm_exit_reason != -1) &&
4607 (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4608 vmx->nested.need_vmcs12_to_shadow_sync = true;
4609
4610 /* in case we halted in L2 */
4611 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4612
4613 if (likely(!vmx->fail)) {
4614 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4615 nested_exit_intr_ack_set(vcpu)) {
4616 int irq = kvm_cpu_get_interrupt(vcpu);
4617 WARN_ON(irq < 0);
4618 vmcs12->vm_exit_intr_info = irq |
4619 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4620 }
4621
4622 if (vm_exit_reason != -1)
4623 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4624 vmcs12->exit_qualification,
4625 vmcs12->idt_vectoring_info_field,
4626 vmcs12->vm_exit_intr_info,
4627 vmcs12->vm_exit_intr_error_code,
4628 KVM_ISA_VMX);
4629
4630 load_vmcs12_host_state(vcpu, vmcs12);
4631
4632 return;
4633 }
4634
4635 /*
4636 * After an early L2 VM-entry failure, we're now back
4637 * in L1 which thinks it just finished a VMLAUNCH or
4638 * VMRESUME instruction, so we need to set the failure
4639 * flag and the VM-instruction error field of the VMCS
4640 * accordingly, and skip the emulated instruction.
4641 */
4642 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4643
4644 /*
4645 * Restore L1's host state to KVM's software model. We're here
4646 * because a consistency check was caught by hardware, which
4647 * means some amount of guest state has been propagated to KVM's
4648 * model and needs to be unwound to the host's state.
4649 */
4650 nested_vmx_restore_host_state(vcpu);
4651
4652 vmx->fail = 0;
4653 }
4654
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)4655 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4656 {
4657 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4658 }
4659
4660 /*
4661 * Decode the memory-address operand of a vmx instruction, as recorded on an
4662 * exit caused by such an instruction (run by a guest hypervisor).
4663 * On success, returns 0. When the operand is invalid, returns 1 and throws
4664 * #UD, #GP, or #SS.
4665 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)4666 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4667 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4668 {
4669 gva_t off;
4670 bool exn;
4671 struct kvm_segment s;
4672
4673 /*
4674 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4675 * Execution", on an exit, vmx_instruction_info holds most of the
4676 * addressing components of the operand. Only the displacement part
4677 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4678 * For how an actual address is calculated from all these components,
4679 * refer to Vol. 1, "Operand Addressing".
4680 */
4681 int scaling = vmx_instruction_info & 3;
4682 int addr_size = (vmx_instruction_info >> 7) & 7;
4683 bool is_reg = vmx_instruction_info & (1u << 10);
4684 int seg_reg = (vmx_instruction_info >> 15) & 7;
4685 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4686 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4687 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4688 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4689
4690 if (is_reg) {
4691 kvm_queue_exception(vcpu, UD_VECTOR);
4692 return 1;
4693 }
4694
4695 /* Addr = segment_base + offset */
4696 /* offset = base + [index * scale] + displacement */
4697 off = exit_qualification; /* holds the displacement */
4698 if (addr_size == 1)
4699 off = (gva_t)sign_extend64(off, 31);
4700 else if (addr_size == 0)
4701 off = (gva_t)sign_extend64(off, 15);
4702 if (base_is_valid)
4703 off += kvm_register_read(vcpu, base_reg);
4704 if (index_is_valid)
4705 off += kvm_register_read(vcpu, index_reg) << scaling;
4706 vmx_get_segment(vcpu, &s, seg_reg);
4707
4708 /*
4709 * The effective address, i.e. @off, of a memory operand is truncated
4710 * based on the address size of the instruction. Note that this is
4711 * the *effective address*, i.e. the address prior to accounting for
4712 * the segment's base.
4713 */
4714 if (addr_size == 1) /* 32 bit */
4715 off &= 0xffffffff;
4716 else if (addr_size == 0) /* 16 bit */
4717 off &= 0xffff;
4718
4719 /* Checks for #GP/#SS exceptions. */
4720 exn = false;
4721 if (is_long_mode(vcpu)) {
4722 /*
4723 * The virtual/linear address is never truncated in 64-bit
4724 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4725 * address when using FS/GS with a non-zero base.
4726 */
4727 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4728 *ret = s.base + off;
4729 else
4730 *ret = off;
4731
4732 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4733 * non-canonical form. This is the only check on the memory
4734 * destination for long mode!
4735 */
4736 exn = is_noncanonical_address(*ret, vcpu);
4737 } else {
4738 /*
4739 * When not in long mode, the virtual/linear address is
4740 * unconditionally truncated to 32 bits regardless of the
4741 * address size.
4742 */
4743 *ret = (s.base + off) & 0xffffffff;
4744
4745 /* Protected mode: apply checks for segment validity in the
4746 * following order:
4747 * - segment type check (#GP(0) may be thrown)
4748 * - usability check (#GP(0)/#SS(0))
4749 * - limit check (#GP(0)/#SS(0))
4750 */
4751 if (wr)
4752 /* #GP(0) if the destination operand is located in a
4753 * read-only data segment or any code segment.
4754 */
4755 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4756 else
4757 /* #GP(0) if the source operand is located in an
4758 * execute-only code segment
4759 */
4760 exn = ((s.type & 0xa) == 8);
4761 if (exn) {
4762 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4763 return 1;
4764 }
4765 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4766 */
4767 exn = (s.unusable != 0);
4768
4769 /*
4770 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4771 * outside the segment limit. All CPUs that support VMX ignore
4772 * limit checks for flat segments, i.e. segments with base==0,
4773 * limit==0xffffffff and of type expand-up data or code.
4774 */
4775 if (!(s.base == 0 && s.limit == 0xffffffff &&
4776 ((s.type & 8) || !(s.type & 4))))
4777 exn = exn || ((u64)off + len - 1 > s.limit);
4778 }
4779 if (exn) {
4780 kvm_queue_exception_e(vcpu,
4781 seg_reg == VCPU_SREG_SS ?
4782 SS_VECTOR : GP_VECTOR,
4783 0);
4784 return 1;
4785 }
4786
4787 return 0;
4788 }
4789
nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu * vcpu)4790 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4791 {
4792 struct vcpu_vmx *vmx;
4793
4794 if (!nested_vmx_allowed(vcpu))
4795 return;
4796
4797 vmx = to_vmx(vcpu);
4798 if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4799 vmx->nested.msrs.entry_ctls_high |=
4800 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4801 vmx->nested.msrs.exit_ctls_high |=
4802 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4803 } else {
4804 vmx->nested.msrs.entry_ctls_high &=
4805 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4806 vmx->nested.msrs.exit_ctls_high &=
4807 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4808 }
4809 }
4810
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)4811 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4812 int *ret)
4813 {
4814 gva_t gva;
4815 struct x86_exception e;
4816 int r;
4817
4818 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4819 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4820 sizeof(*vmpointer), &gva)) {
4821 *ret = 1;
4822 return -EINVAL;
4823 }
4824
4825 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4826 if (r != X86EMUL_CONTINUE) {
4827 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4828 return -EINVAL;
4829 }
4830
4831 return 0;
4832 }
4833
4834 /*
4835 * Allocate a shadow VMCS and associate it with the currently loaded
4836 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4837 * VMCS is also VMCLEARed, so that it is ready for use.
4838 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)4839 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4840 {
4841 struct vcpu_vmx *vmx = to_vmx(vcpu);
4842 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4843
4844 /*
4845 * We should allocate a shadow vmcs for vmcs01 only when L1
4846 * executes VMXON and free it when L1 executes VMXOFF.
4847 * As it is invalid to execute VMXON twice, we shouldn't reach
4848 * here when vmcs01 already have an allocated shadow vmcs.
4849 */
4850 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4851
4852 if (!loaded_vmcs->shadow_vmcs) {
4853 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4854 if (loaded_vmcs->shadow_vmcs)
4855 vmcs_clear(loaded_vmcs->shadow_vmcs);
4856 }
4857 return loaded_vmcs->shadow_vmcs;
4858 }
4859
enter_vmx_operation(struct kvm_vcpu * vcpu)4860 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4861 {
4862 struct vcpu_vmx *vmx = to_vmx(vcpu);
4863 int r;
4864
4865 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4866 if (r < 0)
4867 goto out_vmcs02;
4868
4869 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4870 if (!vmx->nested.cached_vmcs12)
4871 goto out_cached_vmcs12;
4872
4873 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4874 if (!vmx->nested.cached_shadow_vmcs12)
4875 goto out_cached_shadow_vmcs12;
4876
4877 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4878 goto out_shadow_vmcs;
4879
4880 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4881 HRTIMER_MODE_ABS_PINNED);
4882 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4883
4884 vmx->nested.vpid02 = allocate_vpid();
4885
4886 vmx->nested.vmcs02_initialized = false;
4887 vmx->nested.vmxon = true;
4888
4889 if (vmx_pt_mode_is_host_guest()) {
4890 vmx->pt_desc.guest.ctl = 0;
4891 pt_update_intercept_for_msr(vcpu);
4892 }
4893
4894 return 0;
4895
4896 out_shadow_vmcs:
4897 kfree(vmx->nested.cached_shadow_vmcs12);
4898
4899 out_cached_shadow_vmcs12:
4900 kfree(vmx->nested.cached_vmcs12);
4901
4902 out_cached_vmcs12:
4903 free_loaded_vmcs(&vmx->nested.vmcs02);
4904
4905 out_vmcs02:
4906 return -ENOMEM;
4907 }
4908
4909 /* Emulate the VMXON instruction. */
handle_vmon(struct kvm_vcpu * vcpu)4910 static int handle_vmon(struct kvm_vcpu *vcpu)
4911 {
4912 int ret;
4913 gpa_t vmptr;
4914 uint32_t revision;
4915 struct vcpu_vmx *vmx = to_vmx(vcpu);
4916 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4917 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4918
4919 /*
4920 * The Intel VMX Instruction Reference lists a bunch of bits that are
4921 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4922 * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4923 * Otherwise, we should fail with #UD. But most faulting conditions
4924 * have already been checked by hardware, prior to the VM-exit for
4925 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
4926 * that bit set to 1 in non-root mode.
4927 */
4928 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4929 kvm_queue_exception(vcpu, UD_VECTOR);
4930 return 1;
4931 }
4932
4933 /* CPL=0 must be checked manually. */
4934 if (vmx_get_cpl(vcpu)) {
4935 kvm_inject_gp(vcpu, 0);
4936 return 1;
4937 }
4938
4939 if (vmx->nested.vmxon)
4940 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4941
4942 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4943 != VMXON_NEEDED_FEATURES) {
4944 kvm_inject_gp(vcpu, 0);
4945 return 1;
4946 }
4947
4948 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4949 return ret;
4950
4951 /*
4952 * SDM 3: 24.11.5
4953 * The first 4 bytes of VMXON region contain the supported
4954 * VMCS revision identifier
4955 *
4956 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4957 * which replaces physical address width with 32
4958 */
4959 if (!page_address_valid(vcpu, vmptr))
4960 return nested_vmx_failInvalid(vcpu);
4961
4962 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4963 revision != VMCS12_REVISION)
4964 return nested_vmx_failInvalid(vcpu);
4965
4966 vmx->nested.vmxon_ptr = vmptr;
4967 ret = enter_vmx_operation(vcpu);
4968 if (ret)
4969 return ret;
4970
4971 return nested_vmx_succeed(vcpu);
4972 }
4973
nested_release_vmcs12(struct kvm_vcpu * vcpu)4974 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4975 {
4976 struct vcpu_vmx *vmx = to_vmx(vcpu);
4977
4978 if (vmx->nested.current_vmptr == -1ull)
4979 return;
4980
4981 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4982
4983 if (enable_shadow_vmcs) {
4984 /* copy to memory all shadowed fields in case
4985 they were modified */
4986 copy_shadow_to_vmcs12(vmx);
4987 vmx_disable_shadow_vmcs(vmx);
4988 }
4989 vmx->nested.posted_intr_nv = -1;
4990
4991 /* Flush VMCS12 to guest memory */
4992 kvm_vcpu_write_guest_page(vcpu,
4993 vmx->nested.current_vmptr >> PAGE_SHIFT,
4994 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4995
4996 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4997
4998 vmx->nested.current_vmptr = -1ull;
4999 }
5000
5001 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)5002 static int handle_vmoff(struct kvm_vcpu *vcpu)
5003 {
5004 if (!nested_vmx_check_permission(vcpu))
5005 return 1;
5006
5007 free_nested(vcpu);
5008
5009 /* Process a latched INIT during time CPU was in VMX operation */
5010 kvm_make_request(KVM_REQ_EVENT, vcpu);
5011
5012 return nested_vmx_succeed(vcpu);
5013 }
5014
5015 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5016 static int handle_vmclear(struct kvm_vcpu *vcpu)
5017 {
5018 struct vcpu_vmx *vmx = to_vmx(vcpu);
5019 u32 zero = 0;
5020 gpa_t vmptr;
5021 u64 evmcs_gpa;
5022 int r;
5023
5024 if (!nested_vmx_check_permission(vcpu))
5025 return 1;
5026
5027 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5028 return r;
5029
5030 if (!page_address_valid(vcpu, vmptr))
5031 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5032
5033 if (vmptr == vmx->nested.vmxon_ptr)
5034 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5035
5036 /*
5037 * When Enlightened VMEntry is enabled on the calling CPU we treat
5038 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5039 * way to distinguish it from VMCS12) and we must not corrupt it by
5040 * writing to the non-existent 'launch_state' field. The area doesn't
5041 * have to be the currently active EVMCS on the calling CPU and there's
5042 * nothing KVM has to do to transition it from 'active' to 'non-active'
5043 * state. It is possible that the area will stay mapped as
5044 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5045 */
5046 if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5047 !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5048 if (vmptr == vmx->nested.current_vmptr)
5049 nested_release_vmcs12(vcpu);
5050
5051 kvm_vcpu_write_guest(vcpu,
5052 vmptr + offsetof(struct vmcs12,
5053 launch_state),
5054 &zero, sizeof(zero));
5055 } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5056 nested_release_evmcs(vcpu);
5057 }
5058
5059 return nested_vmx_succeed(vcpu);
5060 }
5061
5062 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5063 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5064 {
5065 return nested_vmx_run(vcpu, true);
5066 }
5067
5068 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5069 static int handle_vmresume(struct kvm_vcpu *vcpu)
5070 {
5071
5072 return nested_vmx_run(vcpu, false);
5073 }
5074
handle_vmread(struct kvm_vcpu * vcpu)5075 static int handle_vmread(struct kvm_vcpu *vcpu)
5076 {
5077 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5078 : get_vmcs12(vcpu);
5079 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5080 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5081 struct vcpu_vmx *vmx = to_vmx(vcpu);
5082 struct x86_exception e;
5083 unsigned long field;
5084 u64 value;
5085 gva_t gva = 0;
5086 short offset;
5087 int len, r;
5088
5089 if (!nested_vmx_check_permission(vcpu))
5090 return 1;
5091
5092 /*
5093 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5094 * any VMREAD sets the ALU flags for VMfailInvalid.
5095 */
5096 if (vmx->nested.current_vmptr == -1ull ||
5097 (is_guest_mode(vcpu) &&
5098 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5099 return nested_vmx_failInvalid(vcpu);
5100
5101 /* Decode instruction info and find the field to read */
5102 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5103
5104 offset = vmcs_field_to_offset(field);
5105 if (offset < 0)
5106 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5107
5108 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5109 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5110
5111 /* Read the field, zero-extended to a u64 value */
5112 value = vmcs12_read_any(vmcs12, field, offset);
5113
5114 /*
5115 * Now copy part of this value to register or memory, as requested.
5116 * Note that the number of bits actually copied is 32 or 64 depending
5117 * on the guest's mode (32 or 64 bit), not on the given field's length.
5118 */
5119 if (instr_info & BIT(10)) {
5120 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5121 } else {
5122 len = is_64_bit_mode(vcpu) ? 8 : 4;
5123 if (get_vmx_mem_address(vcpu, exit_qualification,
5124 instr_info, true, len, &gva))
5125 return 1;
5126 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5127 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5128 if (r != X86EMUL_CONTINUE)
5129 return kvm_handle_memory_failure(vcpu, r, &e);
5130 }
5131
5132 return nested_vmx_succeed(vcpu);
5133 }
5134
is_shadow_field_rw(unsigned long field)5135 static bool is_shadow_field_rw(unsigned long field)
5136 {
5137 switch (field) {
5138 #define SHADOW_FIELD_RW(x, y) case x:
5139 #include "vmcs_shadow_fields.h"
5140 return true;
5141 default:
5142 break;
5143 }
5144 return false;
5145 }
5146
is_shadow_field_ro(unsigned long field)5147 static bool is_shadow_field_ro(unsigned long field)
5148 {
5149 switch (field) {
5150 #define SHADOW_FIELD_RO(x, y) case x:
5151 #include "vmcs_shadow_fields.h"
5152 return true;
5153 default:
5154 break;
5155 }
5156 return false;
5157 }
5158
handle_vmwrite(struct kvm_vcpu * vcpu)5159 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5160 {
5161 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5162 : get_vmcs12(vcpu);
5163 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5164 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5165 struct vcpu_vmx *vmx = to_vmx(vcpu);
5166 struct x86_exception e;
5167 unsigned long field;
5168 short offset;
5169 gva_t gva;
5170 int len, r;
5171
5172 /*
5173 * The value to write might be 32 or 64 bits, depending on L1's long
5174 * mode, and eventually we need to write that into a field of several
5175 * possible lengths. The code below first zero-extends the value to 64
5176 * bit (value), and then copies only the appropriate number of
5177 * bits into the vmcs12 field.
5178 */
5179 u64 value = 0;
5180
5181 if (!nested_vmx_check_permission(vcpu))
5182 return 1;
5183
5184 /*
5185 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5186 * any VMWRITE sets the ALU flags for VMfailInvalid.
5187 */
5188 if (vmx->nested.current_vmptr == -1ull ||
5189 (is_guest_mode(vcpu) &&
5190 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5191 return nested_vmx_failInvalid(vcpu);
5192
5193 if (instr_info & BIT(10))
5194 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5195 else {
5196 len = is_64_bit_mode(vcpu) ? 8 : 4;
5197 if (get_vmx_mem_address(vcpu, exit_qualification,
5198 instr_info, false, len, &gva))
5199 return 1;
5200 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5201 if (r != X86EMUL_CONTINUE)
5202 return kvm_handle_memory_failure(vcpu, r, &e);
5203 }
5204
5205 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5206
5207 offset = vmcs_field_to_offset(field);
5208 if (offset < 0)
5209 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5210
5211 /*
5212 * If the vCPU supports "VMWRITE to any supported field in the
5213 * VMCS," then the "read-only" fields are actually read/write.
5214 */
5215 if (vmcs_field_readonly(field) &&
5216 !nested_cpu_has_vmwrite_any_field(vcpu))
5217 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5218
5219 /*
5220 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5221 * vmcs12, else we may crush a field or consume a stale value.
5222 */
5223 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5224 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5225
5226 /*
5227 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5228 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5229 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5230 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5231 * from L1 will return a different value than VMREAD from L2 (L1 sees
5232 * the stripped down value, L2 sees the full value as stored by KVM).
5233 */
5234 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5235 value &= 0x1f0ff;
5236
5237 vmcs12_write_any(vmcs12, field, offset, value);
5238
5239 /*
5240 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5241 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5242 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5243 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5244 */
5245 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5246 /*
5247 * L1 can read these fields without exiting, ensure the
5248 * shadow VMCS is up-to-date.
5249 */
5250 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5251 preempt_disable();
5252 vmcs_load(vmx->vmcs01.shadow_vmcs);
5253
5254 __vmcs_writel(field, value);
5255
5256 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5257 vmcs_load(vmx->loaded_vmcs->vmcs);
5258 preempt_enable();
5259 }
5260 vmx->nested.dirty_vmcs12 = true;
5261 }
5262
5263 return nested_vmx_succeed(vcpu);
5264 }
5265
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5266 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5267 {
5268 vmx->nested.current_vmptr = vmptr;
5269 if (enable_shadow_vmcs) {
5270 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5271 vmcs_write64(VMCS_LINK_POINTER,
5272 __pa(vmx->vmcs01.shadow_vmcs));
5273 vmx->nested.need_vmcs12_to_shadow_sync = true;
5274 }
5275 vmx->nested.dirty_vmcs12 = true;
5276 }
5277
5278 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5279 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5280 {
5281 struct vcpu_vmx *vmx = to_vmx(vcpu);
5282 gpa_t vmptr;
5283 int r;
5284
5285 if (!nested_vmx_check_permission(vcpu))
5286 return 1;
5287
5288 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5289 return r;
5290
5291 if (!page_address_valid(vcpu, vmptr))
5292 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5293
5294 if (vmptr == vmx->nested.vmxon_ptr)
5295 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5296
5297 /* Forbid normal VMPTRLD if Enlightened version was used */
5298 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5299 return 1;
5300
5301 if (vmx->nested.current_vmptr != vmptr) {
5302 struct kvm_host_map map;
5303 struct vmcs12 *new_vmcs12;
5304
5305 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5306 /*
5307 * Reads from an unbacked page return all 1s,
5308 * which means that the 32 bits located at the
5309 * given physical address won't match the required
5310 * VMCS12_REVISION identifier.
5311 */
5312 return nested_vmx_fail(vcpu,
5313 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5314 }
5315
5316 new_vmcs12 = map.hva;
5317
5318 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5319 (new_vmcs12->hdr.shadow_vmcs &&
5320 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5321 kvm_vcpu_unmap(vcpu, &map, false);
5322 return nested_vmx_fail(vcpu,
5323 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5324 }
5325
5326 nested_release_vmcs12(vcpu);
5327
5328 /*
5329 * Load VMCS12 from guest memory since it is not already
5330 * cached.
5331 */
5332 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5333 kvm_vcpu_unmap(vcpu, &map, false);
5334
5335 set_current_vmptr(vmx, vmptr);
5336 }
5337
5338 return nested_vmx_succeed(vcpu);
5339 }
5340
5341 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5342 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5343 {
5344 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5345 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5346 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5347 struct x86_exception e;
5348 gva_t gva;
5349 int r;
5350
5351 if (!nested_vmx_check_permission(vcpu))
5352 return 1;
5353
5354 if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5355 return 1;
5356
5357 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5358 true, sizeof(gpa_t), &gva))
5359 return 1;
5360 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5361 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5362 sizeof(gpa_t), &e);
5363 if (r != X86EMUL_CONTINUE)
5364 return kvm_handle_memory_failure(vcpu, r, &e);
5365
5366 return nested_vmx_succeed(vcpu);
5367 }
5368
5369 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5370 static int handle_invept(struct kvm_vcpu *vcpu)
5371 {
5372 struct vcpu_vmx *vmx = to_vmx(vcpu);
5373 u32 vmx_instruction_info, types;
5374 unsigned long type, roots_to_free;
5375 struct kvm_mmu *mmu;
5376 gva_t gva;
5377 struct x86_exception e;
5378 struct {
5379 u64 eptp, gpa;
5380 } operand;
5381 int i, r;
5382
5383 if (!(vmx->nested.msrs.secondary_ctls_high &
5384 SECONDARY_EXEC_ENABLE_EPT) ||
5385 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5386 kvm_queue_exception(vcpu, UD_VECTOR);
5387 return 1;
5388 }
5389
5390 if (!nested_vmx_check_permission(vcpu))
5391 return 1;
5392
5393 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5394 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5395
5396 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5397
5398 if (type >= 32 || !(types & (1 << type)))
5399 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5400
5401 /* According to the Intel VMX instruction reference, the memory
5402 * operand is read even if it isn't needed (e.g., for type==global)
5403 */
5404 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5405 vmx_instruction_info, false, sizeof(operand), &gva))
5406 return 1;
5407 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5408 if (r != X86EMUL_CONTINUE)
5409 return kvm_handle_memory_failure(vcpu, r, &e);
5410
5411 /*
5412 * Nested EPT roots are always held through guest_mmu,
5413 * not root_mmu.
5414 */
5415 mmu = &vcpu->arch.guest_mmu;
5416
5417 switch (type) {
5418 case VMX_EPT_EXTENT_CONTEXT:
5419 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5420 return nested_vmx_fail(vcpu,
5421 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5422
5423 roots_to_free = 0;
5424 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5425 operand.eptp))
5426 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5427
5428 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5429 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5430 mmu->prev_roots[i].pgd,
5431 operand.eptp))
5432 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5433 }
5434 break;
5435 case VMX_EPT_EXTENT_GLOBAL:
5436 roots_to_free = KVM_MMU_ROOTS_ALL;
5437 break;
5438 default:
5439 BUG();
5440 break;
5441 }
5442
5443 if (roots_to_free)
5444 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5445
5446 return nested_vmx_succeed(vcpu);
5447 }
5448
handle_invvpid(struct kvm_vcpu * vcpu)5449 static int handle_invvpid(struct kvm_vcpu *vcpu)
5450 {
5451 struct vcpu_vmx *vmx = to_vmx(vcpu);
5452 u32 vmx_instruction_info;
5453 unsigned long type, types;
5454 gva_t gva;
5455 struct x86_exception e;
5456 struct {
5457 u64 vpid;
5458 u64 gla;
5459 } operand;
5460 u16 vpid02;
5461 int r;
5462
5463 if (!(vmx->nested.msrs.secondary_ctls_high &
5464 SECONDARY_EXEC_ENABLE_VPID) ||
5465 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5466 kvm_queue_exception(vcpu, UD_VECTOR);
5467 return 1;
5468 }
5469
5470 if (!nested_vmx_check_permission(vcpu))
5471 return 1;
5472
5473 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5474 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5475
5476 types = (vmx->nested.msrs.vpid_caps &
5477 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5478
5479 if (type >= 32 || !(types & (1 << type)))
5480 return nested_vmx_fail(vcpu,
5481 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5482
5483 /* according to the intel vmx instruction reference, the memory
5484 * operand is read even if it isn't needed (e.g., for type==global)
5485 */
5486 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5487 vmx_instruction_info, false, sizeof(operand), &gva))
5488 return 1;
5489 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5490 if (r != X86EMUL_CONTINUE)
5491 return kvm_handle_memory_failure(vcpu, r, &e);
5492
5493 if (operand.vpid >> 16)
5494 return nested_vmx_fail(vcpu,
5495 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5496
5497 vpid02 = nested_get_vpid02(vcpu);
5498 switch (type) {
5499 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5500 if (!operand.vpid ||
5501 is_noncanonical_address(operand.gla, vcpu))
5502 return nested_vmx_fail(vcpu,
5503 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5504 vpid_sync_vcpu_addr(vpid02, operand.gla);
5505 break;
5506 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5507 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5508 if (!operand.vpid)
5509 return nested_vmx_fail(vcpu,
5510 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5511 vpid_sync_context(vpid02);
5512 break;
5513 case VMX_VPID_EXTENT_ALL_CONTEXT:
5514 vpid_sync_context(vpid02);
5515 break;
5516 default:
5517 WARN_ON_ONCE(1);
5518 return kvm_skip_emulated_instruction(vcpu);
5519 }
5520
5521 /*
5522 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5523 * linear mappings for L2 (tagged with L2's VPID). Free all guest
5524 * roots as VPIDs are not tracked in the MMU role.
5525 *
5526 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5527 * an MMU when EPT is disabled.
5528 *
5529 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5530 */
5531 if (!enable_ept)
5532 kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5533
5534 return nested_vmx_succeed(vcpu);
5535 }
5536
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5537 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5538 struct vmcs12 *vmcs12)
5539 {
5540 u32 index = kvm_rcx_read(vcpu);
5541 u64 new_eptp;
5542
5543 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5544 return 1;
5545 if (index >= VMFUNC_EPTP_ENTRIES)
5546 return 1;
5547
5548 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5549 &new_eptp, index * 8, 8))
5550 return 1;
5551
5552 /*
5553 * If the (L2) guest does a vmfunc to the currently
5554 * active ept pointer, we don't have to do anything else
5555 */
5556 if (vmcs12->ept_pointer != new_eptp) {
5557 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5558 return 1;
5559
5560 vmcs12->ept_pointer = new_eptp;
5561 nested_ept_new_eptp(vcpu);
5562
5563 if (!nested_cpu_has_vpid(vmcs12))
5564 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5565 }
5566
5567 return 0;
5568 }
5569
handle_vmfunc(struct kvm_vcpu * vcpu)5570 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5571 {
5572 struct vcpu_vmx *vmx = to_vmx(vcpu);
5573 struct vmcs12 *vmcs12;
5574 u32 function = kvm_rax_read(vcpu);
5575
5576 /*
5577 * VMFUNC is only supported for nested guests, but we always enable the
5578 * secondary control for simplicity; for non-nested mode, fake that we
5579 * didn't by injecting #UD.
5580 */
5581 if (!is_guest_mode(vcpu)) {
5582 kvm_queue_exception(vcpu, UD_VECTOR);
5583 return 1;
5584 }
5585
5586 vmcs12 = get_vmcs12(vcpu);
5587
5588 /*
5589 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5590 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5591 */
5592 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5593 kvm_queue_exception(vcpu, UD_VECTOR);
5594 return 1;
5595 }
5596
5597 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5598 goto fail;
5599
5600 switch (function) {
5601 case 0:
5602 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5603 goto fail;
5604 break;
5605 default:
5606 goto fail;
5607 }
5608 return kvm_skip_emulated_instruction(vcpu);
5609
5610 fail:
5611 /*
5612 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5613 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
5614 * EXIT_REASON_VMFUNC as the exit reason.
5615 */
5616 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5617 vmx_get_intr_info(vcpu),
5618 vmx_get_exit_qual(vcpu));
5619 return 1;
5620 }
5621
5622 /*
5623 * Return true if an IO instruction with the specified port and size should cause
5624 * a VM-exit into L1.
5625 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)5626 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5627 int size)
5628 {
5629 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5630 gpa_t bitmap, last_bitmap;
5631 u8 b;
5632
5633 last_bitmap = (gpa_t)-1;
5634 b = -1;
5635
5636 while (size > 0) {
5637 if (port < 0x8000)
5638 bitmap = vmcs12->io_bitmap_a;
5639 else if (port < 0x10000)
5640 bitmap = vmcs12->io_bitmap_b;
5641 else
5642 return true;
5643 bitmap += (port & 0x7fff) / 8;
5644
5645 if (last_bitmap != bitmap)
5646 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5647 return true;
5648 if (b & (1 << (port & 7)))
5649 return true;
5650
5651 port++;
5652 size--;
5653 last_bitmap = bitmap;
5654 }
5655
5656 return false;
5657 }
5658
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5659 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5660 struct vmcs12 *vmcs12)
5661 {
5662 unsigned long exit_qualification;
5663 unsigned short port;
5664 int size;
5665
5666 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5667 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5668
5669 exit_qualification = vmx_get_exit_qual(vcpu);
5670
5671 port = exit_qualification >> 16;
5672 size = (exit_qualification & 7) + 1;
5673
5674 return nested_vmx_check_io_bitmaps(vcpu, port, size);
5675 }
5676
5677 /*
5678 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5679 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5680 * disinterest in the current event (read or write a specific MSR) by using an
5681 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5682 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)5683 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5684 struct vmcs12 *vmcs12,
5685 union vmx_exit_reason exit_reason)
5686 {
5687 u32 msr_index = kvm_rcx_read(vcpu);
5688 gpa_t bitmap;
5689
5690 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5691 return true;
5692
5693 /*
5694 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5695 * for the four combinations of read/write and low/high MSR numbers.
5696 * First we need to figure out which of the four to use:
5697 */
5698 bitmap = vmcs12->msr_bitmap;
5699 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5700 bitmap += 2048;
5701 if (msr_index >= 0xc0000000) {
5702 msr_index -= 0xc0000000;
5703 bitmap += 1024;
5704 }
5705
5706 /* Then read the msr_index'th bit from this bitmap: */
5707 if (msr_index < 1024*8) {
5708 unsigned char b;
5709 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5710 return true;
5711 return 1 & (b >> (msr_index & 7));
5712 } else
5713 return true; /* let L1 handle the wrong parameter */
5714 }
5715
5716 /*
5717 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5718 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5719 * intercept (via guest_host_mask etc.) the current event.
5720 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5721 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5722 struct vmcs12 *vmcs12)
5723 {
5724 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5725 int cr = exit_qualification & 15;
5726 int reg;
5727 unsigned long val;
5728
5729 switch ((exit_qualification >> 4) & 3) {
5730 case 0: /* mov to cr */
5731 reg = (exit_qualification >> 8) & 15;
5732 val = kvm_register_read(vcpu, reg);
5733 switch (cr) {
5734 case 0:
5735 if (vmcs12->cr0_guest_host_mask &
5736 (val ^ vmcs12->cr0_read_shadow))
5737 return true;
5738 break;
5739 case 3:
5740 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5741 return true;
5742 break;
5743 case 4:
5744 if (vmcs12->cr4_guest_host_mask &
5745 (vmcs12->cr4_read_shadow ^ val))
5746 return true;
5747 break;
5748 case 8:
5749 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5750 return true;
5751 break;
5752 }
5753 break;
5754 case 2: /* clts */
5755 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5756 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5757 return true;
5758 break;
5759 case 1: /* mov from cr */
5760 switch (cr) {
5761 case 3:
5762 if (vmcs12->cpu_based_vm_exec_control &
5763 CPU_BASED_CR3_STORE_EXITING)
5764 return true;
5765 break;
5766 case 8:
5767 if (vmcs12->cpu_based_vm_exec_control &
5768 CPU_BASED_CR8_STORE_EXITING)
5769 return true;
5770 break;
5771 }
5772 break;
5773 case 3: /* lmsw */
5774 /*
5775 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5776 * cr0. Other attempted changes are ignored, with no exit.
5777 */
5778 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5779 if (vmcs12->cr0_guest_host_mask & 0xe &
5780 (val ^ vmcs12->cr0_read_shadow))
5781 return true;
5782 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5783 !(vmcs12->cr0_read_shadow & 0x1) &&
5784 (val & 0x1))
5785 return true;
5786 break;
5787 }
5788 return false;
5789 }
5790
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5791 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5792 struct vmcs12 *vmcs12)
5793 {
5794 u32 encls_leaf;
5795
5796 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5797 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5798 return false;
5799
5800 encls_leaf = kvm_rax_read(vcpu);
5801 if (encls_leaf > 62)
5802 encls_leaf = 63;
5803 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5804 }
5805
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)5806 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5807 struct vmcs12 *vmcs12, gpa_t bitmap)
5808 {
5809 u32 vmx_instruction_info;
5810 unsigned long field;
5811 u8 b;
5812
5813 if (!nested_cpu_has_shadow_vmcs(vmcs12))
5814 return true;
5815
5816 /* Decode instruction info and find the field to access */
5817 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5818 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5819
5820 /* Out-of-range fields always cause a VM exit from L2 to L1 */
5821 if (field >> 15)
5822 return true;
5823
5824 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5825 return true;
5826
5827 return 1 & (b >> (field & 7));
5828 }
5829
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)5830 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5831 {
5832 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5833
5834 if (nested_cpu_has_mtf(vmcs12))
5835 return true;
5836
5837 /*
5838 * An MTF VM-exit may be injected into the guest by setting the
5839 * interruption-type to 7 (other event) and the vector field to 0. Such
5840 * is the case regardless of the 'monitor trap flag' VM-execution
5841 * control.
5842 */
5843 return entry_intr_info == (INTR_INFO_VALID_MASK
5844 | INTR_TYPE_OTHER_EVENT);
5845 }
5846
5847 /*
5848 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5849 * L1 wants the exit. Only call this when in is_guest_mode (L2).
5850 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)5851 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5852 union vmx_exit_reason exit_reason)
5853 {
5854 u32 intr_info;
5855
5856 switch ((u16)exit_reason.basic) {
5857 case EXIT_REASON_EXCEPTION_NMI:
5858 intr_info = vmx_get_intr_info(vcpu);
5859 if (is_nmi(intr_info))
5860 return true;
5861 else if (is_page_fault(intr_info))
5862 return vcpu->arch.apf.host_apf_flags ||
5863 vmx_need_pf_intercept(vcpu);
5864 else if (is_debug(intr_info) &&
5865 vcpu->guest_debug &
5866 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5867 return true;
5868 else if (is_breakpoint(intr_info) &&
5869 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5870 return true;
5871 else if (is_alignment_check(intr_info) &&
5872 !vmx_guest_inject_ac(vcpu))
5873 return true;
5874 return false;
5875 case EXIT_REASON_EXTERNAL_INTERRUPT:
5876 return true;
5877 case EXIT_REASON_MCE_DURING_VMENTRY:
5878 return true;
5879 case EXIT_REASON_EPT_VIOLATION:
5880 /*
5881 * L0 always deals with the EPT violation. If nested EPT is
5882 * used, and the nested mmu code discovers that the address is
5883 * missing in the guest EPT table (EPT12), the EPT violation
5884 * will be injected with nested_ept_inject_page_fault()
5885 */
5886 return true;
5887 case EXIT_REASON_EPT_MISCONFIG:
5888 /*
5889 * L2 never uses directly L1's EPT, but rather L0's own EPT
5890 * table (shadow on EPT) or a merged EPT table that L0 built
5891 * (EPT on EPT). So any problems with the structure of the
5892 * table is L0's fault.
5893 */
5894 return true;
5895 case EXIT_REASON_PREEMPTION_TIMER:
5896 return true;
5897 case EXIT_REASON_PML_FULL:
5898 /*
5899 * PML is emulated for an L1 VMM and should never be enabled in
5900 * vmcs02, always "handle" PML_FULL by exiting to userspace.
5901 */
5902 return true;
5903 case EXIT_REASON_VMFUNC:
5904 /* VM functions are emulated through L2->L0 vmexits. */
5905 return true;
5906 case EXIT_REASON_BUS_LOCK:
5907 /*
5908 * At present, bus lock VM exit is never exposed to L1.
5909 * Handle L2's bus locks in L0 directly.
5910 */
5911 return true;
5912 default:
5913 break;
5914 }
5915 return false;
5916 }
5917
5918 /*
5919 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
5920 * is_guest_mode (L2).
5921 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)5922 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5923 union vmx_exit_reason exit_reason)
5924 {
5925 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5926 u32 intr_info;
5927
5928 switch ((u16)exit_reason.basic) {
5929 case EXIT_REASON_EXCEPTION_NMI:
5930 intr_info = vmx_get_intr_info(vcpu);
5931 if (is_nmi(intr_info))
5932 return true;
5933 else if (is_page_fault(intr_info))
5934 return true;
5935 return vmcs12->exception_bitmap &
5936 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5937 case EXIT_REASON_EXTERNAL_INTERRUPT:
5938 return nested_exit_on_intr(vcpu);
5939 case EXIT_REASON_TRIPLE_FAULT:
5940 return true;
5941 case EXIT_REASON_INTERRUPT_WINDOW:
5942 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5943 case EXIT_REASON_NMI_WINDOW:
5944 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5945 case EXIT_REASON_TASK_SWITCH:
5946 return true;
5947 case EXIT_REASON_CPUID:
5948 return true;
5949 case EXIT_REASON_HLT:
5950 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5951 case EXIT_REASON_INVD:
5952 return true;
5953 case EXIT_REASON_INVLPG:
5954 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5955 case EXIT_REASON_RDPMC:
5956 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5957 case EXIT_REASON_RDRAND:
5958 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5959 case EXIT_REASON_RDSEED:
5960 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5961 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5962 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5963 case EXIT_REASON_VMREAD:
5964 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5965 vmcs12->vmread_bitmap);
5966 case EXIT_REASON_VMWRITE:
5967 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5968 vmcs12->vmwrite_bitmap);
5969 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5970 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5971 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5972 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5973 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5974 /*
5975 * VMX instructions trap unconditionally. This allows L1 to
5976 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5977 */
5978 return true;
5979 case EXIT_REASON_CR_ACCESS:
5980 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5981 case EXIT_REASON_DR_ACCESS:
5982 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5983 case EXIT_REASON_IO_INSTRUCTION:
5984 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5985 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5986 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5987 case EXIT_REASON_MSR_READ:
5988 case EXIT_REASON_MSR_WRITE:
5989 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5990 case EXIT_REASON_INVALID_STATE:
5991 return true;
5992 case EXIT_REASON_MWAIT_INSTRUCTION:
5993 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5994 case EXIT_REASON_MONITOR_TRAP_FLAG:
5995 return nested_vmx_exit_handled_mtf(vmcs12);
5996 case EXIT_REASON_MONITOR_INSTRUCTION:
5997 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5998 case EXIT_REASON_PAUSE_INSTRUCTION:
5999 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6000 nested_cpu_has2(vmcs12,
6001 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6002 case EXIT_REASON_MCE_DURING_VMENTRY:
6003 return true;
6004 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6005 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6006 case EXIT_REASON_APIC_ACCESS:
6007 case EXIT_REASON_APIC_WRITE:
6008 case EXIT_REASON_EOI_INDUCED:
6009 /*
6010 * The controls for "virtualize APIC accesses," "APIC-
6011 * register virtualization," and "virtual-interrupt
6012 * delivery" only come from vmcs12.
6013 */
6014 return true;
6015 case EXIT_REASON_INVPCID:
6016 return
6017 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6018 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6019 case EXIT_REASON_WBINVD:
6020 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6021 case EXIT_REASON_XSETBV:
6022 return true;
6023 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6024 /*
6025 * This should never happen, since it is not possible to
6026 * set XSS to a non-zero value---neither in L1 nor in L2.
6027 * If if it were, XSS would have to be checked against
6028 * the XSS exit bitmap in vmcs12.
6029 */
6030 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6031 case EXIT_REASON_UMWAIT:
6032 case EXIT_REASON_TPAUSE:
6033 return nested_cpu_has2(vmcs12,
6034 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6035 case EXIT_REASON_ENCLS:
6036 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6037 default:
6038 return true;
6039 }
6040 }
6041
6042 /*
6043 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6044 * reflected into L1.
6045 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6046 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6047 {
6048 struct vcpu_vmx *vmx = to_vmx(vcpu);
6049 union vmx_exit_reason exit_reason = vmx->exit_reason;
6050 unsigned long exit_qual;
6051 u32 exit_intr_info;
6052
6053 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6054
6055 /*
6056 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6057 * has already loaded L2's state.
6058 */
6059 if (unlikely(vmx->fail)) {
6060 trace_kvm_nested_vmenter_failed(
6061 "hardware VM-instruction error: ",
6062 vmcs_read32(VM_INSTRUCTION_ERROR));
6063 exit_intr_info = 0;
6064 exit_qual = 0;
6065 goto reflect_vmexit;
6066 }
6067
6068 trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
6069
6070 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6071 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6072 return false;
6073
6074 /* If L1 doesn't want the exit, handle it in L0. */
6075 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6076 return false;
6077
6078 /*
6079 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6080 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6081 * need to be synthesized by querying the in-kernel LAPIC, but external
6082 * interrupts are never reflected to L1 so it's a non-issue.
6083 */
6084 exit_intr_info = vmx_get_intr_info(vcpu);
6085 if (is_exception_with_error_code(exit_intr_info)) {
6086 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6087
6088 vmcs12->vm_exit_intr_error_code =
6089 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6090 }
6091 exit_qual = vmx_get_exit_qual(vcpu);
6092
6093 reflect_vmexit:
6094 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6095 return true;
6096 }
6097
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6098 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6099 struct kvm_nested_state __user *user_kvm_nested_state,
6100 u32 user_data_size)
6101 {
6102 struct vcpu_vmx *vmx;
6103 struct vmcs12 *vmcs12;
6104 struct kvm_nested_state kvm_state = {
6105 .flags = 0,
6106 .format = KVM_STATE_NESTED_FORMAT_VMX,
6107 .size = sizeof(kvm_state),
6108 .hdr.vmx.flags = 0,
6109 .hdr.vmx.vmxon_pa = -1ull,
6110 .hdr.vmx.vmcs12_pa = -1ull,
6111 .hdr.vmx.preemption_timer_deadline = 0,
6112 };
6113 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6114 &user_kvm_nested_state->data.vmx[0];
6115
6116 if (!vcpu)
6117 return kvm_state.size + sizeof(*user_vmx_nested_state);
6118
6119 vmx = to_vmx(vcpu);
6120 vmcs12 = get_vmcs12(vcpu);
6121
6122 if (nested_vmx_allowed(vcpu) &&
6123 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6124 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6125 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6126
6127 if (vmx_has_valid_vmcs12(vcpu)) {
6128 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6129
6130 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6131 if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6132 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6133
6134 if (is_guest_mode(vcpu) &&
6135 nested_cpu_has_shadow_vmcs(vmcs12) &&
6136 vmcs12->vmcs_link_pointer != -1ull)
6137 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6138 }
6139
6140 if (vmx->nested.smm.vmxon)
6141 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6142
6143 if (vmx->nested.smm.guest_mode)
6144 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6145
6146 if (is_guest_mode(vcpu)) {
6147 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6148
6149 if (vmx->nested.nested_run_pending)
6150 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6151
6152 if (vmx->nested.mtf_pending)
6153 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6154
6155 if (nested_cpu_has_preemption_timer(vmcs12) &&
6156 vmx->nested.has_preemption_timer_deadline) {
6157 kvm_state.hdr.vmx.flags |=
6158 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6159 kvm_state.hdr.vmx.preemption_timer_deadline =
6160 vmx->nested.preemption_timer_deadline;
6161 }
6162 }
6163 }
6164
6165 if (user_data_size < kvm_state.size)
6166 goto out;
6167
6168 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6169 return -EFAULT;
6170
6171 if (!vmx_has_valid_vmcs12(vcpu))
6172 goto out;
6173
6174 /*
6175 * When running L2, the authoritative vmcs12 state is in the
6176 * vmcs02. When running L1, the authoritative vmcs12 state is
6177 * in the shadow or enlightened vmcs linked to vmcs01, unless
6178 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6179 * vmcs12 state is in the vmcs12 already.
6180 */
6181 if (is_guest_mode(vcpu)) {
6182 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6183 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6184 } else {
6185 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6186 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6187 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6188 /*
6189 * L1 hypervisor is not obliged to keep eVMCS
6190 * clean fields data always up-to-date while
6191 * not in guest mode, 'hv_clean_fields' is only
6192 * supposed to be actual upon vmentry so we need
6193 * to ignore it here and do full copy.
6194 */
6195 copy_enlightened_to_vmcs12(vmx, 0);
6196 else if (enable_shadow_vmcs)
6197 copy_shadow_to_vmcs12(vmx);
6198 }
6199 }
6200
6201 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6202 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6203
6204 /*
6205 * Copy over the full allocated size of vmcs12 rather than just the size
6206 * of the struct.
6207 */
6208 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6209 return -EFAULT;
6210
6211 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6212 vmcs12->vmcs_link_pointer != -1ull) {
6213 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6214 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6215 return -EFAULT;
6216 }
6217 out:
6218 return kvm_state.size;
6219 }
6220
6221 /*
6222 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6223 */
vmx_leave_nested(struct kvm_vcpu * vcpu)6224 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6225 {
6226 if (is_guest_mode(vcpu)) {
6227 to_vmx(vcpu)->nested.nested_run_pending = 0;
6228 nested_vmx_vmexit(vcpu, -1, 0, 0);
6229 }
6230 free_nested(vcpu);
6231 }
6232
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6233 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6234 struct kvm_nested_state __user *user_kvm_nested_state,
6235 struct kvm_nested_state *kvm_state)
6236 {
6237 struct vcpu_vmx *vmx = to_vmx(vcpu);
6238 struct vmcs12 *vmcs12;
6239 enum vm_entry_failure_code ignored;
6240 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6241 &user_kvm_nested_state->data.vmx[0];
6242 int ret;
6243
6244 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6245 return -EINVAL;
6246
6247 if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6248 if (kvm_state->hdr.vmx.smm.flags)
6249 return -EINVAL;
6250
6251 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6252 return -EINVAL;
6253
6254 /*
6255 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6256 * enable eVMCS capability on vCPU. However, since then
6257 * code was changed such that flag signals vmcs12 should
6258 * be copied into eVMCS in guest memory.
6259 *
6260 * To preserve backwards compatability, allow user
6261 * to set this flag even when there is no VMXON region.
6262 */
6263 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6264 return -EINVAL;
6265 } else {
6266 if (!nested_vmx_allowed(vcpu))
6267 return -EINVAL;
6268
6269 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6270 return -EINVAL;
6271 }
6272
6273 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6274 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6275 return -EINVAL;
6276
6277 if (kvm_state->hdr.vmx.smm.flags &
6278 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6279 return -EINVAL;
6280
6281 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6282 return -EINVAL;
6283
6284 /*
6285 * SMM temporarily disables VMX, so we cannot be in guest mode,
6286 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6287 * must be zero.
6288 */
6289 if (is_smm(vcpu) ?
6290 (kvm_state->flags &
6291 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6292 : kvm_state->hdr.vmx.smm.flags)
6293 return -EINVAL;
6294
6295 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6296 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6297 return -EINVAL;
6298
6299 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6300 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6301 return -EINVAL;
6302
6303 vmx_leave_nested(vcpu);
6304
6305 if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6306 return 0;
6307
6308 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6309 ret = enter_vmx_operation(vcpu);
6310 if (ret)
6311 return ret;
6312
6313 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6314 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6315 /* See vmx_has_valid_vmcs12. */
6316 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6317 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6318 (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6319 return -EINVAL;
6320 else
6321 return 0;
6322 }
6323
6324 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6325 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6326 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6327 return -EINVAL;
6328
6329 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6330 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6331 /*
6332 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6333 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6334 * restored yet. EVMCS will be mapped from
6335 * nested_get_vmcs12_pages().
6336 */
6337 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6338 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6339 } else {
6340 return -EINVAL;
6341 }
6342
6343 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6344 vmx->nested.smm.vmxon = true;
6345 vmx->nested.vmxon = false;
6346
6347 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6348 vmx->nested.smm.guest_mode = true;
6349 }
6350
6351 vmcs12 = get_vmcs12(vcpu);
6352 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6353 return -EFAULT;
6354
6355 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6356 return -EINVAL;
6357
6358 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6359 return 0;
6360
6361 vmx->nested.nested_run_pending =
6362 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6363
6364 vmx->nested.mtf_pending =
6365 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6366
6367 ret = -EINVAL;
6368 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6369 vmcs12->vmcs_link_pointer != -1ull) {
6370 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6371
6372 if (kvm_state->size <
6373 sizeof(*kvm_state) +
6374 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6375 goto error_guest_mode;
6376
6377 if (copy_from_user(shadow_vmcs12,
6378 user_vmx_nested_state->shadow_vmcs12,
6379 sizeof(*shadow_vmcs12))) {
6380 ret = -EFAULT;
6381 goto error_guest_mode;
6382 }
6383
6384 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6385 !shadow_vmcs12->hdr.shadow_vmcs)
6386 goto error_guest_mode;
6387 }
6388
6389 vmx->nested.has_preemption_timer_deadline = false;
6390 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6391 vmx->nested.has_preemption_timer_deadline = true;
6392 vmx->nested.preemption_timer_deadline =
6393 kvm_state->hdr.vmx.preemption_timer_deadline;
6394 }
6395
6396 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6397 nested_vmx_check_host_state(vcpu, vmcs12) ||
6398 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6399 goto error_guest_mode;
6400
6401 vmx->nested.dirty_vmcs12 = true;
6402 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6403 if (ret)
6404 goto error_guest_mode;
6405
6406 return 0;
6407
6408 error_guest_mode:
6409 vmx->nested.nested_run_pending = 0;
6410 return ret;
6411 }
6412
nested_vmx_set_vmcs_shadowing_bitmap(void)6413 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6414 {
6415 if (enable_shadow_vmcs) {
6416 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6417 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6418 }
6419 }
6420
6421 /*
6422 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6423 * that madness to get the encoding for comparison.
6424 */
6425 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6426
nested_vmx_calc_vmcs_enum_msr(void)6427 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6428 {
6429 /*
6430 * Note these are the so called "index" of the VMCS field encoding, not
6431 * the index into vmcs12.
6432 */
6433 unsigned int max_idx, idx;
6434 int i;
6435
6436 /*
6437 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6438 * vmcs12, regardless of whether or not the associated feature is
6439 * exposed to L1. Simply find the field with the highest index.
6440 */
6441 max_idx = 0;
6442 for (i = 0; i < nr_vmcs12_fields; i++) {
6443 /* The vmcs12 table is very, very sparsely populated. */
6444 if (!vmcs_field_to_offset_table[i])
6445 continue;
6446
6447 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6448 if (idx > max_idx)
6449 max_idx = idx;
6450 }
6451
6452 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6453 }
6454
6455 /*
6456 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6457 * returned for the various VMX controls MSRs when nested VMX is enabled.
6458 * The same values should also be used to verify that vmcs12 control fields are
6459 * valid during nested entry from L1 to L2.
6460 * Each of these control msrs has a low and high 32-bit half: A low bit is on
6461 * if the corresponding bit in the (32-bit) control field *must* be on, and a
6462 * bit in the high half is on if the corresponding bit in the control field
6463 * may be on. See also vmx_control_verify().
6464 */
nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs * msrs,u32 ept_caps)6465 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6466 {
6467 /*
6468 * Note that as a general rule, the high half of the MSRs (bits in
6469 * the control fields which may be 1) should be initialized by the
6470 * intersection of the underlying hardware's MSR (i.e., features which
6471 * can be supported) and the list of features we want to expose -
6472 * because they are known to be properly supported in our code.
6473 * Also, usually, the low half of the MSRs (bits which must be 1) can
6474 * be set to 0, meaning that L1 may turn off any of these bits. The
6475 * reason is that if one of these bits is necessary, it will appear
6476 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6477 * fields of vmcs01 and vmcs02, will turn these bits off - and
6478 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6479 * These rules have exceptions below.
6480 */
6481
6482 /* pin-based controls */
6483 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6484 msrs->pinbased_ctls_low,
6485 msrs->pinbased_ctls_high);
6486 msrs->pinbased_ctls_low |=
6487 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6488 msrs->pinbased_ctls_high &=
6489 PIN_BASED_EXT_INTR_MASK |
6490 PIN_BASED_NMI_EXITING |
6491 PIN_BASED_VIRTUAL_NMIS |
6492 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6493 msrs->pinbased_ctls_high |=
6494 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6495 PIN_BASED_VMX_PREEMPTION_TIMER;
6496
6497 /* exit controls */
6498 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6499 msrs->exit_ctls_low,
6500 msrs->exit_ctls_high);
6501 msrs->exit_ctls_low =
6502 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6503
6504 msrs->exit_ctls_high &=
6505 #ifdef CONFIG_X86_64
6506 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6507 #endif
6508 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6509 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6510 msrs->exit_ctls_high |=
6511 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6512 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6513 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6514
6515 /* We support free control of debug control saving. */
6516 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6517
6518 /* entry controls */
6519 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6520 msrs->entry_ctls_low,
6521 msrs->entry_ctls_high);
6522 msrs->entry_ctls_low =
6523 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6524 msrs->entry_ctls_high &=
6525 #ifdef CONFIG_X86_64
6526 VM_ENTRY_IA32E_MODE |
6527 #endif
6528 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6529 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6530 msrs->entry_ctls_high |=
6531 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6532
6533 /* We support free control of debug control loading. */
6534 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6535
6536 /* cpu-based controls */
6537 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6538 msrs->procbased_ctls_low,
6539 msrs->procbased_ctls_high);
6540 msrs->procbased_ctls_low =
6541 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6542 msrs->procbased_ctls_high &=
6543 CPU_BASED_INTR_WINDOW_EXITING |
6544 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6545 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6546 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6547 CPU_BASED_CR3_STORE_EXITING |
6548 #ifdef CONFIG_X86_64
6549 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6550 #endif
6551 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6552 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6553 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6554 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6555 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6556 /*
6557 * We can allow some features even when not supported by the
6558 * hardware. For example, L1 can specify an MSR bitmap - and we
6559 * can use it to avoid exits to L1 - even when L0 runs L2
6560 * without MSR bitmaps.
6561 */
6562 msrs->procbased_ctls_high |=
6563 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6564 CPU_BASED_USE_MSR_BITMAPS;
6565
6566 /* We support free control of CR3 access interception. */
6567 msrs->procbased_ctls_low &=
6568 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6569
6570 /*
6571 * secondary cpu-based controls. Do not include those that
6572 * depend on CPUID bits, they are added later by
6573 * vmx_vcpu_after_set_cpuid.
6574 */
6575 if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6576 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6577 msrs->secondary_ctls_low,
6578 msrs->secondary_ctls_high);
6579
6580 msrs->secondary_ctls_low = 0;
6581 msrs->secondary_ctls_high &=
6582 SECONDARY_EXEC_DESC |
6583 SECONDARY_EXEC_ENABLE_RDTSCP |
6584 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6585 SECONDARY_EXEC_WBINVD_EXITING |
6586 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6587 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6588 SECONDARY_EXEC_RDRAND_EXITING |
6589 SECONDARY_EXEC_ENABLE_INVPCID |
6590 SECONDARY_EXEC_RDSEED_EXITING |
6591 SECONDARY_EXEC_XSAVES |
6592 SECONDARY_EXEC_TSC_SCALING;
6593
6594 /*
6595 * We can emulate "VMCS shadowing," even if the hardware
6596 * doesn't support it.
6597 */
6598 msrs->secondary_ctls_high |=
6599 SECONDARY_EXEC_SHADOW_VMCS;
6600
6601 if (enable_ept) {
6602 /* nested EPT: emulate EPT also to L1 */
6603 msrs->secondary_ctls_high |=
6604 SECONDARY_EXEC_ENABLE_EPT;
6605 msrs->ept_caps =
6606 VMX_EPT_PAGE_WALK_4_BIT |
6607 VMX_EPT_PAGE_WALK_5_BIT |
6608 VMX_EPTP_WB_BIT |
6609 VMX_EPT_INVEPT_BIT |
6610 VMX_EPT_EXECUTE_ONLY_BIT;
6611
6612 msrs->ept_caps &= ept_caps;
6613 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6614 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6615 VMX_EPT_1GB_PAGE_BIT;
6616 if (enable_ept_ad_bits) {
6617 msrs->secondary_ctls_high |=
6618 SECONDARY_EXEC_ENABLE_PML;
6619 msrs->ept_caps |= VMX_EPT_AD_BIT;
6620 }
6621 }
6622
6623 if (cpu_has_vmx_vmfunc()) {
6624 msrs->secondary_ctls_high |=
6625 SECONDARY_EXEC_ENABLE_VMFUNC;
6626 /*
6627 * Advertise EPTP switching unconditionally
6628 * since we emulate it
6629 */
6630 if (enable_ept)
6631 msrs->vmfunc_controls =
6632 VMX_VMFUNC_EPTP_SWITCHING;
6633 }
6634
6635 /*
6636 * Old versions of KVM use the single-context version without
6637 * checking for support, so declare that it is supported even
6638 * though it is treated as global context. The alternative is
6639 * not failing the single-context invvpid, and it is worse.
6640 */
6641 if (enable_vpid) {
6642 msrs->secondary_ctls_high |=
6643 SECONDARY_EXEC_ENABLE_VPID;
6644 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6645 VMX_VPID_EXTENT_SUPPORTED_MASK;
6646 }
6647
6648 if (enable_unrestricted_guest)
6649 msrs->secondary_ctls_high |=
6650 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6651
6652 if (flexpriority_enabled)
6653 msrs->secondary_ctls_high |=
6654 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6655
6656 if (enable_sgx)
6657 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6658
6659 /* miscellaneous data */
6660 rdmsr(MSR_IA32_VMX_MISC,
6661 msrs->misc_low,
6662 msrs->misc_high);
6663 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6664 msrs->misc_low |=
6665 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6666 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6667 VMX_MISC_ACTIVITY_HLT |
6668 VMX_MISC_ACTIVITY_WAIT_SIPI;
6669 msrs->misc_high = 0;
6670
6671 /*
6672 * This MSR reports some information about VMX support. We
6673 * should return information about the VMX we emulate for the
6674 * guest, and the VMCS structure we give it - not about the
6675 * VMX support of the underlying hardware.
6676 */
6677 msrs->basic =
6678 VMCS12_REVISION |
6679 VMX_BASIC_TRUE_CTLS |
6680 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6681 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6682
6683 if (cpu_has_vmx_basic_inout())
6684 msrs->basic |= VMX_BASIC_INOUT;
6685
6686 /*
6687 * These MSRs specify bits which the guest must keep fixed on
6688 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6689 * We picked the standard core2 setting.
6690 */
6691 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6692 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6693 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6694 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6695
6696 /* These MSRs specify bits which the guest must keep fixed off. */
6697 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6698 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6699
6700 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6701 }
6702
nested_vmx_hardware_unsetup(void)6703 void nested_vmx_hardware_unsetup(void)
6704 {
6705 int i;
6706
6707 if (enable_shadow_vmcs) {
6708 for (i = 0; i < VMX_BITMAP_NR; i++)
6709 free_page((unsigned long)vmx_bitmap[i]);
6710 }
6711 }
6712
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))6713 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6714 {
6715 int i;
6716
6717 if (!cpu_has_vmx_shadow_vmcs())
6718 enable_shadow_vmcs = 0;
6719 if (enable_shadow_vmcs) {
6720 for (i = 0; i < VMX_BITMAP_NR; i++) {
6721 /*
6722 * The vmx_bitmap is not tied to a VM and so should
6723 * not be charged to a memcg.
6724 */
6725 vmx_bitmap[i] = (unsigned long *)
6726 __get_free_page(GFP_KERNEL);
6727 if (!vmx_bitmap[i]) {
6728 nested_vmx_hardware_unsetup();
6729 return -ENOMEM;
6730 }
6731 }
6732
6733 init_vmcs_shadow_fields();
6734 }
6735
6736 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
6737 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
6738 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
6739 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
6740 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
6741 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
6742 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
6743 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff;
6744 exit_handlers[EXIT_REASON_VMON] = handle_vmon;
6745 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
6746 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
6747 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
6748
6749 return 0;
6750 }
6751
6752 struct kvm_x86_nested_ops vmx_nested_ops = {
6753 .check_events = vmx_check_nested_events,
6754 .hv_timer_pending = nested_vmx_preemption_timer_pending,
6755 .triple_fault = nested_vmx_triple_fault,
6756 .get_state = vmx_get_nested_state,
6757 .set_state = vmx_set_nested_state,
6758 .get_nested_state_pages = vmx_get_nested_state_pages,
6759 .write_log_dirty = nested_vmx_write_pml_buffer,
6760 .enable_evmcs = nested_enable_evmcs,
6761 .get_evmcs_version = nested_get_evmcs_version,
6762 };
6763