1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
5 *
6 * derived from arch/x86/kvm/x86.c
7 *
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
10 */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/sgx.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27
28 /*
29 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
30 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
31 */
32 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
33 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
34
xstate_required_size(u64 xstate_bv,bool compacted)35 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
36 {
37 int feature_bit = 0;
38 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
39
40 xstate_bv &= XFEATURE_MASK_EXTEND;
41 while (xstate_bv) {
42 if (xstate_bv & 0x1) {
43 u32 eax, ebx, ecx, edx, offset;
44 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
45 offset = compacted ? ret : ebx;
46 ret = max(ret, offset + eax);
47 }
48
49 xstate_bv >>= 1;
50 feature_bit++;
51 }
52
53 return ret;
54 }
55
56 #define F feature_bit
57 #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
58
cpuid_entry2_find(struct kvm_cpuid_entry2 * entries,int nent,u32 function,u32 index)59 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
60 struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
61 {
62 struct kvm_cpuid_entry2 *e;
63 int i;
64
65 for (i = 0; i < nent; i++) {
66 e = &entries[i];
67
68 if (e->function == function &&
69 (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index))
70 return e;
71 }
72
73 return NULL;
74 }
75
kvm_check_cpuid(struct kvm_cpuid_entry2 * entries,int nent)76 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
77 {
78 struct kvm_cpuid_entry2 *best;
79
80 /*
81 * The existing code assumes virtual address is 48-bit or 57-bit in the
82 * canonical address checks; exit if it is ever changed.
83 */
84 best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
85 if (best) {
86 int vaddr_bits = (best->eax & 0xff00) >> 8;
87
88 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
89 return -EINVAL;
90 }
91
92 return 0;
93 }
94
kvm_update_pv_runtime(struct kvm_vcpu * vcpu)95 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
96 {
97 struct kvm_cpuid_entry2 *best;
98
99 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
100
101 /*
102 * save the feature bitmap to avoid cpuid lookup for every PV
103 * operation
104 */
105 if (best)
106 vcpu->arch.pv_cpuid.features = best->eax;
107 }
108
kvm_update_cpuid_runtime(struct kvm_vcpu * vcpu)109 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
110 {
111 struct kvm_cpuid_entry2 *best;
112
113 best = kvm_find_cpuid_entry(vcpu, 1, 0);
114 if (best) {
115 /* Update OSXSAVE bit */
116 if (boot_cpu_has(X86_FEATURE_XSAVE))
117 cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
118 kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
119
120 cpuid_entry_change(best, X86_FEATURE_APIC,
121 vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
122 }
123
124 best = kvm_find_cpuid_entry(vcpu, 7, 0);
125 if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
126 cpuid_entry_change(best, X86_FEATURE_OSPKE,
127 kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
128
129 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
130 if (best)
131 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
132
133 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
134 if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
135 cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
136 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
137
138 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
139 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
140 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
141 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
142
143 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
144 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
145 if (best)
146 cpuid_entry_change(best, X86_FEATURE_MWAIT,
147 vcpu->arch.ia32_misc_enable_msr &
148 MSR_IA32_MISC_ENABLE_MWAIT);
149 }
150 }
151 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
152
kvm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)153 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
154 {
155 struct kvm_lapic *apic = vcpu->arch.apic;
156 struct kvm_cpuid_entry2 *best;
157
158 best = kvm_find_cpuid_entry(vcpu, 1, 0);
159 if (best && apic) {
160 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
161 apic->lapic_timer.timer_mode_mask = 3 << 17;
162 else
163 apic->lapic_timer.timer_mode_mask = 1 << 17;
164
165 kvm_apic_set_version(vcpu);
166 }
167
168 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
169 if (!best)
170 vcpu->arch.guest_supported_xcr0 = 0;
171 else
172 vcpu->arch.guest_supported_xcr0 =
173 (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
174
175 /*
176 * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
177 * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
178 * requested XCR0 value. The enclave's XFRM must be a subset of XCRO
179 * at the time of EENTER, thus adjust the allowed XFRM by the guest's
180 * supported XCR0. Similar to XCR0 handling, FP and SSE are forced to
181 * '1' even on CPUs that don't support XSAVE.
182 */
183 best = kvm_find_cpuid_entry(vcpu, 0x12, 0x1);
184 if (best) {
185 best->ecx &= vcpu->arch.guest_supported_xcr0 & 0xffffffff;
186 best->edx &= vcpu->arch.guest_supported_xcr0 >> 32;
187 best->ecx |= XFEATURE_MASK_FPSSE;
188 }
189
190 kvm_update_pv_runtime(vcpu);
191
192 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
193 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
194
195 kvm_pmu_refresh(vcpu);
196 vcpu->arch.cr4_guest_rsvd_bits =
197 __cr4_reserved_bits(guest_cpuid_has, vcpu);
198
199 kvm_hv_set_cpuid(vcpu);
200
201 /* Invoke the vendor callback only after the above state is updated. */
202 static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
203
204 /*
205 * Except for the MMU, which needs to do its thing any vendor specific
206 * adjustments to the reserved GPA bits.
207 */
208 kvm_mmu_after_set_cpuid(vcpu);
209 }
210
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)211 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
212 {
213 struct kvm_cpuid_entry2 *best;
214
215 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
216 if (!best || best->eax < 0x80000008)
217 goto not_found;
218 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
219 if (best)
220 return best->eax & 0xff;
221 not_found:
222 return 36;
223 }
224
225 /*
226 * This "raw" version returns the reserved GPA bits without any adjustments for
227 * encryption technologies that usurp bits. The raw mask should be used if and
228 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
229 */
kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu * vcpu)230 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
231 {
232 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
233 }
234
235 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)236 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
237 struct kvm_cpuid *cpuid,
238 struct kvm_cpuid_entry __user *entries)
239 {
240 int r, i;
241 struct kvm_cpuid_entry *e = NULL;
242 struct kvm_cpuid_entry2 *e2 = NULL;
243
244 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
245 return -E2BIG;
246
247 if (cpuid->nent) {
248 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
249 if (IS_ERR(e))
250 return PTR_ERR(e);
251
252 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
253 if (!e2) {
254 r = -ENOMEM;
255 goto out_free_cpuid;
256 }
257 }
258 for (i = 0; i < cpuid->nent; i++) {
259 e2[i].function = e[i].function;
260 e2[i].eax = e[i].eax;
261 e2[i].ebx = e[i].ebx;
262 e2[i].ecx = e[i].ecx;
263 e2[i].edx = e[i].edx;
264 e2[i].index = 0;
265 e2[i].flags = 0;
266 e2[i].padding[0] = 0;
267 e2[i].padding[1] = 0;
268 e2[i].padding[2] = 0;
269 }
270
271 r = kvm_check_cpuid(e2, cpuid->nent);
272 if (r) {
273 kvfree(e2);
274 goto out_free_cpuid;
275 }
276
277 kvfree(vcpu->arch.cpuid_entries);
278 vcpu->arch.cpuid_entries = e2;
279 vcpu->arch.cpuid_nent = cpuid->nent;
280
281 kvm_update_cpuid_runtime(vcpu);
282 kvm_vcpu_after_set_cpuid(vcpu);
283
284 out_free_cpuid:
285 kvfree(e);
286
287 return r;
288 }
289
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)290 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
291 struct kvm_cpuid2 *cpuid,
292 struct kvm_cpuid_entry2 __user *entries)
293 {
294 struct kvm_cpuid_entry2 *e2 = NULL;
295 int r;
296
297 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
298 return -E2BIG;
299
300 if (cpuid->nent) {
301 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
302 if (IS_ERR(e2))
303 return PTR_ERR(e2);
304 }
305
306 r = kvm_check_cpuid(e2, cpuid->nent);
307 if (r) {
308 kvfree(e2);
309 return r;
310 }
311
312 kvfree(vcpu->arch.cpuid_entries);
313 vcpu->arch.cpuid_entries = e2;
314 vcpu->arch.cpuid_nent = cpuid->nent;
315
316 kvm_update_cpuid_runtime(vcpu);
317 kvm_vcpu_after_set_cpuid(vcpu);
318
319 return 0;
320 }
321
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)322 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
323 struct kvm_cpuid2 *cpuid,
324 struct kvm_cpuid_entry2 __user *entries)
325 {
326 int r;
327
328 r = -E2BIG;
329 if (cpuid->nent < vcpu->arch.cpuid_nent)
330 goto out;
331 r = -EFAULT;
332 if (copy_to_user(entries, vcpu->arch.cpuid_entries,
333 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
334 goto out;
335 return 0;
336
337 out:
338 cpuid->nent = vcpu->arch.cpuid_nent;
339 return r;
340 }
341
342 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
__kvm_cpu_cap_mask(unsigned int leaf)343 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
344 {
345 const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
346 struct kvm_cpuid_entry2 entry;
347
348 reverse_cpuid_check(leaf);
349
350 cpuid_count(cpuid.function, cpuid.index,
351 &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
352
353 kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
354 }
355
356 static __always_inline
kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf,u32 mask)357 void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
358 {
359 /* Use kvm_cpu_cap_mask for non-scattered leafs. */
360 BUILD_BUG_ON(leaf < NCAPINTS);
361
362 kvm_cpu_caps[leaf] = mask;
363
364 __kvm_cpu_cap_mask(leaf);
365 }
366
kvm_cpu_cap_mask(enum cpuid_leafs leaf,u32 mask)367 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
368 {
369 /* Use kvm_cpu_cap_init_scattered for scattered leafs. */
370 BUILD_BUG_ON(leaf >= NCAPINTS);
371
372 kvm_cpu_caps[leaf] &= mask;
373
374 __kvm_cpu_cap_mask(leaf);
375 }
376
kvm_set_cpu_caps(void)377 void kvm_set_cpu_caps(void)
378 {
379 #ifdef CONFIG_X86_64
380 unsigned int f_gbpages = F(GBPAGES);
381 unsigned int f_lm = F(LM);
382 #else
383 unsigned int f_gbpages = 0;
384 unsigned int f_lm = 0;
385 #endif
386 memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
387
388 BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
389 sizeof(boot_cpu_data.x86_capability));
390
391 memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
392 sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
393
394 kvm_cpu_cap_mask(CPUID_1_ECX,
395 /*
396 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
397 * advertised to guests via CPUID!
398 */
399 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
400 0 /* DS-CPL, VMX, SMX, EST */ |
401 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
402 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
403 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
404 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
405 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
406 F(F16C) | F(RDRAND)
407 );
408 /* KVM emulates x2apic in software irrespective of host support. */
409 kvm_cpu_cap_set(X86_FEATURE_X2APIC);
410
411 kvm_cpu_cap_mask(CPUID_1_EDX,
412 F(FPU) | F(VME) | F(DE) | F(PSE) |
413 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
414 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
415 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
416 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
417 0 /* Reserved, DS, ACPI */ | F(MMX) |
418 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
419 0 /* HTT, TM, Reserved, PBE */
420 );
421
422 kvm_cpu_cap_mask(CPUID_7_0_EBX,
423 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
424 F(BMI2) | F(ERMS) | F(INVPCID) | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
425 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
426 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
427 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
428 );
429
430 kvm_cpu_cap_mask(CPUID_7_ECX,
431 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
432 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
433 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
434 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
435 F(SGX_LC) | F(BUS_LOCK_DETECT)
436 );
437 /* Set LA57 based on hardware capability. */
438 if (cpuid_ecx(7) & F(LA57))
439 kvm_cpu_cap_set(X86_FEATURE_LA57);
440
441 /*
442 * PKU not yet implemented for shadow paging and requires OSPKE
443 * to be set on the host. Clear it if that is not the case
444 */
445 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
446 kvm_cpu_cap_clear(X86_FEATURE_PKU);
447
448 kvm_cpu_cap_mask(CPUID_7_EDX,
449 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
450 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
451 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
452 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16)
453 );
454
455 /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
456 kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
457 kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
458
459 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
460 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
461 if (boot_cpu_has(X86_FEATURE_STIBP))
462 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
463 if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
464 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
465
466 kvm_cpu_cap_mask(CPUID_7_1_EAX,
467 F(AVX_VNNI) | F(AVX512_BF16)
468 );
469
470 kvm_cpu_cap_mask(CPUID_D_1_EAX,
471 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
472 );
473
474 kvm_cpu_cap_init_scattered(CPUID_12_EAX,
475 SF(SGX1) | SF(SGX2)
476 );
477
478 kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
479 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
480 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
481 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
482 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
483 F(TOPOEXT) | F(PERFCTR_CORE)
484 );
485
486 kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
487 F(FPU) | F(VME) | F(DE) | F(PSE) |
488 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
489 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
490 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
491 F(PAT) | F(PSE36) | 0 /* Reserved */ |
492 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
493 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
494 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
495 );
496
497 if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
498 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
499
500 kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
501 F(CLZERO) | F(XSAVEERPTR) |
502 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
503 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
504 );
505
506 /*
507 * AMD has separate bits for each SPEC_CTRL bit.
508 * arch/x86/kernel/cpu/bugs.c is kind enough to
509 * record that in cpufeatures so use them.
510 */
511 if (boot_cpu_has(X86_FEATURE_IBPB))
512 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
513 if (boot_cpu_has(X86_FEATURE_IBRS))
514 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
515 if (boot_cpu_has(X86_FEATURE_STIBP))
516 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
517 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
518 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
519 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
520 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
521 /*
522 * The preference is to use SPEC CTRL MSR instead of the
523 * VIRT_SPEC MSR.
524 */
525 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
526 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
527 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
528
529 /*
530 * Hide all SVM features by default, SVM will set the cap bits for
531 * features it emulates and/or exposes for L1.
532 */
533 kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
534
535 kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
536 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
537 F(SME_COHERENT));
538
539 kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
540 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
541 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
542 F(PMM) | F(PMM_EN)
543 );
544
545 /*
546 * Hide RDTSCP and RDPID if either feature is reported as supported but
547 * probing MSR_TSC_AUX failed. This is purely a sanity check and
548 * should never happen, but the guest will likely crash if RDTSCP or
549 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
550 * the past. For example, the sanity check may fire if this instance of
551 * KVM is running as L1 on top of an older, broken KVM.
552 */
553 if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
554 kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
555 !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
556 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
557 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
558 }
559 }
560 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
561
562 struct kvm_cpuid_array {
563 struct kvm_cpuid_entry2 *entries;
564 int maxnent;
565 int nent;
566 };
567
do_host_cpuid(struct kvm_cpuid_array * array,u32 function,u32 index)568 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
569 u32 function, u32 index)
570 {
571 struct kvm_cpuid_entry2 *entry;
572
573 if (array->nent >= array->maxnent)
574 return NULL;
575
576 entry = &array->entries[array->nent++];
577
578 entry->function = function;
579 entry->index = index;
580 entry->flags = 0;
581
582 cpuid_count(entry->function, entry->index,
583 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
584
585 switch (function) {
586 case 4:
587 case 7:
588 case 0xb:
589 case 0xd:
590 case 0xf:
591 case 0x10:
592 case 0x12:
593 case 0x14:
594 case 0x17:
595 case 0x18:
596 case 0x1f:
597 case 0x8000001d:
598 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
599 break;
600 }
601
602 return entry;
603 }
604
__do_cpuid_func_emulated(struct kvm_cpuid_array * array,u32 func)605 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
606 {
607 struct kvm_cpuid_entry2 *entry;
608
609 if (array->nent >= array->maxnent)
610 return -E2BIG;
611
612 entry = &array->entries[array->nent];
613 entry->function = func;
614 entry->index = 0;
615 entry->flags = 0;
616
617 switch (func) {
618 case 0:
619 entry->eax = 7;
620 ++array->nent;
621 break;
622 case 1:
623 entry->ecx = F(MOVBE);
624 ++array->nent;
625 break;
626 case 7:
627 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
628 entry->eax = 0;
629 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
630 entry->ecx = F(RDPID);
631 ++array->nent;
632 break;
633 default:
634 break;
635 }
636
637 return 0;
638 }
639
__do_cpuid_func(struct kvm_cpuid_array * array,u32 function)640 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
641 {
642 struct kvm_cpuid_entry2 *entry;
643 int r, i, max_idx;
644
645 /* all calls to cpuid_count() should be made on the same cpu */
646 get_cpu();
647
648 r = -E2BIG;
649
650 entry = do_host_cpuid(array, function, 0);
651 if (!entry)
652 goto out;
653
654 switch (function) {
655 case 0:
656 /* Limited to the highest leaf implemented in KVM. */
657 entry->eax = min(entry->eax, 0x1fU);
658 break;
659 case 1:
660 cpuid_entry_override(entry, CPUID_1_EDX);
661 cpuid_entry_override(entry, CPUID_1_ECX);
662 break;
663 case 2:
664 /*
665 * On ancient CPUs, function 2 entries are STATEFUL. That is,
666 * CPUID(function=2, index=0) may return different results each
667 * time, with the least-significant byte in EAX enumerating the
668 * number of times software should do CPUID(2, 0).
669 *
670 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
671 * idiotic. Intel's SDM states that EAX & 0xff "will always
672 * return 01H. Software should ignore this value and not
673 * interpret it as an informational descriptor", while AMD's
674 * APM states that CPUID(2) is reserved.
675 *
676 * WARN if a frankenstein CPU that supports virtualization and
677 * a stateful CPUID.0x2 is encountered.
678 */
679 WARN_ON_ONCE((entry->eax & 0xff) > 1);
680 break;
681 /* functions 4 and 0x8000001d have additional index. */
682 case 4:
683 case 0x8000001d:
684 /*
685 * Read entries until the cache type in the previous entry is
686 * zero, i.e. indicates an invalid entry.
687 */
688 for (i = 1; entry->eax & 0x1f; ++i) {
689 entry = do_host_cpuid(array, function, i);
690 if (!entry)
691 goto out;
692 }
693 break;
694 case 6: /* Thermal management */
695 entry->eax = 0x4; /* allow ARAT */
696 entry->ebx = 0;
697 entry->ecx = 0;
698 entry->edx = 0;
699 break;
700 /* function 7 has additional index. */
701 case 7:
702 entry->eax = min(entry->eax, 1u);
703 cpuid_entry_override(entry, CPUID_7_0_EBX);
704 cpuid_entry_override(entry, CPUID_7_ECX);
705 cpuid_entry_override(entry, CPUID_7_EDX);
706
707 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
708 if (entry->eax == 1) {
709 entry = do_host_cpuid(array, function, 1);
710 if (!entry)
711 goto out;
712
713 cpuid_entry_override(entry, CPUID_7_1_EAX);
714 entry->ebx = 0;
715 entry->ecx = 0;
716 entry->edx = 0;
717 }
718 break;
719 case 9:
720 break;
721 case 0xa: { /* Architectural Performance Monitoring */
722 struct x86_pmu_capability cap;
723 union cpuid10_eax eax;
724 union cpuid10_edx edx;
725
726 perf_get_x86_pmu_capability(&cap);
727
728 /*
729 * Only support guest architectural pmu on a host
730 * with architectural pmu.
731 */
732 if (!cap.version)
733 memset(&cap, 0, sizeof(cap));
734
735 eax.split.version_id = min(cap.version, 2);
736 eax.split.num_counters = cap.num_counters_gp;
737 eax.split.bit_width = cap.bit_width_gp;
738 eax.split.mask_length = cap.events_mask_len;
739
740 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
741 edx.split.bit_width_fixed = cap.bit_width_fixed;
742 if (cap.version)
743 edx.split.anythread_deprecated = 1;
744 edx.split.reserved1 = 0;
745 edx.split.reserved2 = 0;
746
747 entry->eax = eax.full;
748 entry->ebx = cap.events_mask;
749 entry->ecx = 0;
750 entry->edx = edx.full;
751 break;
752 }
753 /*
754 * Per Intel's SDM, the 0x1f is a superset of 0xb,
755 * thus they can be handled by common code.
756 */
757 case 0x1f:
758 case 0xb:
759 /*
760 * Populate entries until the level type (ECX[15:8]) of the
761 * previous entry is zero. Note, CPUID EAX.{0x1f,0xb}.0 is
762 * the starting entry, filled by the primary do_host_cpuid().
763 */
764 for (i = 1; entry->ecx & 0xff00; ++i) {
765 entry = do_host_cpuid(array, function, i);
766 if (!entry)
767 goto out;
768 }
769 break;
770 case 0xd:
771 entry->eax &= supported_xcr0;
772 entry->ebx = xstate_required_size(supported_xcr0, false);
773 entry->ecx = entry->ebx;
774 entry->edx &= supported_xcr0 >> 32;
775 if (!supported_xcr0)
776 break;
777
778 entry = do_host_cpuid(array, function, 1);
779 if (!entry)
780 goto out;
781
782 cpuid_entry_override(entry, CPUID_D_1_EAX);
783 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
784 entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
785 true);
786 else {
787 WARN_ON_ONCE(supported_xss != 0);
788 entry->ebx = 0;
789 }
790 entry->ecx &= supported_xss;
791 entry->edx &= supported_xss >> 32;
792
793 for (i = 2; i < 64; ++i) {
794 bool s_state;
795 if (supported_xcr0 & BIT_ULL(i))
796 s_state = false;
797 else if (supported_xss & BIT_ULL(i))
798 s_state = true;
799 else
800 continue;
801
802 entry = do_host_cpuid(array, function, i);
803 if (!entry)
804 goto out;
805
806 /*
807 * The supported check above should have filtered out
808 * invalid sub-leafs. Only valid sub-leafs should
809 * reach this point, and they should have a non-zero
810 * save state size. Furthermore, check whether the
811 * processor agrees with supported_xcr0/supported_xss
812 * on whether this is an XCR0- or IA32_XSS-managed area.
813 */
814 if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
815 --array->nent;
816 continue;
817 }
818 entry->edx = 0;
819 }
820 break;
821 case 0x12:
822 /* Intel SGX */
823 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
824 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
825 break;
826 }
827
828 /*
829 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
830 * and max enclave sizes. The SGX sub-features and MISCSELECT
831 * are restricted by kernel and KVM capabilities (like most
832 * feature flags), while enclave size is unrestricted.
833 */
834 cpuid_entry_override(entry, CPUID_12_EAX);
835 entry->ebx &= SGX_MISC_EXINFO;
836
837 entry = do_host_cpuid(array, function, 1);
838 if (!entry)
839 goto out;
840
841 /*
842 * Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la
843 * feature flags. Advertise all supported flags, including
844 * privileged attributes that require explicit opt-in from
845 * userspace. ATTRIBUTES.XFRM is not adjusted as userspace is
846 * expected to derive it from supported XCR0.
847 */
848 entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
849 SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
850 SGX_ATTR_KSS;
851 entry->ebx &= 0;
852 break;
853 /* Intel PT */
854 case 0x14:
855 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
856 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
857 break;
858 }
859
860 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
861 if (!do_host_cpuid(array, function, i))
862 goto out;
863 }
864 break;
865 case KVM_CPUID_SIGNATURE: {
866 static const char signature[12] = "KVMKVMKVM\0\0";
867 const u32 *sigptr = (const u32 *)signature;
868 entry->eax = KVM_CPUID_FEATURES;
869 entry->ebx = sigptr[0];
870 entry->ecx = sigptr[1];
871 entry->edx = sigptr[2];
872 break;
873 }
874 case KVM_CPUID_FEATURES:
875 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
876 (1 << KVM_FEATURE_NOP_IO_DELAY) |
877 (1 << KVM_FEATURE_CLOCKSOURCE2) |
878 (1 << KVM_FEATURE_ASYNC_PF) |
879 (1 << KVM_FEATURE_PV_EOI) |
880 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
881 (1 << KVM_FEATURE_PV_UNHALT) |
882 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
883 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
884 (1 << KVM_FEATURE_PV_SEND_IPI) |
885 (1 << KVM_FEATURE_POLL_CONTROL) |
886 (1 << KVM_FEATURE_PV_SCHED_YIELD) |
887 (1 << KVM_FEATURE_ASYNC_PF_INT);
888
889 if (sched_info_on())
890 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
891
892 entry->ebx = 0;
893 entry->ecx = 0;
894 entry->edx = 0;
895 break;
896 case 0x80000000:
897 entry->eax = min(entry->eax, 0x8000001f);
898 break;
899 case 0x80000001:
900 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
901 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
902 break;
903 case 0x80000006:
904 /* L2 cache and TLB: pass through host info. */
905 break;
906 case 0x80000007: /* Advanced power management */
907 /* invariant TSC is CPUID.80000007H:EDX[8] */
908 entry->edx &= (1 << 8);
909 /* mask against host */
910 entry->edx &= boot_cpu_data.x86_power;
911 entry->eax = entry->ebx = entry->ecx = 0;
912 break;
913 case 0x80000008: {
914 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
915 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
916 unsigned phys_as = entry->eax & 0xff;
917
918 /*
919 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
920 * the guest operates in the same PA space as the host, i.e.
921 * reductions in MAXPHYADDR for memory encryption affect shadow
922 * paging, too.
923 *
924 * If TDP is enabled but an explicit guest MAXPHYADDR is not
925 * provided, use the raw bare metal MAXPHYADDR as reductions to
926 * the HPAs do not affect GPAs.
927 */
928 if (!tdp_enabled)
929 g_phys_as = boot_cpu_data.x86_phys_bits;
930 else if (!g_phys_as)
931 g_phys_as = phys_as;
932
933 entry->eax = g_phys_as | (virt_as << 8);
934 entry->edx = 0;
935 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
936 break;
937 }
938 case 0x8000000A:
939 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
940 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
941 break;
942 }
943 entry->eax = 1; /* SVM revision 1 */
944 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
945 ASID emulation to nested SVM */
946 entry->ecx = 0; /* Reserved */
947 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
948 break;
949 case 0x80000019:
950 entry->ecx = entry->edx = 0;
951 break;
952 case 0x8000001a:
953 case 0x8000001e:
954 break;
955 case 0x8000001F:
956 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
957 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
958 } else {
959 cpuid_entry_override(entry, CPUID_8000_001F_EAX);
960
961 /*
962 * Enumerate '0' for "PA bits reduction", the adjusted
963 * MAXPHYADDR is enumerated directly (see 0x80000008).
964 */
965 entry->ebx &= ~GENMASK(11, 6);
966 }
967 break;
968 /*Add support for Centaur's CPUID instruction*/
969 case 0xC0000000:
970 /*Just support up to 0xC0000004 now*/
971 entry->eax = min(entry->eax, 0xC0000004);
972 break;
973 case 0xC0000001:
974 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
975 break;
976 case 3: /* Processor serial number */
977 case 5: /* MONITOR/MWAIT */
978 case 0xC0000002:
979 case 0xC0000003:
980 case 0xC0000004:
981 default:
982 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
983 break;
984 }
985
986 r = 0;
987
988 out:
989 put_cpu();
990
991 return r;
992 }
993
do_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)994 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
995 unsigned int type)
996 {
997 if (type == KVM_GET_EMULATED_CPUID)
998 return __do_cpuid_func_emulated(array, func);
999
1000 return __do_cpuid_func(array, func);
1001 }
1002
1003 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1004
get_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1005 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1006 unsigned int type)
1007 {
1008 u32 limit;
1009 int r;
1010
1011 if (func == CENTAUR_CPUID_SIGNATURE &&
1012 boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1013 return 0;
1014
1015 r = do_cpuid_func(array, func, type);
1016 if (r)
1017 return r;
1018
1019 limit = array->entries[array->nent - 1].eax;
1020 for (func = func + 1; func <= limit; ++func) {
1021 r = do_cpuid_func(array, func, type);
1022 if (r)
1023 break;
1024 }
1025
1026 return r;
1027 }
1028
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)1029 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1030 __u32 num_entries, unsigned int ioctl_type)
1031 {
1032 int i;
1033 __u32 pad[3];
1034
1035 if (ioctl_type != KVM_GET_EMULATED_CPUID)
1036 return false;
1037
1038 /*
1039 * We want to make sure that ->padding is being passed clean from
1040 * userspace in case we want to use it for something in the future.
1041 *
1042 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1043 * have to give ourselves satisfied only with the emulated side. /me
1044 * sheds a tear.
1045 */
1046 for (i = 0; i < num_entries; i++) {
1047 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1048 return true;
1049
1050 if (pad[0] || pad[1] || pad[2])
1051 return true;
1052 }
1053 return false;
1054 }
1055
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)1056 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1057 struct kvm_cpuid_entry2 __user *entries,
1058 unsigned int type)
1059 {
1060 static const u32 funcs[] = {
1061 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1062 };
1063
1064 struct kvm_cpuid_array array = {
1065 .nent = 0,
1066 };
1067 int r, i;
1068
1069 if (cpuid->nent < 1)
1070 return -E2BIG;
1071 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1072 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1073
1074 if (sanity_check_entries(entries, cpuid->nent, type))
1075 return -EINVAL;
1076
1077 array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
1078 cpuid->nent));
1079 if (!array.entries)
1080 return -ENOMEM;
1081
1082 array.maxnent = cpuid->nent;
1083
1084 for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1085 r = get_cpuid_func(&array, funcs[i], type);
1086 if (r)
1087 goto out_free;
1088 }
1089 cpuid->nent = array.nent;
1090
1091 if (copy_to_user(entries, array.entries,
1092 array.nent * sizeof(struct kvm_cpuid_entry2)))
1093 r = -EFAULT;
1094
1095 out_free:
1096 vfree(array.entries);
1097 return r;
1098 }
1099
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function,u32 index)1100 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1101 u32 function, u32 index)
1102 {
1103 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1104 function, index);
1105 }
1106 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1107
1108 /*
1109 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1110 * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
1111 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1112 * range. Centaur/VIA follows Intel semantics.
1113 *
1114 * A leaf is considered out-of-range if its function is higher than the maximum
1115 * supported leaf of its associated class or if its associated class does not
1116 * exist.
1117 *
1118 * There are three primary classes to be considered, with their respective
1119 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
1120 * class exists if a guest CPUID entry for its <base> leaf exists. For a given
1121 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1122 *
1123 * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1124 * - Hypervisor: 0x40000000 - 0x4fffffff
1125 * - Extended: 0x80000000 - 0xbfffffff
1126 * - Centaur: 0xc0000000 - 0xcfffffff
1127 *
1128 * The Hypervisor class is further subdivided into sub-classes that each act as
1129 * their own independent class associated with a 0x100 byte range. E.g. if Qemu
1130 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1131 * CPUID sub-classes are:
1132 *
1133 * - HyperV: 0x40000000 - 0x400000ff
1134 * - KVM: 0x40000100 - 0x400001ff
1135 */
1136 static struct kvm_cpuid_entry2 *
get_out_of_range_cpuid_entry(struct kvm_vcpu * vcpu,u32 * fn_ptr,u32 index)1137 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1138 {
1139 struct kvm_cpuid_entry2 *basic, *class;
1140 u32 function = *fn_ptr;
1141
1142 basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1143 if (!basic)
1144 return NULL;
1145
1146 if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1147 is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1148 return NULL;
1149
1150 if (function >= 0x40000000 && function <= 0x4fffffff)
1151 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1152 else if (function >= 0xc0000000)
1153 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1154 else
1155 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1156
1157 if (class && function <= class->eax)
1158 return NULL;
1159
1160 /*
1161 * Leaf specific adjustments are also applied when redirecting to the
1162 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1163 * entry for CPUID.0xb.index (see below), then the output value for EDX
1164 * needs to be pulled from CPUID.0xb.1.
1165 */
1166 *fn_ptr = basic->eax;
1167
1168 /*
1169 * The class does not exist or the requested function is out of range;
1170 * the effective CPUID entry is the max basic leaf. Note, the index of
1171 * the original requested leaf is observed!
1172 */
1173 return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1174 }
1175
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)1176 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1177 u32 *ecx, u32 *edx, bool exact_only)
1178 {
1179 u32 orig_function = *eax, function = *eax, index = *ecx;
1180 struct kvm_cpuid_entry2 *entry;
1181 bool exact, used_max_basic = false;
1182
1183 entry = kvm_find_cpuid_entry(vcpu, function, index);
1184 exact = !!entry;
1185
1186 if (!entry && !exact_only) {
1187 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1188 used_max_basic = !!entry;
1189 }
1190
1191 if (entry) {
1192 *eax = entry->eax;
1193 *ebx = entry->ebx;
1194 *ecx = entry->ecx;
1195 *edx = entry->edx;
1196 if (function == 7 && index == 0) {
1197 u64 data;
1198 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1199 (data & TSX_CTRL_CPUID_CLEAR))
1200 *ebx &= ~(F(RTM) | F(HLE));
1201 }
1202 } else {
1203 *eax = *ebx = *ecx = *edx = 0;
1204 /*
1205 * When leaf 0BH or 1FH is defined, CL is pass-through
1206 * and EDX is always the x2APIC ID, even for undefined
1207 * subleaves. Index 1 will exist iff the leaf is
1208 * implemented, so we pass through CL iff leaf 1
1209 * exists. EDX can be copied from any existing index.
1210 */
1211 if (function == 0xb || function == 0x1f) {
1212 entry = kvm_find_cpuid_entry(vcpu, function, 1);
1213 if (entry) {
1214 *ecx = index & 0xff;
1215 *edx = entry->edx;
1216 }
1217 }
1218 }
1219 trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1220 used_max_basic);
1221 return exact;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_cpuid);
1224
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)1225 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1226 {
1227 u32 eax, ebx, ecx, edx;
1228
1229 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1230 return 1;
1231
1232 eax = kvm_rax_read(vcpu);
1233 ecx = kvm_rcx_read(vcpu);
1234 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1235 kvm_rax_write(vcpu, eax);
1236 kvm_rbx_write(vcpu, ebx);
1237 kvm_rcx_write(vcpu, ecx);
1238 kvm_rdx_write(vcpu, edx);
1239 return kvm_skip_emulated_instruction(vcpu);
1240 }
1241 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1242