1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 *
5 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 * Avi Kivity <avi@redhat.com>
9 * Gleb Natapov <gleb@redhat.com>
10 * Wei Huang <wei@redhat.com>
11 */
12
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <asm/perf_event.h>
17 #include "x86.h"
18 #include "cpuid.h"
19 #include "lapic.h"
20 #include "pmu.h"
21
22 /* This is enough to filter the vast majority of currently defined events. */
23 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
24
25 /* NOTE:
26 * - Each perf counter is defined as "struct kvm_pmc";
27 * - There are two types of perf counters: general purpose (gp) and fixed.
28 * gp counters are stored in gp_counters[] and fixed counters are stored
29 * in fixed_counters[] respectively. Both of them are part of "struct
30 * kvm_pmu";
31 * - pmu.c understands the difference between gp counters and fixed counters.
32 * However AMD doesn't support fixed-counters;
33 * - There are three types of index to access perf counters (PMC):
34 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
35 * has MSR_K7_PERFCTRn.
36 * 2. MSR Index (named idx): This normally is used by RDPMC instruction.
37 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
38 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
39 * that it also supports fixed counters. idx can be used to as index to
40 * gp and fixed counters.
41 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU
42 * code. Each pmc, stored in kvm_pmc.idx field, is unique across
43 * all perf counters (both gp and fixed). The mapping relationship
44 * between pmc and perf counters is as the following:
45 * * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
46 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
47 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
48 */
49
kvm_pmi_trigger_fn(struct irq_work * irq_work)50 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
51 {
52 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
53 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
54
55 kvm_pmu_deliver_pmi(vcpu);
56 }
57
kvm_perf_overflow(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)58 static void kvm_perf_overflow(struct perf_event *perf_event,
59 struct perf_sample_data *data,
60 struct pt_regs *regs)
61 {
62 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
63 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
64
65 if (!test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) {
66 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
67 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
68 }
69 }
70
kvm_perf_overflow_intr(struct perf_event * perf_event,struct perf_sample_data * data,struct pt_regs * regs)71 static void kvm_perf_overflow_intr(struct perf_event *perf_event,
72 struct perf_sample_data *data,
73 struct pt_regs *regs)
74 {
75 struct kvm_pmc *pmc = perf_event->overflow_handler_context;
76 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
77
78 if (!test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) {
79 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
80 kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
81
82 /*
83 * Inject PMI. If vcpu was in a guest mode during NMI PMI
84 * can be ejected on a guest mode re-entry. Otherwise we can't
85 * be sure that vcpu wasn't executing hlt instruction at the
86 * time of vmexit and is not going to re-enter guest mode until
87 * woken up. So we should wake it, but this is impossible from
88 * NMI context. Do it from irq work instead.
89 */
90 if (!kvm_is_in_guest())
91 irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
92 else
93 kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
94 }
95 }
96
pmc_reprogram_counter(struct kvm_pmc * pmc,u32 type,unsigned config,bool exclude_user,bool exclude_kernel,bool intr,bool in_tx,bool in_tx_cp)97 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
98 unsigned config, bool exclude_user,
99 bool exclude_kernel, bool intr,
100 bool in_tx, bool in_tx_cp)
101 {
102 struct perf_event *event;
103 struct perf_event_attr attr = {
104 .type = type,
105 .size = sizeof(attr),
106 .pinned = true,
107 .exclude_idle = true,
108 .exclude_host = 1,
109 .exclude_user = exclude_user,
110 .exclude_kernel = exclude_kernel,
111 .config = config,
112 };
113
114 attr.sample_period = get_sample_period(pmc, pmc->counter);
115
116 if (in_tx)
117 attr.config |= HSW_IN_TX;
118 if (in_tx_cp) {
119 /*
120 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
121 * period. Just clear the sample period so at least
122 * allocating the counter doesn't fail.
123 */
124 attr.sample_period = 0;
125 attr.config |= HSW_IN_TX_CHECKPOINTED;
126 }
127
128 event = perf_event_create_kernel_counter(&attr, -1, current,
129 intr ? kvm_perf_overflow_intr :
130 kvm_perf_overflow, pmc);
131 if (IS_ERR(event)) {
132 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
133 PTR_ERR(event), pmc->idx);
134 return;
135 }
136
137 pmc->perf_event = event;
138 pmc_to_pmu(pmc)->event_count++;
139 clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi);
140 pmc->is_paused = false;
141 }
142
pmc_pause_counter(struct kvm_pmc * pmc)143 static void pmc_pause_counter(struct kvm_pmc *pmc)
144 {
145 u64 counter = pmc->counter;
146
147 if (!pmc->perf_event || pmc->is_paused)
148 return;
149
150 /* update counter, reset event value to avoid redundant accumulation */
151 counter += perf_event_pause(pmc->perf_event, true);
152 pmc->counter = counter & pmc_bitmask(pmc);
153 pmc->is_paused = true;
154 }
155
pmc_resume_counter(struct kvm_pmc * pmc)156 static bool pmc_resume_counter(struct kvm_pmc *pmc)
157 {
158 if (!pmc->perf_event)
159 return false;
160
161 /* recalibrate sample period and check if it's accepted by perf core */
162 if (perf_event_period(pmc->perf_event,
163 get_sample_period(pmc, pmc->counter)))
164 return false;
165
166 /* reuse perf_event to serve as pmc_reprogram_counter() does*/
167 perf_event_enable(pmc->perf_event);
168 pmc->is_paused = false;
169
170 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
171 return true;
172 }
173
reprogram_gp_counter(struct kvm_pmc * pmc,u64 eventsel)174 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
175 {
176 unsigned config, type = PERF_TYPE_RAW;
177 u8 event_select, unit_mask;
178 struct kvm *kvm = pmc->vcpu->kvm;
179 struct kvm_pmu_event_filter *filter;
180 int i;
181 bool allow_event = true;
182
183 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
184 printk_once("kvm pmu: pin control bit is ignored\n");
185
186 pmc->eventsel = eventsel;
187
188 pmc_pause_counter(pmc);
189
190 if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
191 return;
192
193 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
194 if (filter) {
195 for (i = 0; i < filter->nevents; i++)
196 if (filter->events[i] ==
197 (eventsel & AMD64_RAW_EVENT_MASK_NB))
198 break;
199 if (filter->action == KVM_PMU_EVENT_ALLOW &&
200 i == filter->nevents)
201 allow_event = false;
202 if (filter->action == KVM_PMU_EVENT_DENY &&
203 i < filter->nevents)
204 allow_event = false;
205 }
206 if (!allow_event)
207 return;
208
209 event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT;
210 unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
211
212 if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
213 ARCH_PERFMON_EVENTSEL_INV |
214 ARCH_PERFMON_EVENTSEL_CMASK |
215 HSW_IN_TX |
216 HSW_IN_TX_CHECKPOINTED))) {
217 config = kvm_x86_ops.pmu_ops->find_arch_event(pmc_to_pmu(pmc),
218 event_select,
219 unit_mask);
220 if (config != PERF_COUNT_HW_MAX)
221 type = PERF_TYPE_HARDWARE;
222 }
223
224 if (type == PERF_TYPE_RAW)
225 config = eventsel & X86_RAW_EVENT_MASK;
226
227 if (pmc->current_config == eventsel && pmc_resume_counter(pmc))
228 return;
229
230 pmc_release_perf_event(pmc);
231
232 pmc->current_config = eventsel;
233 pmc_reprogram_counter(pmc, type, config,
234 !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
235 !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
236 eventsel & ARCH_PERFMON_EVENTSEL_INT,
237 (eventsel & HSW_IN_TX),
238 (eventsel & HSW_IN_TX_CHECKPOINTED));
239 }
240 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
241
reprogram_fixed_counter(struct kvm_pmc * pmc,u8 ctrl,int idx)242 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
243 {
244 unsigned en_field = ctrl & 0x3;
245 bool pmi = ctrl & 0x8;
246 struct kvm_pmu_event_filter *filter;
247 struct kvm *kvm = pmc->vcpu->kvm;
248
249 pmc_pause_counter(pmc);
250
251 if (!en_field || !pmc_is_enabled(pmc))
252 return;
253
254 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
255 if (filter) {
256 if (filter->action == KVM_PMU_EVENT_DENY &&
257 test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
258 return;
259 if (filter->action == KVM_PMU_EVENT_ALLOW &&
260 !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
261 return;
262 }
263
264 if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc))
265 return;
266
267 pmc_release_perf_event(pmc);
268
269 pmc->current_config = (u64)ctrl;
270 pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
271 kvm_x86_ops.pmu_ops->find_fixed_event(idx),
272 !(en_field & 0x2), /* exclude user */
273 !(en_field & 0x1), /* exclude kernel */
274 pmi, false, false);
275 }
276 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
277
reprogram_counter(struct kvm_pmu * pmu,int pmc_idx)278 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
279 {
280 struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
281
282 if (!pmc)
283 return;
284
285 if (pmc_is_gp(pmc))
286 reprogram_gp_counter(pmc, pmc->eventsel);
287 else {
288 int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
289 u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
290
291 reprogram_fixed_counter(pmc, ctrl, idx);
292 }
293 }
294 EXPORT_SYMBOL_GPL(reprogram_counter);
295
kvm_pmu_handle_event(struct kvm_vcpu * vcpu)296 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
297 {
298 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
299 int bit;
300
301 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
302 struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, bit);
303
304 if (unlikely(!pmc || !pmc->perf_event)) {
305 clear_bit(bit, pmu->reprogram_pmi);
306 continue;
307 }
308
309 reprogram_counter(pmu, bit);
310 }
311
312 /*
313 * Unused perf_events are only released if the corresponding MSRs
314 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
315 * triggers KVM_REQ_PMU if cleanup is needed.
316 */
317 if (unlikely(pmu->need_cleanup))
318 kvm_pmu_cleanup(vcpu);
319 }
320
321 /* check if idx is a valid index to access PMU */
kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu * vcpu,unsigned int idx)322 int kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
323 {
324 return kvm_x86_ops.pmu_ops->is_valid_rdpmc_ecx(vcpu, idx);
325 }
326
is_vmware_backdoor_pmc(u32 pmc_idx)327 bool is_vmware_backdoor_pmc(u32 pmc_idx)
328 {
329 switch (pmc_idx) {
330 case VMWARE_BACKDOOR_PMC_HOST_TSC:
331 case VMWARE_BACKDOOR_PMC_REAL_TIME:
332 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
333 return true;
334 }
335 return false;
336 }
337
kvm_pmu_rdpmc_vmware(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)338 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
339 {
340 u64 ctr_val;
341
342 switch (idx) {
343 case VMWARE_BACKDOOR_PMC_HOST_TSC:
344 ctr_val = rdtsc();
345 break;
346 case VMWARE_BACKDOOR_PMC_REAL_TIME:
347 ctr_val = ktime_get_boottime_ns();
348 break;
349 case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
350 ctr_val = ktime_get_boottime_ns() +
351 vcpu->kvm->arch.kvmclock_offset;
352 break;
353 default:
354 return 1;
355 }
356
357 *data = ctr_val;
358 return 0;
359 }
360
kvm_pmu_rdpmc(struct kvm_vcpu * vcpu,unsigned idx,u64 * data)361 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
362 {
363 bool fast_mode = idx & (1u << 31);
364 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
365 struct kvm_pmc *pmc;
366 u64 mask = fast_mode ? ~0u : ~0ull;
367
368 if (!pmu->version)
369 return 1;
370
371 if (is_vmware_backdoor_pmc(idx))
372 return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
373
374 pmc = kvm_x86_ops.pmu_ops->rdpmc_ecx_to_pmc(vcpu, idx, &mask);
375 if (!pmc)
376 return 1;
377
378 if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
379 (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
380 (kvm_read_cr0(vcpu) & X86_CR0_PE))
381 return 1;
382
383 *data = pmc_read_counter(pmc) & mask;
384 return 0;
385 }
386
kvm_pmu_deliver_pmi(struct kvm_vcpu * vcpu)387 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
388 {
389 if (lapic_in_kernel(vcpu)) {
390 if (kvm_x86_ops.pmu_ops->deliver_pmi)
391 kvm_x86_ops.pmu_ops->deliver_pmi(vcpu);
392 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
393 }
394 }
395
kvm_pmu_is_valid_msr(struct kvm_vcpu * vcpu,u32 msr)396 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
397 {
398 return kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr) ||
399 kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, msr);
400 }
401
kvm_pmu_mark_pmc_in_use(struct kvm_vcpu * vcpu,u32 msr)402 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
403 {
404 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
405 struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr);
406
407 if (pmc)
408 __set_bit(pmc->idx, pmu->pmc_in_use);
409 }
410
kvm_pmu_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)411 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
412 {
413 return kvm_x86_ops.pmu_ops->get_msr(vcpu, msr_info);
414 }
415
kvm_pmu_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)416 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
417 {
418 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
419 return kvm_x86_ops.pmu_ops->set_msr(vcpu, msr_info);
420 }
421
422 /* refresh PMU settings. This function generally is called when underlying
423 * settings are changed (such as changes of PMU CPUID by guest VMs), which
424 * should rarely happen.
425 */
kvm_pmu_refresh(struct kvm_vcpu * vcpu)426 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
427 {
428 kvm_x86_ops.pmu_ops->refresh(vcpu);
429 }
430
kvm_pmu_reset(struct kvm_vcpu * vcpu)431 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
432 {
433 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
434
435 irq_work_sync(&pmu->irq_work);
436 kvm_x86_ops.pmu_ops->reset(vcpu);
437 }
438
kvm_pmu_init(struct kvm_vcpu * vcpu)439 void kvm_pmu_init(struct kvm_vcpu *vcpu)
440 {
441 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
442
443 memset(pmu, 0, sizeof(*pmu));
444 kvm_x86_ops.pmu_ops->init(vcpu);
445 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
446 pmu->event_count = 0;
447 pmu->need_cleanup = false;
448 kvm_pmu_refresh(vcpu);
449 }
450
pmc_speculative_in_use(struct kvm_pmc * pmc)451 static inline bool pmc_speculative_in_use(struct kvm_pmc *pmc)
452 {
453 struct kvm_pmu *pmu = pmc_to_pmu(pmc);
454
455 if (pmc_is_fixed(pmc))
456 return fixed_ctrl_field(pmu->fixed_ctr_ctrl,
457 pmc->idx - INTEL_PMC_IDX_FIXED) & 0x3;
458
459 return pmc->eventsel & ARCH_PERFMON_EVENTSEL_ENABLE;
460 }
461
462 /* Release perf_events for vPMCs that have been unused for a full time slice. */
kvm_pmu_cleanup(struct kvm_vcpu * vcpu)463 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
464 {
465 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
466 struct kvm_pmc *pmc = NULL;
467 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
468 int i;
469
470 pmu->need_cleanup = false;
471
472 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
473 pmu->pmc_in_use, X86_PMC_IDX_MAX);
474
475 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
476 pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
477
478 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
479 pmc_stop_counter(pmc);
480 }
481
482 if (kvm_x86_ops.pmu_ops->cleanup)
483 kvm_x86_ops.pmu_ops->cleanup(vcpu);
484
485 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
486 }
487
kvm_pmu_destroy(struct kvm_vcpu * vcpu)488 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
489 {
490 kvm_pmu_reset(vcpu);
491 }
492
kvm_vm_ioctl_set_pmu_event_filter(struct kvm * kvm,void __user * argp)493 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
494 {
495 struct kvm_pmu_event_filter tmp, *filter;
496 size_t size;
497 int r;
498
499 if (copy_from_user(&tmp, argp, sizeof(tmp)))
500 return -EFAULT;
501
502 if (tmp.action != KVM_PMU_EVENT_ALLOW &&
503 tmp.action != KVM_PMU_EVENT_DENY)
504 return -EINVAL;
505
506 if (tmp.flags != 0)
507 return -EINVAL;
508
509 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
510 return -E2BIG;
511
512 size = struct_size(filter, events, tmp.nevents);
513 filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
514 if (!filter)
515 return -ENOMEM;
516
517 r = -EFAULT;
518 if (copy_from_user(filter, argp, size))
519 goto cleanup;
520
521 /* Ensure nevents can't be changed between the user copies. */
522 *filter = tmp;
523
524 mutex_lock(&kvm->lock);
525 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
526 mutex_is_locked(&kvm->lock));
527 mutex_unlock(&kvm->lock);
528
529 synchronize_srcu_expedited(&kvm->srcu);
530 r = 0;
531 cleanup:
532 kfree(filter);
533 return r;
534 }
535