1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 SMP booting functions
4 *
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 #include <linux/syscore_ops.h>
60
61 #include <asm/acpi.h>
62 #include <asm/desc.h>
63 #include <asm/nmi.h>
64 #include <asm/irq.h>
65 #include <asm/realmode.h>
66 #include <asm/cpu.h>
67 #include <asm/numa.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/internal.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 #include <asm/hw_irq.h>
84 #include <asm/stackprotector.h>
85
86 #ifdef CONFIG_ACPI_CPPC_LIB
87 #include <acpi/cppc_acpi.h>
88 #endif
89
90 /* representing HT siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93
94 /* representing HT and core siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
97
98 /* representing HT, core, and die siblings of each logical CPU */
99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
100 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
101
102 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
103
104 /* Per CPU bogomips and other parameters */
105 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106 EXPORT_PER_CPU_SYMBOL(cpu_info);
107
108 /* Logical package management. We might want to allocate that dynamically */
109 unsigned int __max_logical_packages __read_mostly;
110 EXPORT_SYMBOL(__max_logical_packages);
111 static unsigned int logical_packages __read_mostly;
112 static unsigned int logical_die __read_mostly;
113
114 /* Maximum number of SMT threads on any online core */
115 int __read_mostly __max_smt_threads = 1;
116
117 /* Flag to indicate if a complete sched domain rebuild is required */
118 bool x86_topology_update;
119
arch_update_cpu_topology(void)120 int arch_update_cpu_topology(void)
121 {
122 int retval = x86_topology_update;
123
124 x86_topology_update = false;
125 return retval;
126 }
127
smpboot_setup_warm_reset_vector(unsigned long start_eip)128 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
129 {
130 unsigned long flags;
131
132 spin_lock_irqsave(&rtc_lock, flags);
133 CMOS_WRITE(0xa, 0xf);
134 spin_unlock_irqrestore(&rtc_lock, flags);
135 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
136 start_eip >> 4;
137 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
138 start_eip & 0xf;
139 }
140
smpboot_restore_warm_reset_vector(void)141 static inline void smpboot_restore_warm_reset_vector(void)
142 {
143 unsigned long flags;
144
145 /*
146 * Paranoid: Set warm reset code and vector here back
147 * to default values.
148 */
149 spin_lock_irqsave(&rtc_lock, flags);
150 CMOS_WRITE(0, 0xf);
151 spin_unlock_irqrestore(&rtc_lock, flags);
152
153 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
154 }
155
156 static void init_freq_invariance(bool secondary, bool cppc_ready);
157
158 /*
159 * Report back to the Boot Processor during boot time or to the caller processor
160 * during CPU online.
161 */
smp_callin(void)162 static void smp_callin(void)
163 {
164 int cpuid;
165
166 /*
167 * If waken up by an INIT in an 82489DX configuration
168 * cpu_callout_mask guarantees we don't get here before
169 * an INIT_deassert IPI reaches our local APIC, so it is
170 * now safe to touch our local APIC.
171 */
172 cpuid = smp_processor_id();
173
174 /*
175 * the boot CPU has finished the init stage and is spinning
176 * on callin_map until we finish. We are free to set up this
177 * CPU, first the APIC. (this is probably redundant on most
178 * boards)
179 */
180 apic_ap_setup();
181
182 /*
183 * Save our processor parameters. Note: this information
184 * is needed for clock calibration.
185 */
186 smp_store_cpu_info(cpuid);
187
188 /*
189 * The topology information must be up to date before
190 * calibrate_delay() and notify_cpu_starting().
191 */
192 set_cpu_sibling_map(raw_smp_processor_id());
193
194 init_freq_invariance(true, false);
195
196 /*
197 * Get our bogomips.
198 * Update loops_per_jiffy in cpu_data. Previous call to
199 * smp_store_cpu_info() stored a value that is close but not as
200 * accurate as the value just calculated.
201 */
202 calibrate_delay();
203 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
204 pr_debug("Stack at about %p\n", &cpuid);
205
206 wmb();
207
208 notify_cpu_starting(cpuid);
209
210 /*
211 * Allow the master to continue.
212 */
213 cpumask_set_cpu(cpuid, cpu_callin_mask);
214 }
215
216 static int cpu0_logical_apicid;
217 static int enable_start_cpu0;
218 /*
219 * Activate a secondary processor.
220 */
start_secondary(void * unused)221 static void notrace start_secondary(void *unused)
222 {
223 /*
224 * Don't put *anything* except direct CPU state initialization
225 * before cpu_init(), SMP booting is too fragile that we want to
226 * limit the things done here to the most necessary things.
227 */
228 cr4_init();
229
230 #ifdef CONFIG_X86_32
231 /* switch away from the initial page table */
232 load_cr3(swapper_pg_dir);
233 __flush_tlb_all();
234 #endif
235 cpu_init_secondary();
236 rcu_cpu_starting(raw_smp_processor_id());
237 x86_cpuinit.early_percpu_clock_init();
238 smp_callin();
239
240 enable_start_cpu0 = 0;
241
242 /* otherwise gcc will move up smp_processor_id before the cpu_init */
243 barrier();
244 /*
245 * Check TSC synchronization with the boot CPU:
246 */
247 check_tsc_sync_target();
248
249 speculative_store_bypass_ht_init();
250
251 /*
252 * Lock vector_lock, set CPU online and bring the vector
253 * allocator online. Online must be set with vector_lock held
254 * to prevent a concurrent irq setup/teardown from seeing a
255 * half valid vector space.
256 */
257 lock_vector_lock();
258 set_cpu_online(smp_processor_id(), true);
259 lapic_online();
260 unlock_vector_lock();
261 cpu_set_state_online(smp_processor_id());
262 x86_platform.nmi_init();
263
264 /* enable local interrupts */
265 local_irq_enable();
266
267 x86_cpuinit.setup_percpu_clockev();
268
269 wmb();
270 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
271 }
272
273 /**
274 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
275 * @cpu: CPU to check
276 */
topology_is_primary_thread(unsigned int cpu)277 bool topology_is_primary_thread(unsigned int cpu)
278 {
279 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
280 }
281
282 /**
283 * topology_smt_supported - Check whether SMT is supported by the CPUs
284 */
topology_smt_supported(void)285 bool topology_smt_supported(void)
286 {
287 return smp_num_siblings > 1;
288 }
289
290 /**
291 * topology_phys_to_logical_pkg - Map a physical package id to a logical
292 *
293 * Returns logical package id or -1 if not found
294 */
topology_phys_to_logical_pkg(unsigned int phys_pkg)295 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
296 {
297 int cpu;
298
299 for_each_possible_cpu(cpu) {
300 struct cpuinfo_x86 *c = &cpu_data(cpu);
301
302 if (c->initialized && c->phys_proc_id == phys_pkg)
303 return c->logical_proc_id;
304 }
305 return -1;
306 }
307 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
308 /**
309 * topology_phys_to_logical_die - Map a physical die id to logical
310 *
311 * Returns logical die id or -1 if not found
312 */
topology_phys_to_logical_die(unsigned int die_id,unsigned int cur_cpu)313 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
314 {
315 int cpu;
316 int proc_id = cpu_data(cur_cpu).phys_proc_id;
317
318 for_each_possible_cpu(cpu) {
319 struct cpuinfo_x86 *c = &cpu_data(cpu);
320
321 if (c->initialized && c->cpu_die_id == die_id &&
322 c->phys_proc_id == proc_id)
323 return c->logical_die_id;
324 }
325 return -1;
326 }
327 EXPORT_SYMBOL(topology_phys_to_logical_die);
328
329 /**
330 * topology_update_package_map - Update the physical to logical package map
331 * @pkg: The physical package id as retrieved via CPUID
332 * @cpu: The cpu for which this is updated
333 */
topology_update_package_map(unsigned int pkg,unsigned int cpu)334 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
335 {
336 int new;
337
338 /* Already available somewhere? */
339 new = topology_phys_to_logical_pkg(pkg);
340 if (new >= 0)
341 goto found;
342
343 new = logical_packages++;
344 if (new != pkg) {
345 pr_info("CPU %u Converting physical %u to logical package %u\n",
346 cpu, pkg, new);
347 }
348 found:
349 cpu_data(cpu).logical_proc_id = new;
350 return 0;
351 }
352 /**
353 * topology_update_die_map - Update the physical to logical die map
354 * @die: The die id as retrieved via CPUID
355 * @cpu: The cpu for which this is updated
356 */
topology_update_die_map(unsigned int die,unsigned int cpu)357 int topology_update_die_map(unsigned int die, unsigned int cpu)
358 {
359 int new;
360
361 /* Already available somewhere? */
362 new = topology_phys_to_logical_die(die, cpu);
363 if (new >= 0)
364 goto found;
365
366 new = logical_die++;
367 if (new != die) {
368 pr_info("CPU %u Converting physical %u to logical die %u\n",
369 cpu, die, new);
370 }
371 found:
372 cpu_data(cpu).logical_die_id = new;
373 return 0;
374 }
375
smp_store_boot_cpu_info(void)376 void __init smp_store_boot_cpu_info(void)
377 {
378 int id = 0; /* CPU 0 */
379 struct cpuinfo_x86 *c = &cpu_data(id);
380
381 *c = boot_cpu_data;
382 c->cpu_index = id;
383 topology_update_package_map(c->phys_proc_id, id);
384 topology_update_die_map(c->cpu_die_id, id);
385 c->initialized = true;
386 }
387
388 /*
389 * The bootstrap kernel entry code has set these up. Save them for
390 * a given CPU
391 */
smp_store_cpu_info(int id)392 void smp_store_cpu_info(int id)
393 {
394 struct cpuinfo_x86 *c = &cpu_data(id);
395
396 /* Copy boot_cpu_data only on the first bringup */
397 if (!c->initialized)
398 *c = boot_cpu_data;
399 c->cpu_index = id;
400 /*
401 * During boot time, CPU0 has this setup already. Save the info when
402 * bringing up AP or offlined CPU0.
403 */
404 identify_secondary_cpu(c);
405 c->initialized = true;
406 }
407
408 static bool
topology_same_node(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)409 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
410 {
411 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
412
413 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
414 }
415
416 static bool
topology_sane(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o,const char * name)417 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
418 {
419 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
420
421 return !WARN_ONCE(!topology_same_node(c, o),
422 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
423 "[node: %d != %d]. Ignoring dependency.\n",
424 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
425 }
426
427 #define link_mask(mfunc, c1, c2) \
428 do { \
429 cpumask_set_cpu((c1), mfunc(c2)); \
430 cpumask_set_cpu((c2), mfunc(c1)); \
431 } while (0)
432
match_smt(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)433 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
434 {
435 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
436 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
437
438 if (c->phys_proc_id == o->phys_proc_id &&
439 c->cpu_die_id == o->cpu_die_id &&
440 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
441 if (c->cpu_core_id == o->cpu_core_id)
442 return topology_sane(c, o, "smt");
443
444 if ((c->cu_id != 0xff) &&
445 (o->cu_id != 0xff) &&
446 (c->cu_id == o->cu_id))
447 return topology_sane(c, o, "smt");
448 }
449
450 } else if (c->phys_proc_id == o->phys_proc_id &&
451 c->cpu_die_id == o->cpu_die_id &&
452 c->cpu_core_id == o->cpu_core_id) {
453 return topology_sane(c, o, "smt");
454 }
455
456 return false;
457 }
458
match_die(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)459 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
460 {
461 if (c->phys_proc_id == o->phys_proc_id &&
462 c->cpu_die_id == o->cpu_die_id)
463 return true;
464 return false;
465 }
466
467 /*
468 * Unlike the other levels, we do not enforce keeping a
469 * multicore group inside a NUMA node. If this happens, we will
470 * discard the MC level of the topology later.
471 */
match_pkg(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)472 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
473 {
474 if (c->phys_proc_id == o->phys_proc_id)
475 return true;
476 return false;
477 }
478
479 /*
480 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
481 *
482 * Any Intel CPU that has multiple nodes per package and does not
483 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
484 *
485 * When in SNC mode, these CPUs enumerate an LLC that is shared
486 * by multiple NUMA nodes. The LLC is shared for off-package data
487 * access but private to the NUMA node (half of the package) for
488 * on-package access. CPUID (the source of the information about
489 * the LLC) can only enumerate the cache as shared or unshared,
490 * but not this particular configuration.
491 */
492
493 static const struct x86_cpu_id intel_cod_cpu[] = {
494 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */
495 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */
496 X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */
497 {}
498 };
499
match_llc(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)500 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
501 {
502 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
503 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
504 bool intel_snc = id && id->driver_data;
505
506 /* Do not match if we do not have a valid APICID for cpu: */
507 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
508 return false;
509
510 /* Do not match if LLC id does not match: */
511 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
512 return false;
513
514 /*
515 * Allow the SNC topology without warning. Return of false
516 * means 'c' does not share the LLC of 'o'. This will be
517 * reflected to userspace.
518 */
519 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
520 return false;
521
522 return topology_sane(c, o, "llc");
523 }
524
525
526 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
x86_sched_itmt_flags(void)527 static inline int x86_sched_itmt_flags(void)
528 {
529 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
530 }
531
532 #ifdef CONFIG_SCHED_MC
x86_core_flags(void)533 static int x86_core_flags(void)
534 {
535 return cpu_core_flags() | x86_sched_itmt_flags();
536 }
537 #endif
538 #ifdef CONFIG_SCHED_SMT
x86_smt_flags(void)539 static int x86_smt_flags(void)
540 {
541 return cpu_smt_flags() | x86_sched_itmt_flags();
542 }
543 #endif
544 #endif
545
546 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
547 #ifdef CONFIG_SCHED_SMT
548 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
549 #endif
550 #ifdef CONFIG_SCHED_MC
551 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
552 #endif
553 { NULL, },
554 };
555
556 static struct sched_domain_topology_level x86_topology[] = {
557 #ifdef CONFIG_SCHED_SMT
558 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
559 #endif
560 #ifdef CONFIG_SCHED_MC
561 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
562 #endif
563 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
564 { NULL, },
565 };
566
567 /*
568 * Set if a package/die has multiple NUMA nodes inside.
569 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
570 * Sub-NUMA Clustering have this.
571 */
572 static bool x86_has_numa_in_package;
573
set_cpu_sibling_map(int cpu)574 void set_cpu_sibling_map(int cpu)
575 {
576 bool has_smt = smp_num_siblings > 1;
577 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
578 struct cpuinfo_x86 *c = &cpu_data(cpu);
579 struct cpuinfo_x86 *o;
580 int i, threads;
581
582 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
583
584 if (!has_mp) {
585 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
586 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
587 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
588 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
589 c->booted_cores = 1;
590 return;
591 }
592
593 for_each_cpu(i, cpu_sibling_setup_mask) {
594 o = &cpu_data(i);
595
596 if (match_pkg(c, o) && !topology_same_node(c, o))
597 x86_has_numa_in_package = true;
598
599 if ((i == cpu) || (has_smt && match_smt(c, o)))
600 link_mask(topology_sibling_cpumask, cpu, i);
601
602 if ((i == cpu) || (has_mp && match_llc(c, o)))
603 link_mask(cpu_llc_shared_mask, cpu, i);
604
605 if ((i == cpu) || (has_mp && match_die(c, o)))
606 link_mask(topology_die_cpumask, cpu, i);
607 }
608
609 threads = cpumask_weight(topology_sibling_cpumask(cpu));
610 if (threads > __max_smt_threads)
611 __max_smt_threads = threads;
612
613 for_each_cpu(i, topology_sibling_cpumask(cpu))
614 cpu_data(i).smt_active = threads > 1;
615
616 /*
617 * This needs a separate iteration over the cpus because we rely on all
618 * topology_sibling_cpumask links to be set-up.
619 */
620 for_each_cpu(i, cpu_sibling_setup_mask) {
621 o = &cpu_data(i);
622
623 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
624 link_mask(topology_core_cpumask, cpu, i);
625
626 /*
627 * Does this new cpu bringup a new core?
628 */
629 if (threads == 1) {
630 /*
631 * for each core in package, increment
632 * the booted_cores for this new cpu
633 */
634 if (cpumask_first(
635 topology_sibling_cpumask(i)) == i)
636 c->booted_cores++;
637 /*
638 * increment the core count for all
639 * the other cpus in this package
640 */
641 if (i != cpu)
642 cpu_data(i).booted_cores++;
643 } else if (i != cpu && !c->booted_cores)
644 c->booted_cores = cpu_data(i).booted_cores;
645 }
646 }
647 }
648
649 /* maps the cpu to the sched domain representing multi-core */
cpu_coregroup_mask(int cpu)650 const struct cpumask *cpu_coregroup_mask(int cpu)
651 {
652 return cpu_llc_shared_mask(cpu);
653 }
654
impress_friends(void)655 static void impress_friends(void)
656 {
657 int cpu;
658 unsigned long bogosum = 0;
659 /*
660 * Allow the user to impress friends.
661 */
662 pr_debug("Before bogomips\n");
663 for_each_possible_cpu(cpu)
664 if (cpumask_test_cpu(cpu, cpu_callout_mask))
665 bogosum += cpu_data(cpu).loops_per_jiffy;
666 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
667 num_online_cpus(),
668 bogosum/(500000/HZ),
669 (bogosum/(5000/HZ))%100);
670
671 pr_debug("Before bogocount - setting activated=1\n");
672 }
673
__inquire_remote_apic(int apicid)674 void __inquire_remote_apic(int apicid)
675 {
676 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
677 const char * const names[] = { "ID", "VERSION", "SPIV" };
678 int timeout;
679 u32 status;
680
681 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
682
683 for (i = 0; i < ARRAY_SIZE(regs); i++) {
684 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
685
686 /*
687 * Wait for idle.
688 */
689 status = safe_apic_wait_icr_idle();
690 if (status)
691 pr_cont("a previous APIC delivery may have failed\n");
692
693 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
694
695 timeout = 0;
696 do {
697 udelay(100);
698 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
699 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
700
701 switch (status) {
702 case APIC_ICR_RR_VALID:
703 status = apic_read(APIC_RRR);
704 pr_cont("%08x\n", status);
705 break;
706 default:
707 pr_cont("failed\n");
708 }
709 }
710 }
711
712 /*
713 * The Multiprocessor Specification 1.4 (1997) example code suggests
714 * that there should be a 10ms delay between the BSP asserting INIT
715 * and de-asserting INIT, when starting a remote processor.
716 * But that slows boot and resume on modern processors, which include
717 * many cores and don't require that delay.
718 *
719 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
720 * Modern processor families are quirked to remove the delay entirely.
721 */
722 #define UDELAY_10MS_DEFAULT 10000
723
724 static unsigned int init_udelay = UINT_MAX;
725
cpu_init_udelay(char * str)726 static int __init cpu_init_udelay(char *str)
727 {
728 get_option(&str, &init_udelay);
729
730 return 0;
731 }
732 early_param("cpu_init_udelay", cpu_init_udelay);
733
smp_quirk_init_udelay(void)734 static void __init smp_quirk_init_udelay(void)
735 {
736 /* if cmdline changed it from default, leave it alone */
737 if (init_udelay != UINT_MAX)
738 return;
739
740 /* if modern processor, use no delay */
741 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
742 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
743 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
744 init_udelay = 0;
745 return;
746 }
747 /* else, use legacy delay */
748 init_udelay = UDELAY_10MS_DEFAULT;
749 }
750
751 /*
752 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
753 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
754 * won't ... remember to clear down the APIC, etc later.
755 */
756 int
wakeup_secondary_cpu_via_nmi(int apicid,unsigned long start_eip)757 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
758 {
759 u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
760 unsigned long send_status, accept_status = 0;
761 int maxlvt;
762
763 /* Target chip */
764 /* Boot on the stack */
765 /* Kick the second */
766 apic_icr_write(APIC_DM_NMI | dm, apicid);
767
768 pr_debug("Waiting for send to finish...\n");
769 send_status = safe_apic_wait_icr_idle();
770
771 /*
772 * Give the other CPU some time to accept the IPI.
773 */
774 udelay(200);
775 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
776 maxlvt = lapic_get_maxlvt();
777 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
778 apic_write(APIC_ESR, 0);
779 accept_status = (apic_read(APIC_ESR) & 0xEF);
780 }
781 pr_debug("NMI sent\n");
782
783 if (send_status)
784 pr_err("APIC never delivered???\n");
785 if (accept_status)
786 pr_err("APIC delivery error (%lx)\n", accept_status);
787
788 return (send_status | accept_status);
789 }
790
791 static int
wakeup_secondary_cpu_via_init(int phys_apicid,unsigned long start_eip)792 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
793 {
794 unsigned long send_status = 0, accept_status = 0;
795 int maxlvt, num_starts, j;
796
797 maxlvt = lapic_get_maxlvt();
798
799 /*
800 * Be paranoid about clearing APIC errors.
801 */
802 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
803 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
804 apic_write(APIC_ESR, 0);
805 apic_read(APIC_ESR);
806 }
807
808 pr_debug("Asserting INIT\n");
809
810 /*
811 * Turn INIT on target chip
812 */
813 /*
814 * Send IPI
815 */
816 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
817 phys_apicid);
818
819 pr_debug("Waiting for send to finish...\n");
820 send_status = safe_apic_wait_icr_idle();
821
822 udelay(init_udelay);
823
824 pr_debug("Deasserting INIT\n");
825
826 /* Target chip */
827 /* Send IPI */
828 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
829
830 pr_debug("Waiting for send to finish...\n");
831 send_status = safe_apic_wait_icr_idle();
832
833 mb();
834
835 /*
836 * Should we send STARTUP IPIs ?
837 *
838 * Determine this based on the APIC version.
839 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
840 */
841 if (APIC_INTEGRATED(boot_cpu_apic_version))
842 num_starts = 2;
843 else
844 num_starts = 0;
845
846 /*
847 * Run STARTUP IPI loop.
848 */
849 pr_debug("#startup loops: %d\n", num_starts);
850
851 for (j = 1; j <= num_starts; j++) {
852 pr_debug("Sending STARTUP #%d\n", j);
853 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
854 apic_write(APIC_ESR, 0);
855 apic_read(APIC_ESR);
856 pr_debug("After apic_write\n");
857
858 /*
859 * STARTUP IPI
860 */
861
862 /* Target chip */
863 /* Boot on the stack */
864 /* Kick the second */
865 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
866 phys_apicid);
867
868 /*
869 * Give the other CPU some time to accept the IPI.
870 */
871 if (init_udelay == 0)
872 udelay(10);
873 else
874 udelay(300);
875
876 pr_debug("Startup point 1\n");
877
878 pr_debug("Waiting for send to finish...\n");
879 send_status = safe_apic_wait_icr_idle();
880
881 /*
882 * Give the other CPU some time to accept the IPI.
883 */
884 if (init_udelay == 0)
885 udelay(10);
886 else
887 udelay(200);
888
889 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
890 apic_write(APIC_ESR, 0);
891 accept_status = (apic_read(APIC_ESR) & 0xEF);
892 if (send_status || accept_status)
893 break;
894 }
895 pr_debug("After Startup\n");
896
897 if (send_status)
898 pr_err("APIC never delivered???\n");
899 if (accept_status)
900 pr_err("APIC delivery error (%lx)\n", accept_status);
901
902 return (send_status | accept_status);
903 }
904
905 /* reduce the number of lines printed when booting a large cpu count system */
announce_cpu(int cpu,int apicid)906 static void announce_cpu(int cpu, int apicid)
907 {
908 static int current_node = NUMA_NO_NODE;
909 int node = early_cpu_to_node(cpu);
910 static int width, node_width;
911
912 if (!width)
913 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
914
915 if (!node_width)
916 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
917
918 if (cpu == 1)
919 printk(KERN_INFO "x86: Booting SMP configuration:\n");
920
921 if (system_state < SYSTEM_RUNNING) {
922 if (node != current_node) {
923 if (current_node > (-1))
924 pr_cont("\n");
925 current_node = node;
926
927 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
928 node_width - num_digits(node), " ", node);
929 }
930
931 /* Add padding for the BSP */
932 if (cpu == 1)
933 pr_cont("%*s", width + 1, " ");
934
935 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
936
937 } else
938 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
939 node, cpu, apicid);
940 }
941
wakeup_cpu0_nmi(unsigned int cmd,struct pt_regs * regs)942 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
943 {
944 int cpu;
945
946 cpu = smp_processor_id();
947 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
948 return NMI_HANDLED;
949
950 return NMI_DONE;
951 }
952
953 /*
954 * Wake up AP by INIT, INIT, STARTUP sequence.
955 *
956 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
957 * boot-strap code which is not a desired behavior for waking up BSP. To
958 * void the boot-strap code, wake up CPU0 by NMI instead.
959 *
960 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
961 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
962 * We'll change this code in the future to wake up hard offlined CPU0 if
963 * real platform and request are available.
964 */
965 static int
wakeup_cpu_via_init_nmi(int cpu,unsigned long start_ip,int apicid,int * cpu0_nmi_registered)966 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
967 int *cpu0_nmi_registered)
968 {
969 int id;
970 int boot_error;
971
972 preempt_disable();
973
974 /*
975 * Wake up AP by INIT, INIT, STARTUP sequence.
976 */
977 if (cpu) {
978 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
979 goto out;
980 }
981
982 /*
983 * Wake up BSP by nmi.
984 *
985 * Register a NMI handler to help wake up CPU0.
986 */
987 boot_error = register_nmi_handler(NMI_LOCAL,
988 wakeup_cpu0_nmi, 0, "wake_cpu0");
989
990 if (!boot_error) {
991 enable_start_cpu0 = 1;
992 *cpu0_nmi_registered = 1;
993 id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
994 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
995 }
996
997 out:
998 preempt_enable();
999
1000 return boot_error;
1001 }
1002
common_cpu_up(unsigned int cpu,struct task_struct * idle)1003 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1004 {
1005 int ret;
1006
1007 /* Just in case we booted with a single CPU. */
1008 alternatives_enable_smp();
1009
1010 per_cpu(current_task, cpu) = idle;
1011 cpu_init_stack_canary(cpu, idle);
1012
1013 /* Initialize the interrupt stack(s) */
1014 ret = irq_init_percpu_irqstack(cpu);
1015 if (ret)
1016 return ret;
1017
1018 #ifdef CONFIG_X86_32
1019 /* Stack for startup_32 can be just as for start_secondary onwards */
1020 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1021 #else
1022 initial_gs = per_cpu_offset(cpu);
1023 #endif
1024 return 0;
1025 }
1026
1027 /*
1028 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1029 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1030 * Returns zero if CPU booted OK, else error code from
1031 * ->wakeup_secondary_cpu.
1032 */
do_boot_cpu(int apicid,int cpu,struct task_struct * idle,int * cpu0_nmi_registered)1033 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1034 int *cpu0_nmi_registered)
1035 {
1036 /* start_ip had better be page-aligned! */
1037 unsigned long start_ip = real_mode_header->trampoline_start;
1038
1039 unsigned long boot_error = 0;
1040 unsigned long timeout;
1041
1042 idle->thread.sp = (unsigned long)task_pt_regs(idle);
1043 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1044 initial_code = (unsigned long)start_secondary;
1045 initial_stack = idle->thread.sp;
1046
1047 /* Enable the espfix hack for this CPU */
1048 init_espfix_ap(cpu);
1049
1050 /* So we see what's up */
1051 announce_cpu(cpu, apicid);
1052
1053 /*
1054 * This grunge runs the startup process for
1055 * the targeted processor.
1056 */
1057
1058 if (x86_platform.legacy.warm_reset) {
1059
1060 pr_debug("Setting warm reset code and vector.\n");
1061
1062 smpboot_setup_warm_reset_vector(start_ip);
1063 /*
1064 * Be paranoid about clearing APIC errors.
1065 */
1066 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1067 apic_write(APIC_ESR, 0);
1068 apic_read(APIC_ESR);
1069 }
1070 }
1071
1072 /*
1073 * AP might wait on cpu_callout_mask in cpu_init() with
1074 * cpu_initialized_mask set if previous attempt to online
1075 * it timed-out. Clear cpu_initialized_mask so that after
1076 * INIT/SIPI it could start with a clean state.
1077 */
1078 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1079 smp_mb();
1080
1081 /*
1082 * Wake up a CPU in difference cases:
1083 * - Use the method in the APIC driver if it's defined
1084 * Otherwise,
1085 * - Use an INIT boot APIC message for APs or NMI for BSP.
1086 */
1087 if (apic->wakeup_secondary_cpu)
1088 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1089 else
1090 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1091 cpu0_nmi_registered);
1092
1093 if (!boot_error) {
1094 /*
1095 * Wait 10s total for first sign of life from AP
1096 */
1097 boot_error = -1;
1098 timeout = jiffies + 10*HZ;
1099 while (time_before(jiffies, timeout)) {
1100 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1101 /*
1102 * Tell AP to proceed with initialization
1103 */
1104 cpumask_set_cpu(cpu, cpu_callout_mask);
1105 boot_error = 0;
1106 break;
1107 }
1108 schedule();
1109 }
1110 }
1111
1112 if (!boot_error) {
1113 /*
1114 * Wait till AP completes initial initialization
1115 */
1116 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1117 /*
1118 * Allow other tasks to run while we wait for the
1119 * AP to come online. This also gives a chance
1120 * for the MTRR work(triggered by the AP coming online)
1121 * to be completed in the stop machine context.
1122 */
1123 schedule();
1124 }
1125 }
1126
1127 if (x86_platform.legacy.warm_reset) {
1128 /*
1129 * Cleanup possible dangling ends...
1130 */
1131 smpboot_restore_warm_reset_vector();
1132 }
1133
1134 return boot_error;
1135 }
1136
native_cpu_up(unsigned int cpu,struct task_struct * tidle)1137 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1138 {
1139 int apicid = apic->cpu_present_to_apicid(cpu);
1140 int cpu0_nmi_registered = 0;
1141 unsigned long flags;
1142 int err, ret = 0;
1143
1144 lockdep_assert_irqs_enabled();
1145
1146 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1147
1148 if (apicid == BAD_APICID ||
1149 !physid_isset(apicid, phys_cpu_present_map) ||
1150 !apic->apic_id_valid(apicid)) {
1151 pr_err("%s: bad cpu %d\n", __func__, cpu);
1152 return -EINVAL;
1153 }
1154
1155 /*
1156 * Already booted CPU?
1157 */
1158 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1159 pr_debug("do_boot_cpu %d Already started\n", cpu);
1160 return -ENOSYS;
1161 }
1162
1163 /*
1164 * Save current MTRR state in case it was changed since early boot
1165 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1166 */
1167 mtrr_save_state();
1168
1169 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1170 err = cpu_check_up_prepare(cpu);
1171 if (err && err != -EBUSY)
1172 return err;
1173
1174 /* the FPU context is blank, nobody can own it */
1175 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1176
1177 err = common_cpu_up(cpu, tidle);
1178 if (err)
1179 return err;
1180
1181 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1182 if (err) {
1183 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1184 ret = -EIO;
1185 goto unreg_nmi;
1186 }
1187
1188 /*
1189 * Check TSC synchronization with the AP (keep irqs disabled
1190 * while doing so):
1191 */
1192 local_irq_save(flags);
1193 check_tsc_sync_source(cpu);
1194 local_irq_restore(flags);
1195
1196 while (!cpu_online(cpu)) {
1197 cpu_relax();
1198 touch_nmi_watchdog();
1199 }
1200
1201 unreg_nmi:
1202 /*
1203 * Clean up the nmi handler. Do this after the callin and callout sync
1204 * to avoid impact of possible long unregister time.
1205 */
1206 if (cpu0_nmi_registered)
1207 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1208
1209 return ret;
1210 }
1211
1212 /**
1213 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1214 */
arch_disable_smp_support(void)1215 void arch_disable_smp_support(void)
1216 {
1217 disable_ioapic_support();
1218 }
1219
1220 /*
1221 * Fall back to non SMP mode after errors.
1222 *
1223 * RED-PEN audit/test this more. I bet there is more state messed up here.
1224 */
disable_smp(void)1225 static __init void disable_smp(void)
1226 {
1227 pr_info("SMP disabled\n");
1228
1229 disable_ioapic_support();
1230
1231 init_cpu_present(cpumask_of(0));
1232 init_cpu_possible(cpumask_of(0));
1233
1234 if (smp_found_config)
1235 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1236 else
1237 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1238 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1239 cpumask_set_cpu(0, topology_core_cpumask(0));
1240 cpumask_set_cpu(0, topology_die_cpumask(0));
1241 }
1242
1243 /*
1244 * Various sanity checks.
1245 */
smp_sanity_check(void)1246 static void __init smp_sanity_check(void)
1247 {
1248 preempt_disable();
1249
1250 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1251 if (def_to_bigsmp && nr_cpu_ids > 8) {
1252 unsigned int cpu;
1253 unsigned nr;
1254
1255 pr_warn("More than 8 CPUs detected - skipping them\n"
1256 "Use CONFIG_X86_BIGSMP\n");
1257
1258 nr = 0;
1259 for_each_present_cpu(cpu) {
1260 if (nr >= 8)
1261 set_cpu_present(cpu, false);
1262 nr++;
1263 }
1264
1265 nr = 0;
1266 for_each_possible_cpu(cpu) {
1267 if (nr >= 8)
1268 set_cpu_possible(cpu, false);
1269 nr++;
1270 }
1271
1272 nr_cpu_ids = 8;
1273 }
1274 #endif
1275
1276 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1277 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1278 hard_smp_processor_id());
1279
1280 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1281 }
1282
1283 /*
1284 * Should not be necessary because the MP table should list the boot
1285 * CPU too, but we do it for the sake of robustness anyway.
1286 */
1287 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1288 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1289 boot_cpu_physical_apicid);
1290 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1291 }
1292 preempt_enable();
1293 }
1294
smp_cpu_index_default(void)1295 static void __init smp_cpu_index_default(void)
1296 {
1297 int i;
1298 struct cpuinfo_x86 *c;
1299
1300 for_each_possible_cpu(i) {
1301 c = &cpu_data(i);
1302 /* mark all to hotplug */
1303 c->cpu_index = nr_cpu_ids;
1304 }
1305 }
1306
smp_get_logical_apicid(void)1307 static void __init smp_get_logical_apicid(void)
1308 {
1309 if (x2apic_mode)
1310 cpu0_logical_apicid = apic_read(APIC_LDR);
1311 else
1312 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1313 }
1314
1315 /*
1316 * Prepare for SMP bootup.
1317 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1318 * for common interface support.
1319 */
native_smp_prepare_cpus(unsigned int max_cpus)1320 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1321 {
1322 unsigned int i;
1323
1324 smp_cpu_index_default();
1325
1326 /*
1327 * Setup boot CPU information
1328 */
1329 smp_store_boot_cpu_info(); /* Final full version of the data */
1330 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1331 mb();
1332
1333 for_each_possible_cpu(i) {
1334 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1335 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1336 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1337 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1338 }
1339
1340 /*
1341 * Set 'default' x86 topology, this matches default_topology() in that
1342 * it has NUMA nodes as a topology level. See also
1343 * native_smp_cpus_done().
1344 *
1345 * Must be done before set_cpus_sibling_map() is ran.
1346 */
1347 set_sched_topology(x86_topology);
1348
1349 set_cpu_sibling_map(0);
1350 init_freq_invariance(false, false);
1351 smp_sanity_check();
1352
1353 switch (apic_intr_mode) {
1354 case APIC_PIC:
1355 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1356 disable_smp();
1357 return;
1358 case APIC_SYMMETRIC_IO_NO_ROUTING:
1359 disable_smp();
1360 /* Setup local timer */
1361 x86_init.timers.setup_percpu_clockev();
1362 return;
1363 case APIC_VIRTUAL_WIRE:
1364 case APIC_SYMMETRIC_IO:
1365 break;
1366 }
1367
1368 /* Setup local timer */
1369 x86_init.timers.setup_percpu_clockev();
1370
1371 smp_get_logical_apicid();
1372
1373 pr_info("CPU0: ");
1374 print_cpu_info(&cpu_data(0));
1375
1376 uv_system_init();
1377
1378 set_mtrr_aps_delayed_init();
1379
1380 smp_quirk_init_udelay();
1381
1382 speculative_store_bypass_ht_init();
1383 }
1384
arch_thaw_secondary_cpus_begin(void)1385 void arch_thaw_secondary_cpus_begin(void)
1386 {
1387 set_mtrr_aps_delayed_init();
1388 }
1389
arch_thaw_secondary_cpus_end(void)1390 void arch_thaw_secondary_cpus_end(void)
1391 {
1392 mtrr_aps_init();
1393 }
1394
1395 /*
1396 * Early setup to make printk work.
1397 */
native_smp_prepare_boot_cpu(void)1398 void __init native_smp_prepare_boot_cpu(void)
1399 {
1400 int me = smp_processor_id();
1401 switch_to_new_gdt(me);
1402 /* already set me in cpu_online_mask in boot_cpu_init() */
1403 cpumask_set_cpu(me, cpu_callout_mask);
1404 cpu_set_state_online(me);
1405 native_pv_lock_init();
1406 }
1407
calculate_max_logical_packages(void)1408 void __init calculate_max_logical_packages(void)
1409 {
1410 int ncpus;
1411
1412 /*
1413 * Today neither Intel nor AMD support heterogeneous systems so
1414 * extrapolate the boot cpu's data to all packages.
1415 */
1416 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1417 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1418 pr_info("Max logical packages: %u\n", __max_logical_packages);
1419 }
1420
native_smp_cpus_done(unsigned int max_cpus)1421 void __init native_smp_cpus_done(unsigned int max_cpus)
1422 {
1423 pr_debug("Boot done\n");
1424
1425 calculate_max_logical_packages();
1426
1427 if (x86_has_numa_in_package)
1428 set_sched_topology(x86_numa_in_package_topology);
1429
1430 nmi_selftest();
1431 impress_friends();
1432 mtrr_aps_init();
1433 }
1434
1435 static int __initdata setup_possible_cpus = -1;
_setup_possible_cpus(char * str)1436 static int __init _setup_possible_cpus(char *str)
1437 {
1438 get_option(&str, &setup_possible_cpus);
1439 return 0;
1440 }
1441 early_param("possible_cpus", _setup_possible_cpus);
1442
1443
1444 /*
1445 * cpu_possible_mask should be static, it cannot change as cpu's
1446 * are onlined, or offlined. The reason is per-cpu data-structures
1447 * are allocated by some modules at init time, and don't expect to
1448 * do this dynamically on cpu arrival/departure.
1449 * cpu_present_mask on the other hand can change dynamically.
1450 * In case when cpu_hotplug is not compiled, then we resort to current
1451 * behaviour, which is cpu_possible == cpu_present.
1452 * - Ashok Raj
1453 *
1454 * Three ways to find out the number of additional hotplug CPUs:
1455 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1456 * - The user can overwrite it with possible_cpus=NUM
1457 * - Otherwise don't reserve additional CPUs.
1458 * We do this because additional CPUs waste a lot of memory.
1459 * -AK
1460 */
prefill_possible_map(void)1461 __init void prefill_possible_map(void)
1462 {
1463 int i, possible;
1464
1465 /* No boot processor was found in mptable or ACPI MADT */
1466 if (!num_processors) {
1467 if (boot_cpu_has(X86_FEATURE_APIC)) {
1468 int apicid = boot_cpu_physical_apicid;
1469 int cpu = hard_smp_processor_id();
1470
1471 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1472
1473 /* Make sure boot cpu is enumerated */
1474 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1475 apic->apic_id_valid(apicid))
1476 generic_processor_info(apicid, boot_cpu_apic_version);
1477 }
1478
1479 if (!num_processors)
1480 num_processors = 1;
1481 }
1482
1483 i = setup_max_cpus ?: 1;
1484 if (setup_possible_cpus == -1) {
1485 possible = num_processors;
1486 #ifdef CONFIG_HOTPLUG_CPU
1487 if (setup_max_cpus)
1488 possible += disabled_cpus;
1489 #else
1490 if (possible > i)
1491 possible = i;
1492 #endif
1493 } else
1494 possible = setup_possible_cpus;
1495
1496 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1497
1498 /* nr_cpu_ids could be reduced via nr_cpus= */
1499 if (possible > nr_cpu_ids) {
1500 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1501 possible, nr_cpu_ids);
1502 possible = nr_cpu_ids;
1503 }
1504
1505 #ifdef CONFIG_HOTPLUG_CPU
1506 if (!setup_max_cpus)
1507 #endif
1508 if (possible > i) {
1509 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1510 possible, setup_max_cpus);
1511 possible = i;
1512 }
1513
1514 nr_cpu_ids = possible;
1515
1516 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1517 possible, max_t(int, possible - num_processors, 0));
1518
1519 reset_cpu_possible_mask();
1520
1521 for (i = 0; i < possible; i++)
1522 set_cpu_possible(i, true);
1523 }
1524
1525 #ifdef CONFIG_HOTPLUG_CPU
1526
1527 /* Recompute SMT state for all CPUs on offline */
recompute_smt_state(void)1528 static void recompute_smt_state(void)
1529 {
1530 int max_threads, cpu;
1531
1532 max_threads = 0;
1533 for_each_online_cpu (cpu) {
1534 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1535
1536 if (threads > max_threads)
1537 max_threads = threads;
1538 }
1539 __max_smt_threads = max_threads;
1540 }
1541
remove_siblinginfo(int cpu)1542 static void remove_siblinginfo(int cpu)
1543 {
1544 int sibling;
1545 struct cpuinfo_x86 *c = &cpu_data(cpu);
1546
1547 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1548 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1549 /*/
1550 * last thread sibling in this cpu core going down
1551 */
1552 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1553 cpu_data(sibling).booted_cores--;
1554 }
1555
1556 for_each_cpu(sibling, topology_die_cpumask(cpu))
1557 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1558
1559 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1560 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1561 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1562 cpu_data(sibling).smt_active = false;
1563 }
1564
1565 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1566 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1567 cpumask_clear(cpu_llc_shared_mask(cpu));
1568 cpumask_clear(topology_sibling_cpumask(cpu));
1569 cpumask_clear(topology_core_cpumask(cpu));
1570 cpumask_clear(topology_die_cpumask(cpu));
1571 c->cpu_core_id = 0;
1572 c->booted_cores = 0;
1573 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1574 recompute_smt_state();
1575 }
1576
remove_cpu_from_maps(int cpu)1577 static void remove_cpu_from_maps(int cpu)
1578 {
1579 set_cpu_online(cpu, false);
1580 cpumask_clear_cpu(cpu, cpu_callout_mask);
1581 cpumask_clear_cpu(cpu, cpu_callin_mask);
1582 /* was set by cpu_init() */
1583 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1584 numa_remove_cpu(cpu);
1585 }
1586
cpu_disable_common(void)1587 void cpu_disable_common(void)
1588 {
1589 int cpu = smp_processor_id();
1590
1591 remove_siblinginfo(cpu);
1592
1593 /* It's now safe to remove this processor from the online map */
1594 lock_vector_lock();
1595 remove_cpu_from_maps(cpu);
1596 unlock_vector_lock();
1597 fixup_irqs();
1598 lapic_offline();
1599 }
1600
native_cpu_disable(void)1601 int native_cpu_disable(void)
1602 {
1603 int ret;
1604
1605 ret = lapic_can_unplug_cpu();
1606 if (ret)
1607 return ret;
1608
1609 cpu_disable_common();
1610
1611 /*
1612 * Disable the local APIC. Otherwise IPI broadcasts will reach
1613 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1614 * messages.
1615 *
1616 * Disabling the APIC must happen after cpu_disable_common()
1617 * which invokes fixup_irqs().
1618 *
1619 * Disabling the APIC preserves already set bits in IRR, but
1620 * an interrupt arriving after disabling the local APIC does not
1621 * set the corresponding IRR bit.
1622 *
1623 * fixup_irqs() scans IRR for set bits so it can raise a not
1624 * yet handled interrupt on the new destination CPU via an IPI
1625 * but obviously it can't do so for IRR bits which are not set.
1626 * IOW, interrupts arriving after disabling the local APIC will
1627 * be lost.
1628 */
1629 apic_soft_disable();
1630
1631 return 0;
1632 }
1633
common_cpu_die(unsigned int cpu)1634 int common_cpu_die(unsigned int cpu)
1635 {
1636 int ret = 0;
1637
1638 /* We don't do anything here: idle task is faking death itself. */
1639
1640 /* They ack this in play_dead() by setting CPU_DEAD */
1641 if (cpu_wait_death(cpu, 5)) {
1642 if (system_state == SYSTEM_RUNNING)
1643 pr_info("CPU %u is now offline\n", cpu);
1644 } else {
1645 pr_err("CPU %u didn't die...\n", cpu);
1646 ret = -1;
1647 }
1648
1649 return ret;
1650 }
1651
native_cpu_die(unsigned int cpu)1652 void native_cpu_die(unsigned int cpu)
1653 {
1654 common_cpu_die(cpu);
1655 }
1656
play_dead_common(void)1657 void play_dead_common(void)
1658 {
1659 idle_task_exit();
1660
1661 /* Ack it */
1662 (void)cpu_report_death();
1663
1664 /*
1665 * With physical CPU hotplug, we should halt the cpu
1666 */
1667 local_irq_disable();
1668 }
1669
1670 /**
1671 * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1672 *
1673 * If NMI wants to wake up CPU0, start CPU0.
1674 */
cond_wakeup_cpu0(void)1675 void cond_wakeup_cpu0(void)
1676 {
1677 if (smp_processor_id() == 0 && enable_start_cpu0)
1678 start_cpu0();
1679 }
1680 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1681
1682 /*
1683 * We need to flush the caches before going to sleep, lest we have
1684 * dirty data in our caches when we come back up.
1685 */
mwait_play_dead(void)1686 static inline void mwait_play_dead(void)
1687 {
1688 unsigned int eax, ebx, ecx, edx;
1689 unsigned int highest_cstate = 0;
1690 unsigned int highest_subcstate = 0;
1691 void *mwait_ptr;
1692 int i;
1693
1694 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1695 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1696 return;
1697 if (!this_cpu_has(X86_FEATURE_MWAIT))
1698 return;
1699 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1700 return;
1701 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1702 return;
1703
1704 eax = CPUID_MWAIT_LEAF;
1705 ecx = 0;
1706 native_cpuid(&eax, &ebx, &ecx, &edx);
1707
1708 /*
1709 * eax will be 0 if EDX enumeration is not valid.
1710 * Initialized below to cstate, sub_cstate value when EDX is valid.
1711 */
1712 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1713 eax = 0;
1714 } else {
1715 edx >>= MWAIT_SUBSTATE_SIZE;
1716 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1717 if (edx & MWAIT_SUBSTATE_MASK) {
1718 highest_cstate = i;
1719 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1720 }
1721 }
1722 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1723 (highest_subcstate - 1);
1724 }
1725
1726 /*
1727 * This should be a memory location in a cache line which is
1728 * unlikely to be touched by other processors. The actual
1729 * content is immaterial as it is not actually modified in any way.
1730 */
1731 mwait_ptr = ¤t_thread_info()->flags;
1732
1733 wbinvd();
1734
1735 while (1) {
1736 /*
1737 * The CLFLUSH is a workaround for erratum AAI65 for
1738 * the Xeon 7400 series. It's not clear it is actually
1739 * needed, but it should be harmless in either case.
1740 * The WBINVD is insufficient due to the spurious-wakeup
1741 * case where we return around the loop.
1742 */
1743 mb();
1744 clflush(mwait_ptr);
1745 mb();
1746 __monitor(mwait_ptr, 0, 0);
1747 mb();
1748 __mwait(eax, 0);
1749
1750 cond_wakeup_cpu0();
1751 }
1752 }
1753
hlt_play_dead(void)1754 void hlt_play_dead(void)
1755 {
1756 if (__this_cpu_read(cpu_info.x86) >= 4)
1757 wbinvd();
1758
1759 while (1) {
1760 native_halt();
1761
1762 cond_wakeup_cpu0();
1763 }
1764 }
1765
native_play_dead(void)1766 void native_play_dead(void)
1767 {
1768 play_dead_common();
1769 tboot_shutdown(TB_SHUTDOWN_WFS);
1770
1771 mwait_play_dead(); /* Only returns on failure */
1772 if (cpuidle_play_dead())
1773 hlt_play_dead();
1774 }
1775
1776 #else /* ... !CONFIG_HOTPLUG_CPU */
native_cpu_disable(void)1777 int native_cpu_disable(void)
1778 {
1779 return -ENOSYS;
1780 }
1781
native_cpu_die(unsigned int cpu)1782 void native_cpu_die(unsigned int cpu)
1783 {
1784 /* We said "no" in __cpu_disable */
1785 BUG();
1786 }
1787
native_play_dead(void)1788 void native_play_dead(void)
1789 {
1790 BUG();
1791 }
1792
1793 #endif
1794
1795 #ifdef CONFIG_X86_64
1796 /*
1797 * APERF/MPERF frequency ratio computation.
1798 *
1799 * The scheduler wants to do frequency invariant accounting and needs a <1
1800 * ratio to account for the 'current' frequency, corresponding to
1801 * freq_curr / freq_max.
1802 *
1803 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1804 * our P-state setting is little more than a request/hint, we need to observe
1805 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1806 * interval after discarding idle time. This is given by:
1807 *
1808 * BusyMHz = delta_APERF / delta_MPERF * freq_base
1809 *
1810 * where freq_base is the max non-turbo P-state.
1811 *
1812 * The freq_max term has to be set to a somewhat arbitrary value, because we
1813 * can't know which turbo states will be available at a given point in time:
1814 * it all depends on the thermal headroom of the entire package. We set it to
1815 * the turbo level with 4 cores active.
1816 *
1817 * Benchmarks show that's a good compromise between the 1C turbo ratio
1818 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1819 * which would ignore the entire turbo range (a conspicuous part, making
1820 * freq_curr/freq_max always maxed out).
1821 *
1822 * An exception to the heuristic above is the Atom uarch, where we choose the
1823 * highest turbo level for freq_max since Atom's are generally oriented towards
1824 * power efficiency.
1825 *
1826 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1827 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1828 */
1829
1830 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1831
1832 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1833 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1834 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1835 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1836
arch_set_max_freq_ratio(bool turbo_disabled)1837 void arch_set_max_freq_ratio(bool turbo_disabled)
1838 {
1839 arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1840 arch_turbo_freq_ratio;
1841 }
1842 EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1843
turbo_disabled(void)1844 static bool turbo_disabled(void)
1845 {
1846 u64 misc_en;
1847 int err;
1848
1849 err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1850 if (err)
1851 return false;
1852
1853 return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1854 }
1855
slv_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq)1856 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1857 {
1858 int err;
1859
1860 err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1861 if (err)
1862 return false;
1863
1864 err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1865 if (err)
1866 return false;
1867
1868 *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
1869 *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
1870
1871 return true;
1872 }
1873
1874 #define X86_MATCH(model) \
1875 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \
1876 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1877
1878 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1879 X86_MATCH(XEON_PHI_KNL),
1880 X86_MATCH(XEON_PHI_KNM),
1881 {}
1882 };
1883
1884 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1885 X86_MATCH(SKYLAKE_X),
1886 {}
1887 };
1888
1889 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1890 X86_MATCH(ATOM_GOLDMONT),
1891 X86_MATCH(ATOM_GOLDMONT_D),
1892 X86_MATCH(ATOM_GOLDMONT_PLUS),
1893 {}
1894 };
1895
knl_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq,int num_delta_fratio)1896 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1897 int num_delta_fratio)
1898 {
1899 int fratio, delta_fratio, found;
1900 int err, i;
1901 u64 msr;
1902
1903 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1904 if (err)
1905 return false;
1906
1907 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1908
1909 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1910 if (err)
1911 return false;
1912
1913 fratio = (msr >> 8) & 0xFF;
1914 i = 16;
1915 found = 0;
1916 do {
1917 if (found >= num_delta_fratio) {
1918 *turbo_freq = fratio;
1919 return true;
1920 }
1921
1922 delta_fratio = (msr >> (i + 5)) & 0x7;
1923
1924 if (delta_fratio) {
1925 found += 1;
1926 fratio -= delta_fratio;
1927 }
1928
1929 i += 8;
1930 } while (i < 64);
1931
1932 return true;
1933 }
1934
skx_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq,int size)1935 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1936 {
1937 u64 ratios, counts;
1938 u32 group_size;
1939 int err, i;
1940
1941 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1942 if (err)
1943 return false;
1944
1945 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1946
1947 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1948 if (err)
1949 return false;
1950
1951 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1952 if (err)
1953 return false;
1954
1955 for (i = 0; i < 64; i += 8) {
1956 group_size = (counts >> i) & 0xFF;
1957 if (group_size >= size) {
1958 *turbo_freq = (ratios >> i) & 0xFF;
1959 return true;
1960 }
1961 }
1962
1963 return false;
1964 }
1965
core_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq)1966 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1967 {
1968 u64 msr;
1969 int err;
1970
1971 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1972 if (err)
1973 return false;
1974
1975 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1976 if (err)
1977 return false;
1978
1979 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1980 *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
1981
1982 /* The CPU may have less than 4 cores */
1983 if (!*turbo_freq)
1984 *turbo_freq = msr & 0xFF; /* 1C turbo */
1985
1986 return true;
1987 }
1988
intel_set_max_freq_ratio(void)1989 static bool intel_set_max_freq_ratio(void)
1990 {
1991 u64 base_freq, turbo_freq;
1992 u64 turbo_ratio;
1993
1994 if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1995 goto out;
1996
1997 if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1998 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1999 goto out;
2000
2001 if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
2002 knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2003 goto out;
2004
2005 if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2006 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2007 goto out;
2008
2009 if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2010 goto out;
2011
2012 return false;
2013
2014 out:
2015 /*
2016 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2017 * but then fill all MSR's with zeroes.
2018 * Some CPUs have turbo boost but don't declare any turbo ratio
2019 * in MSR_TURBO_RATIO_LIMIT.
2020 */
2021 if (!base_freq || !turbo_freq) {
2022 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2023 return false;
2024 }
2025
2026 turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2027 if (!turbo_ratio) {
2028 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2029 return false;
2030 }
2031
2032 arch_turbo_freq_ratio = turbo_ratio;
2033 arch_set_max_freq_ratio(turbo_disabled());
2034
2035 return true;
2036 }
2037
2038 #ifdef CONFIG_ACPI_CPPC_LIB
amd_set_max_freq_ratio(void)2039 static bool amd_set_max_freq_ratio(void)
2040 {
2041 struct cppc_perf_caps perf_caps;
2042 u64 highest_perf, nominal_perf;
2043 u64 perf_ratio;
2044 int rc;
2045
2046 rc = cppc_get_perf_caps(0, &perf_caps);
2047 if (rc) {
2048 pr_debug("Could not retrieve perf counters (%d)\n", rc);
2049 return false;
2050 }
2051
2052 highest_perf = amd_get_highest_perf();
2053 nominal_perf = perf_caps.nominal_perf;
2054
2055 if (!highest_perf || !nominal_perf) {
2056 pr_debug("Could not retrieve highest or nominal performance\n");
2057 return false;
2058 }
2059
2060 perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
2061 /* midpoint between max_boost and max_P */
2062 perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
2063 if (!perf_ratio) {
2064 pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2065 return false;
2066 }
2067
2068 arch_turbo_freq_ratio = perf_ratio;
2069 arch_set_max_freq_ratio(false);
2070
2071 return true;
2072 }
2073 #else
amd_set_max_freq_ratio(void)2074 static bool amd_set_max_freq_ratio(void)
2075 {
2076 return false;
2077 }
2078 #endif
2079
init_counter_refs(void)2080 static void init_counter_refs(void)
2081 {
2082 u64 aperf, mperf;
2083
2084 rdmsrl(MSR_IA32_APERF, aperf);
2085 rdmsrl(MSR_IA32_MPERF, mperf);
2086
2087 this_cpu_write(arch_prev_aperf, aperf);
2088 this_cpu_write(arch_prev_mperf, mperf);
2089 }
2090
2091 #ifdef CONFIG_PM_SLEEP
2092 static struct syscore_ops freq_invariance_syscore_ops = {
2093 .resume = init_counter_refs,
2094 };
2095
register_freq_invariance_syscore_ops(void)2096 static void register_freq_invariance_syscore_ops(void)
2097 {
2098 /* Bail out if registered already. */
2099 if (freq_invariance_syscore_ops.node.prev)
2100 return;
2101
2102 register_syscore_ops(&freq_invariance_syscore_ops);
2103 }
2104 #else
register_freq_invariance_syscore_ops(void)2105 static inline void register_freq_invariance_syscore_ops(void) {}
2106 #endif
2107
init_freq_invariance(bool secondary,bool cppc_ready)2108 static void init_freq_invariance(bool secondary, bool cppc_ready)
2109 {
2110 bool ret = false;
2111
2112 if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2113 return;
2114
2115 if (secondary) {
2116 if (static_branch_likely(&arch_scale_freq_key)) {
2117 init_counter_refs();
2118 }
2119 return;
2120 }
2121
2122 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2123 ret = intel_set_max_freq_ratio();
2124 else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2125 if (!cppc_ready) {
2126 return;
2127 }
2128 ret = amd_set_max_freq_ratio();
2129 }
2130
2131 if (ret) {
2132 init_counter_refs();
2133 static_branch_enable(&arch_scale_freq_key);
2134 register_freq_invariance_syscore_ops();
2135 pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2136 } else {
2137 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2138 }
2139 }
2140
2141 #ifdef CONFIG_ACPI_CPPC_LIB
2142 static DEFINE_MUTEX(freq_invariance_lock);
2143
init_freq_invariance_cppc(void)2144 void init_freq_invariance_cppc(void)
2145 {
2146 static bool secondary;
2147
2148 mutex_lock(&freq_invariance_lock);
2149
2150 init_freq_invariance(secondary, true);
2151 secondary = true;
2152
2153 mutex_unlock(&freq_invariance_lock);
2154 }
2155 #endif
2156
disable_freq_invariance_workfn(struct work_struct * work)2157 static void disable_freq_invariance_workfn(struct work_struct *work)
2158 {
2159 static_branch_disable(&arch_scale_freq_key);
2160 }
2161
2162 static DECLARE_WORK(disable_freq_invariance_work,
2163 disable_freq_invariance_workfn);
2164
2165 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2166
arch_scale_freq_tick(void)2167 void arch_scale_freq_tick(void)
2168 {
2169 u64 freq_scale = SCHED_CAPACITY_SCALE;
2170 u64 aperf, mperf;
2171 u64 acnt, mcnt;
2172
2173 if (!arch_scale_freq_invariant())
2174 return;
2175
2176 rdmsrl(MSR_IA32_APERF, aperf);
2177 rdmsrl(MSR_IA32_MPERF, mperf);
2178
2179 acnt = aperf - this_cpu_read(arch_prev_aperf);
2180 mcnt = mperf - this_cpu_read(arch_prev_mperf);
2181
2182 this_cpu_write(arch_prev_aperf, aperf);
2183 this_cpu_write(arch_prev_mperf, mperf);
2184
2185 if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2186 goto error;
2187
2188 if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2189 goto error;
2190
2191 freq_scale = div64_u64(acnt, mcnt);
2192 if (!freq_scale)
2193 goto error;
2194
2195 if (freq_scale > SCHED_CAPACITY_SCALE)
2196 freq_scale = SCHED_CAPACITY_SCALE;
2197
2198 this_cpu_write(arch_freq_scale, freq_scale);
2199 return;
2200
2201 error:
2202 pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2203 schedule_work(&disable_freq_invariance_work);
2204 }
2205 #else
init_freq_invariance(bool secondary,bool cppc_ready)2206 static inline void init_freq_invariance(bool secondary, bool cppc_ready)
2207 {
2208 }
2209 #endif /* CONFIG_X86_64 */
2210