1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/pgtable.h>
4
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/smp.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/thread_info.h>
11 #include <linux/init.h>
12 #include <linux/uaccess.h>
13 #include <linux/delay.h>
14
15 #include <asm/cpufeature.h>
16 #include <asm/msr.h>
17 #include <asm/bugs.h>
18 #include <asm/cpu.h>
19 #include <asm/intel-family.h>
20 #include <asm/microcode_intel.h>
21 #include <asm/hwcap2.h>
22 #include <asm/elf.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/cmdline.h>
25 #include <asm/traps.h>
26 #include <asm/resctrl.h>
27 #include <asm/numa.h>
28 #include <asm/thermal.h>
29
30 #ifdef CONFIG_X86_64
31 #include <linux/topology.h>
32 #endif
33
34 #include "cpu.h"
35
36 #ifdef CONFIG_X86_LOCAL_APIC
37 #include <asm/mpspec.h>
38 #include <asm/apic.h>
39 #endif
40
41 enum split_lock_detect_state {
42 sld_off = 0,
43 sld_warn,
44 sld_fatal,
45 sld_ratelimit,
46 };
47
48 /*
49 * Default to sld_off because most systems do not support split lock detection.
50 * sld_state_setup() will switch this to sld_warn on systems that support
51 * split lock/bus lock detect, unless there is a command line override.
52 */
53 static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
54 static u64 msr_test_ctrl_cache __ro_after_init;
55
56 /*
57 * With a name like MSR_TEST_CTL it should go without saying, but don't touch
58 * MSR_TEST_CTL unless the CPU is one of the whitelisted models. Writing it
59 * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
60 */
61 static bool cpu_model_supports_sld __ro_after_init;
62
63 /*
64 * Processors which have self-snooping capability can handle conflicting
65 * memory type across CPUs by snooping its own cache. However, there exists
66 * CPU models in which having conflicting memory types still leads to
67 * unpredictable behavior, machine check errors, or hangs. Clear this
68 * feature to prevent its use on machines with known erratas.
69 */
check_memory_type_self_snoop_errata(struct cpuinfo_x86 * c)70 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
71 {
72 switch (c->x86_model) {
73 case INTEL_FAM6_CORE_YONAH:
74 case INTEL_FAM6_CORE2_MEROM:
75 case INTEL_FAM6_CORE2_MEROM_L:
76 case INTEL_FAM6_CORE2_PENRYN:
77 case INTEL_FAM6_CORE2_DUNNINGTON:
78 case INTEL_FAM6_NEHALEM:
79 case INTEL_FAM6_NEHALEM_G:
80 case INTEL_FAM6_NEHALEM_EP:
81 case INTEL_FAM6_NEHALEM_EX:
82 case INTEL_FAM6_WESTMERE:
83 case INTEL_FAM6_WESTMERE_EP:
84 case INTEL_FAM6_SANDYBRIDGE:
85 setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
86 }
87 }
88
89 static bool ring3mwait_disabled __read_mostly;
90
ring3mwait_disable(char * __unused)91 static int __init ring3mwait_disable(char *__unused)
92 {
93 ring3mwait_disabled = true;
94 return 0;
95 }
96 __setup("ring3mwait=disable", ring3mwait_disable);
97
probe_xeon_phi_r3mwait(struct cpuinfo_x86 * c)98 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
99 {
100 /*
101 * Ring 3 MONITOR/MWAIT feature cannot be detected without
102 * cpu model and family comparison.
103 */
104 if (c->x86 != 6)
105 return;
106 switch (c->x86_model) {
107 case INTEL_FAM6_XEON_PHI_KNL:
108 case INTEL_FAM6_XEON_PHI_KNM:
109 break;
110 default:
111 return;
112 }
113
114 if (ring3mwait_disabled)
115 return;
116
117 set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
118 this_cpu_or(msr_misc_features_shadow,
119 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
120
121 if (c == &boot_cpu_data)
122 ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
123 }
124
125 /*
126 * Early microcode releases for the Spectre v2 mitigation were broken.
127 * Information taken from;
128 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
129 * - https://kb.vmware.com/s/article/52345
130 * - Microcode revisions observed in the wild
131 * - Release note from 20180108 microcode release
132 */
133 struct sku_microcode {
134 u8 model;
135 u8 stepping;
136 u32 microcode;
137 };
138 static const struct sku_microcode spectre_bad_microcodes[] = {
139 { INTEL_FAM6_KABYLAKE, 0x0B, 0x80 },
140 { INTEL_FAM6_KABYLAKE, 0x0A, 0x80 },
141 { INTEL_FAM6_KABYLAKE, 0x09, 0x80 },
142 { INTEL_FAM6_KABYLAKE_L, 0x0A, 0x80 },
143 { INTEL_FAM6_KABYLAKE_L, 0x09, 0x80 },
144 { INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e },
145 { INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c },
146 { INTEL_FAM6_BROADWELL, 0x04, 0x28 },
147 { INTEL_FAM6_BROADWELL_G, 0x01, 0x1b },
148 { INTEL_FAM6_BROADWELL_D, 0x02, 0x14 },
149 { INTEL_FAM6_BROADWELL_D, 0x03, 0x07000011 },
150 { INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 },
151 { INTEL_FAM6_HASWELL_L, 0x01, 0x21 },
152 { INTEL_FAM6_HASWELL_G, 0x01, 0x18 },
153 { INTEL_FAM6_HASWELL, 0x03, 0x23 },
154 { INTEL_FAM6_HASWELL_X, 0x02, 0x3b },
155 { INTEL_FAM6_HASWELL_X, 0x04, 0x10 },
156 { INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a },
157 /* Observed in the wild */
158 { INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b },
159 { INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 },
160 };
161
bad_spectre_microcode(struct cpuinfo_x86 * c)162 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
163 {
164 int i;
165
166 /*
167 * We know that the hypervisor lie to us on the microcode version so
168 * we may as well hope that it is running the correct version.
169 */
170 if (cpu_has(c, X86_FEATURE_HYPERVISOR))
171 return false;
172
173 if (c->x86 != 6)
174 return false;
175
176 for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
177 if (c->x86_model == spectre_bad_microcodes[i].model &&
178 c->x86_stepping == spectre_bad_microcodes[i].stepping)
179 return (c->microcode <= spectre_bad_microcodes[i].microcode);
180 }
181 return false;
182 }
183
early_init_intel(struct cpuinfo_x86 * c)184 static void early_init_intel(struct cpuinfo_x86 *c)
185 {
186 u64 misc_enable;
187
188 /* Unmask CPUID levels if masked: */
189 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
190 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
191 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
192 c->cpuid_level = cpuid_eax(0);
193 get_cpu_cap(c);
194 }
195 }
196
197 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
198 (c->x86 == 0x6 && c->x86_model >= 0x0e))
199 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
200
201 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
202 c->microcode = intel_get_microcode_revision();
203
204 /* Now if any of them are set, check the blacklist and clear the lot */
205 if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
206 cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
207 cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
208 cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
209 pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
210 setup_clear_cpu_cap(X86_FEATURE_IBRS);
211 setup_clear_cpu_cap(X86_FEATURE_IBPB);
212 setup_clear_cpu_cap(X86_FEATURE_STIBP);
213 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
214 setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
215 setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
216 setup_clear_cpu_cap(X86_FEATURE_SSBD);
217 setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
218 }
219
220 /*
221 * Atom erratum AAE44/AAF40/AAG38/AAH41:
222 *
223 * A race condition between speculative fetches and invalidating
224 * a large page. This is worked around in microcode, but we
225 * need the microcode to have already been loaded... so if it is
226 * not, recommend a BIOS update and disable large pages.
227 */
228 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
229 c->microcode < 0x20e) {
230 pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
231 clear_cpu_cap(c, X86_FEATURE_PSE);
232 }
233
234 #ifdef CONFIG_X86_64
235 set_cpu_cap(c, X86_FEATURE_SYSENTER32);
236 #else
237 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
238 if (c->x86 == 15 && c->x86_cache_alignment == 64)
239 c->x86_cache_alignment = 128;
240 #endif
241
242 /* CPUID workaround for 0F33/0F34 CPU */
243 if (c->x86 == 0xF && c->x86_model == 0x3
244 && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
245 c->x86_phys_bits = 36;
246
247 /*
248 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
249 * with P/T states and does not stop in deep C-states.
250 *
251 * It is also reliable across cores and sockets. (but not across
252 * cabinets - we turn it off in that case explicitly.)
253 */
254 if (c->x86_power & (1 << 8)) {
255 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
256 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
257 }
258
259 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
260 if (c->x86 == 6) {
261 switch (c->x86_model) {
262 case INTEL_FAM6_ATOM_SALTWELL_MID:
263 case INTEL_FAM6_ATOM_SALTWELL_TABLET:
264 case INTEL_FAM6_ATOM_SILVERMONT_MID:
265 case INTEL_FAM6_ATOM_AIRMONT_NP:
266 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
267 break;
268 default:
269 break;
270 }
271 }
272
273 /*
274 * There is a known erratum on Pentium III and Core Solo
275 * and Core Duo CPUs.
276 * " Page with PAT set to WC while associated MTRR is UC
277 * may consolidate to UC "
278 * Because of this erratum, it is better to stick with
279 * setting WC in MTRR rather than using PAT on these CPUs.
280 *
281 * Enable PAT WC only on P4, Core 2 or later CPUs.
282 */
283 if (c->x86 == 6 && c->x86_model < 15)
284 clear_cpu_cap(c, X86_FEATURE_PAT);
285
286 /*
287 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
288 * clear the fast string and enhanced fast string CPU capabilities.
289 */
290 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
291 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
292 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
293 pr_info("Disabled fast string operations\n");
294 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
295 setup_clear_cpu_cap(X86_FEATURE_ERMS);
296 }
297 }
298
299 /*
300 * Intel Quark Core DevMan_001.pdf section 6.4.11
301 * "The operating system also is required to invalidate (i.e., flush)
302 * the TLB when any changes are made to any of the page table entries.
303 * The operating system must reload CR3 to cause the TLB to be flushed"
304 *
305 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
306 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
307 * to be modified.
308 */
309 if (c->x86 == 5 && c->x86_model == 9) {
310 pr_info("Disabling PGE capability bit\n");
311 setup_clear_cpu_cap(X86_FEATURE_PGE);
312 }
313
314 if (c->cpuid_level >= 0x00000001) {
315 u32 eax, ebx, ecx, edx;
316
317 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
318 /*
319 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
320 * apicids which are reserved per package. Store the resulting
321 * shift value for the package management code.
322 */
323 if (edx & (1U << 28))
324 c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
325 }
326
327 check_memory_type_self_snoop_errata(c);
328
329 /*
330 * Get the number of SMT siblings early from the extended topology
331 * leaf, if available. Otherwise try the legacy SMT detection.
332 */
333 if (detect_extended_topology_early(c) < 0)
334 detect_ht_early(c);
335 }
336
bsp_init_intel(struct cpuinfo_x86 * c)337 static void bsp_init_intel(struct cpuinfo_x86 *c)
338 {
339 resctrl_cpu_detect(c);
340 }
341
342 #ifdef CONFIG_X86_32
343 /*
344 * Early probe support logic for ppro memory erratum #50
345 *
346 * This is called before we do cpu ident work
347 */
348
ppro_with_ram_bug(void)349 int ppro_with_ram_bug(void)
350 {
351 /* Uses data from early_cpu_detect now */
352 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
353 boot_cpu_data.x86 == 6 &&
354 boot_cpu_data.x86_model == 1 &&
355 boot_cpu_data.x86_stepping < 8) {
356 pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
357 return 1;
358 }
359 return 0;
360 }
361
intel_smp_check(struct cpuinfo_x86 * c)362 static void intel_smp_check(struct cpuinfo_x86 *c)
363 {
364 /* calling is from identify_secondary_cpu() ? */
365 if (!c->cpu_index)
366 return;
367
368 /*
369 * Mask B, Pentium, but not Pentium MMX
370 */
371 if (c->x86 == 5 &&
372 c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
373 c->x86_model <= 3) {
374 /*
375 * Remember we have B step Pentia with bugs
376 */
377 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
378 "with B stepping processors.\n");
379 }
380 }
381
382 static int forcepae;
forcepae_setup(char * __unused)383 static int __init forcepae_setup(char *__unused)
384 {
385 forcepae = 1;
386 return 1;
387 }
388 __setup("forcepae", forcepae_setup);
389
intel_workarounds(struct cpuinfo_x86 * c)390 static void intel_workarounds(struct cpuinfo_x86 *c)
391 {
392 #ifdef CONFIG_X86_F00F_BUG
393 /*
394 * All models of Pentium and Pentium with MMX technology CPUs
395 * have the F0 0F bug, which lets nonprivileged users lock up the
396 * system. Announce that the fault handler will be checking for it.
397 * The Quark is also family 5, but does not have the same bug.
398 */
399 clear_cpu_bug(c, X86_BUG_F00F);
400 if (c->x86 == 5 && c->x86_model < 9) {
401 static int f00f_workaround_enabled;
402
403 set_cpu_bug(c, X86_BUG_F00F);
404 if (!f00f_workaround_enabled) {
405 pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
406 f00f_workaround_enabled = 1;
407 }
408 }
409 #endif
410
411 /*
412 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
413 * model 3 mask 3
414 */
415 if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
416 clear_cpu_cap(c, X86_FEATURE_SEP);
417
418 /*
419 * PAE CPUID issue: many Pentium M report no PAE but may have a
420 * functionally usable PAE implementation.
421 * Forcefully enable PAE if kernel parameter "forcepae" is present.
422 */
423 if (forcepae) {
424 pr_warn("PAE forced!\n");
425 set_cpu_cap(c, X86_FEATURE_PAE);
426 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
427 }
428
429 /*
430 * P4 Xeon erratum 037 workaround.
431 * Hardware prefetcher may cause stale data to be loaded into the cache.
432 */
433 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
434 if (msr_set_bit(MSR_IA32_MISC_ENABLE,
435 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
436 pr_info("CPU: C0 stepping P4 Xeon detected.\n");
437 pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
438 }
439 }
440
441 /*
442 * See if we have a good local APIC by checking for buggy Pentia,
443 * i.e. all B steppings and the C2 stepping of P54C when using their
444 * integrated APIC (see 11AP erratum in "Pentium Processor
445 * Specification Update").
446 */
447 if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
448 (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
449 set_cpu_bug(c, X86_BUG_11AP);
450
451
452 #ifdef CONFIG_X86_INTEL_USERCOPY
453 /*
454 * Set up the preferred alignment for movsl bulk memory moves
455 */
456 switch (c->x86) {
457 case 4: /* 486: untested */
458 break;
459 case 5: /* Old Pentia: untested */
460 break;
461 case 6: /* PII/PIII only like movsl with 8-byte alignment */
462 movsl_mask.mask = 7;
463 break;
464 case 15: /* P4 is OK down to 8-byte alignment */
465 movsl_mask.mask = 7;
466 break;
467 }
468 #endif
469
470 intel_smp_check(c);
471 }
472 #else
intel_workarounds(struct cpuinfo_x86 * c)473 static void intel_workarounds(struct cpuinfo_x86 *c)
474 {
475 }
476 #endif
477
srat_detect_node(struct cpuinfo_x86 * c)478 static void srat_detect_node(struct cpuinfo_x86 *c)
479 {
480 #ifdef CONFIG_NUMA
481 unsigned node;
482 int cpu = smp_processor_id();
483
484 /* Don't do the funky fallback heuristics the AMD version employs
485 for now. */
486 node = numa_cpu_node(cpu);
487 if (node == NUMA_NO_NODE || !node_online(node)) {
488 /* reuse the value from init_cpu_to_node() */
489 node = cpu_to_node(cpu);
490 }
491 numa_set_node(cpu, node);
492 #endif
493 }
494
495 #define MSR_IA32_TME_ACTIVATE 0x982
496
497 /* Helpers to access TME_ACTIVATE MSR */
498 #define TME_ACTIVATE_LOCKED(x) (x & 0x1)
499 #define TME_ACTIVATE_ENABLED(x) (x & 0x2)
500
501 #define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */
502 #define TME_ACTIVATE_POLICY_AES_XTS_128 0
503
504 #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */
505
506 #define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */
507 #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1
508
509 /* Values for mktme_status (SW only construct) */
510 #define MKTME_ENABLED 0
511 #define MKTME_DISABLED 1
512 #define MKTME_UNINITIALIZED 2
513 static int mktme_status = MKTME_UNINITIALIZED;
514
detect_tme(struct cpuinfo_x86 * c)515 static void detect_tme(struct cpuinfo_x86 *c)
516 {
517 u64 tme_activate, tme_policy, tme_crypto_algs;
518 int keyid_bits = 0, nr_keyids = 0;
519 static u64 tme_activate_cpu0 = 0;
520
521 rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
522
523 if (mktme_status != MKTME_UNINITIALIZED) {
524 if (tme_activate != tme_activate_cpu0) {
525 /* Broken BIOS? */
526 pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
527 pr_err_once("x86/tme: MKTME is not usable\n");
528 mktme_status = MKTME_DISABLED;
529
530 /* Proceed. We may need to exclude bits from x86_phys_bits. */
531 }
532 } else {
533 tme_activate_cpu0 = tme_activate;
534 }
535
536 if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
537 pr_info_once("x86/tme: not enabled by BIOS\n");
538 mktme_status = MKTME_DISABLED;
539 return;
540 }
541
542 if (mktme_status != MKTME_UNINITIALIZED)
543 goto detect_keyid_bits;
544
545 pr_info("x86/tme: enabled by BIOS\n");
546
547 tme_policy = TME_ACTIVATE_POLICY(tme_activate);
548 if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
549 pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
550
551 tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
552 if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
553 pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
554 tme_crypto_algs);
555 mktme_status = MKTME_DISABLED;
556 }
557 detect_keyid_bits:
558 keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
559 nr_keyids = (1UL << keyid_bits) - 1;
560 if (nr_keyids) {
561 pr_info_once("x86/mktme: enabled by BIOS\n");
562 pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
563 } else {
564 pr_info_once("x86/mktme: disabled by BIOS\n");
565 }
566
567 if (mktme_status == MKTME_UNINITIALIZED) {
568 /* MKTME is usable */
569 mktme_status = MKTME_ENABLED;
570 }
571
572 /*
573 * KeyID bits effectively lower the number of physical address
574 * bits. Update cpuinfo_x86::x86_phys_bits accordingly.
575 */
576 c->x86_phys_bits -= keyid_bits;
577 }
578
init_cpuid_fault(struct cpuinfo_x86 * c)579 static void init_cpuid_fault(struct cpuinfo_x86 *c)
580 {
581 u64 msr;
582
583 if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
584 if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
585 set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
586 }
587 }
588
init_intel_misc_features(struct cpuinfo_x86 * c)589 static void init_intel_misc_features(struct cpuinfo_x86 *c)
590 {
591 u64 msr;
592
593 if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
594 return;
595
596 /* Clear all MISC features */
597 this_cpu_write(msr_misc_features_shadow, 0);
598
599 /* Check features and update capabilities and shadow control bits */
600 init_cpuid_fault(c);
601 probe_xeon_phi_r3mwait(c);
602
603 msr = this_cpu_read(msr_misc_features_shadow);
604 wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
605 }
606
607 static void split_lock_init(void);
608 static void bus_lock_init(void);
609
init_intel(struct cpuinfo_x86 * c)610 static void init_intel(struct cpuinfo_x86 *c)
611 {
612 early_init_intel(c);
613
614 intel_workarounds(c);
615
616 /*
617 * Detect the extended topology information if available. This
618 * will reinitialise the initial_apicid which will be used
619 * in init_intel_cacheinfo()
620 */
621 detect_extended_topology(c);
622
623 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
624 /*
625 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
626 * detection.
627 */
628 detect_num_cpu_cores(c);
629 #ifdef CONFIG_X86_32
630 detect_ht(c);
631 #endif
632 }
633
634 init_intel_cacheinfo(c);
635
636 if (c->cpuid_level > 9) {
637 unsigned eax = cpuid_eax(10);
638 /* Check for version and the number of counters */
639 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
640 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
641 }
642
643 if (cpu_has(c, X86_FEATURE_XMM2))
644 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
645
646 if (boot_cpu_has(X86_FEATURE_DS)) {
647 unsigned int l1, l2;
648
649 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
650 if (!(l1 & (1<<11)))
651 set_cpu_cap(c, X86_FEATURE_BTS);
652 if (!(l1 & (1<<12)))
653 set_cpu_cap(c, X86_FEATURE_PEBS);
654 }
655
656 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
657 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
658 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
659
660 if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
661 ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
662 set_cpu_bug(c, X86_BUG_MONITOR);
663
664 #ifdef CONFIG_X86_64
665 if (c->x86 == 15)
666 c->x86_cache_alignment = c->x86_clflush_size * 2;
667 if (c->x86 == 6)
668 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
669 #else
670 /*
671 * Names for the Pentium II/Celeron processors
672 * detectable only by also checking the cache size.
673 * Dixon is NOT a Celeron.
674 */
675 if (c->x86 == 6) {
676 unsigned int l2 = c->x86_cache_size;
677 char *p = NULL;
678
679 switch (c->x86_model) {
680 case 5:
681 if (l2 == 0)
682 p = "Celeron (Covington)";
683 else if (l2 == 256)
684 p = "Mobile Pentium II (Dixon)";
685 break;
686
687 case 6:
688 if (l2 == 128)
689 p = "Celeron (Mendocino)";
690 else if (c->x86_stepping == 0 || c->x86_stepping == 5)
691 p = "Celeron-A";
692 break;
693
694 case 8:
695 if (l2 == 128)
696 p = "Celeron (Coppermine)";
697 break;
698 }
699
700 if (p)
701 strcpy(c->x86_model_id, p);
702 }
703
704 if (c->x86 == 15)
705 set_cpu_cap(c, X86_FEATURE_P4);
706 if (c->x86 == 6)
707 set_cpu_cap(c, X86_FEATURE_P3);
708 #endif
709
710 /* Work around errata */
711 srat_detect_node(c);
712
713 init_ia32_feat_ctl(c);
714
715 if (cpu_has(c, X86_FEATURE_TME))
716 detect_tme(c);
717
718 init_intel_misc_features(c);
719
720 if (tsx_ctrl_state == TSX_CTRL_ENABLE)
721 tsx_enable();
722 else if (tsx_ctrl_state == TSX_CTRL_DISABLE)
723 tsx_disable();
724 else if (tsx_ctrl_state == TSX_CTRL_RTM_ALWAYS_ABORT)
725 tsx_clear_cpuid();
726
727 split_lock_init();
728 bus_lock_init();
729
730 intel_init_thermal(c);
731 }
732
733 #ifdef CONFIG_X86_32
intel_size_cache(struct cpuinfo_x86 * c,unsigned int size)734 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
735 {
736 /*
737 * Intel PIII Tualatin. This comes in two flavours.
738 * One has 256kb of cache, the other 512. We have no way
739 * to determine which, so we use a boottime override
740 * for the 512kb model, and assume 256 otherwise.
741 */
742 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
743 size = 256;
744
745 /*
746 * Intel Quark SoC X1000 contains a 4-way set associative
747 * 16K cache with a 16 byte cache line and 256 lines per tag
748 */
749 if ((c->x86 == 5) && (c->x86_model == 9))
750 size = 16;
751 return size;
752 }
753 #endif
754
755 #define TLB_INST_4K 0x01
756 #define TLB_INST_4M 0x02
757 #define TLB_INST_2M_4M 0x03
758
759 #define TLB_INST_ALL 0x05
760 #define TLB_INST_1G 0x06
761
762 #define TLB_DATA_4K 0x11
763 #define TLB_DATA_4M 0x12
764 #define TLB_DATA_2M_4M 0x13
765 #define TLB_DATA_4K_4M 0x14
766
767 #define TLB_DATA_1G 0x16
768
769 #define TLB_DATA0_4K 0x21
770 #define TLB_DATA0_4M 0x22
771 #define TLB_DATA0_2M_4M 0x23
772
773 #define STLB_4K 0x41
774 #define STLB_4K_2M 0x42
775
776 static const struct _tlb_table intel_tlb_table[] = {
777 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
778 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
779 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
780 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
781 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
782 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
783 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages" },
784 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
785 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
786 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
787 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
788 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
789 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
790 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
791 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
792 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
793 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
794 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
795 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
796 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
797 { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" },
798 { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
799 { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" },
800 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
801 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
802 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
803 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
804 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
805 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
806 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
807 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
808 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
809 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
810 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
811 { 0xc2, TLB_DATA_2M_4M, 16, " TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
812 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
813 { 0x00, 0, 0 }
814 };
815
intel_tlb_lookup(const unsigned char desc)816 static void intel_tlb_lookup(const unsigned char desc)
817 {
818 unsigned char k;
819 if (desc == 0)
820 return;
821
822 /* look up this descriptor in the table */
823 for (k = 0; intel_tlb_table[k].descriptor != desc &&
824 intel_tlb_table[k].descriptor != 0; k++)
825 ;
826
827 if (intel_tlb_table[k].tlb_type == 0)
828 return;
829
830 switch (intel_tlb_table[k].tlb_type) {
831 case STLB_4K:
832 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
833 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
834 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
835 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
836 break;
837 case STLB_4K_2M:
838 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
839 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
840 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
841 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
842 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
843 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
844 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
845 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
846 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
847 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
848 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
849 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
850 break;
851 case TLB_INST_ALL:
852 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
853 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
854 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
855 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
856 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
857 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
858 break;
859 case TLB_INST_4K:
860 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
861 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
862 break;
863 case TLB_INST_4M:
864 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
865 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
866 break;
867 case TLB_INST_2M_4M:
868 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
869 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
870 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
871 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
872 break;
873 case TLB_DATA_4K:
874 case TLB_DATA0_4K:
875 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
876 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
877 break;
878 case TLB_DATA_4M:
879 case TLB_DATA0_4M:
880 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
881 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
882 break;
883 case TLB_DATA_2M_4M:
884 case TLB_DATA0_2M_4M:
885 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
886 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
887 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
888 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
889 break;
890 case TLB_DATA_4K_4M:
891 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
892 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
893 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
894 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
895 break;
896 case TLB_DATA_1G:
897 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
898 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
899 break;
900 }
901 }
902
intel_detect_tlb(struct cpuinfo_x86 * c)903 static void intel_detect_tlb(struct cpuinfo_x86 *c)
904 {
905 int i, j, n;
906 unsigned int regs[4];
907 unsigned char *desc = (unsigned char *)regs;
908
909 if (c->cpuid_level < 2)
910 return;
911
912 /* Number of times to iterate */
913 n = cpuid_eax(2) & 0xFF;
914
915 for (i = 0 ; i < n ; i++) {
916 cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
917
918 /* If bit 31 is set, this is an unknown format */
919 for (j = 0 ; j < 3 ; j++)
920 if (regs[j] & (1 << 31))
921 regs[j] = 0;
922
923 /* Byte 0 is level count, not a descriptor */
924 for (j = 1 ; j < 16 ; j++)
925 intel_tlb_lookup(desc[j]);
926 }
927 }
928
929 static const struct cpu_dev intel_cpu_dev = {
930 .c_vendor = "Intel",
931 .c_ident = { "GenuineIntel" },
932 #ifdef CONFIG_X86_32
933 .legacy_models = {
934 { .family = 4, .model_names =
935 {
936 [0] = "486 DX-25/33",
937 [1] = "486 DX-50",
938 [2] = "486 SX",
939 [3] = "486 DX/2",
940 [4] = "486 SL",
941 [5] = "486 SX/2",
942 [7] = "486 DX/2-WB",
943 [8] = "486 DX/4",
944 [9] = "486 DX/4-WB"
945 }
946 },
947 { .family = 5, .model_names =
948 {
949 [0] = "Pentium 60/66 A-step",
950 [1] = "Pentium 60/66",
951 [2] = "Pentium 75 - 200",
952 [3] = "OverDrive PODP5V83",
953 [4] = "Pentium MMX",
954 [7] = "Mobile Pentium 75 - 200",
955 [8] = "Mobile Pentium MMX",
956 [9] = "Quark SoC X1000",
957 }
958 },
959 { .family = 6, .model_names =
960 {
961 [0] = "Pentium Pro A-step",
962 [1] = "Pentium Pro",
963 [3] = "Pentium II (Klamath)",
964 [4] = "Pentium II (Deschutes)",
965 [5] = "Pentium II (Deschutes)",
966 [6] = "Mobile Pentium II",
967 [7] = "Pentium III (Katmai)",
968 [8] = "Pentium III (Coppermine)",
969 [10] = "Pentium III (Cascades)",
970 [11] = "Pentium III (Tualatin)",
971 }
972 },
973 { .family = 15, .model_names =
974 {
975 [0] = "Pentium 4 (Unknown)",
976 [1] = "Pentium 4 (Willamette)",
977 [2] = "Pentium 4 (Northwood)",
978 [4] = "Pentium 4 (Foster)",
979 [5] = "Pentium 4 (Foster)",
980 }
981 },
982 },
983 .legacy_cache_size = intel_size_cache,
984 #endif
985 .c_detect_tlb = intel_detect_tlb,
986 .c_early_init = early_init_intel,
987 .c_bsp_init = bsp_init_intel,
988 .c_init = init_intel,
989 .c_x86_vendor = X86_VENDOR_INTEL,
990 };
991
992 cpu_dev_register(intel_cpu_dev);
993
994 #undef pr_fmt
995 #define pr_fmt(fmt) "x86/split lock detection: " fmt
996
997 static const struct {
998 const char *option;
999 enum split_lock_detect_state state;
1000 } sld_options[] __initconst = {
1001 { "off", sld_off },
1002 { "warn", sld_warn },
1003 { "fatal", sld_fatal },
1004 { "ratelimit:", sld_ratelimit },
1005 };
1006
1007 static struct ratelimit_state bld_ratelimit;
1008
match_option(const char * arg,int arglen,const char * opt)1009 static inline bool match_option(const char *arg, int arglen, const char *opt)
1010 {
1011 int len = strlen(opt), ratelimit;
1012
1013 if (strncmp(arg, opt, len))
1014 return false;
1015
1016 /*
1017 * Min ratelimit is 1 bus lock/sec.
1018 * Max ratelimit is 1000 bus locks/sec.
1019 */
1020 if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
1021 ratelimit > 0 && ratelimit <= 1000) {
1022 ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
1023 ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
1024 return true;
1025 }
1026
1027 return len == arglen;
1028 }
1029
split_lock_verify_msr(bool on)1030 static bool split_lock_verify_msr(bool on)
1031 {
1032 u64 ctrl, tmp;
1033
1034 if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
1035 return false;
1036 if (on)
1037 ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1038 else
1039 ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1040 if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1041 return false;
1042 rdmsrl(MSR_TEST_CTRL, tmp);
1043 return ctrl == tmp;
1044 }
1045
sld_state_setup(void)1046 static void __init sld_state_setup(void)
1047 {
1048 enum split_lock_detect_state state = sld_warn;
1049 char arg[20];
1050 int i, ret;
1051
1052 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1053 !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1054 return;
1055
1056 ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1057 arg, sizeof(arg));
1058 if (ret >= 0) {
1059 for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1060 if (match_option(arg, ret, sld_options[i].option)) {
1061 state = sld_options[i].state;
1062 break;
1063 }
1064 }
1065 }
1066 sld_state = state;
1067 }
1068
__split_lock_setup(void)1069 static void __init __split_lock_setup(void)
1070 {
1071 if (!split_lock_verify_msr(false)) {
1072 pr_info("MSR access failed: Disabled\n");
1073 return;
1074 }
1075
1076 rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1077
1078 if (!split_lock_verify_msr(true)) {
1079 pr_info("MSR access failed: Disabled\n");
1080 return;
1081 }
1082
1083 /* Restore the MSR to its cached value. */
1084 wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1085
1086 setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1087 }
1088
1089 /*
1090 * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1091 * is not implemented as one thread could undo the setting of the other
1092 * thread immediately after dropping the lock anyway.
1093 */
sld_update_msr(bool on)1094 static void sld_update_msr(bool on)
1095 {
1096 u64 test_ctrl_val = msr_test_ctrl_cache;
1097
1098 if (on)
1099 test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1100
1101 wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1102 }
1103
split_lock_init(void)1104 static void split_lock_init(void)
1105 {
1106 /*
1107 * #DB for bus lock handles ratelimit and #AC for split lock is
1108 * disabled.
1109 */
1110 if (sld_state == sld_ratelimit) {
1111 split_lock_verify_msr(false);
1112 return;
1113 }
1114
1115 if (cpu_model_supports_sld)
1116 split_lock_verify_msr(sld_state != sld_off);
1117 }
1118
split_lock_warn(unsigned long ip)1119 static void split_lock_warn(unsigned long ip)
1120 {
1121 pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1122 current->comm, current->pid, ip);
1123
1124 /*
1125 * Disable the split lock detection for this task so it can make
1126 * progress and set TIF_SLD so the detection is re-enabled via
1127 * switch_to_sld() when the task is scheduled out.
1128 */
1129 sld_update_msr(false);
1130 set_tsk_thread_flag(current, TIF_SLD);
1131 }
1132
handle_guest_split_lock(unsigned long ip)1133 bool handle_guest_split_lock(unsigned long ip)
1134 {
1135 if (sld_state == sld_warn) {
1136 split_lock_warn(ip);
1137 return true;
1138 }
1139
1140 pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1141 current->comm, current->pid,
1142 sld_state == sld_fatal ? "fatal" : "bogus", ip);
1143
1144 current->thread.error_code = 0;
1145 current->thread.trap_nr = X86_TRAP_AC;
1146 force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1147 return false;
1148 }
1149 EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1150
bus_lock_init(void)1151 static void bus_lock_init(void)
1152 {
1153 u64 val;
1154
1155 /*
1156 * Warn and fatal are handled by #AC for split lock if #AC for
1157 * split lock is supported.
1158 */
1159 if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) ||
1160 (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1161 (sld_state == sld_warn || sld_state == sld_fatal)) ||
1162 sld_state == sld_off)
1163 return;
1164
1165 /*
1166 * Enable #DB for bus lock. All bus locks are handled in #DB except
1167 * split locks are handled in #AC in the fatal case.
1168 */
1169 rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
1170 val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
1171 wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
1172 }
1173
handle_user_split_lock(struct pt_regs * regs,long error_code)1174 bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1175 {
1176 if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1177 return false;
1178 split_lock_warn(regs->ip);
1179 return true;
1180 }
1181
handle_bus_lock(struct pt_regs * regs)1182 void handle_bus_lock(struct pt_regs *regs)
1183 {
1184 switch (sld_state) {
1185 case sld_off:
1186 break;
1187 case sld_ratelimit:
1188 /* Enforce no more than bld_ratelimit bus locks/sec. */
1189 while (!__ratelimit(&bld_ratelimit))
1190 msleep(20);
1191 /* Warn on the bus lock. */
1192 fallthrough;
1193 case sld_warn:
1194 pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
1195 current->comm, current->pid, regs->ip);
1196 break;
1197 case sld_fatal:
1198 force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1199 break;
1200 }
1201 }
1202
1203 /*
1204 * This function is called only when switching between tasks with
1205 * different split-lock detection modes. It sets the MSR for the
1206 * mode of the new task. This is right most of the time, but since
1207 * the MSR is shared by hyperthreads on a physical core there can
1208 * be glitches when the two threads need different modes.
1209 */
switch_to_sld(unsigned long tifn)1210 void switch_to_sld(unsigned long tifn)
1211 {
1212 sld_update_msr(!(tifn & _TIF_SLD));
1213 }
1214
1215 /*
1216 * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should
1217 * only be trusted if it is confirmed that a CPU model implements a
1218 * specific feature at a particular bit position.
1219 *
1220 * The possible driver data field values:
1221 *
1222 * - 0: CPU models that are known to have the per-core split-lock detection
1223 * feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1224 *
1225 * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use
1226 * bit 5 to enumerate the per-core split-lock detection feature.
1227 */
1228 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1229 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, 0),
1230 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, 0),
1231 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, 0),
1232 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, 1),
1233 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, 1),
1234 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, 1),
1235 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, 1),
1236 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, 1),
1237 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 1),
1238 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, 1),
1239 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 1),
1240 {}
1241 };
1242
split_lock_setup(struct cpuinfo_x86 * c)1243 static void __init split_lock_setup(struct cpuinfo_x86 *c)
1244 {
1245 const struct x86_cpu_id *m;
1246 u64 ia32_core_caps;
1247
1248 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1249 return;
1250
1251 m = x86_match_cpu(split_lock_cpu_ids);
1252 if (!m)
1253 return;
1254
1255 switch (m->driver_data) {
1256 case 0:
1257 break;
1258 case 1:
1259 if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1260 return;
1261 rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1262 if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT))
1263 return;
1264 break;
1265 default:
1266 return;
1267 }
1268
1269 cpu_model_supports_sld = true;
1270 __split_lock_setup();
1271 }
1272
sld_state_show(void)1273 static void sld_state_show(void)
1274 {
1275 if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
1276 !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1277 return;
1278
1279 switch (sld_state) {
1280 case sld_off:
1281 pr_info("disabled\n");
1282 break;
1283 case sld_warn:
1284 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1285 pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
1286 else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1287 pr_info("#DB: warning on user-space bus_locks\n");
1288 break;
1289 case sld_fatal:
1290 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1291 pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
1292 } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1293 pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
1294 boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
1295 " from non-WB" : "");
1296 }
1297 break;
1298 case sld_ratelimit:
1299 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1300 pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
1301 break;
1302 }
1303 }
1304
sld_setup(struct cpuinfo_x86 * c)1305 void __init sld_setup(struct cpuinfo_x86 *c)
1306 {
1307 split_lock_setup(c);
1308 sld_state_setup();
1309 sld_state_show();
1310 }
1311
1312 #define X86_HYBRID_CPU_TYPE_ID_SHIFT 24
1313
1314 /**
1315 * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
1316 *
1317 * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
1318 * a hybrid processor. If the processor is not hybrid, returns 0.
1319 */
get_this_hybrid_cpu_type(void)1320 u8 get_this_hybrid_cpu_type(void)
1321 {
1322 if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1323 return 0;
1324
1325 return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
1326 }
1327