1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * FPU register's regset abstraction, for ptrace, core dumps, etc.
4 */
5 #include <linux/sched/task_stack.h>
6 #include <linux/vmalloc.h>
7
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/signal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/xstate.h>
12
13 /*
14 * The xstateregs_active() routine is the same as the regset_fpregs_active() routine,
15 * as the "regset->n" for the xstate regset will be updated based on the feature
16 * capabilities supported by the xsave.
17 */
regset_fpregs_active(struct task_struct * target,const struct user_regset * regset)18 int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
19 {
20 return regset->n;
21 }
22
regset_xregset_fpregs_active(struct task_struct * target,const struct user_regset * regset)23 int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset)
24 {
25 if (boot_cpu_has(X86_FEATURE_FXSR))
26 return regset->n;
27 else
28 return 0;
29 }
30
31 /*
32 * The regset get() functions are invoked from:
33 *
34 * - coredump to dump the current task's fpstate. If the current task
35 * owns the FPU then the memory state has to be synchronized and the
36 * FPU register state preserved. Otherwise fpstate is already in sync.
37 *
38 * - ptrace to dump fpstate of a stopped task, in which case the registers
39 * have already been saved to fpstate on context switch.
40 */
sync_fpstate(struct fpu * fpu)41 static void sync_fpstate(struct fpu *fpu)
42 {
43 if (fpu == ¤t->thread.fpu)
44 fpu_sync_fpstate(fpu);
45 }
46
47 /*
48 * Invalidate cached FPU registers before modifying the stopped target
49 * task's fpstate.
50 *
51 * This forces the target task on resume to restore the FPU registers from
52 * modified fpstate. Otherwise the task might skip the restore and operate
53 * with the cached FPU registers which discards the modifications.
54 */
fpu_force_restore(struct fpu * fpu)55 static void fpu_force_restore(struct fpu *fpu)
56 {
57 /*
58 * Only stopped child tasks can be used to modify the FPU
59 * state in the fpstate buffer:
60 */
61 WARN_ON_FPU(fpu == ¤t->thread.fpu);
62
63 __fpu_invalidate_fpregs_state(fpu);
64 }
65
xfpregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)66 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
67 struct membuf to)
68 {
69 struct fpu *fpu = &target->thread.fpu;
70
71 if (!cpu_feature_enabled(X86_FEATURE_FXSR))
72 return -ENODEV;
73
74 sync_fpstate(fpu);
75
76 if (!use_xsave()) {
77 return membuf_write(&to, &fpu->state.fxsave,
78 sizeof(fpu->state.fxsave));
79 }
80
81 copy_xstate_to_uabi_buf(to, target, XSTATE_COPY_FX);
82 return 0;
83 }
84
xfpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)85 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
86 unsigned int pos, unsigned int count,
87 const void *kbuf, const void __user *ubuf)
88 {
89 struct fpu *fpu = &target->thread.fpu;
90 struct user32_fxsr_struct newstate;
91 int ret;
92
93 BUILD_BUG_ON(sizeof(newstate) != sizeof(struct fxregs_state));
94
95 if (!cpu_feature_enabled(X86_FEATURE_FXSR))
96 return -ENODEV;
97
98 /* No funny business with partial or oversized writes is permitted. */
99 if (pos != 0 || count != sizeof(newstate))
100 return -EINVAL;
101
102 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate, 0, -1);
103 if (ret)
104 return ret;
105
106 /* Do not allow an invalid MXCSR value. */
107 if (newstate.mxcsr & ~mxcsr_feature_mask)
108 return -EINVAL;
109
110 fpu_force_restore(fpu);
111
112 /* Copy the state */
113 memcpy(&fpu->state.fxsave, &newstate, sizeof(newstate));
114
115 /* Clear xmm8..15 */
116 BUILD_BUG_ON(sizeof(fpu->state.fxsave.xmm_space) != 16 * 16);
117 memset(&fpu->state.fxsave.xmm_space[8], 0, 8 * 16);
118
119 /* Mark FP and SSE as in use when XSAVE is enabled */
120 if (use_xsave())
121 fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FPSSE;
122
123 return 0;
124 }
125
xstateregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)126 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
127 struct membuf to)
128 {
129 if (!cpu_feature_enabled(X86_FEATURE_XSAVE))
130 return -ENODEV;
131
132 sync_fpstate(&target->thread.fpu);
133
134 copy_xstate_to_uabi_buf(to, target, XSTATE_COPY_XSAVE);
135 return 0;
136 }
137
xstateregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)138 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
139 unsigned int pos, unsigned int count,
140 const void *kbuf, const void __user *ubuf)
141 {
142 struct fpu *fpu = &target->thread.fpu;
143 struct xregs_state *tmpbuf = NULL;
144 int ret;
145
146 if (!cpu_feature_enabled(X86_FEATURE_XSAVE))
147 return -ENODEV;
148
149 /*
150 * A whole standard-format XSAVE buffer is needed:
151 */
152 if (pos != 0 || count != fpu_user_xstate_size)
153 return -EFAULT;
154
155 if (!kbuf) {
156 tmpbuf = vmalloc(count);
157 if (!tmpbuf)
158 return -ENOMEM;
159
160 if (copy_from_user(tmpbuf, ubuf, count)) {
161 ret = -EFAULT;
162 goto out;
163 }
164 }
165
166 fpu_force_restore(fpu);
167 ret = copy_uabi_from_kernel_to_xstate(&fpu->state.xsave, kbuf ?: tmpbuf);
168
169 out:
170 vfree(tmpbuf);
171 return ret;
172 }
173
174 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
175
176 /*
177 * FPU tag word conversions.
178 */
179
twd_i387_to_fxsr(unsigned short twd)180 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
181 {
182 unsigned int tmp; /* to avoid 16 bit prefixes in the code */
183
184 /* Transform each pair of bits into 01 (valid) or 00 (empty) */
185 tmp = ~twd;
186 tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
187 /* and move the valid bits to the lower byte. */
188 tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
189 tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
190 tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
191
192 return tmp;
193 }
194
195 #define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
196 #define FP_EXP_TAG_VALID 0
197 #define FP_EXP_TAG_ZERO 1
198 #define FP_EXP_TAG_SPECIAL 2
199 #define FP_EXP_TAG_EMPTY 3
200
twd_fxsr_to_i387(struct fxregs_state * fxsave)201 static inline u32 twd_fxsr_to_i387(struct fxregs_state *fxsave)
202 {
203 struct _fpxreg *st;
204 u32 tos = (fxsave->swd >> 11) & 7;
205 u32 twd = (unsigned long) fxsave->twd;
206 u32 tag;
207 u32 ret = 0xffff0000u;
208 int i;
209
210 for (i = 0; i < 8; i++, twd >>= 1) {
211 if (twd & 0x1) {
212 st = FPREG_ADDR(fxsave, (i - tos) & 7);
213
214 switch (st->exponent & 0x7fff) {
215 case 0x7fff:
216 tag = FP_EXP_TAG_SPECIAL;
217 break;
218 case 0x0000:
219 if (!st->significand[0] &&
220 !st->significand[1] &&
221 !st->significand[2] &&
222 !st->significand[3])
223 tag = FP_EXP_TAG_ZERO;
224 else
225 tag = FP_EXP_TAG_SPECIAL;
226 break;
227 default:
228 if (st->significand[3] & 0x8000)
229 tag = FP_EXP_TAG_VALID;
230 else
231 tag = FP_EXP_TAG_SPECIAL;
232 break;
233 }
234 } else {
235 tag = FP_EXP_TAG_EMPTY;
236 }
237 ret |= tag << (2 * i);
238 }
239 return ret;
240 }
241
242 /*
243 * FXSR floating point environment conversions.
244 */
245
__convert_from_fxsr(struct user_i387_ia32_struct * env,struct task_struct * tsk,struct fxregs_state * fxsave)246 static void __convert_from_fxsr(struct user_i387_ia32_struct *env,
247 struct task_struct *tsk,
248 struct fxregs_state *fxsave)
249 {
250 struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
251 struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
252 int i;
253
254 env->cwd = fxsave->cwd | 0xffff0000u;
255 env->swd = fxsave->swd | 0xffff0000u;
256 env->twd = twd_fxsr_to_i387(fxsave);
257
258 #ifdef CONFIG_X86_64
259 env->fip = fxsave->rip;
260 env->foo = fxsave->rdp;
261 /*
262 * should be actually ds/cs at fpu exception time, but
263 * that information is not available in 64bit mode.
264 */
265 env->fcs = task_pt_regs(tsk)->cs;
266 if (tsk == current) {
267 savesegment(ds, env->fos);
268 } else {
269 env->fos = tsk->thread.ds;
270 }
271 env->fos |= 0xffff0000;
272 #else
273 env->fip = fxsave->fip;
274 env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
275 env->foo = fxsave->foo;
276 env->fos = fxsave->fos;
277 #endif
278
279 for (i = 0; i < 8; ++i)
280 memcpy(&to[i], &from[i], sizeof(to[0]));
281 }
282
283 void
convert_from_fxsr(struct user_i387_ia32_struct * env,struct task_struct * tsk)284 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
285 {
286 __convert_from_fxsr(env, tsk, &tsk->thread.fpu.state.fxsave);
287 }
288
convert_to_fxsr(struct fxregs_state * fxsave,const struct user_i387_ia32_struct * env)289 void convert_to_fxsr(struct fxregs_state *fxsave,
290 const struct user_i387_ia32_struct *env)
291
292 {
293 struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
294 struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
295 int i;
296
297 fxsave->cwd = env->cwd;
298 fxsave->swd = env->swd;
299 fxsave->twd = twd_i387_to_fxsr(env->twd);
300 fxsave->fop = (u16) ((u32) env->fcs >> 16);
301 #ifdef CONFIG_X86_64
302 fxsave->rip = env->fip;
303 fxsave->rdp = env->foo;
304 /* cs and ds ignored */
305 #else
306 fxsave->fip = env->fip;
307 fxsave->fcs = (env->fcs & 0xffff);
308 fxsave->foo = env->foo;
309 fxsave->fos = env->fos;
310 #endif
311
312 for (i = 0; i < 8; ++i)
313 memcpy(&to[i], &from[i], sizeof(from[0]));
314 }
315
fpregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)316 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
317 struct membuf to)
318 {
319 struct fpu *fpu = &target->thread.fpu;
320 struct user_i387_ia32_struct env;
321 struct fxregs_state fxsave, *fx;
322
323 sync_fpstate(fpu);
324
325 if (!cpu_feature_enabled(X86_FEATURE_FPU))
326 return fpregs_soft_get(target, regset, to);
327
328 if (!cpu_feature_enabled(X86_FEATURE_FXSR)) {
329 return membuf_write(&to, &fpu->state.fsave,
330 sizeof(struct fregs_state));
331 }
332
333 if (use_xsave()) {
334 struct membuf mb = { .p = &fxsave, .left = sizeof(fxsave) };
335
336 /* Handle init state optimized xstate correctly */
337 copy_xstate_to_uabi_buf(mb, target, XSTATE_COPY_FP);
338 fx = &fxsave;
339 } else {
340 fx = &fpu->state.fxsave;
341 }
342
343 __convert_from_fxsr(&env, target, fx);
344 return membuf_write(&to, &env, sizeof(env));
345 }
346
fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)347 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
348 unsigned int pos, unsigned int count,
349 const void *kbuf, const void __user *ubuf)
350 {
351 struct fpu *fpu = &target->thread.fpu;
352 struct user_i387_ia32_struct env;
353 int ret;
354
355 /* No funny business with partial or oversized writes is permitted. */
356 if (pos != 0 || count != sizeof(struct user_i387_ia32_struct))
357 return -EINVAL;
358
359 if (!cpu_feature_enabled(X86_FEATURE_FPU))
360 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
361
362 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
363 if (ret)
364 return ret;
365
366 fpu_force_restore(fpu);
367
368 if (cpu_feature_enabled(X86_FEATURE_FXSR))
369 convert_to_fxsr(&fpu->state.fxsave, &env);
370 else
371 memcpy(&fpu->state.fsave, &env, sizeof(env));
372
373 /*
374 * Update the header bit in the xsave header, indicating the
375 * presence of FP.
376 */
377 if (cpu_feature_enabled(X86_FEATURE_XSAVE))
378 fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FP;
379
380 return 0;
381 }
382
383 #endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
384