1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Ptrace user space interface.
4 *
5 * Copyright IBM Corp. 1999, 2010
6 * Author(s): Denis Joseph Barrow
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 */
9
10 #include "asm/ptrace.h"
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/audit.h>
21 #include <linux/signal.h>
22 #include <linux/elf.h>
23 #include <linux/regset.h>
24 #include <linux/tracehook.h>
25 #include <linux/seccomp.h>
26 #include <linux/compat.h>
27 #include <trace/syscall.h>
28 #include <asm/page.h>
29 #include <linux/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include <asm/runtime_instr.h>
33 #include <asm/facility.h>
34
35 #include "entry.h"
36
37 #ifdef CONFIG_COMPAT
38 #include "compat_ptrace.h"
39 #endif
40
update_cr_regs(struct task_struct * task)41 void update_cr_regs(struct task_struct *task)
42 {
43 struct pt_regs *regs = task_pt_regs(task);
44 struct thread_struct *thread = &task->thread;
45 struct per_regs old, new;
46 union ctlreg0 cr0_old, cr0_new;
47 union ctlreg2 cr2_old, cr2_new;
48 int cr0_changed, cr2_changed;
49
50 __ctl_store(cr0_old.val, 0, 0);
51 __ctl_store(cr2_old.val, 2, 2);
52 cr0_new = cr0_old;
53 cr2_new = cr2_old;
54 /* Take care of the enable/disable of transactional execution. */
55 if (MACHINE_HAS_TE) {
56 /* Set or clear transaction execution TXC bit 8. */
57 cr0_new.tcx = 1;
58 if (task->thread.per_flags & PER_FLAG_NO_TE)
59 cr0_new.tcx = 0;
60 /* Set or clear transaction execution TDC bits 62 and 63. */
61 cr2_new.tdc = 0;
62 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
63 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
64 cr2_new.tdc = 1;
65 else
66 cr2_new.tdc = 2;
67 }
68 }
69 /* Take care of enable/disable of guarded storage. */
70 if (MACHINE_HAS_GS) {
71 cr2_new.gse = 0;
72 if (task->thread.gs_cb)
73 cr2_new.gse = 1;
74 }
75 /* Load control register 0/2 iff changed */
76 cr0_changed = cr0_new.val != cr0_old.val;
77 cr2_changed = cr2_new.val != cr2_old.val;
78 if (cr0_changed)
79 __ctl_load(cr0_new.val, 0, 0);
80 if (cr2_changed)
81 __ctl_load(cr2_new.val, 2, 2);
82 /* Copy user specified PER registers */
83 new.control = thread->per_user.control;
84 new.start = thread->per_user.start;
85 new.end = thread->per_user.end;
86
87 /* merge TIF_SINGLE_STEP into user specified PER registers. */
88 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
89 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
90 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
91 new.control |= PER_EVENT_BRANCH;
92 else
93 new.control |= PER_EVENT_IFETCH;
94 new.control |= PER_CONTROL_SUSPENSION;
95 new.control |= PER_EVENT_TRANSACTION_END;
96 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
97 new.control |= PER_EVENT_IFETCH;
98 new.start = 0;
99 new.end = -1UL;
100 }
101
102 /* Take care of the PER enablement bit in the PSW. */
103 if (!(new.control & PER_EVENT_MASK)) {
104 regs->psw.mask &= ~PSW_MASK_PER;
105 return;
106 }
107 regs->psw.mask |= PSW_MASK_PER;
108 __ctl_store(old, 9, 11);
109 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
110 __ctl_load(new, 9, 11);
111 }
112
user_enable_single_step(struct task_struct * task)113 void user_enable_single_step(struct task_struct *task)
114 {
115 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
116 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
117 }
118
user_disable_single_step(struct task_struct * task)119 void user_disable_single_step(struct task_struct *task)
120 {
121 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
122 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
123 }
124
user_enable_block_step(struct task_struct * task)125 void user_enable_block_step(struct task_struct *task)
126 {
127 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
128 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
129 }
130
131 /*
132 * Called by kernel/ptrace.c when detaching..
133 *
134 * Clear all debugging related fields.
135 */
ptrace_disable(struct task_struct * task)136 void ptrace_disable(struct task_struct *task)
137 {
138 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
139 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
140 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
141 clear_tsk_thread_flag(task, TIF_PER_TRAP);
142 task->thread.per_flags = 0;
143 }
144
145 #define __ADDR_MASK 7
146
__peek_user_per(struct task_struct * child,addr_t addr)147 static inline unsigned long __peek_user_per(struct task_struct *child,
148 addr_t addr)
149 {
150 struct per_struct_kernel *dummy = NULL;
151
152 if (addr == (addr_t) &dummy->cr9)
153 /* Control bits of the active per set. */
154 return test_thread_flag(TIF_SINGLE_STEP) ?
155 PER_EVENT_IFETCH : child->thread.per_user.control;
156 else if (addr == (addr_t) &dummy->cr10)
157 /* Start address of the active per set. */
158 return test_thread_flag(TIF_SINGLE_STEP) ?
159 0 : child->thread.per_user.start;
160 else if (addr == (addr_t) &dummy->cr11)
161 /* End address of the active per set. */
162 return test_thread_flag(TIF_SINGLE_STEP) ?
163 -1UL : child->thread.per_user.end;
164 else if (addr == (addr_t) &dummy->bits)
165 /* Single-step bit. */
166 return test_thread_flag(TIF_SINGLE_STEP) ?
167 (1UL << (BITS_PER_LONG - 1)) : 0;
168 else if (addr == (addr_t) &dummy->starting_addr)
169 /* Start address of the user specified per set. */
170 return child->thread.per_user.start;
171 else if (addr == (addr_t) &dummy->ending_addr)
172 /* End address of the user specified per set. */
173 return child->thread.per_user.end;
174 else if (addr == (addr_t) &dummy->perc_atmid)
175 /* PER code, ATMID and AI of the last PER trap */
176 return (unsigned long)
177 child->thread.per_event.cause << (BITS_PER_LONG - 16);
178 else if (addr == (addr_t) &dummy->address)
179 /* Address of the last PER trap */
180 return child->thread.per_event.address;
181 else if (addr == (addr_t) &dummy->access_id)
182 /* Access id of the last PER trap */
183 return (unsigned long)
184 child->thread.per_event.paid << (BITS_PER_LONG - 8);
185 return 0;
186 }
187
188 /*
189 * Read the word at offset addr from the user area of a process. The
190 * trouble here is that the information is littered over different
191 * locations. The process registers are found on the kernel stack,
192 * the floating point stuff and the trace settings are stored in
193 * the task structure. In addition the different structures in
194 * struct user contain pad bytes that should be read as zeroes.
195 * Lovely...
196 */
__peek_user(struct task_struct * child,addr_t addr)197 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
198 {
199 struct user *dummy = NULL;
200 addr_t offset, tmp;
201
202 if (addr < (addr_t) &dummy->regs.acrs) {
203 /*
204 * psw and gprs are stored on the stack
205 */
206 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
207 if (addr == (addr_t) &dummy->regs.psw.mask) {
208 /* Return a clean psw mask. */
209 tmp &= PSW_MASK_USER | PSW_MASK_RI;
210 tmp |= PSW_USER_BITS;
211 }
212
213 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
214 /*
215 * access registers are stored in the thread structure
216 */
217 offset = addr - (addr_t) &dummy->regs.acrs;
218 /*
219 * Very special case: old & broken 64 bit gdb reading
220 * from acrs[15]. Result is a 64 bit value. Read the
221 * 32 bit acrs[15] value and shift it by 32. Sick...
222 */
223 if (addr == (addr_t) &dummy->regs.acrs[15])
224 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
225 else
226 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
227
228 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
229 /*
230 * orig_gpr2 is stored on the kernel stack
231 */
232 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
233
234 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
235 /*
236 * prevent reads of padding hole between
237 * orig_gpr2 and fp_regs on s390.
238 */
239 tmp = 0;
240
241 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
242 /*
243 * floating point control reg. is in the thread structure
244 */
245 tmp = child->thread.fpu.fpc;
246 tmp <<= BITS_PER_LONG - 32;
247
248 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
249 /*
250 * floating point regs. are either in child->thread.fpu
251 * or the child->thread.fpu.vxrs array
252 */
253 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
254 if (MACHINE_HAS_VX)
255 tmp = *(addr_t *)
256 ((addr_t) child->thread.fpu.vxrs + 2*offset);
257 else
258 tmp = *(addr_t *)
259 ((addr_t) child->thread.fpu.fprs + offset);
260
261 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
262 /*
263 * Handle access to the per_info structure.
264 */
265 addr -= (addr_t) &dummy->regs.per_info;
266 tmp = __peek_user_per(child, addr);
267
268 } else
269 tmp = 0;
270
271 return tmp;
272 }
273
274 static int
peek_user(struct task_struct * child,addr_t addr,addr_t data)275 peek_user(struct task_struct *child, addr_t addr, addr_t data)
276 {
277 addr_t tmp, mask;
278
279 /*
280 * Stupid gdb peeks/pokes the access registers in 64 bit with
281 * an alignment of 4. Programmers from hell...
282 */
283 mask = __ADDR_MASK;
284 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
285 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
286 mask = 3;
287 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
288 return -EIO;
289
290 tmp = __peek_user(child, addr);
291 return put_user(tmp, (addr_t __user *) data);
292 }
293
__poke_user_per(struct task_struct * child,addr_t addr,addr_t data)294 static inline void __poke_user_per(struct task_struct *child,
295 addr_t addr, addr_t data)
296 {
297 struct per_struct_kernel *dummy = NULL;
298
299 /*
300 * There are only three fields in the per_info struct that the
301 * debugger user can write to.
302 * 1) cr9: the debugger wants to set a new PER event mask
303 * 2) starting_addr: the debugger wants to set a new starting
304 * address to use with the PER event mask.
305 * 3) ending_addr: the debugger wants to set a new ending
306 * address to use with the PER event mask.
307 * The user specified PER event mask and the start and end
308 * addresses are used only if single stepping is not in effect.
309 * Writes to any other field in per_info are ignored.
310 */
311 if (addr == (addr_t) &dummy->cr9)
312 /* PER event mask of the user specified per set. */
313 child->thread.per_user.control =
314 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
315 else if (addr == (addr_t) &dummy->starting_addr)
316 /* Starting address of the user specified per set. */
317 child->thread.per_user.start = data;
318 else if (addr == (addr_t) &dummy->ending_addr)
319 /* Ending address of the user specified per set. */
320 child->thread.per_user.end = data;
321 }
322
323 /*
324 * Write a word to the user area of a process at location addr. This
325 * operation does have an additional problem compared to peek_user.
326 * Stores to the program status word and on the floating point
327 * control register needs to get checked for validity.
328 */
__poke_user(struct task_struct * child,addr_t addr,addr_t data)329 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
330 {
331 struct user *dummy = NULL;
332 addr_t offset;
333
334
335 if (addr < (addr_t) &dummy->regs.acrs) {
336 struct pt_regs *regs = task_pt_regs(child);
337 /*
338 * psw and gprs are stored on the stack
339 */
340 if (addr == (addr_t) &dummy->regs.psw.mask) {
341 unsigned long mask = PSW_MASK_USER;
342
343 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
344 if ((data ^ PSW_USER_BITS) & ~mask)
345 /* Invalid psw mask. */
346 return -EINVAL;
347 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
348 /* Invalid address-space-control bits */
349 return -EINVAL;
350 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
351 /* Invalid addressing mode bits */
352 return -EINVAL;
353 }
354
355 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
356 addr == offsetof(struct user, regs.gprs[2])) {
357 struct pt_regs *regs = task_pt_regs(child);
358
359 regs->int_code = 0x20000 | (data & 0xffff);
360 }
361 *(addr_t *)((addr_t) ®s->psw + addr) = data;
362 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
363 /*
364 * access registers are stored in the thread structure
365 */
366 offset = addr - (addr_t) &dummy->regs.acrs;
367 /*
368 * Very special case: old & broken 64 bit gdb writing
369 * to acrs[15] with a 64 bit value. Ignore the lower
370 * half of the value and write the upper 32 bit to
371 * acrs[15]. Sick...
372 */
373 if (addr == (addr_t) &dummy->regs.acrs[15])
374 child->thread.acrs[15] = (unsigned int) (data >> 32);
375 else
376 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
377
378 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
379 /*
380 * orig_gpr2 is stored on the kernel stack
381 */
382 task_pt_regs(child)->orig_gpr2 = data;
383
384 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
385 /*
386 * prevent writes of padding hole between
387 * orig_gpr2 and fp_regs on s390.
388 */
389 return 0;
390
391 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
392 /*
393 * floating point control reg. is in the thread structure
394 */
395 if ((unsigned int) data != 0 ||
396 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
397 return -EINVAL;
398 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
399
400 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
401 /*
402 * floating point regs. are either in child->thread.fpu
403 * or the child->thread.fpu.vxrs array
404 */
405 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
406 if (MACHINE_HAS_VX)
407 *(addr_t *)((addr_t)
408 child->thread.fpu.vxrs + 2*offset) = data;
409 else
410 *(addr_t *)((addr_t)
411 child->thread.fpu.fprs + offset) = data;
412
413 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
414 /*
415 * Handle access to the per_info structure.
416 */
417 addr -= (addr_t) &dummy->regs.per_info;
418 __poke_user_per(child, addr, data);
419
420 }
421
422 return 0;
423 }
424
poke_user(struct task_struct * child,addr_t addr,addr_t data)425 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
426 {
427 addr_t mask;
428
429 /*
430 * Stupid gdb peeks/pokes the access registers in 64 bit with
431 * an alignment of 4. Programmers from hell indeed...
432 */
433 mask = __ADDR_MASK;
434 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
435 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
436 mask = 3;
437 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
438 return -EIO;
439
440 return __poke_user(child, addr, data);
441 }
442
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)443 long arch_ptrace(struct task_struct *child, long request,
444 unsigned long addr, unsigned long data)
445 {
446 ptrace_area parea;
447 int copied, ret;
448
449 switch (request) {
450 case PTRACE_PEEKUSR:
451 /* read the word at location addr in the USER area. */
452 return peek_user(child, addr, data);
453
454 case PTRACE_POKEUSR:
455 /* write the word at location addr in the USER area */
456 return poke_user(child, addr, data);
457
458 case PTRACE_PEEKUSR_AREA:
459 case PTRACE_POKEUSR_AREA:
460 if (copy_from_user(&parea, (void __force __user *) addr,
461 sizeof(parea)))
462 return -EFAULT;
463 addr = parea.kernel_addr;
464 data = parea.process_addr;
465 copied = 0;
466 while (copied < parea.len) {
467 if (request == PTRACE_PEEKUSR_AREA)
468 ret = peek_user(child, addr, data);
469 else {
470 addr_t utmp;
471 if (get_user(utmp,
472 (addr_t __force __user *) data))
473 return -EFAULT;
474 ret = poke_user(child, addr, utmp);
475 }
476 if (ret)
477 return ret;
478 addr += sizeof(unsigned long);
479 data += sizeof(unsigned long);
480 copied += sizeof(unsigned long);
481 }
482 return 0;
483 case PTRACE_GET_LAST_BREAK:
484 put_user(child->thread.last_break,
485 (unsigned long __user *) data);
486 return 0;
487 case PTRACE_ENABLE_TE:
488 if (!MACHINE_HAS_TE)
489 return -EIO;
490 child->thread.per_flags &= ~PER_FLAG_NO_TE;
491 return 0;
492 case PTRACE_DISABLE_TE:
493 if (!MACHINE_HAS_TE)
494 return -EIO;
495 child->thread.per_flags |= PER_FLAG_NO_TE;
496 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
497 return 0;
498 case PTRACE_TE_ABORT_RAND:
499 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
500 return -EIO;
501 switch (data) {
502 case 0UL:
503 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
504 break;
505 case 1UL:
506 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
507 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
508 break;
509 case 2UL:
510 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
511 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
512 break;
513 default:
514 return -EINVAL;
515 }
516 return 0;
517 default:
518 return ptrace_request(child, request, addr, data);
519 }
520 }
521
522 #ifdef CONFIG_COMPAT
523 /*
524 * Now the fun part starts... a 31 bit program running in the
525 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
526 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
527 * to handle, the difference to the 64 bit versions of the requests
528 * is that the access is done in multiples of 4 byte instead of
529 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
530 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
531 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
532 * is a 31 bit program too, the content of struct user can be
533 * emulated. A 31 bit program peeking into the struct user of
534 * a 64 bit program is a no-no.
535 */
536
537 /*
538 * Same as peek_user_per but for a 31 bit program.
539 */
__peek_user_per_compat(struct task_struct * child,addr_t addr)540 static inline __u32 __peek_user_per_compat(struct task_struct *child,
541 addr_t addr)
542 {
543 struct compat_per_struct_kernel *dummy32 = NULL;
544
545 if (addr == (addr_t) &dummy32->cr9)
546 /* Control bits of the active per set. */
547 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
548 PER_EVENT_IFETCH : child->thread.per_user.control;
549 else if (addr == (addr_t) &dummy32->cr10)
550 /* Start address of the active per set. */
551 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
552 0 : child->thread.per_user.start;
553 else if (addr == (addr_t) &dummy32->cr11)
554 /* End address of the active per set. */
555 return test_thread_flag(TIF_SINGLE_STEP) ?
556 PSW32_ADDR_INSN : child->thread.per_user.end;
557 else if (addr == (addr_t) &dummy32->bits)
558 /* Single-step bit. */
559 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
560 0x80000000 : 0;
561 else if (addr == (addr_t) &dummy32->starting_addr)
562 /* Start address of the user specified per set. */
563 return (__u32) child->thread.per_user.start;
564 else if (addr == (addr_t) &dummy32->ending_addr)
565 /* End address of the user specified per set. */
566 return (__u32) child->thread.per_user.end;
567 else if (addr == (addr_t) &dummy32->perc_atmid)
568 /* PER code, ATMID and AI of the last PER trap */
569 return (__u32) child->thread.per_event.cause << 16;
570 else if (addr == (addr_t) &dummy32->address)
571 /* Address of the last PER trap */
572 return (__u32) child->thread.per_event.address;
573 else if (addr == (addr_t) &dummy32->access_id)
574 /* Access id of the last PER trap */
575 return (__u32) child->thread.per_event.paid << 24;
576 return 0;
577 }
578
579 /*
580 * Same as peek_user but for a 31 bit program.
581 */
__peek_user_compat(struct task_struct * child,addr_t addr)582 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
583 {
584 struct compat_user *dummy32 = NULL;
585 addr_t offset;
586 __u32 tmp;
587
588 if (addr < (addr_t) &dummy32->regs.acrs) {
589 struct pt_regs *regs = task_pt_regs(child);
590 /*
591 * psw and gprs are stored on the stack
592 */
593 if (addr == (addr_t) &dummy32->regs.psw.mask) {
594 /* Fake a 31 bit psw mask. */
595 tmp = (__u32)(regs->psw.mask >> 32);
596 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
597 tmp |= PSW32_USER_BITS;
598 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
599 /* Fake a 31 bit psw address. */
600 tmp = (__u32) regs->psw.addr |
601 (__u32)(regs->psw.mask & PSW_MASK_BA);
602 } else {
603 /* gpr 0-15 */
604 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
605 }
606 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
607 /*
608 * access registers are stored in the thread structure
609 */
610 offset = addr - (addr_t) &dummy32->regs.acrs;
611 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
612
613 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
614 /*
615 * orig_gpr2 is stored on the kernel stack
616 */
617 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
618
619 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
620 /*
621 * prevent reads of padding hole between
622 * orig_gpr2 and fp_regs on s390.
623 */
624 tmp = 0;
625
626 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
627 /*
628 * floating point control reg. is in the thread structure
629 */
630 tmp = child->thread.fpu.fpc;
631
632 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
633 /*
634 * floating point regs. are either in child->thread.fpu
635 * or the child->thread.fpu.vxrs array
636 */
637 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
638 if (MACHINE_HAS_VX)
639 tmp = *(__u32 *)
640 ((addr_t) child->thread.fpu.vxrs + 2*offset);
641 else
642 tmp = *(__u32 *)
643 ((addr_t) child->thread.fpu.fprs + offset);
644
645 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
646 /*
647 * Handle access to the per_info structure.
648 */
649 addr -= (addr_t) &dummy32->regs.per_info;
650 tmp = __peek_user_per_compat(child, addr);
651
652 } else
653 tmp = 0;
654
655 return tmp;
656 }
657
peek_user_compat(struct task_struct * child,addr_t addr,addr_t data)658 static int peek_user_compat(struct task_struct *child,
659 addr_t addr, addr_t data)
660 {
661 __u32 tmp;
662
663 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
664 return -EIO;
665
666 tmp = __peek_user_compat(child, addr);
667 return put_user(tmp, (__u32 __user *) data);
668 }
669
670 /*
671 * Same as poke_user_per but for a 31 bit program.
672 */
__poke_user_per_compat(struct task_struct * child,addr_t addr,__u32 data)673 static inline void __poke_user_per_compat(struct task_struct *child,
674 addr_t addr, __u32 data)
675 {
676 struct compat_per_struct_kernel *dummy32 = NULL;
677
678 if (addr == (addr_t) &dummy32->cr9)
679 /* PER event mask of the user specified per set. */
680 child->thread.per_user.control =
681 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
682 else if (addr == (addr_t) &dummy32->starting_addr)
683 /* Starting address of the user specified per set. */
684 child->thread.per_user.start = data;
685 else if (addr == (addr_t) &dummy32->ending_addr)
686 /* Ending address of the user specified per set. */
687 child->thread.per_user.end = data;
688 }
689
690 /*
691 * Same as poke_user but for a 31 bit program.
692 */
__poke_user_compat(struct task_struct * child,addr_t addr,addr_t data)693 static int __poke_user_compat(struct task_struct *child,
694 addr_t addr, addr_t data)
695 {
696 struct compat_user *dummy32 = NULL;
697 __u32 tmp = (__u32) data;
698 addr_t offset;
699
700 if (addr < (addr_t) &dummy32->regs.acrs) {
701 struct pt_regs *regs = task_pt_regs(child);
702 /*
703 * psw, gprs, acrs and orig_gpr2 are stored on the stack
704 */
705 if (addr == (addr_t) &dummy32->regs.psw.mask) {
706 __u32 mask = PSW32_MASK_USER;
707
708 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
709 /* Build a 64 bit psw mask from 31 bit mask. */
710 if ((tmp ^ PSW32_USER_BITS) & ~mask)
711 /* Invalid psw mask. */
712 return -EINVAL;
713 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
714 /* Invalid address-space-control bits */
715 return -EINVAL;
716 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
717 (regs->psw.mask & PSW_MASK_BA) |
718 (__u64)(tmp & mask) << 32;
719 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
720 /* Build a 64 bit psw address from 31 bit address. */
721 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
722 /* Transfer 31 bit amode bit to psw mask. */
723 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
724 (__u64)(tmp & PSW32_ADDR_AMODE);
725 } else {
726 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
727 addr == offsetof(struct compat_user, regs.gprs[2])) {
728 struct pt_regs *regs = task_pt_regs(child);
729
730 regs->int_code = 0x20000 | (data & 0xffff);
731 }
732 /* gpr 0-15 */
733 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
734 }
735 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
736 /*
737 * access registers are stored in the thread structure
738 */
739 offset = addr - (addr_t) &dummy32->regs.acrs;
740 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
741
742 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
743 /*
744 * orig_gpr2 is stored on the kernel stack
745 */
746 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
747
748 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
749 /*
750 * prevent writess of padding hole between
751 * orig_gpr2 and fp_regs on s390.
752 */
753 return 0;
754
755 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
756 /*
757 * floating point control reg. is in the thread structure
758 */
759 if (test_fp_ctl(tmp))
760 return -EINVAL;
761 child->thread.fpu.fpc = data;
762
763 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
764 /*
765 * floating point regs. are either in child->thread.fpu
766 * or the child->thread.fpu.vxrs array
767 */
768 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
769 if (MACHINE_HAS_VX)
770 *(__u32 *)((addr_t)
771 child->thread.fpu.vxrs + 2*offset) = tmp;
772 else
773 *(__u32 *)((addr_t)
774 child->thread.fpu.fprs + offset) = tmp;
775
776 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
777 /*
778 * Handle access to the per_info structure.
779 */
780 addr -= (addr_t) &dummy32->regs.per_info;
781 __poke_user_per_compat(child, addr, data);
782 }
783
784 return 0;
785 }
786
poke_user_compat(struct task_struct * child,addr_t addr,addr_t data)787 static int poke_user_compat(struct task_struct *child,
788 addr_t addr, addr_t data)
789 {
790 if (!is_compat_task() || (addr & 3) ||
791 addr > sizeof(struct compat_user) - 3)
792 return -EIO;
793
794 return __poke_user_compat(child, addr, data);
795 }
796
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)797 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
798 compat_ulong_t caddr, compat_ulong_t cdata)
799 {
800 unsigned long addr = caddr;
801 unsigned long data = cdata;
802 compat_ptrace_area parea;
803 int copied, ret;
804
805 switch (request) {
806 case PTRACE_PEEKUSR:
807 /* read the word at location addr in the USER area. */
808 return peek_user_compat(child, addr, data);
809
810 case PTRACE_POKEUSR:
811 /* write the word at location addr in the USER area */
812 return poke_user_compat(child, addr, data);
813
814 case PTRACE_PEEKUSR_AREA:
815 case PTRACE_POKEUSR_AREA:
816 if (copy_from_user(&parea, (void __force __user *) addr,
817 sizeof(parea)))
818 return -EFAULT;
819 addr = parea.kernel_addr;
820 data = parea.process_addr;
821 copied = 0;
822 while (copied < parea.len) {
823 if (request == PTRACE_PEEKUSR_AREA)
824 ret = peek_user_compat(child, addr, data);
825 else {
826 __u32 utmp;
827 if (get_user(utmp,
828 (__u32 __force __user *) data))
829 return -EFAULT;
830 ret = poke_user_compat(child, addr, utmp);
831 }
832 if (ret)
833 return ret;
834 addr += sizeof(unsigned int);
835 data += sizeof(unsigned int);
836 copied += sizeof(unsigned int);
837 }
838 return 0;
839 case PTRACE_GET_LAST_BREAK:
840 put_user(child->thread.last_break,
841 (unsigned int __user *) data);
842 return 0;
843 }
844 return compat_ptrace_request(child, request, addr, data);
845 }
846 #endif
847
848 /*
849 * user_regset definitions.
850 */
851
s390_regs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)852 static int s390_regs_get(struct task_struct *target,
853 const struct user_regset *regset,
854 struct membuf to)
855 {
856 unsigned pos;
857 if (target == current)
858 save_access_regs(target->thread.acrs);
859
860 for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
861 membuf_store(&to, __peek_user(target, pos));
862 return 0;
863 }
864
s390_regs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)865 static int s390_regs_set(struct task_struct *target,
866 const struct user_regset *regset,
867 unsigned int pos, unsigned int count,
868 const void *kbuf, const void __user *ubuf)
869 {
870 int rc = 0;
871
872 if (target == current)
873 save_access_regs(target->thread.acrs);
874
875 if (kbuf) {
876 const unsigned long *k = kbuf;
877 while (count > 0 && !rc) {
878 rc = __poke_user(target, pos, *k++);
879 count -= sizeof(*k);
880 pos += sizeof(*k);
881 }
882 } else {
883 const unsigned long __user *u = ubuf;
884 while (count > 0 && !rc) {
885 unsigned long word;
886 rc = __get_user(word, u++);
887 if (rc)
888 break;
889 rc = __poke_user(target, pos, word);
890 count -= sizeof(*u);
891 pos += sizeof(*u);
892 }
893 }
894
895 if (rc == 0 && target == current)
896 restore_access_regs(target->thread.acrs);
897
898 return rc;
899 }
900
s390_fpregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)901 static int s390_fpregs_get(struct task_struct *target,
902 const struct user_regset *regset,
903 struct membuf to)
904 {
905 _s390_fp_regs fp_regs;
906
907 if (target == current)
908 save_fpu_regs();
909
910 fp_regs.fpc = target->thread.fpu.fpc;
911 fpregs_store(&fp_regs, &target->thread.fpu);
912
913 return membuf_write(&to, &fp_regs, sizeof(fp_regs));
914 }
915
s390_fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)916 static int s390_fpregs_set(struct task_struct *target,
917 const struct user_regset *regset, unsigned int pos,
918 unsigned int count, const void *kbuf,
919 const void __user *ubuf)
920 {
921 int rc = 0;
922 freg_t fprs[__NUM_FPRS];
923
924 if (target == current)
925 save_fpu_regs();
926
927 if (MACHINE_HAS_VX)
928 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
929 else
930 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
931
932 /* If setting FPC, must validate it first. */
933 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
934 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
935 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
936 0, offsetof(s390_fp_regs, fprs));
937 if (rc)
938 return rc;
939 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
940 return -EINVAL;
941 target->thread.fpu.fpc = ufpc[0];
942 }
943
944 if (rc == 0 && count > 0)
945 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
946 fprs, offsetof(s390_fp_regs, fprs), -1);
947 if (rc)
948 return rc;
949
950 if (MACHINE_HAS_VX)
951 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
952 else
953 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
954
955 return rc;
956 }
957
s390_last_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)958 static int s390_last_break_get(struct task_struct *target,
959 const struct user_regset *regset,
960 struct membuf to)
961 {
962 return membuf_store(&to, target->thread.last_break);
963 }
964
s390_last_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)965 static int s390_last_break_set(struct task_struct *target,
966 const struct user_regset *regset,
967 unsigned int pos, unsigned int count,
968 const void *kbuf, const void __user *ubuf)
969 {
970 return 0;
971 }
972
s390_tdb_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)973 static int s390_tdb_get(struct task_struct *target,
974 const struct user_regset *regset,
975 struct membuf to)
976 {
977 struct pt_regs *regs = task_pt_regs(target);
978 size_t size;
979
980 if (!(regs->int_code & 0x200))
981 return -ENODATA;
982 size = sizeof(target->thread.trap_tdb.data);
983 return membuf_write(&to, target->thread.trap_tdb.data, size);
984 }
985
s390_tdb_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)986 static int s390_tdb_set(struct task_struct *target,
987 const struct user_regset *regset,
988 unsigned int pos, unsigned int count,
989 const void *kbuf, const void __user *ubuf)
990 {
991 return 0;
992 }
993
s390_vxrs_low_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)994 static int s390_vxrs_low_get(struct task_struct *target,
995 const struct user_regset *regset,
996 struct membuf to)
997 {
998 __u64 vxrs[__NUM_VXRS_LOW];
999 int i;
1000
1001 if (!MACHINE_HAS_VX)
1002 return -ENODEV;
1003 if (target == current)
1004 save_fpu_regs();
1005 for (i = 0; i < __NUM_VXRS_LOW; i++)
1006 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1007 return membuf_write(&to, vxrs, sizeof(vxrs));
1008 }
1009
s390_vxrs_low_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1010 static int s390_vxrs_low_set(struct task_struct *target,
1011 const struct user_regset *regset,
1012 unsigned int pos, unsigned int count,
1013 const void *kbuf, const void __user *ubuf)
1014 {
1015 __u64 vxrs[__NUM_VXRS_LOW];
1016 int i, rc;
1017
1018 if (!MACHINE_HAS_VX)
1019 return -ENODEV;
1020 if (target == current)
1021 save_fpu_regs();
1022
1023 for (i = 0; i < __NUM_VXRS_LOW; i++)
1024 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1025
1026 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1027 if (rc == 0)
1028 for (i = 0; i < __NUM_VXRS_LOW; i++)
1029 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1030
1031 return rc;
1032 }
1033
s390_vxrs_high_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1034 static int s390_vxrs_high_get(struct task_struct *target,
1035 const struct user_regset *regset,
1036 struct membuf to)
1037 {
1038 if (!MACHINE_HAS_VX)
1039 return -ENODEV;
1040 if (target == current)
1041 save_fpu_regs();
1042 return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1043 __NUM_VXRS_HIGH * sizeof(__vector128));
1044 }
1045
s390_vxrs_high_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1046 static int s390_vxrs_high_set(struct task_struct *target,
1047 const struct user_regset *regset,
1048 unsigned int pos, unsigned int count,
1049 const void *kbuf, const void __user *ubuf)
1050 {
1051 int rc;
1052
1053 if (!MACHINE_HAS_VX)
1054 return -ENODEV;
1055 if (target == current)
1056 save_fpu_regs();
1057
1058 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1059 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1060 return rc;
1061 }
1062
s390_system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1063 static int s390_system_call_get(struct task_struct *target,
1064 const struct user_regset *regset,
1065 struct membuf to)
1066 {
1067 return membuf_store(&to, target->thread.system_call);
1068 }
1069
s390_system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1070 static int s390_system_call_set(struct task_struct *target,
1071 const struct user_regset *regset,
1072 unsigned int pos, unsigned int count,
1073 const void *kbuf, const void __user *ubuf)
1074 {
1075 unsigned int *data = &target->thread.system_call;
1076 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1077 data, 0, sizeof(unsigned int));
1078 }
1079
s390_gs_cb_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1080 static int s390_gs_cb_get(struct task_struct *target,
1081 const struct user_regset *regset,
1082 struct membuf to)
1083 {
1084 struct gs_cb *data = target->thread.gs_cb;
1085
1086 if (!MACHINE_HAS_GS)
1087 return -ENODEV;
1088 if (!data)
1089 return -ENODATA;
1090 if (target == current)
1091 save_gs_cb(data);
1092 return membuf_write(&to, data, sizeof(struct gs_cb));
1093 }
1094
s390_gs_cb_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1095 static int s390_gs_cb_set(struct task_struct *target,
1096 const struct user_regset *regset,
1097 unsigned int pos, unsigned int count,
1098 const void *kbuf, const void __user *ubuf)
1099 {
1100 struct gs_cb gs_cb = { }, *data = NULL;
1101 int rc;
1102
1103 if (!MACHINE_HAS_GS)
1104 return -ENODEV;
1105 if (!target->thread.gs_cb) {
1106 data = kzalloc(sizeof(*data), GFP_KERNEL);
1107 if (!data)
1108 return -ENOMEM;
1109 }
1110 if (!target->thread.gs_cb)
1111 gs_cb.gsd = 25;
1112 else if (target == current)
1113 save_gs_cb(&gs_cb);
1114 else
1115 gs_cb = *target->thread.gs_cb;
1116 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1117 &gs_cb, 0, sizeof(gs_cb));
1118 if (rc) {
1119 kfree(data);
1120 return -EFAULT;
1121 }
1122 preempt_disable();
1123 if (!target->thread.gs_cb)
1124 target->thread.gs_cb = data;
1125 *target->thread.gs_cb = gs_cb;
1126 if (target == current) {
1127 __ctl_set_bit(2, 4);
1128 restore_gs_cb(target->thread.gs_cb);
1129 }
1130 preempt_enable();
1131 return rc;
1132 }
1133
s390_gs_bc_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1134 static int s390_gs_bc_get(struct task_struct *target,
1135 const struct user_regset *regset,
1136 struct membuf to)
1137 {
1138 struct gs_cb *data = target->thread.gs_bc_cb;
1139
1140 if (!MACHINE_HAS_GS)
1141 return -ENODEV;
1142 if (!data)
1143 return -ENODATA;
1144 return membuf_write(&to, data, sizeof(struct gs_cb));
1145 }
1146
s390_gs_bc_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1147 static int s390_gs_bc_set(struct task_struct *target,
1148 const struct user_regset *regset,
1149 unsigned int pos, unsigned int count,
1150 const void *kbuf, const void __user *ubuf)
1151 {
1152 struct gs_cb *data = target->thread.gs_bc_cb;
1153
1154 if (!MACHINE_HAS_GS)
1155 return -ENODEV;
1156 if (!data) {
1157 data = kzalloc(sizeof(*data), GFP_KERNEL);
1158 if (!data)
1159 return -ENOMEM;
1160 target->thread.gs_bc_cb = data;
1161 }
1162 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1163 data, 0, sizeof(struct gs_cb));
1164 }
1165
is_ri_cb_valid(struct runtime_instr_cb * cb)1166 static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1167 {
1168 return (cb->rca & 0x1f) == 0 &&
1169 (cb->roa & 0xfff) == 0 &&
1170 (cb->rla & 0xfff) == 0xfff &&
1171 cb->s == 1 &&
1172 cb->k == 1 &&
1173 cb->h == 0 &&
1174 cb->reserved1 == 0 &&
1175 cb->ps == 1 &&
1176 cb->qs == 0 &&
1177 cb->pc == 1 &&
1178 cb->qc == 0 &&
1179 cb->reserved2 == 0 &&
1180 cb->reserved3 == 0 &&
1181 cb->reserved4 == 0 &&
1182 cb->reserved5 == 0 &&
1183 cb->reserved6 == 0 &&
1184 cb->reserved7 == 0 &&
1185 cb->reserved8 == 0 &&
1186 cb->rla >= cb->roa &&
1187 cb->rca >= cb->roa &&
1188 cb->rca <= cb->rla+1 &&
1189 cb->m < 3;
1190 }
1191
s390_runtime_instr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1192 static int s390_runtime_instr_get(struct task_struct *target,
1193 const struct user_regset *regset,
1194 struct membuf to)
1195 {
1196 struct runtime_instr_cb *data = target->thread.ri_cb;
1197
1198 if (!test_facility(64))
1199 return -ENODEV;
1200 if (!data)
1201 return -ENODATA;
1202
1203 return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1204 }
1205
s390_runtime_instr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1206 static int s390_runtime_instr_set(struct task_struct *target,
1207 const struct user_regset *regset,
1208 unsigned int pos, unsigned int count,
1209 const void *kbuf, const void __user *ubuf)
1210 {
1211 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1212 int rc;
1213
1214 if (!test_facility(64))
1215 return -ENODEV;
1216
1217 if (!target->thread.ri_cb) {
1218 data = kzalloc(sizeof(*data), GFP_KERNEL);
1219 if (!data)
1220 return -ENOMEM;
1221 }
1222
1223 if (target->thread.ri_cb) {
1224 if (target == current)
1225 store_runtime_instr_cb(&ri_cb);
1226 else
1227 ri_cb = *target->thread.ri_cb;
1228 }
1229
1230 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1231 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1232 if (rc) {
1233 kfree(data);
1234 return -EFAULT;
1235 }
1236
1237 if (!is_ri_cb_valid(&ri_cb)) {
1238 kfree(data);
1239 return -EINVAL;
1240 }
1241 /*
1242 * Override access key in any case, since user space should
1243 * not be able to set it, nor should it care about it.
1244 */
1245 ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1246 preempt_disable();
1247 if (!target->thread.ri_cb)
1248 target->thread.ri_cb = data;
1249 *target->thread.ri_cb = ri_cb;
1250 if (target == current)
1251 load_runtime_instr_cb(target->thread.ri_cb);
1252 preempt_enable();
1253
1254 return 0;
1255 }
1256
1257 static const struct user_regset s390_regsets[] = {
1258 {
1259 .core_note_type = NT_PRSTATUS,
1260 .n = sizeof(s390_regs) / sizeof(long),
1261 .size = sizeof(long),
1262 .align = sizeof(long),
1263 .regset_get = s390_regs_get,
1264 .set = s390_regs_set,
1265 },
1266 {
1267 .core_note_type = NT_PRFPREG,
1268 .n = sizeof(s390_fp_regs) / sizeof(long),
1269 .size = sizeof(long),
1270 .align = sizeof(long),
1271 .regset_get = s390_fpregs_get,
1272 .set = s390_fpregs_set,
1273 },
1274 {
1275 .core_note_type = NT_S390_SYSTEM_CALL,
1276 .n = 1,
1277 .size = sizeof(unsigned int),
1278 .align = sizeof(unsigned int),
1279 .regset_get = s390_system_call_get,
1280 .set = s390_system_call_set,
1281 },
1282 {
1283 .core_note_type = NT_S390_LAST_BREAK,
1284 .n = 1,
1285 .size = sizeof(long),
1286 .align = sizeof(long),
1287 .regset_get = s390_last_break_get,
1288 .set = s390_last_break_set,
1289 },
1290 {
1291 .core_note_type = NT_S390_TDB,
1292 .n = 1,
1293 .size = 256,
1294 .align = 1,
1295 .regset_get = s390_tdb_get,
1296 .set = s390_tdb_set,
1297 },
1298 {
1299 .core_note_type = NT_S390_VXRS_LOW,
1300 .n = __NUM_VXRS_LOW,
1301 .size = sizeof(__u64),
1302 .align = sizeof(__u64),
1303 .regset_get = s390_vxrs_low_get,
1304 .set = s390_vxrs_low_set,
1305 },
1306 {
1307 .core_note_type = NT_S390_VXRS_HIGH,
1308 .n = __NUM_VXRS_HIGH,
1309 .size = sizeof(__vector128),
1310 .align = sizeof(__vector128),
1311 .regset_get = s390_vxrs_high_get,
1312 .set = s390_vxrs_high_set,
1313 },
1314 {
1315 .core_note_type = NT_S390_GS_CB,
1316 .n = sizeof(struct gs_cb) / sizeof(__u64),
1317 .size = sizeof(__u64),
1318 .align = sizeof(__u64),
1319 .regset_get = s390_gs_cb_get,
1320 .set = s390_gs_cb_set,
1321 },
1322 {
1323 .core_note_type = NT_S390_GS_BC,
1324 .n = sizeof(struct gs_cb) / sizeof(__u64),
1325 .size = sizeof(__u64),
1326 .align = sizeof(__u64),
1327 .regset_get = s390_gs_bc_get,
1328 .set = s390_gs_bc_set,
1329 },
1330 {
1331 .core_note_type = NT_S390_RI_CB,
1332 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1333 .size = sizeof(__u64),
1334 .align = sizeof(__u64),
1335 .regset_get = s390_runtime_instr_get,
1336 .set = s390_runtime_instr_set,
1337 },
1338 };
1339
1340 static const struct user_regset_view user_s390_view = {
1341 .name = "s390x",
1342 .e_machine = EM_S390,
1343 .regsets = s390_regsets,
1344 .n = ARRAY_SIZE(s390_regsets)
1345 };
1346
1347 #ifdef CONFIG_COMPAT
s390_compat_regs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1348 static int s390_compat_regs_get(struct task_struct *target,
1349 const struct user_regset *regset,
1350 struct membuf to)
1351 {
1352 unsigned n;
1353
1354 if (target == current)
1355 save_access_regs(target->thread.acrs);
1356
1357 for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1358 membuf_store(&to, __peek_user_compat(target, n));
1359 return 0;
1360 }
1361
s390_compat_regs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1362 static int s390_compat_regs_set(struct task_struct *target,
1363 const struct user_regset *regset,
1364 unsigned int pos, unsigned int count,
1365 const void *kbuf, const void __user *ubuf)
1366 {
1367 int rc = 0;
1368
1369 if (target == current)
1370 save_access_regs(target->thread.acrs);
1371
1372 if (kbuf) {
1373 const compat_ulong_t *k = kbuf;
1374 while (count > 0 && !rc) {
1375 rc = __poke_user_compat(target, pos, *k++);
1376 count -= sizeof(*k);
1377 pos += sizeof(*k);
1378 }
1379 } else {
1380 const compat_ulong_t __user *u = ubuf;
1381 while (count > 0 && !rc) {
1382 compat_ulong_t word;
1383 rc = __get_user(word, u++);
1384 if (rc)
1385 break;
1386 rc = __poke_user_compat(target, pos, word);
1387 count -= sizeof(*u);
1388 pos += sizeof(*u);
1389 }
1390 }
1391
1392 if (rc == 0 && target == current)
1393 restore_access_regs(target->thread.acrs);
1394
1395 return rc;
1396 }
1397
s390_compat_regs_high_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1398 static int s390_compat_regs_high_get(struct task_struct *target,
1399 const struct user_regset *regset,
1400 struct membuf to)
1401 {
1402 compat_ulong_t *gprs_high;
1403 int i;
1404
1405 gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1406 for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1407 membuf_store(&to, *gprs_high);
1408 return 0;
1409 }
1410
s390_compat_regs_high_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1411 static int s390_compat_regs_high_set(struct task_struct *target,
1412 const struct user_regset *regset,
1413 unsigned int pos, unsigned int count,
1414 const void *kbuf, const void __user *ubuf)
1415 {
1416 compat_ulong_t *gprs_high;
1417 int rc = 0;
1418
1419 gprs_high = (compat_ulong_t *)
1420 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1421 if (kbuf) {
1422 const compat_ulong_t *k = kbuf;
1423 while (count > 0) {
1424 *gprs_high = *k++;
1425 *gprs_high += 2;
1426 count -= sizeof(*k);
1427 }
1428 } else {
1429 const compat_ulong_t __user *u = ubuf;
1430 while (count > 0 && !rc) {
1431 unsigned long word;
1432 rc = __get_user(word, u++);
1433 if (rc)
1434 break;
1435 *gprs_high = word;
1436 *gprs_high += 2;
1437 count -= sizeof(*u);
1438 }
1439 }
1440
1441 return rc;
1442 }
1443
s390_compat_last_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1444 static int s390_compat_last_break_get(struct task_struct *target,
1445 const struct user_regset *regset,
1446 struct membuf to)
1447 {
1448 compat_ulong_t last_break = target->thread.last_break;
1449
1450 return membuf_store(&to, (unsigned long)last_break);
1451 }
1452
s390_compat_last_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1453 static int s390_compat_last_break_set(struct task_struct *target,
1454 const struct user_regset *regset,
1455 unsigned int pos, unsigned int count,
1456 const void *kbuf, const void __user *ubuf)
1457 {
1458 return 0;
1459 }
1460
1461 static const struct user_regset s390_compat_regsets[] = {
1462 {
1463 .core_note_type = NT_PRSTATUS,
1464 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1465 .size = sizeof(compat_long_t),
1466 .align = sizeof(compat_long_t),
1467 .regset_get = s390_compat_regs_get,
1468 .set = s390_compat_regs_set,
1469 },
1470 {
1471 .core_note_type = NT_PRFPREG,
1472 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1473 .size = sizeof(compat_long_t),
1474 .align = sizeof(compat_long_t),
1475 .regset_get = s390_fpregs_get,
1476 .set = s390_fpregs_set,
1477 },
1478 {
1479 .core_note_type = NT_S390_SYSTEM_CALL,
1480 .n = 1,
1481 .size = sizeof(compat_uint_t),
1482 .align = sizeof(compat_uint_t),
1483 .regset_get = s390_system_call_get,
1484 .set = s390_system_call_set,
1485 },
1486 {
1487 .core_note_type = NT_S390_LAST_BREAK,
1488 .n = 1,
1489 .size = sizeof(long),
1490 .align = sizeof(long),
1491 .regset_get = s390_compat_last_break_get,
1492 .set = s390_compat_last_break_set,
1493 },
1494 {
1495 .core_note_type = NT_S390_TDB,
1496 .n = 1,
1497 .size = 256,
1498 .align = 1,
1499 .regset_get = s390_tdb_get,
1500 .set = s390_tdb_set,
1501 },
1502 {
1503 .core_note_type = NT_S390_VXRS_LOW,
1504 .n = __NUM_VXRS_LOW,
1505 .size = sizeof(__u64),
1506 .align = sizeof(__u64),
1507 .regset_get = s390_vxrs_low_get,
1508 .set = s390_vxrs_low_set,
1509 },
1510 {
1511 .core_note_type = NT_S390_VXRS_HIGH,
1512 .n = __NUM_VXRS_HIGH,
1513 .size = sizeof(__vector128),
1514 .align = sizeof(__vector128),
1515 .regset_get = s390_vxrs_high_get,
1516 .set = s390_vxrs_high_set,
1517 },
1518 {
1519 .core_note_type = NT_S390_HIGH_GPRS,
1520 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1521 .size = sizeof(compat_long_t),
1522 .align = sizeof(compat_long_t),
1523 .regset_get = s390_compat_regs_high_get,
1524 .set = s390_compat_regs_high_set,
1525 },
1526 {
1527 .core_note_type = NT_S390_GS_CB,
1528 .n = sizeof(struct gs_cb) / sizeof(__u64),
1529 .size = sizeof(__u64),
1530 .align = sizeof(__u64),
1531 .regset_get = s390_gs_cb_get,
1532 .set = s390_gs_cb_set,
1533 },
1534 {
1535 .core_note_type = NT_S390_GS_BC,
1536 .n = sizeof(struct gs_cb) / sizeof(__u64),
1537 .size = sizeof(__u64),
1538 .align = sizeof(__u64),
1539 .regset_get = s390_gs_bc_get,
1540 .set = s390_gs_bc_set,
1541 },
1542 {
1543 .core_note_type = NT_S390_RI_CB,
1544 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1545 .size = sizeof(__u64),
1546 .align = sizeof(__u64),
1547 .regset_get = s390_runtime_instr_get,
1548 .set = s390_runtime_instr_set,
1549 },
1550 };
1551
1552 static const struct user_regset_view user_s390_compat_view = {
1553 .name = "s390",
1554 .e_machine = EM_S390,
1555 .regsets = s390_compat_regsets,
1556 .n = ARRAY_SIZE(s390_compat_regsets)
1557 };
1558 #endif
1559
task_user_regset_view(struct task_struct * task)1560 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1561 {
1562 #ifdef CONFIG_COMPAT
1563 if (test_tsk_thread_flag(task, TIF_31BIT))
1564 return &user_s390_compat_view;
1565 #endif
1566 return &user_s390_view;
1567 }
1568
1569 static const char *gpr_names[NUM_GPRS] = {
1570 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1571 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1572 };
1573
regs_get_register(struct pt_regs * regs,unsigned int offset)1574 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1575 {
1576 if (offset >= NUM_GPRS)
1577 return 0;
1578 return regs->gprs[offset];
1579 }
1580
regs_query_register_offset(const char * name)1581 int regs_query_register_offset(const char *name)
1582 {
1583 unsigned long offset;
1584
1585 if (!name || *name != 'r')
1586 return -EINVAL;
1587 if (kstrtoul(name + 1, 10, &offset))
1588 return -EINVAL;
1589 if (offset >= NUM_GPRS)
1590 return -EINVAL;
1591 return offset;
1592 }
1593
regs_query_register_name(unsigned int offset)1594 const char *regs_query_register_name(unsigned int offset)
1595 {
1596 if (offset >= NUM_GPRS)
1597 return NULL;
1598 return gpr_names[offset];
1599 }
1600
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)1601 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1602 {
1603 unsigned long ksp = kernel_stack_pointer(regs);
1604
1605 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1606 }
1607
1608 /**
1609 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1610 * @regs:pt_regs which contains kernel stack pointer.
1611 * @n:stack entry number.
1612 *
1613 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1614 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1615 * this returns 0.
1616 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)1617 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1618 {
1619 unsigned long addr;
1620
1621 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1622 if (!regs_within_kernel_stack(regs, addr))
1623 return 0;
1624 return *(unsigned long *)addr;
1625 }
1626