1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Single-step support.
4 *
5 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6 */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17
18 extern char system_call_common[];
19 extern char system_call_vectored_emulate[];
20
21 #ifdef CONFIG_PPC64
22 /* Bits in SRR1 that are copied from MSR */
23 #define MSR_MASK 0xffffffff87c0ffffUL
24 #else
25 #define MSR_MASK 0x87c0ffff
26 #endif
27
28 /* Bits in XER */
29 #define XER_SO 0x80000000U
30 #define XER_OV 0x40000000U
31 #define XER_CA 0x20000000U
32 #define XER_OV32 0x00080000U
33 #define XER_CA32 0x00040000U
34
35 #ifdef CONFIG_VSX
36 #define VSX_REGISTER_XTP(rd) ((((rd) & 1) << 5) | ((rd) & 0xfe))
37 #endif
38
39 #ifdef CONFIG_PPC_FPU
40 /*
41 * Functions in ldstfp.S
42 */
43 extern void get_fpr(int rn, double *p);
44 extern void put_fpr(int rn, const double *p);
45 extern void get_vr(int rn, __vector128 *p);
46 extern void put_vr(int rn, __vector128 *p);
47 extern void load_vsrn(int vsr, const void *p);
48 extern void store_vsrn(int vsr, void *p);
49 extern void conv_sp_to_dp(const float *sp, double *dp);
50 extern void conv_dp_to_sp(const double *dp, float *sp);
51 #endif
52
53 #ifdef __powerpc64__
54 /*
55 * Functions in quad.S
56 */
57 extern int do_lq(unsigned long ea, unsigned long *regs);
58 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
59 extern int do_lqarx(unsigned long ea, unsigned long *regs);
60 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
61 unsigned int *crp);
62 #endif
63
64 #ifdef __LITTLE_ENDIAN__
65 #define IS_LE 1
66 #define IS_BE 0
67 #else
68 #define IS_LE 0
69 #define IS_BE 1
70 #endif
71
72 /*
73 * Emulate the truncation of 64 bit values in 32-bit mode.
74 */
truncate_if_32bit(unsigned long msr,unsigned long val)75 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
76 unsigned long val)
77 {
78 #ifdef __powerpc64__
79 if ((msr & MSR_64BIT) == 0)
80 val &= 0xffffffffUL;
81 #endif
82 return val;
83 }
84
85 /*
86 * Determine whether a conditional branch instruction would branch.
87 */
branch_taken(unsigned int instr,const struct pt_regs * regs,struct instruction_op * op)88 static nokprobe_inline int branch_taken(unsigned int instr,
89 const struct pt_regs *regs,
90 struct instruction_op *op)
91 {
92 unsigned int bo = (instr >> 21) & 0x1f;
93 unsigned int bi;
94
95 if ((bo & 4) == 0) {
96 /* decrement counter */
97 op->type |= DECCTR;
98 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
99 return 0;
100 }
101 if ((bo & 0x10) == 0) {
102 /* check bit from CR */
103 bi = (instr >> 16) & 0x1f;
104 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
105 return 0;
106 }
107 return 1;
108 }
109
address_ok(struct pt_regs * regs,unsigned long ea,int nb)110 static nokprobe_inline long address_ok(struct pt_regs *regs,
111 unsigned long ea, int nb)
112 {
113 if (!user_mode(regs))
114 return 1;
115 if (__access_ok(ea, nb))
116 return 1;
117 if (__access_ok(ea, 1))
118 /* Access overlaps the end of the user region */
119 regs->dar = TASK_SIZE_MAX - 1;
120 else
121 regs->dar = ea;
122 return 0;
123 }
124
125 /*
126 * Calculate effective address for a D-form instruction
127 */
dform_ea(unsigned int instr,const struct pt_regs * regs)128 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
129 const struct pt_regs *regs)
130 {
131 int ra;
132 unsigned long ea;
133
134 ra = (instr >> 16) & 0x1f;
135 ea = (signed short) instr; /* sign-extend */
136 if (ra)
137 ea += regs->gpr[ra];
138
139 return ea;
140 }
141
142 #ifdef __powerpc64__
143 /*
144 * Calculate effective address for a DS-form instruction
145 */
dsform_ea(unsigned int instr,const struct pt_regs * regs)146 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
147 const struct pt_regs *regs)
148 {
149 int ra;
150 unsigned long ea;
151
152 ra = (instr >> 16) & 0x1f;
153 ea = (signed short) (instr & ~3); /* sign-extend */
154 if (ra)
155 ea += regs->gpr[ra];
156
157 return ea;
158 }
159
160 /*
161 * Calculate effective address for a DQ-form instruction
162 */
dqform_ea(unsigned int instr,const struct pt_regs * regs)163 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
164 const struct pt_regs *regs)
165 {
166 int ra;
167 unsigned long ea;
168
169 ra = (instr >> 16) & 0x1f;
170 ea = (signed short) (instr & ~0xf); /* sign-extend */
171 if (ra)
172 ea += regs->gpr[ra];
173
174 return ea;
175 }
176 #endif /* __powerpc64 */
177
178 /*
179 * Calculate effective address for an X-form instruction
180 */
xform_ea(unsigned int instr,const struct pt_regs * regs)181 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
182 const struct pt_regs *regs)
183 {
184 int ra, rb;
185 unsigned long ea;
186
187 ra = (instr >> 16) & 0x1f;
188 rb = (instr >> 11) & 0x1f;
189 ea = regs->gpr[rb];
190 if (ra)
191 ea += regs->gpr[ra];
192
193 return ea;
194 }
195
196 /*
197 * Calculate effective address for a MLS:D-form / 8LS:D-form
198 * prefixed instruction
199 */
mlsd_8lsd_ea(unsigned int instr,unsigned int suffix,const struct pt_regs * regs)200 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
201 unsigned int suffix,
202 const struct pt_regs *regs)
203 {
204 int ra, prefix_r;
205 unsigned int dd;
206 unsigned long ea, d0, d1, d;
207
208 prefix_r = GET_PREFIX_R(instr);
209 ra = GET_PREFIX_RA(suffix);
210
211 d0 = instr & 0x3ffff;
212 d1 = suffix & 0xffff;
213 d = (d0 << 16) | d1;
214
215 /*
216 * sign extend a 34 bit number
217 */
218 dd = (unsigned int)(d >> 2);
219 ea = (signed int)dd;
220 ea = (ea << 2) | (d & 0x3);
221
222 if (!prefix_r && ra)
223 ea += regs->gpr[ra];
224 else if (!prefix_r && !ra)
225 ; /* Leave ea as is */
226 else if (prefix_r)
227 ea += regs->nip;
228
229 /*
230 * (prefix_r && ra) is an invalid form. Should already be
231 * checked for by caller!
232 */
233
234 return ea;
235 }
236
237 /*
238 * Return the largest power of 2, not greater than sizeof(unsigned long),
239 * such that x is a multiple of it.
240 */
max_align(unsigned long x)241 static nokprobe_inline unsigned long max_align(unsigned long x)
242 {
243 x |= sizeof(unsigned long);
244 return x & -x; /* isolates rightmost bit */
245 }
246
byterev_2(unsigned long x)247 static nokprobe_inline unsigned long byterev_2(unsigned long x)
248 {
249 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
250 }
251
byterev_4(unsigned long x)252 static nokprobe_inline unsigned long byterev_4(unsigned long x)
253 {
254 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
255 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
256 }
257
258 #ifdef __powerpc64__
byterev_8(unsigned long x)259 static nokprobe_inline unsigned long byterev_8(unsigned long x)
260 {
261 return (byterev_4(x) << 32) | byterev_4(x >> 32);
262 }
263 #endif
264
do_byte_reverse(void * ptr,int nb)265 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
266 {
267 switch (nb) {
268 case 2:
269 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
270 break;
271 case 4:
272 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
273 break;
274 #ifdef __powerpc64__
275 case 8:
276 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
277 break;
278 case 16: {
279 unsigned long *up = (unsigned long *)ptr;
280 unsigned long tmp;
281 tmp = byterev_8(up[0]);
282 up[0] = byterev_8(up[1]);
283 up[1] = tmp;
284 break;
285 }
286 case 32: {
287 unsigned long *up = (unsigned long *)ptr;
288 unsigned long tmp;
289
290 tmp = byterev_8(up[0]);
291 up[0] = byterev_8(up[3]);
292 up[3] = tmp;
293 tmp = byterev_8(up[2]);
294 up[2] = byterev_8(up[1]);
295 up[1] = tmp;
296 break;
297 }
298
299 #endif
300 default:
301 WARN_ON_ONCE(1);
302 }
303 }
304
read_mem_aligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)305 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
306 unsigned long ea, int nb,
307 struct pt_regs *regs)
308 {
309 int err = 0;
310 unsigned long x = 0;
311
312 switch (nb) {
313 case 1:
314 err = __get_user(x, (unsigned char __user *) ea);
315 break;
316 case 2:
317 err = __get_user(x, (unsigned short __user *) ea);
318 break;
319 case 4:
320 err = __get_user(x, (unsigned int __user *) ea);
321 break;
322 #ifdef __powerpc64__
323 case 8:
324 err = __get_user(x, (unsigned long __user *) ea);
325 break;
326 #endif
327 }
328 if (!err)
329 *dest = x;
330 else
331 regs->dar = ea;
332 return err;
333 }
334
335 /*
336 * Copy from userspace to a buffer, using the largest possible
337 * aligned accesses, up to sizeof(long).
338 */
copy_mem_in(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)339 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
340 struct pt_regs *regs)
341 {
342 int err = 0;
343 int c;
344
345 for (; nb > 0; nb -= c) {
346 c = max_align(ea);
347 if (c > nb)
348 c = max_align(nb);
349 switch (c) {
350 case 1:
351 err = __get_user(*dest, (unsigned char __user *) ea);
352 break;
353 case 2:
354 err = __get_user(*(u16 *)dest,
355 (unsigned short __user *) ea);
356 break;
357 case 4:
358 err = __get_user(*(u32 *)dest,
359 (unsigned int __user *) ea);
360 break;
361 #ifdef __powerpc64__
362 case 8:
363 err = __get_user(*(unsigned long *)dest,
364 (unsigned long __user *) ea);
365 break;
366 #endif
367 }
368 if (err) {
369 regs->dar = ea;
370 return err;
371 }
372 dest += c;
373 ea += c;
374 }
375 return 0;
376 }
377
read_mem_unaligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)378 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
379 unsigned long ea, int nb,
380 struct pt_regs *regs)
381 {
382 union {
383 unsigned long ul;
384 u8 b[sizeof(unsigned long)];
385 } u;
386 int i;
387 int err;
388
389 u.ul = 0;
390 i = IS_BE ? sizeof(unsigned long) - nb : 0;
391 err = copy_mem_in(&u.b[i], ea, nb, regs);
392 if (!err)
393 *dest = u.ul;
394 return err;
395 }
396
397 /*
398 * Read memory at address ea for nb bytes, return 0 for success
399 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
400 * If nb < sizeof(long), the result is right-justified on BE systems.
401 */
read_mem(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)402 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
403 struct pt_regs *regs)
404 {
405 if (!address_ok(regs, ea, nb))
406 return -EFAULT;
407 if ((ea & (nb - 1)) == 0)
408 return read_mem_aligned(dest, ea, nb, regs);
409 return read_mem_unaligned(dest, ea, nb, regs);
410 }
411 NOKPROBE_SYMBOL(read_mem);
412
write_mem_aligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)413 static nokprobe_inline int write_mem_aligned(unsigned long val,
414 unsigned long ea, int nb,
415 struct pt_regs *regs)
416 {
417 int err = 0;
418
419 switch (nb) {
420 case 1:
421 err = __put_user(val, (unsigned char __user *) ea);
422 break;
423 case 2:
424 err = __put_user(val, (unsigned short __user *) ea);
425 break;
426 case 4:
427 err = __put_user(val, (unsigned int __user *) ea);
428 break;
429 #ifdef __powerpc64__
430 case 8:
431 err = __put_user(val, (unsigned long __user *) ea);
432 break;
433 #endif
434 }
435 if (err)
436 regs->dar = ea;
437 return err;
438 }
439
440 /*
441 * Copy from a buffer to userspace, using the largest possible
442 * aligned accesses, up to sizeof(long).
443 */
copy_mem_out(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)444 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
445 struct pt_regs *regs)
446 {
447 int err = 0;
448 int c;
449
450 for (; nb > 0; nb -= c) {
451 c = max_align(ea);
452 if (c > nb)
453 c = max_align(nb);
454 switch (c) {
455 case 1:
456 err = __put_user(*dest, (unsigned char __user *) ea);
457 break;
458 case 2:
459 err = __put_user(*(u16 *)dest,
460 (unsigned short __user *) ea);
461 break;
462 case 4:
463 err = __put_user(*(u32 *)dest,
464 (unsigned int __user *) ea);
465 break;
466 #ifdef __powerpc64__
467 case 8:
468 err = __put_user(*(unsigned long *)dest,
469 (unsigned long __user *) ea);
470 break;
471 #endif
472 }
473 if (err) {
474 regs->dar = ea;
475 return err;
476 }
477 dest += c;
478 ea += c;
479 }
480 return 0;
481 }
482
write_mem_unaligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)483 static nokprobe_inline int write_mem_unaligned(unsigned long val,
484 unsigned long ea, int nb,
485 struct pt_regs *regs)
486 {
487 union {
488 unsigned long ul;
489 u8 b[sizeof(unsigned long)];
490 } u;
491 int i;
492
493 u.ul = val;
494 i = IS_BE ? sizeof(unsigned long) - nb : 0;
495 return copy_mem_out(&u.b[i], ea, nb, regs);
496 }
497
498 /*
499 * Write memory at address ea for nb bytes, return 0 for success
500 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
501 */
write_mem(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)502 static int write_mem(unsigned long val, unsigned long ea, int nb,
503 struct pt_regs *regs)
504 {
505 if (!address_ok(regs, ea, nb))
506 return -EFAULT;
507 if ((ea & (nb - 1)) == 0)
508 return write_mem_aligned(val, ea, nb, regs);
509 return write_mem_unaligned(val, ea, nb, regs);
510 }
511 NOKPROBE_SYMBOL(write_mem);
512
513 #ifdef CONFIG_PPC_FPU
514 /*
515 * These access either the real FP register or the image in the
516 * thread_struct, depending on regs->msr & MSR_FP.
517 */
do_fp_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)518 static int do_fp_load(struct instruction_op *op, unsigned long ea,
519 struct pt_regs *regs, bool cross_endian)
520 {
521 int err, rn, nb;
522 union {
523 int i;
524 unsigned int u;
525 float f;
526 double d[2];
527 unsigned long l[2];
528 u8 b[2 * sizeof(double)];
529 } u;
530
531 nb = GETSIZE(op->type);
532 if (!address_ok(regs, ea, nb))
533 return -EFAULT;
534 rn = op->reg;
535 err = copy_mem_in(u.b, ea, nb, regs);
536 if (err)
537 return err;
538 if (unlikely(cross_endian)) {
539 do_byte_reverse(u.b, min(nb, 8));
540 if (nb == 16)
541 do_byte_reverse(&u.b[8], 8);
542 }
543 preempt_disable();
544 if (nb == 4) {
545 if (op->type & FPCONV)
546 conv_sp_to_dp(&u.f, &u.d[0]);
547 else if (op->type & SIGNEXT)
548 u.l[0] = u.i;
549 else
550 u.l[0] = u.u;
551 }
552 if (regs->msr & MSR_FP)
553 put_fpr(rn, &u.d[0]);
554 else
555 current->thread.TS_FPR(rn) = u.l[0];
556 if (nb == 16) {
557 /* lfdp */
558 rn |= 1;
559 if (regs->msr & MSR_FP)
560 put_fpr(rn, &u.d[1]);
561 else
562 current->thread.TS_FPR(rn) = u.l[1];
563 }
564 preempt_enable();
565 return 0;
566 }
567 NOKPROBE_SYMBOL(do_fp_load);
568
do_fp_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)569 static int do_fp_store(struct instruction_op *op, unsigned long ea,
570 struct pt_regs *regs, bool cross_endian)
571 {
572 int rn, nb;
573 union {
574 unsigned int u;
575 float f;
576 double d[2];
577 unsigned long l[2];
578 u8 b[2 * sizeof(double)];
579 } u;
580
581 nb = GETSIZE(op->type);
582 if (!address_ok(regs, ea, nb))
583 return -EFAULT;
584 rn = op->reg;
585 preempt_disable();
586 if (regs->msr & MSR_FP)
587 get_fpr(rn, &u.d[0]);
588 else
589 u.l[0] = current->thread.TS_FPR(rn);
590 if (nb == 4) {
591 if (op->type & FPCONV)
592 conv_dp_to_sp(&u.d[0], &u.f);
593 else
594 u.u = u.l[0];
595 }
596 if (nb == 16) {
597 rn |= 1;
598 if (regs->msr & MSR_FP)
599 get_fpr(rn, &u.d[1]);
600 else
601 u.l[1] = current->thread.TS_FPR(rn);
602 }
603 preempt_enable();
604 if (unlikely(cross_endian)) {
605 do_byte_reverse(u.b, min(nb, 8));
606 if (nb == 16)
607 do_byte_reverse(&u.b[8], 8);
608 }
609 return copy_mem_out(u.b, ea, nb, regs);
610 }
611 NOKPROBE_SYMBOL(do_fp_store);
612 #endif
613
614 #ifdef CONFIG_ALTIVEC
615 /* For Altivec/VMX, no need to worry about alignment */
do_vec_load(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)616 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
617 int size, struct pt_regs *regs,
618 bool cross_endian)
619 {
620 int err;
621 union {
622 __vector128 v;
623 u8 b[sizeof(__vector128)];
624 } u = {};
625
626 if (!address_ok(regs, ea & ~0xfUL, 16))
627 return -EFAULT;
628 /* align to multiple of size */
629 ea &= ~(size - 1);
630 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
631 if (err)
632 return err;
633 if (unlikely(cross_endian))
634 do_byte_reverse(&u.b[ea & 0xf], size);
635 preempt_disable();
636 if (regs->msr & MSR_VEC)
637 put_vr(rn, &u.v);
638 else
639 current->thread.vr_state.vr[rn] = u.v;
640 preempt_enable();
641 return 0;
642 }
643
do_vec_store(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)644 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
645 int size, struct pt_regs *regs,
646 bool cross_endian)
647 {
648 union {
649 __vector128 v;
650 u8 b[sizeof(__vector128)];
651 } u;
652
653 if (!address_ok(regs, ea & ~0xfUL, 16))
654 return -EFAULT;
655 /* align to multiple of size */
656 ea &= ~(size - 1);
657
658 preempt_disable();
659 if (regs->msr & MSR_VEC)
660 get_vr(rn, &u.v);
661 else
662 u.v = current->thread.vr_state.vr[rn];
663 preempt_enable();
664 if (unlikely(cross_endian))
665 do_byte_reverse(&u.b[ea & 0xf], size);
666 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
667 }
668 #endif /* CONFIG_ALTIVEC */
669
670 #ifdef __powerpc64__
emulate_lq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)671 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
672 int reg, bool cross_endian)
673 {
674 int err;
675
676 if (!address_ok(regs, ea, 16))
677 return -EFAULT;
678 /* if aligned, should be atomic */
679 if ((ea & 0xf) == 0) {
680 err = do_lq(ea, ®s->gpr[reg]);
681 } else {
682 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs);
683 if (!err)
684 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs);
685 }
686 if (!err && unlikely(cross_endian))
687 do_byte_reverse(®s->gpr[reg], 16);
688 return err;
689 }
690
emulate_stq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)691 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
692 int reg, bool cross_endian)
693 {
694 int err;
695 unsigned long vals[2];
696
697 if (!address_ok(regs, ea, 16))
698 return -EFAULT;
699 vals[0] = regs->gpr[reg];
700 vals[1] = regs->gpr[reg + 1];
701 if (unlikely(cross_endian))
702 do_byte_reverse(vals, 16);
703
704 /* if aligned, should be atomic */
705 if ((ea & 0xf) == 0)
706 return do_stq(ea, vals[0], vals[1]);
707
708 err = write_mem(vals[IS_LE], ea, 8, regs);
709 if (!err)
710 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
711 return err;
712 }
713 #endif /* __powerpc64 */
714
715 #ifdef CONFIG_VSX
emulate_vsx_load(struct instruction_op * op,union vsx_reg * reg,const void * mem,bool rev)716 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
717 const void *mem, bool rev)
718 {
719 int size, read_size;
720 int i, j;
721 const unsigned int *wp;
722 const unsigned short *hp;
723 const unsigned char *bp;
724
725 size = GETSIZE(op->type);
726 reg->d[0] = reg->d[1] = 0;
727
728 switch (op->element_size) {
729 case 32:
730 /* [p]lxvp[x] */
731 case 16:
732 /* whole vector; lxv[x] or lxvl[l] */
733 if (size == 0)
734 break;
735 memcpy(reg, mem, size);
736 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
737 rev = !rev;
738 if (rev)
739 do_byte_reverse(reg, size);
740 break;
741 case 8:
742 /* scalar loads, lxvd2x, lxvdsx */
743 read_size = (size >= 8) ? 8 : size;
744 i = IS_LE ? 8 : 8 - read_size;
745 memcpy(®->b[i], mem, read_size);
746 if (rev)
747 do_byte_reverse(®->b[i], 8);
748 if (size < 8) {
749 if (op->type & SIGNEXT) {
750 /* size == 4 is the only case here */
751 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
752 } else if (op->vsx_flags & VSX_FPCONV) {
753 preempt_disable();
754 conv_sp_to_dp(®->fp[1 + IS_LE],
755 ®->dp[IS_LE]);
756 preempt_enable();
757 }
758 } else {
759 if (size == 16) {
760 unsigned long v = *(unsigned long *)(mem + 8);
761 reg->d[IS_BE] = !rev ? v : byterev_8(v);
762 } else if (op->vsx_flags & VSX_SPLAT)
763 reg->d[IS_BE] = reg->d[IS_LE];
764 }
765 break;
766 case 4:
767 /* lxvw4x, lxvwsx */
768 wp = mem;
769 for (j = 0; j < size / 4; ++j) {
770 i = IS_LE ? 3 - j : j;
771 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
772 }
773 if (op->vsx_flags & VSX_SPLAT) {
774 u32 val = reg->w[IS_LE ? 3 : 0];
775 for (; j < 4; ++j) {
776 i = IS_LE ? 3 - j : j;
777 reg->w[i] = val;
778 }
779 }
780 break;
781 case 2:
782 /* lxvh8x */
783 hp = mem;
784 for (j = 0; j < size / 2; ++j) {
785 i = IS_LE ? 7 - j : j;
786 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
787 }
788 break;
789 case 1:
790 /* lxvb16x */
791 bp = mem;
792 for (j = 0; j < size; ++j) {
793 i = IS_LE ? 15 - j : j;
794 reg->b[i] = *bp++;
795 }
796 break;
797 }
798 }
799 EXPORT_SYMBOL_GPL(emulate_vsx_load);
800 NOKPROBE_SYMBOL(emulate_vsx_load);
801
emulate_vsx_store(struct instruction_op * op,const union vsx_reg * reg,void * mem,bool rev)802 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
803 void *mem, bool rev)
804 {
805 int size, write_size;
806 int i, j;
807 union vsx_reg buf;
808 unsigned int *wp;
809 unsigned short *hp;
810 unsigned char *bp;
811
812 size = GETSIZE(op->type);
813
814 switch (op->element_size) {
815 case 32:
816 /* [p]stxvp[x] */
817 if (size == 0)
818 break;
819 if (rev) {
820 /* reverse 32 bytes */
821 union vsx_reg buf32[2];
822 buf32[0].d[0] = byterev_8(reg[1].d[1]);
823 buf32[0].d[1] = byterev_8(reg[1].d[0]);
824 buf32[1].d[0] = byterev_8(reg[0].d[1]);
825 buf32[1].d[1] = byterev_8(reg[0].d[0]);
826 memcpy(mem, buf32, size);
827 } else {
828 memcpy(mem, reg, size);
829 }
830 break;
831 case 16:
832 /* stxv, stxvx, stxvl, stxvll */
833 if (size == 0)
834 break;
835 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
836 rev = !rev;
837 if (rev) {
838 /* reverse 16 bytes */
839 buf.d[0] = byterev_8(reg->d[1]);
840 buf.d[1] = byterev_8(reg->d[0]);
841 reg = &buf;
842 }
843 memcpy(mem, reg, size);
844 break;
845 case 8:
846 /* scalar stores, stxvd2x */
847 write_size = (size >= 8) ? 8 : size;
848 i = IS_LE ? 8 : 8 - write_size;
849 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
850 buf.d[0] = buf.d[1] = 0;
851 preempt_disable();
852 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]);
853 preempt_enable();
854 reg = &buf;
855 }
856 memcpy(mem, ®->b[i], write_size);
857 if (size == 16)
858 memcpy(mem + 8, ®->d[IS_BE], 8);
859 if (unlikely(rev)) {
860 do_byte_reverse(mem, write_size);
861 if (size == 16)
862 do_byte_reverse(mem + 8, 8);
863 }
864 break;
865 case 4:
866 /* stxvw4x */
867 wp = mem;
868 for (j = 0; j < size / 4; ++j) {
869 i = IS_LE ? 3 - j : j;
870 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
871 }
872 break;
873 case 2:
874 /* stxvh8x */
875 hp = mem;
876 for (j = 0; j < size / 2; ++j) {
877 i = IS_LE ? 7 - j : j;
878 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
879 }
880 break;
881 case 1:
882 /* stvxb16x */
883 bp = mem;
884 for (j = 0; j < size; ++j) {
885 i = IS_LE ? 15 - j : j;
886 *bp++ = reg->b[i];
887 }
888 break;
889 }
890 }
891 EXPORT_SYMBOL_GPL(emulate_vsx_store);
892 NOKPROBE_SYMBOL(emulate_vsx_store);
893
do_vsx_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)894 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
895 unsigned long ea, struct pt_regs *regs,
896 bool cross_endian)
897 {
898 int reg = op->reg;
899 int i, j, nr_vsx_regs;
900 u8 mem[32];
901 union vsx_reg buf[2];
902 int size = GETSIZE(op->type);
903
904 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
905 return -EFAULT;
906
907 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
908 emulate_vsx_load(op, buf, mem, cross_endian);
909 preempt_disable();
910 if (reg < 32) {
911 /* FP regs + extensions */
912 if (regs->msr & MSR_FP) {
913 for (i = 0; i < nr_vsx_regs; i++) {
914 j = IS_LE ? nr_vsx_regs - i - 1 : i;
915 load_vsrn(reg + i, &buf[j].v);
916 }
917 } else {
918 for (i = 0; i < nr_vsx_regs; i++) {
919 j = IS_LE ? nr_vsx_regs - i - 1 : i;
920 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
921 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
922 }
923 }
924 } else {
925 if (regs->msr & MSR_VEC) {
926 for (i = 0; i < nr_vsx_regs; i++) {
927 j = IS_LE ? nr_vsx_regs - i - 1 : i;
928 load_vsrn(reg + i, &buf[j].v);
929 }
930 } else {
931 for (i = 0; i < nr_vsx_regs; i++) {
932 j = IS_LE ? nr_vsx_regs - i - 1 : i;
933 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
934 }
935 }
936 }
937 preempt_enable();
938 return 0;
939 }
940
do_vsx_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)941 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
942 unsigned long ea, struct pt_regs *regs,
943 bool cross_endian)
944 {
945 int reg = op->reg;
946 int i, j, nr_vsx_regs;
947 u8 mem[32];
948 union vsx_reg buf[2];
949 int size = GETSIZE(op->type);
950
951 if (!address_ok(regs, ea, size))
952 return -EFAULT;
953
954 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
955 preempt_disable();
956 if (reg < 32) {
957 /* FP regs + extensions */
958 if (regs->msr & MSR_FP) {
959 for (i = 0; i < nr_vsx_regs; i++) {
960 j = IS_LE ? nr_vsx_regs - i - 1 : i;
961 store_vsrn(reg + i, &buf[j].v);
962 }
963 } else {
964 for (i = 0; i < nr_vsx_regs; i++) {
965 j = IS_LE ? nr_vsx_regs - i - 1 : i;
966 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
967 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
968 }
969 }
970 } else {
971 if (regs->msr & MSR_VEC) {
972 for (i = 0; i < nr_vsx_regs; i++) {
973 j = IS_LE ? nr_vsx_regs - i - 1 : i;
974 store_vsrn(reg + i, &buf[j].v);
975 }
976 } else {
977 for (i = 0; i < nr_vsx_regs; i++) {
978 j = IS_LE ? nr_vsx_regs - i - 1 : i;
979 buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
980 }
981 }
982 }
983 preempt_enable();
984 emulate_vsx_store(op, buf, mem, cross_endian);
985 return copy_mem_out(mem, ea, size, regs);
986 }
987 #endif /* CONFIG_VSX */
988
emulate_dcbz(unsigned long ea,struct pt_regs * regs)989 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
990 {
991 int err;
992 unsigned long i, size;
993
994 #ifdef __powerpc64__
995 size = ppc64_caches.l1d.block_size;
996 if (!(regs->msr & MSR_64BIT))
997 ea &= 0xffffffffUL;
998 #else
999 size = L1_CACHE_BYTES;
1000 #endif
1001 ea &= ~(size - 1);
1002 if (!address_ok(regs, ea, size))
1003 return -EFAULT;
1004 for (i = 0; i < size; i += sizeof(long)) {
1005 err = __put_user(0, (unsigned long __user *) (ea + i));
1006 if (err) {
1007 regs->dar = ea;
1008 return err;
1009 }
1010 }
1011 return 0;
1012 }
1013 NOKPROBE_SYMBOL(emulate_dcbz);
1014
1015 #define __put_user_asmx(x, addr, err, op, cr) \
1016 __asm__ __volatile__( \
1017 "1: " op " %2,0,%3\n" \
1018 " mfcr %1\n" \
1019 "2:\n" \
1020 ".section .fixup,\"ax\"\n" \
1021 "3: li %0,%4\n" \
1022 " b 2b\n" \
1023 ".previous\n" \
1024 EX_TABLE(1b, 3b) \
1025 : "=r" (err), "=r" (cr) \
1026 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1027
1028 #define __get_user_asmx(x, addr, err, op) \
1029 __asm__ __volatile__( \
1030 "1: "op" %1,0,%2\n" \
1031 "2:\n" \
1032 ".section .fixup,\"ax\"\n" \
1033 "3: li %0,%3\n" \
1034 " b 2b\n" \
1035 ".previous\n" \
1036 EX_TABLE(1b, 3b) \
1037 : "=r" (err), "=r" (x) \
1038 : "r" (addr), "i" (-EFAULT), "0" (err))
1039
1040 #define __cacheop_user_asmx(addr, err, op) \
1041 __asm__ __volatile__( \
1042 "1: "op" 0,%1\n" \
1043 "2:\n" \
1044 ".section .fixup,\"ax\"\n" \
1045 "3: li %0,%3\n" \
1046 " b 2b\n" \
1047 ".previous\n" \
1048 EX_TABLE(1b, 3b) \
1049 : "=r" (err) \
1050 : "r" (addr), "i" (-EFAULT), "0" (err))
1051
set_cr0(const struct pt_regs * regs,struct instruction_op * op)1052 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1053 struct instruction_op *op)
1054 {
1055 long val = op->val;
1056
1057 op->type |= SETCC;
1058 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1059 #ifdef __powerpc64__
1060 if (!(regs->msr & MSR_64BIT))
1061 val = (int) val;
1062 #endif
1063 if (val < 0)
1064 op->ccval |= 0x80000000;
1065 else if (val > 0)
1066 op->ccval |= 0x40000000;
1067 else
1068 op->ccval |= 0x20000000;
1069 }
1070
set_ca32(struct instruction_op * op,bool val)1071 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1072 {
1073 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1074 if (val)
1075 op->xerval |= XER_CA32;
1076 else
1077 op->xerval &= ~XER_CA32;
1078 }
1079 }
1080
add_with_carry(const struct pt_regs * regs,struct instruction_op * op,int rd,unsigned long val1,unsigned long val2,unsigned long carry_in)1081 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1082 struct instruction_op *op, int rd,
1083 unsigned long val1, unsigned long val2,
1084 unsigned long carry_in)
1085 {
1086 unsigned long val = val1 + val2;
1087
1088 if (carry_in)
1089 ++val;
1090 op->type = COMPUTE + SETREG + SETXER;
1091 op->reg = rd;
1092 op->val = val;
1093 #ifdef __powerpc64__
1094 if (!(regs->msr & MSR_64BIT)) {
1095 val = (unsigned int) val;
1096 val1 = (unsigned int) val1;
1097 }
1098 #endif
1099 op->xerval = regs->xer;
1100 if (val < val1 || (carry_in && val == val1))
1101 op->xerval |= XER_CA;
1102 else
1103 op->xerval &= ~XER_CA;
1104
1105 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1106 (carry_in && (unsigned int)val == (unsigned int)val1));
1107 }
1108
do_cmp_signed(const struct pt_regs * regs,struct instruction_op * op,long v1,long v2,int crfld)1109 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1110 struct instruction_op *op,
1111 long v1, long v2, int crfld)
1112 {
1113 unsigned int crval, shift;
1114
1115 op->type = COMPUTE + SETCC;
1116 crval = (regs->xer >> 31) & 1; /* get SO bit */
1117 if (v1 < v2)
1118 crval |= 8;
1119 else if (v1 > v2)
1120 crval |= 4;
1121 else
1122 crval |= 2;
1123 shift = (7 - crfld) * 4;
1124 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1125 }
1126
do_cmp_unsigned(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2,int crfld)1127 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1128 struct instruction_op *op,
1129 unsigned long v1,
1130 unsigned long v2, int crfld)
1131 {
1132 unsigned int crval, shift;
1133
1134 op->type = COMPUTE + SETCC;
1135 crval = (regs->xer >> 31) & 1; /* get SO bit */
1136 if (v1 < v2)
1137 crval |= 8;
1138 else if (v1 > v2)
1139 crval |= 4;
1140 else
1141 crval |= 2;
1142 shift = (7 - crfld) * 4;
1143 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1144 }
1145
do_cmpb(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1146 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1147 struct instruction_op *op,
1148 unsigned long v1, unsigned long v2)
1149 {
1150 unsigned long long out_val, mask;
1151 int i;
1152
1153 out_val = 0;
1154 for (i = 0; i < 8; i++) {
1155 mask = 0xffUL << (i * 8);
1156 if ((v1 & mask) == (v2 & mask))
1157 out_val |= mask;
1158 }
1159 op->val = out_val;
1160 }
1161
1162 /*
1163 * The size parameter is used to adjust the equivalent popcnt instruction.
1164 * popcntb = 8, popcntw = 32, popcntd = 64
1165 */
do_popcnt(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,int size)1166 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1167 struct instruction_op *op,
1168 unsigned long v1, int size)
1169 {
1170 unsigned long long out = v1;
1171
1172 out -= (out >> 1) & 0x5555555555555555ULL;
1173 out = (0x3333333333333333ULL & out) +
1174 (0x3333333333333333ULL & (out >> 2));
1175 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1176
1177 if (size == 8) { /* popcntb */
1178 op->val = out;
1179 return;
1180 }
1181 out += out >> 8;
1182 out += out >> 16;
1183 if (size == 32) { /* popcntw */
1184 op->val = out & 0x0000003f0000003fULL;
1185 return;
1186 }
1187
1188 out = (out + (out >> 32)) & 0x7f;
1189 op->val = out; /* popcntd */
1190 }
1191
1192 #ifdef CONFIG_PPC64
do_bpermd(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1193 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1194 struct instruction_op *op,
1195 unsigned long v1, unsigned long v2)
1196 {
1197 unsigned char perm, idx;
1198 unsigned int i;
1199
1200 perm = 0;
1201 for (i = 0; i < 8; i++) {
1202 idx = (v1 >> (i * 8)) & 0xff;
1203 if (idx < 64)
1204 if (v2 & PPC_BIT(idx))
1205 perm |= 1 << i;
1206 }
1207 op->val = perm;
1208 }
1209 #endif /* CONFIG_PPC64 */
1210 /*
1211 * The size parameter adjusts the equivalent prty instruction.
1212 * prtyw = 32, prtyd = 64
1213 */
do_prty(const struct pt_regs * regs,struct instruction_op * op,unsigned long v,int size)1214 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1215 struct instruction_op *op,
1216 unsigned long v, int size)
1217 {
1218 unsigned long long res = v ^ (v >> 8);
1219
1220 res ^= res >> 16;
1221 if (size == 32) { /* prtyw */
1222 op->val = res & 0x0000000100000001ULL;
1223 return;
1224 }
1225
1226 res ^= res >> 32;
1227 op->val = res & 1; /*prtyd */
1228 }
1229
trap_compare(long v1,long v2)1230 static nokprobe_inline int trap_compare(long v1, long v2)
1231 {
1232 int ret = 0;
1233
1234 if (v1 < v2)
1235 ret |= 0x10;
1236 else if (v1 > v2)
1237 ret |= 0x08;
1238 else
1239 ret |= 0x04;
1240 if ((unsigned long)v1 < (unsigned long)v2)
1241 ret |= 0x02;
1242 else if ((unsigned long)v1 > (unsigned long)v2)
1243 ret |= 0x01;
1244 return ret;
1245 }
1246
1247 /*
1248 * Elements of 32-bit rotate and mask instructions.
1249 */
1250 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1251 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1252 #ifdef __powerpc64__
1253 #define MASK64_L(mb) (~0UL >> (mb))
1254 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1255 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1256 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1257 #else
1258 #define DATA32(x) (x)
1259 #endif
1260 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1261
1262 /*
1263 * Decode an instruction, and return information about it in *op
1264 * without changing *regs.
1265 * Integer arithmetic and logical instructions, branches, and barrier
1266 * instructions can be emulated just using the information in *op.
1267 *
1268 * Return value is 1 if the instruction can be emulated just by
1269 * updating *regs with the information in *op, -1 if we need the
1270 * GPRs but *regs doesn't contain the full register set, or 0
1271 * otherwise.
1272 */
analyse_instr(struct instruction_op * op,const struct pt_regs * regs,struct ppc_inst instr)1273 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1274 struct ppc_inst instr)
1275 {
1276 #ifdef CONFIG_PPC64
1277 unsigned int suffixopcode, prefixtype, prefix_r;
1278 #endif
1279 unsigned int opcode, ra, rb, rc, rd, spr, u;
1280 unsigned long int imm;
1281 unsigned long int val, val2;
1282 unsigned int mb, me, sh;
1283 unsigned int word, suffix;
1284 long ival;
1285
1286 word = ppc_inst_val(instr);
1287 suffix = ppc_inst_suffix(instr);
1288
1289 op->type = COMPUTE;
1290
1291 opcode = ppc_inst_primary_opcode(instr);
1292 switch (opcode) {
1293 case 16: /* bc */
1294 op->type = BRANCH;
1295 imm = (signed short)(word & 0xfffc);
1296 if ((word & 2) == 0)
1297 imm += regs->nip;
1298 op->val = truncate_if_32bit(regs->msr, imm);
1299 if (word & 1)
1300 op->type |= SETLK;
1301 if (branch_taken(word, regs, op))
1302 op->type |= BRTAKEN;
1303 return 1;
1304 #ifdef CONFIG_PPC64
1305 case 17: /* sc */
1306 if ((word & 0xfe2) == 2)
1307 op->type = SYSCALL;
1308 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1309 (word & 0xfe3) == 1) { /* scv */
1310 op->type = SYSCALL_VECTORED_0;
1311 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1312 goto unknown_opcode;
1313 } else
1314 op->type = UNKNOWN;
1315 return 0;
1316 #endif
1317 case 18: /* b */
1318 op->type = BRANCH | BRTAKEN;
1319 imm = word & 0x03fffffc;
1320 if (imm & 0x02000000)
1321 imm -= 0x04000000;
1322 if ((word & 2) == 0)
1323 imm += regs->nip;
1324 op->val = truncate_if_32bit(regs->msr, imm);
1325 if (word & 1)
1326 op->type |= SETLK;
1327 return 1;
1328 case 19:
1329 switch ((word >> 1) & 0x3ff) {
1330 case 0: /* mcrf */
1331 op->type = COMPUTE + SETCC;
1332 rd = 7 - ((word >> 23) & 0x7);
1333 ra = 7 - ((word >> 18) & 0x7);
1334 rd *= 4;
1335 ra *= 4;
1336 val = (regs->ccr >> ra) & 0xf;
1337 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1338 return 1;
1339
1340 case 16: /* bclr */
1341 case 528: /* bcctr */
1342 op->type = BRANCH;
1343 imm = (word & 0x400)? regs->ctr: regs->link;
1344 op->val = truncate_if_32bit(regs->msr, imm);
1345 if (word & 1)
1346 op->type |= SETLK;
1347 if (branch_taken(word, regs, op))
1348 op->type |= BRTAKEN;
1349 return 1;
1350
1351 case 18: /* rfid, scary */
1352 if (regs->msr & MSR_PR)
1353 goto priv;
1354 op->type = RFI;
1355 return 0;
1356
1357 case 150: /* isync */
1358 op->type = BARRIER | BARRIER_ISYNC;
1359 return 1;
1360
1361 case 33: /* crnor */
1362 case 129: /* crandc */
1363 case 193: /* crxor */
1364 case 225: /* crnand */
1365 case 257: /* crand */
1366 case 289: /* creqv */
1367 case 417: /* crorc */
1368 case 449: /* cror */
1369 op->type = COMPUTE + SETCC;
1370 ra = (word >> 16) & 0x1f;
1371 rb = (word >> 11) & 0x1f;
1372 rd = (word >> 21) & 0x1f;
1373 ra = (regs->ccr >> (31 - ra)) & 1;
1374 rb = (regs->ccr >> (31 - rb)) & 1;
1375 val = (word >> (6 + ra * 2 + rb)) & 1;
1376 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1377 (val << (31 - rd));
1378 return 1;
1379 }
1380 break;
1381 case 31:
1382 switch ((word >> 1) & 0x3ff) {
1383 case 598: /* sync */
1384 op->type = BARRIER + BARRIER_SYNC;
1385 #ifdef __powerpc64__
1386 switch ((word >> 21) & 3) {
1387 case 1: /* lwsync */
1388 op->type = BARRIER + BARRIER_LWSYNC;
1389 break;
1390 case 2: /* ptesync */
1391 op->type = BARRIER + BARRIER_PTESYNC;
1392 break;
1393 }
1394 #endif
1395 return 1;
1396
1397 case 854: /* eieio */
1398 op->type = BARRIER + BARRIER_EIEIO;
1399 return 1;
1400 }
1401 break;
1402 }
1403
1404 rd = (word >> 21) & 0x1f;
1405 ra = (word >> 16) & 0x1f;
1406 rb = (word >> 11) & 0x1f;
1407 rc = (word >> 6) & 0x1f;
1408
1409 switch (opcode) {
1410 #ifdef __powerpc64__
1411 case 1:
1412 if (!cpu_has_feature(CPU_FTR_ARCH_31))
1413 goto unknown_opcode;
1414
1415 prefix_r = GET_PREFIX_R(word);
1416 ra = GET_PREFIX_RA(suffix);
1417 rd = (suffix >> 21) & 0x1f;
1418 op->reg = rd;
1419 op->val = regs->gpr[rd];
1420 suffixopcode = get_op(suffix);
1421 prefixtype = (word >> 24) & 0x3;
1422 switch (prefixtype) {
1423 case 2:
1424 if (prefix_r && ra)
1425 return 0;
1426 switch (suffixopcode) {
1427 case 14: /* paddi */
1428 op->type = COMPUTE | PREFIXED;
1429 op->val = mlsd_8lsd_ea(word, suffix, regs);
1430 goto compute_done;
1431 }
1432 }
1433 break;
1434 case 2: /* tdi */
1435 if (rd & trap_compare(regs->gpr[ra], (short) word))
1436 goto trap;
1437 return 1;
1438 #endif
1439 case 3: /* twi */
1440 if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1441 goto trap;
1442 return 1;
1443
1444 #ifdef __powerpc64__
1445 case 4:
1446 /*
1447 * There are very many instructions with this primary opcode
1448 * introduced in the ISA as early as v2.03. However, the ones
1449 * we currently emulate were all introduced with ISA 3.0
1450 */
1451 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1452 goto unknown_opcode;
1453
1454 switch (word & 0x3f) {
1455 case 48: /* maddhd */
1456 asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1457 "=r" (op->val) : "r" (regs->gpr[ra]),
1458 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1459 goto compute_done;
1460
1461 case 49: /* maddhdu */
1462 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1463 "=r" (op->val) : "r" (regs->gpr[ra]),
1464 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1465 goto compute_done;
1466
1467 case 51: /* maddld */
1468 asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1469 "=r" (op->val) : "r" (regs->gpr[ra]),
1470 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1471 goto compute_done;
1472 }
1473
1474 /*
1475 * There are other instructions from ISA 3.0 with the same
1476 * primary opcode which do not have emulation support yet.
1477 */
1478 goto unknown_opcode;
1479 #endif
1480
1481 case 7: /* mulli */
1482 op->val = regs->gpr[ra] * (short) word;
1483 goto compute_done;
1484
1485 case 8: /* subfic */
1486 imm = (short) word;
1487 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1488 return 1;
1489
1490 case 10: /* cmpli */
1491 imm = (unsigned short) word;
1492 val = regs->gpr[ra];
1493 #ifdef __powerpc64__
1494 if ((rd & 1) == 0)
1495 val = (unsigned int) val;
1496 #endif
1497 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1498 return 1;
1499
1500 case 11: /* cmpi */
1501 imm = (short) word;
1502 val = regs->gpr[ra];
1503 #ifdef __powerpc64__
1504 if ((rd & 1) == 0)
1505 val = (int) val;
1506 #endif
1507 do_cmp_signed(regs, op, val, imm, rd >> 2);
1508 return 1;
1509
1510 case 12: /* addic */
1511 imm = (short) word;
1512 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1513 return 1;
1514
1515 case 13: /* addic. */
1516 imm = (short) word;
1517 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1518 set_cr0(regs, op);
1519 return 1;
1520
1521 case 14: /* addi */
1522 imm = (short) word;
1523 if (ra)
1524 imm += regs->gpr[ra];
1525 op->val = imm;
1526 goto compute_done;
1527
1528 case 15: /* addis */
1529 imm = ((short) word) << 16;
1530 if (ra)
1531 imm += regs->gpr[ra];
1532 op->val = imm;
1533 goto compute_done;
1534
1535 case 19:
1536 if (((word >> 1) & 0x1f) == 2) {
1537 /* addpcis */
1538 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1539 goto unknown_opcode;
1540 imm = (short) (word & 0xffc1); /* d0 + d2 fields */
1541 imm |= (word >> 15) & 0x3e; /* d1 field */
1542 op->val = regs->nip + (imm << 16) + 4;
1543 goto compute_done;
1544 }
1545 op->type = UNKNOWN;
1546 return 0;
1547
1548 case 20: /* rlwimi */
1549 mb = (word >> 6) & 0x1f;
1550 me = (word >> 1) & 0x1f;
1551 val = DATA32(regs->gpr[rd]);
1552 imm = MASK32(mb, me);
1553 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1554 goto logical_done;
1555
1556 case 21: /* rlwinm */
1557 mb = (word >> 6) & 0x1f;
1558 me = (word >> 1) & 0x1f;
1559 val = DATA32(regs->gpr[rd]);
1560 op->val = ROTATE(val, rb) & MASK32(mb, me);
1561 goto logical_done;
1562
1563 case 23: /* rlwnm */
1564 mb = (word >> 6) & 0x1f;
1565 me = (word >> 1) & 0x1f;
1566 rb = regs->gpr[rb] & 0x1f;
1567 val = DATA32(regs->gpr[rd]);
1568 op->val = ROTATE(val, rb) & MASK32(mb, me);
1569 goto logical_done;
1570
1571 case 24: /* ori */
1572 op->val = regs->gpr[rd] | (unsigned short) word;
1573 goto logical_done_nocc;
1574
1575 case 25: /* oris */
1576 imm = (unsigned short) word;
1577 op->val = regs->gpr[rd] | (imm << 16);
1578 goto logical_done_nocc;
1579
1580 case 26: /* xori */
1581 op->val = regs->gpr[rd] ^ (unsigned short) word;
1582 goto logical_done_nocc;
1583
1584 case 27: /* xoris */
1585 imm = (unsigned short) word;
1586 op->val = regs->gpr[rd] ^ (imm << 16);
1587 goto logical_done_nocc;
1588
1589 case 28: /* andi. */
1590 op->val = regs->gpr[rd] & (unsigned short) word;
1591 set_cr0(regs, op);
1592 goto logical_done_nocc;
1593
1594 case 29: /* andis. */
1595 imm = (unsigned short) word;
1596 op->val = regs->gpr[rd] & (imm << 16);
1597 set_cr0(regs, op);
1598 goto logical_done_nocc;
1599
1600 #ifdef __powerpc64__
1601 case 30: /* rld* */
1602 mb = ((word >> 6) & 0x1f) | (word & 0x20);
1603 val = regs->gpr[rd];
1604 if ((word & 0x10) == 0) {
1605 sh = rb | ((word & 2) << 4);
1606 val = ROTATE(val, sh);
1607 switch ((word >> 2) & 3) {
1608 case 0: /* rldicl */
1609 val &= MASK64_L(mb);
1610 break;
1611 case 1: /* rldicr */
1612 val &= MASK64_R(mb);
1613 break;
1614 case 2: /* rldic */
1615 val &= MASK64(mb, 63 - sh);
1616 break;
1617 case 3: /* rldimi */
1618 imm = MASK64(mb, 63 - sh);
1619 val = (regs->gpr[ra] & ~imm) |
1620 (val & imm);
1621 }
1622 op->val = val;
1623 goto logical_done;
1624 } else {
1625 sh = regs->gpr[rb] & 0x3f;
1626 val = ROTATE(val, sh);
1627 switch ((word >> 1) & 7) {
1628 case 0: /* rldcl */
1629 op->val = val & MASK64_L(mb);
1630 goto logical_done;
1631 case 1: /* rldcr */
1632 op->val = val & MASK64_R(mb);
1633 goto logical_done;
1634 }
1635 }
1636 #endif
1637 op->type = UNKNOWN; /* illegal instruction */
1638 return 0;
1639
1640 case 31:
1641 /* isel occupies 32 minor opcodes */
1642 if (((word >> 1) & 0x1f) == 15) {
1643 mb = (word >> 6) & 0x1f; /* bc field */
1644 val = (regs->ccr >> (31 - mb)) & 1;
1645 val2 = (ra) ? regs->gpr[ra] : 0;
1646
1647 op->val = (val) ? val2 : regs->gpr[rb];
1648 goto compute_done;
1649 }
1650
1651 switch ((word >> 1) & 0x3ff) {
1652 case 4: /* tw */
1653 if (rd == 0x1f ||
1654 (rd & trap_compare((int)regs->gpr[ra],
1655 (int)regs->gpr[rb])))
1656 goto trap;
1657 return 1;
1658 #ifdef __powerpc64__
1659 case 68: /* td */
1660 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1661 goto trap;
1662 return 1;
1663 #endif
1664 case 83: /* mfmsr */
1665 if (regs->msr & MSR_PR)
1666 goto priv;
1667 op->type = MFMSR;
1668 op->reg = rd;
1669 return 0;
1670 case 146: /* mtmsr */
1671 if (regs->msr & MSR_PR)
1672 goto priv;
1673 op->type = MTMSR;
1674 op->reg = rd;
1675 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1676 return 0;
1677 #ifdef CONFIG_PPC64
1678 case 178: /* mtmsrd */
1679 if (regs->msr & MSR_PR)
1680 goto priv;
1681 op->type = MTMSR;
1682 op->reg = rd;
1683 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1684 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1685 imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1686 op->val = imm;
1687 return 0;
1688 #endif
1689
1690 case 19: /* mfcr */
1691 imm = 0xffffffffUL;
1692 if ((word >> 20) & 1) {
1693 imm = 0xf0000000UL;
1694 for (sh = 0; sh < 8; ++sh) {
1695 if (word & (0x80000 >> sh))
1696 break;
1697 imm >>= 4;
1698 }
1699 }
1700 op->val = regs->ccr & imm;
1701 goto compute_done;
1702
1703 case 128: /* setb */
1704 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1705 goto unknown_opcode;
1706 /*
1707 * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1708 * Since each CR field is 4 bits,
1709 * we can simply mask off the bottom two bits (bfa * 4)
1710 * to yield the first bit in the CR field.
1711 */
1712 ra = ra & ~0x3;
1713 /* 'val' stores bits of the CR field (bfa) */
1714 val = regs->ccr >> (CR0_SHIFT - ra);
1715 /* checks if the LT bit of CR field (bfa) is set */
1716 if (val & 8)
1717 op->val = -1;
1718 /* checks if the GT bit of CR field (bfa) is set */
1719 else if (val & 4)
1720 op->val = 1;
1721 else
1722 op->val = 0;
1723 goto compute_done;
1724
1725 case 144: /* mtcrf */
1726 op->type = COMPUTE + SETCC;
1727 imm = 0xf0000000UL;
1728 val = regs->gpr[rd];
1729 op->ccval = regs->ccr;
1730 for (sh = 0; sh < 8; ++sh) {
1731 if (word & (0x80000 >> sh))
1732 op->ccval = (op->ccval & ~imm) |
1733 (val & imm);
1734 imm >>= 4;
1735 }
1736 return 1;
1737
1738 case 339: /* mfspr */
1739 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1740 op->type = MFSPR;
1741 op->reg = rd;
1742 op->spr = spr;
1743 if (spr == SPRN_XER || spr == SPRN_LR ||
1744 spr == SPRN_CTR)
1745 return 1;
1746 return 0;
1747
1748 case 467: /* mtspr */
1749 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1750 op->type = MTSPR;
1751 op->val = regs->gpr[rd];
1752 op->spr = spr;
1753 if (spr == SPRN_XER || spr == SPRN_LR ||
1754 spr == SPRN_CTR)
1755 return 1;
1756 return 0;
1757
1758 /*
1759 * Compare instructions
1760 */
1761 case 0: /* cmp */
1762 val = regs->gpr[ra];
1763 val2 = regs->gpr[rb];
1764 #ifdef __powerpc64__
1765 if ((rd & 1) == 0) {
1766 /* word (32-bit) compare */
1767 val = (int) val;
1768 val2 = (int) val2;
1769 }
1770 #endif
1771 do_cmp_signed(regs, op, val, val2, rd >> 2);
1772 return 1;
1773
1774 case 32: /* cmpl */
1775 val = regs->gpr[ra];
1776 val2 = regs->gpr[rb];
1777 #ifdef __powerpc64__
1778 if ((rd & 1) == 0) {
1779 /* word (32-bit) compare */
1780 val = (unsigned int) val;
1781 val2 = (unsigned int) val2;
1782 }
1783 #endif
1784 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1785 return 1;
1786
1787 case 508: /* cmpb */
1788 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1789 goto logical_done_nocc;
1790
1791 /*
1792 * Arithmetic instructions
1793 */
1794 case 8: /* subfc */
1795 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1796 regs->gpr[rb], 1);
1797 goto arith_done;
1798 #ifdef __powerpc64__
1799 case 9: /* mulhdu */
1800 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1801 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1802 goto arith_done;
1803 #endif
1804 case 10: /* addc */
1805 add_with_carry(regs, op, rd, regs->gpr[ra],
1806 regs->gpr[rb], 0);
1807 goto arith_done;
1808
1809 case 11: /* mulhwu */
1810 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1811 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1812 goto arith_done;
1813
1814 case 40: /* subf */
1815 op->val = regs->gpr[rb] - regs->gpr[ra];
1816 goto arith_done;
1817 #ifdef __powerpc64__
1818 case 73: /* mulhd */
1819 asm("mulhd %0,%1,%2" : "=r" (op->val) :
1820 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1821 goto arith_done;
1822 #endif
1823 case 75: /* mulhw */
1824 asm("mulhw %0,%1,%2" : "=r" (op->val) :
1825 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1826 goto arith_done;
1827
1828 case 104: /* neg */
1829 op->val = -regs->gpr[ra];
1830 goto arith_done;
1831
1832 case 136: /* subfe */
1833 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1834 regs->gpr[rb], regs->xer & XER_CA);
1835 goto arith_done;
1836
1837 case 138: /* adde */
1838 add_with_carry(regs, op, rd, regs->gpr[ra],
1839 regs->gpr[rb], regs->xer & XER_CA);
1840 goto arith_done;
1841
1842 case 200: /* subfze */
1843 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1844 regs->xer & XER_CA);
1845 goto arith_done;
1846
1847 case 202: /* addze */
1848 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1849 regs->xer & XER_CA);
1850 goto arith_done;
1851
1852 case 232: /* subfme */
1853 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1854 regs->xer & XER_CA);
1855 goto arith_done;
1856 #ifdef __powerpc64__
1857 case 233: /* mulld */
1858 op->val = regs->gpr[ra] * regs->gpr[rb];
1859 goto arith_done;
1860 #endif
1861 case 234: /* addme */
1862 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1863 regs->xer & XER_CA);
1864 goto arith_done;
1865
1866 case 235: /* mullw */
1867 op->val = (long)(int) regs->gpr[ra] *
1868 (int) regs->gpr[rb];
1869
1870 goto arith_done;
1871 #ifdef __powerpc64__
1872 case 265: /* modud */
1873 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1874 goto unknown_opcode;
1875 op->val = regs->gpr[ra] % regs->gpr[rb];
1876 goto compute_done;
1877 #endif
1878 case 266: /* add */
1879 op->val = regs->gpr[ra] + regs->gpr[rb];
1880 goto arith_done;
1881
1882 case 267: /* moduw */
1883 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1884 goto unknown_opcode;
1885 op->val = (unsigned int) regs->gpr[ra] %
1886 (unsigned int) regs->gpr[rb];
1887 goto compute_done;
1888 #ifdef __powerpc64__
1889 case 457: /* divdu */
1890 op->val = regs->gpr[ra] / regs->gpr[rb];
1891 goto arith_done;
1892 #endif
1893 case 459: /* divwu */
1894 op->val = (unsigned int) regs->gpr[ra] /
1895 (unsigned int) regs->gpr[rb];
1896 goto arith_done;
1897 #ifdef __powerpc64__
1898 case 489: /* divd */
1899 op->val = (long int) regs->gpr[ra] /
1900 (long int) regs->gpr[rb];
1901 goto arith_done;
1902 #endif
1903 case 491: /* divw */
1904 op->val = (int) regs->gpr[ra] /
1905 (int) regs->gpr[rb];
1906 goto arith_done;
1907 #ifdef __powerpc64__
1908 case 425: /* divde[.] */
1909 asm volatile(PPC_DIVDE(%0, %1, %2) :
1910 "=r" (op->val) : "r" (regs->gpr[ra]),
1911 "r" (regs->gpr[rb]));
1912 goto arith_done;
1913 case 393: /* divdeu[.] */
1914 asm volatile(PPC_DIVDEU(%0, %1, %2) :
1915 "=r" (op->val) : "r" (regs->gpr[ra]),
1916 "r" (regs->gpr[rb]));
1917 goto arith_done;
1918 #endif
1919 case 755: /* darn */
1920 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1921 goto unknown_opcode;
1922 switch (ra & 0x3) {
1923 case 0:
1924 /* 32-bit conditioned */
1925 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1926 goto compute_done;
1927
1928 case 1:
1929 /* 64-bit conditioned */
1930 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1931 goto compute_done;
1932
1933 case 2:
1934 /* 64-bit raw */
1935 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1936 goto compute_done;
1937 }
1938
1939 goto unknown_opcode;
1940 #ifdef __powerpc64__
1941 case 777: /* modsd */
1942 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1943 goto unknown_opcode;
1944 op->val = (long int) regs->gpr[ra] %
1945 (long int) regs->gpr[rb];
1946 goto compute_done;
1947 #endif
1948 case 779: /* modsw */
1949 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1950 goto unknown_opcode;
1951 op->val = (int) regs->gpr[ra] %
1952 (int) regs->gpr[rb];
1953 goto compute_done;
1954
1955
1956 /*
1957 * Logical instructions
1958 */
1959 case 26: /* cntlzw */
1960 val = (unsigned int) regs->gpr[rd];
1961 op->val = ( val ? __builtin_clz(val) : 32 );
1962 goto logical_done;
1963 #ifdef __powerpc64__
1964 case 58: /* cntlzd */
1965 val = regs->gpr[rd];
1966 op->val = ( val ? __builtin_clzl(val) : 64 );
1967 goto logical_done;
1968 #endif
1969 case 28: /* and */
1970 op->val = regs->gpr[rd] & regs->gpr[rb];
1971 goto logical_done;
1972
1973 case 60: /* andc */
1974 op->val = regs->gpr[rd] & ~regs->gpr[rb];
1975 goto logical_done;
1976
1977 case 122: /* popcntb */
1978 do_popcnt(regs, op, regs->gpr[rd], 8);
1979 goto logical_done_nocc;
1980
1981 case 124: /* nor */
1982 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1983 goto logical_done;
1984
1985 case 154: /* prtyw */
1986 do_prty(regs, op, regs->gpr[rd], 32);
1987 goto logical_done_nocc;
1988
1989 case 186: /* prtyd */
1990 do_prty(regs, op, regs->gpr[rd], 64);
1991 goto logical_done_nocc;
1992 #ifdef CONFIG_PPC64
1993 case 252: /* bpermd */
1994 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1995 goto logical_done_nocc;
1996 #endif
1997 case 284: /* xor */
1998 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1999 goto logical_done;
2000
2001 case 316: /* xor */
2002 op->val = regs->gpr[rd] ^ regs->gpr[rb];
2003 goto logical_done;
2004
2005 case 378: /* popcntw */
2006 do_popcnt(regs, op, regs->gpr[rd], 32);
2007 goto logical_done_nocc;
2008
2009 case 412: /* orc */
2010 op->val = regs->gpr[rd] | ~regs->gpr[rb];
2011 goto logical_done;
2012
2013 case 444: /* or */
2014 op->val = regs->gpr[rd] | regs->gpr[rb];
2015 goto logical_done;
2016
2017 case 476: /* nand */
2018 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2019 goto logical_done;
2020 #ifdef CONFIG_PPC64
2021 case 506: /* popcntd */
2022 do_popcnt(regs, op, regs->gpr[rd], 64);
2023 goto logical_done_nocc;
2024 #endif
2025 case 538: /* cnttzw */
2026 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2027 goto unknown_opcode;
2028 val = (unsigned int) regs->gpr[rd];
2029 op->val = (val ? __builtin_ctz(val) : 32);
2030 goto logical_done;
2031 #ifdef __powerpc64__
2032 case 570: /* cnttzd */
2033 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2034 goto unknown_opcode;
2035 val = regs->gpr[rd];
2036 op->val = (val ? __builtin_ctzl(val) : 64);
2037 goto logical_done;
2038 #endif
2039 case 922: /* extsh */
2040 op->val = (signed short) regs->gpr[rd];
2041 goto logical_done;
2042
2043 case 954: /* extsb */
2044 op->val = (signed char) regs->gpr[rd];
2045 goto logical_done;
2046 #ifdef __powerpc64__
2047 case 986: /* extsw */
2048 op->val = (signed int) regs->gpr[rd];
2049 goto logical_done;
2050 #endif
2051
2052 /*
2053 * Shift instructions
2054 */
2055 case 24: /* slw */
2056 sh = regs->gpr[rb] & 0x3f;
2057 if (sh < 32)
2058 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2059 else
2060 op->val = 0;
2061 goto logical_done;
2062
2063 case 536: /* srw */
2064 sh = regs->gpr[rb] & 0x3f;
2065 if (sh < 32)
2066 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2067 else
2068 op->val = 0;
2069 goto logical_done;
2070
2071 case 792: /* sraw */
2072 op->type = COMPUTE + SETREG + SETXER;
2073 sh = regs->gpr[rb] & 0x3f;
2074 ival = (signed int) regs->gpr[rd];
2075 op->val = ival >> (sh < 32 ? sh : 31);
2076 op->xerval = regs->xer;
2077 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2078 op->xerval |= XER_CA;
2079 else
2080 op->xerval &= ~XER_CA;
2081 set_ca32(op, op->xerval & XER_CA);
2082 goto logical_done;
2083
2084 case 824: /* srawi */
2085 op->type = COMPUTE + SETREG + SETXER;
2086 sh = rb;
2087 ival = (signed int) regs->gpr[rd];
2088 op->val = ival >> sh;
2089 op->xerval = regs->xer;
2090 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2091 op->xerval |= XER_CA;
2092 else
2093 op->xerval &= ~XER_CA;
2094 set_ca32(op, op->xerval & XER_CA);
2095 goto logical_done;
2096
2097 #ifdef __powerpc64__
2098 case 27: /* sld */
2099 sh = regs->gpr[rb] & 0x7f;
2100 if (sh < 64)
2101 op->val = regs->gpr[rd] << sh;
2102 else
2103 op->val = 0;
2104 goto logical_done;
2105
2106 case 539: /* srd */
2107 sh = regs->gpr[rb] & 0x7f;
2108 if (sh < 64)
2109 op->val = regs->gpr[rd] >> sh;
2110 else
2111 op->val = 0;
2112 goto logical_done;
2113
2114 case 794: /* srad */
2115 op->type = COMPUTE + SETREG + SETXER;
2116 sh = regs->gpr[rb] & 0x7f;
2117 ival = (signed long int) regs->gpr[rd];
2118 op->val = ival >> (sh < 64 ? sh : 63);
2119 op->xerval = regs->xer;
2120 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2121 op->xerval |= XER_CA;
2122 else
2123 op->xerval &= ~XER_CA;
2124 set_ca32(op, op->xerval & XER_CA);
2125 goto logical_done;
2126
2127 case 826: /* sradi with sh_5 = 0 */
2128 case 827: /* sradi with sh_5 = 1 */
2129 op->type = COMPUTE + SETREG + SETXER;
2130 sh = rb | ((word & 2) << 4);
2131 ival = (signed long int) regs->gpr[rd];
2132 op->val = ival >> sh;
2133 op->xerval = regs->xer;
2134 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2135 op->xerval |= XER_CA;
2136 else
2137 op->xerval &= ~XER_CA;
2138 set_ca32(op, op->xerval & XER_CA);
2139 goto logical_done;
2140
2141 case 890: /* extswsli with sh_5 = 0 */
2142 case 891: /* extswsli with sh_5 = 1 */
2143 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2144 goto unknown_opcode;
2145 op->type = COMPUTE + SETREG;
2146 sh = rb | ((word & 2) << 4);
2147 val = (signed int) regs->gpr[rd];
2148 if (sh)
2149 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2150 else
2151 op->val = val;
2152 goto logical_done;
2153
2154 #endif /* __powerpc64__ */
2155
2156 /*
2157 * Cache instructions
2158 */
2159 case 54: /* dcbst */
2160 op->type = MKOP(CACHEOP, DCBST, 0);
2161 op->ea = xform_ea(word, regs);
2162 return 0;
2163
2164 case 86: /* dcbf */
2165 op->type = MKOP(CACHEOP, DCBF, 0);
2166 op->ea = xform_ea(word, regs);
2167 return 0;
2168
2169 case 246: /* dcbtst */
2170 op->type = MKOP(CACHEOP, DCBTST, 0);
2171 op->ea = xform_ea(word, regs);
2172 op->reg = rd;
2173 return 0;
2174
2175 case 278: /* dcbt */
2176 op->type = MKOP(CACHEOP, DCBTST, 0);
2177 op->ea = xform_ea(word, regs);
2178 op->reg = rd;
2179 return 0;
2180
2181 case 982: /* icbi */
2182 op->type = MKOP(CACHEOP, ICBI, 0);
2183 op->ea = xform_ea(word, regs);
2184 return 0;
2185
2186 case 1014: /* dcbz */
2187 op->type = MKOP(CACHEOP, DCBZ, 0);
2188 op->ea = xform_ea(word, regs);
2189 return 0;
2190 }
2191 break;
2192 }
2193
2194 /*
2195 * Loads and stores.
2196 */
2197 op->type = UNKNOWN;
2198 op->update_reg = ra;
2199 op->reg = rd;
2200 op->val = regs->gpr[rd];
2201 u = (word >> 20) & UPDATE;
2202 op->vsx_flags = 0;
2203
2204 switch (opcode) {
2205 case 31:
2206 u = word & UPDATE;
2207 op->ea = xform_ea(word, regs);
2208 switch ((word >> 1) & 0x3ff) {
2209 case 20: /* lwarx */
2210 op->type = MKOP(LARX, 0, 4);
2211 break;
2212
2213 case 150: /* stwcx. */
2214 op->type = MKOP(STCX, 0, 4);
2215 break;
2216
2217 #ifdef __powerpc64__
2218 case 84: /* ldarx */
2219 op->type = MKOP(LARX, 0, 8);
2220 break;
2221
2222 case 214: /* stdcx. */
2223 op->type = MKOP(STCX, 0, 8);
2224 break;
2225
2226 case 52: /* lbarx */
2227 op->type = MKOP(LARX, 0, 1);
2228 break;
2229
2230 case 694: /* stbcx. */
2231 op->type = MKOP(STCX, 0, 1);
2232 break;
2233
2234 case 116: /* lharx */
2235 op->type = MKOP(LARX, 0, 2);
2236 break;
2237
2238 case 726: /* sthcx. */
2239 op->type = MKOP(STCX, 0, 2);
2240 break;
2241
2242 case 276: /* lqarx */
2243 if (!((rd & 1) || rd == ra || rd == rb))
2244 op->type = MKOP(LARX, 0, 16);
2245 break;
2246
2247 case 182: /* stqcx. */
2248 if (!(rd & 1))
2249 op->type = MKOP(STCX, 0, 16);
2250 break;
2251 #endif
2252
2253 case 23: /* lwzx */
2254 case 55: /* lwzux */
2255 op->type = MKOP(LOAD, u, 4);
2256 break;
2257
2258 case 87: /* lbzx */
2259 case 119: /* lbzux */
2260 op->type = MKOP(LOAD, u, 1);
2261 break;
2262
2263 #ifdef CONFIG_ALTIVEC
2264 /*
2265 * Note: for the load/store vector element instructions,
2266 * bits of the EA say which field of the VMX register to use.
2267 */
2268 case 7: /* lvebx */
2269 op->type = MKOP(LOAD_VMX, 0, 1);
2270 op->element_size = 1;
2271 break;
2272
2273 case 39: /* lvehx */
2274 op->type = MKOP(LOAD_VMX, 0, 2);
2275 op->element_size = 2;
2276 break;
2277
2278 case 71: /* lvewx */
2279 op->type = MKOP(LOAD_VMX, 0, 4);
2280 op->element_size = 4;
2281 break;
2282
2283 case 103: /* lvx */
2284 case 359: /* lvxl */
2285 op->type = MKOP(LOAD_VMX, 0, 16);
2286 op->element_size = 16;
2287 break;
2288
2289 case 135: /* stvebx */
2290 op->type = MKOP(STORE_VMX, 0, 1);
2291 op->element_size = 1;
2292 break;
2293
2294 case 167: /* stvehx */
2295 op->type = MKOP(STORE_VMX, 0, 2);
2296 op->element_size = 2;
2297 break;
2298
2299 case 199: /* stvewx */
2300 op->type = MKOP(STORE_VMX, 0, 4);
2301 op->element_size = 4;
2302 break;
2303
2304 case 231: /* stvx */
2305 case 487: /* stvxl */
2306 op->type = MKOP(STORE_VMX, 0, 16);
2307 break;
2308 #endif /* CONFIG_ALTIVEC */
2309
2310 #ifdef __powerpc64__
2311 case 21: /* ldx */
2312 case 53: /* ldux */
2313 op->type = MKOP(LOAD, u, 8);
2314 break;
2315
2316 case 149: /* stdx */
2317 case 181: /* stdux */
2318 op->type = MKOP(STORE, u, 8);
2319 break;
2320 #endif
2321
2322 case 151: /* stwx */
2323 case 183: /* stwux */
2324 op->type = MKOP(STORE, u, 4);
2325 break;
2326
2327 case 215: /* stbx */
2328 case 247: /* stbux */
2329 op->type = MKOP(STORE, u, 1);
2330 break;
2331
2332 case 279: /* lhzx */
2333 case 311: /* lhzux */
2334 op->type = MKOP(LOAD, u, 2);
2335 break;
2336
2337 #ifdef __powerpc64__
2338 case 341: /* lwax */
2339 case 373: /* lwaux */
2340 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2341 break;
2342 #endif
2343
2344 case 343: /* lhax */
2345 case 375: /* lhaux */
2346 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2347 break;
2348
2349 case 407: /* sthx */
2350 case 439: /* sthux */
2351 op->type = MKOP(STORE, u, 2);
2352 break;
2353
2354 #ifdef __powerpc64__
2355 case 532: /* ldbrx */
2356 op->type = MKOP(LOAD, BYTEREV, 8);
2357 break;
2358
2359 #endif
2360 case 533: /* lswx */
2361 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2362 break;
2363
2364 case 534: /* lwbrx */
2365 op->type = MKOP(LOAD, BYTEREV, 4);
2366 break;
2367
2368 case 597: /* lswi */
2369 if (rb == 0)
2370 rb = 32; /* # bytes to load */
2371 op->type = MKOP(LOAD_MULTI, 0, rb);
2372 op->ea = ra ? regs->gpr[ra] : 0;
2373 break;
2374
2375 #ifdef CONFIG_PPC_FPU
2376 case 535: /* lfsx */
2377 case 567: /* lfsux */
2378 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2379 break;
2380
2381 case 599: /* lfdx */
2382 case 631: /* lfdux */
2383 op->type = MKOP(LOAD_FP, u, 8);
2384 break;
2385
2386 case 663: /* stfsx */
2387 case 695: /* stfsux */
2388 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2389 break;
2390
2391 case 727: /* stfdx */
2392 case 759: /* stfdux */
2393 op->type = MKOP(STORE_FP, u, 8);
2394 break;
2395
2396 #ifdef __powerpc64__
2397 case 791: /* lfdpx */
2398 op->type = MKOP(LOAD_FP, 0, 16);
2399 break;
2400
2401 case 855: /* lfiwax */
2402 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2403 break;
2404
2405 case 887: /* lfiwzx */
2406 op->type = MKOP(LOAD_FP, 0, 4);
2407 break;
2408
2409 case 919: /* stfdpx */
2410 op->type = MKOP(STORE_FP, 0, 16);
2411 break;
2412
2413 case 983: /* stfiwx */
2414 op->type = MKOP(STORE_FP, 0, 4);
2415 break;
2416 #endif /* __powerpc64 */
2417 #endif /* CONFIG_PPC_FPU */
2418
2419 #ifdef __powerpc64__
2420 case 660: /* stdbrx */
2421 op->type = MKOP(STORE, BYTEREV, 8);
2422 op->val = byterev_8(regs->gpr[rd]);
2423 break;
2424
2425 #endif
2426 case 661: /* stswx */
2427 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2428 break;
2429
2430 case 662: /* stwbrx */
2431 op->type = MKOP(STORE, BYTEREV, 4);
2432 op->val = byterev_4(regs->gpr[rd]);
2433 break;
2434
2435 case 725: /* stswi */
2436 if (rb == 0)
2437 rb = 32; /* # bytes to store */
2438 op->type = MKOP(STORE_MULTI, 0, rb);
2439 op->ea = ra ? regs->gpr[ra] : 0;
2440 break;
2441
2442 case 790: /* lhbrx */
2443 op->type = MKOP(LOAD, BYTEREV, 2);
2444 break;
2445
2446 case 918: /* sthbrx */
2447 op->type = MKOP(STORE, BYTEREV, 2);
2448 op->val = byterev_2(regs->gpr[rd]);
2449 break;
2450
2451 #ifdef CONFIG_VSX
2452 case 12: /* lxsiwzx */
2453 op->reg = rd | ((word & 1) << 5);
2454 op->type = MKOP(LOAD_VSX, 0, 4);
2455 op->element_size = 8;
2456 break;
2457
2458 case 76: /* lxsiwax */
2459 op->reg = rd | ((word & 1) << 5);
2460 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2461 op->element_size = 8;
2462 break;
2463
2464 case 140: /* stxsiwx */
2465 op->reg = rd | ((word & 1) << 5);
2466 op->type = MKOP(STORE_VSX, 0, 4);
2467 op->element_size = 8;
2468 break;
2469
2470 case 268: /* lxvx */
2471 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2472 goto unknown_opcode;
2473 op->reg = rd | ((word & 1) << 5);
2474 op->type = MKOP(LOAD_VSX, 0, 16);
2475 op->element_size = 16;
2476 op->vsx_flags = VSX_CHECK_VEC;
2477 break;
2478
2479 case 269: /* lxvl */
2480 case 301: { /* lxvll */
2481 int nb;
2482 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2483 goto unknown_opcode;
2484 op->reg = rd | ((word & 1) << 5);
2485 op->ea = ra ? regs->gpr[ra] : 0;
2486 nb = regs->gpr[rb] & 0xff;
2487 if (nb > 16)
2488 nb = 16;
2489 op->type = MKOP(LOAD_VSX, 0, nb);
2490 op->element_size = 16;
2491 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2492 VSX_CHECK_VEC;
2493 break;
2494 }
2495 case 332: /* lxvdsx */
2496 op->reg = rd | ((word & 1) << 5);
2497 op->type = MKOP(LOAD_VSX, 0, 8);
2498 op->element_size = 8;
2499 op->vsx_flags = VSX_SPLAT;
2500 break;
2501
2502 case 333: /* lxvpx */
2503 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2504 goto unknown_opcode;
2505 op->reg = VSX_REGISTER_XTP(rd);
2506 op->type = MKOP(LOAD_VSX, 0, 32);
2507 op->element_size = 32;
2508 break;
2509
2510 case 364: /* lxvwsx */
2511 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2512 goto unknown_opcode;
2513 op->reg = rd | ((word & 1) << 5);
2514 op->type = MKOP(LOAD_VSX, 0, 4);
2515 op->element_size = 4;
2516 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2517 break;
2518
2519 case 396: /* stxvx */
2520 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2521 goto unknown_opcode;
2522 op->reg = rd | ((word & 1) << 5);
2523 op->type = MKOP(STORE_VSX, 0, 16);
2524 op->element_size = 16;
2525 op->vsx_flags = VSX_CHECK_VEC;
2526 break;
2527
2528 case 397: /* stxvl */
2529 case 429: { /* stxvll */
2530 int nb;
2531 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2532 goto unknown_opcode;
2533 op->reg = rd | ((word & 1) << 5);
2534 op->ea = ra ? regs->gpr[ra] : 0;
2535 nb = regs->gpr[rb] & 0xff;
2536 if (nb > 16)
2537 nb = 16;
2538 op->type = MKOP(STORE_VSX, 0, nb);
2539 op->element_size = 16;
2540 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2541 VSX_CHECK_VEC;
2542 break;
2543 }
2544 case 461: /* stxvpx */
2545 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2546 goto unknown_opcode;
2547 op->reg = VSX_REGISTER_XTP(rd);
2548 op->type = MKOP(STORE_VSX, 0, 32);
2549 op->element_size = 32;
2550 break;
2551 case 524: /* lxsspx */
2552 op->reg = rd | ((word & 1) << 5);
2553 op->type = MKOP(LOAD_VSX, 0, 4);
2554 op->element_size = 8;
2555 op->vsx_flags = VSX_FPCONV;
2556 break;
2557
2558 case 588: /* lxsdx */
2559 op->reg = rd | ((word & 1) << 5);
2560 op->type = MKOP(LOAD_VSX, 0, 8);
2561 op->element_size = 8;
2562 break;
2563
2564 case 652: /* stxsspx */
2565 op->reg = rd | ((word & 1) << 5);
2566 op->type = MKOP(STORE_VSX, 0, 4);
2567 op->element_size = 8;
2568 op->vsx_flags = VSX_FPCONV;
2569 break;
2570
2571 case 716: /* stxsdx */
2572 op->reg = rd | ((word & 1) << 5);
2573 op->type = MKOP(STORE_VSX, 0, 8);
2574 op->element_size = 8;
2575 break;
2576
2577 case 780: /* lxvw4x */
2578 op->reg = rd | ((word & 1) << 5);
2579 op->type = MKOP(LOAD_VSX, 0, 16);
2580 op->element_size = 4;
2581 break;
2582
2583 case 781: /* lxsibzx */
2584 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2585 goto unknown_opcode;
2586 op->reg = rd | ((word & 1) << 5);
2587 op->type = MKOP(LOAD_VSX, 0, 1);
2588 op->element_size = 8;
2589 op->vsx_flags = VSX_CHECK_VEC;
2590 break;
2591
2592 case 812: /* lxvh8x */
2593 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2594 goto unknown_opcode;
2595 op->reg = rd | ((word & 1) << 5);
2596 op->type = MKOP(LOAD_VSX, 0, 16);
2597 op->element_size = 2;
2598 op->vsx_flags = VSX_CHECK_VEC;
2599 break;
2600
2601 case 813: /* lxsihzx */
2602 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2603 goto unknown_opcode;
2604 op->reg = rd | ((word & 1) << 5);
2605 op->type = MKOP(LOAD_VSX, 0, 2);
2606 op->element_size = 8;
2607 op->vsx_flags = VSX_CHECK_VEC;
2608 break;
2609
2610 case 844: /* lxvd2x */
2611 op->reg = rd | ((word & 1) << 5);
2612 op->type = MKOP(LOAD_VSX, 0, 16);
2613 op->element_size = 8;
2614 break;
2615
2616 case 876: /* lxvb16x */
2617 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2618 goto unknown_opcode;
2619 op->reg = rd | ((word & 1) << 5);
2620 op->type = MKOP(LOAD_VSX, 0, 16);
2621 op->element_size = 1;
2622 op->vsx_flags = VSX_CHECK_VEC;
2623 break;
2624
2625 case 908: /* stxvw4x */
2626 op->reg = rd | ((word & 1) << 5);
2627 op->type = MKOP(STORE_VSX, 0, 16);
2628 op->element_size = 4;
2629 break;
2630
2631 case 909: /* stxsibx */
2632 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2633 goto unknown_opcode;
2634 op->reg = rd | ((word & 1) << 5);
2635 op->type = MKOP(STORE_VSX, 0, 1);
2636 op->element_size = 8;
2637 op->vsx_flags = VSX_CHECK_VEC;
2638 break;
2639
2640 case 940: /* stxvh8x */
2641 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2642 goto unknown_opcode;
2643 op->reg = rd | ((word & 1) << 5);
2644 op->type = MKOP(STORE_VSX, 0, 16);
2645 op->element_size = 2;
2646 op->vsx_flags = VSX_CHECK_VEC;
2647 break;
2648
2649 case 941: /* stxsihx */
2650 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2651 goto unknown_opcode;
2652 op->reg = rd | ((word & 1) << 5);
2653 op->type = MKOP(STORE_VSX, 0, 2);
2654 op->element_size = 8;
2655 op->vsx_flags = VSX_CHECK_VEC;
2656 break;
2657
2658 case 972: /* stxvd2x */
2659 op->reg = rd | ((word & 1) << 5);
2660 op->type = MKOP(STORE_VSX, 0, 16);
2661 op->element_size = 8;
2662 break;
2663
2664 case 1004: /* stxvb16x */
2665 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2666 goto unknown_opcode;
2667 op->reg = rd | ((word & 1) << 5);
2668 op->type = MKOP(STORE_VSX, 0, 16);
2669 op->element_size = 1;
2670 op->vsx_flags = VSX_CHECK_VEC;
2671 break;
2672
2673 #endif /* CONFIG_VSX */
2674 }
2675 break;
2676
2677 case 32: /* lwz */
2678 case 33: /* lwzu */
2679 op->type = MKOP(LOAD, u, 4);
2680 op->ea = dform_ea(word, regs);
2681 break;
2682
2683 case 34: /* lbz */
2684 case 35: /* lbzu */
2685 op->type = MKOP(LOAD, u, 1);
2686 op->ea = dform_ea(word, regs);
2687 break;
2688
2689 case 36: /* stw */
2690 case 37: /* stwu */
2691 op->type = MKOP(STORE, u, 4);
2692 op->ea = dform_ea(word, regs);
2693 break;
2694
2695 case 38: /* stb */
2696 case 39: /* stbu */
2697 op->type = MKOP(STORE, u, 1);
2698 op->ea = dform_ea(word, regs);
2699 break;
2700
2701 case 40: /* lhz */
2702 case 41: /* lhzu */
2703 op->type = MKOP(LOAD, u, 2);
2704 op->ea = dform_ea(word, regs);
2705 break;
2706
2707 case 42: /* lha */
2708 case 43: /* lhau */
2709 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2710 op->ea = dform_ea(word, regs);
2711 break;
2712
2713 case 44: /* sth */
2714 case 45: /* sthu */
2715 op->type = MKOP(STORE, u, 2);
2716 op->ea = dform_ea(word, regs);
2717 break;
2718
2719 case 46: /* lmw */
2720 if (ra >= rd)
2721 break; /* invalid form, ra in range to load */
2722 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2723 op->ea = dform_ea(word, regs);
2724 break;
2725
2726 case 47: /* stmw */
2727 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2728 op->ea = dform_ea(word, regs);
2729 break;
2730
2731 #ifdef CONFIG_PPC_FPU
2732 case 48: /* lfs */
2733 case 49: /* lfsu */
2734 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2735 op->ea = dform_ea(word, regs);
2736 break;
2737
2738 case 50: /* lfd */
2739 case 51: /* lfdu */
2740 op->type = MKOP(LOAD_FP, u, 8);
2741 op->ea = dform_ea(word, regs);
2742 break;
2743
2744 case 52: /* stfs */
2745 case 53: /* stfsu */
2746 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2747 op->ea = dform_ea(word, regs);
2748 break;
2749
2750 case 54: /* stfd */
2751 case 55: /* stfdu */
2752 op->type = MKOP(STORE_FP, u, 8);
2753 op->ea = dform_ea(word, regs);
2754 break;
2755 #endif
2756
2757 #ifdef __powerpc64__
2758 case 56: /* lq */
2759 if (!((rd & 1) || (rd == ra)))
2760 op->type = MKOP(LOAD, 0, 16);
2761 op->ea = dqform_ea(word, regs);
2762 break;
2763 #endif
2764
2765 #ifdef CONFIG_VSX
2766 case 57: /* lfdp, lxsd, lxssp */
2767 op->ea = dsform_ea(word, regs);
2768 switch (word & 3) {
2769 case 0: /* lfdp */
2770 if (rd & 1)
2771 break; /* reg must be even */
2772 op->type = MKOP(LOAD_FP, 0, 16);
2773 break;
2774 case 2: /* lxsd */
2775 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2776 goto unknown_opcode;
2777 op->reg = rd + 32;
2778 op->type = MKOP(LOAD_VSX, 0, 8);
2779 op->element_size = 8;
2780 op->vsx_flags = VSX_CHECK_VEC;
2781 break;
2782 case 3: /* lxssp */
2783 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2784 goto unknown_opcode;
2785 op->reg = rd + 32;
2786 op->type = MKOP(LOAD_VSX, 0, 4);
2787 op->element_size = 8;
2788 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2789 break;
2790 }
2791 break;
2792 #endif /* CONFIG_VSX */
2793
2794 #ifdef __powerpc64__
2795 case 58: /* ld[u], lwa */
2796 op->ea = dsform_ea(word, regs);
2797 switch (word & 3) {
2798 case 0: /* ld */
2799 op->type = MKOP(LOAD, 0, 8);
2800 break;
2801 case 1: /* ldu */
2802 op->type = MKOP(LOAD, UPDATE, 8);
2803 break;
2804 case 2: /* lwa */
2805 op->type = MKOP(LOAD, SIGNEXT, 4);
2806 break;
2807 }
2808 break;
2809 #endif
2810
2811 #ifdef CONFIG_VSX
2812 case 6:
2813 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2814 goto unknown_opcode;
2815 op->ea = dqform_ea(word, regs);
2816 op->reg = VSX_REGISTER_XTP(rd);
2817 op->element_size = 32;
2818 switch (word & 0xf) {
2819 case 0: /* lxvp */
2820 op->type = MKOP(LOAD_VSX, 0, 32);
2821 break;
2822 case 1: /* stxvp */
2823 op->type = MKOP(STORE_VSX, 0, 32);
2824 break;
2825 }
2826 break;
2827
2828 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
2829 switch (word & 7) {
2830 case 0: /* stfdp with LSB of DS field = 0 */
2831 case 4: /* stfdp with LSB of DS field = 1 */
2832 op->ea = dsform_ea(word, regs);
2833 op->type = MKOP(STORE_FP, 0, 16);
2834 break;
2835
2836 case 1: /* lxv */
2837 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2838 goto unknown_opcode;
2839 op->ea = dqform_ea(word, regs);
2840 if (word & 8)
2841 op->reg = rd + 32;
2842 op->type = MKOP(LOAD_VSX, 0, 16);
2843 op->element_size = 16;
2844 op->vsx_flags = VSX_CHECK_VEC;
2845 break;
2846
2847 case 2: /* stxsd with LSB of DS field = 0 */
2848 case 6: /* stxsd with LSB of DS field = 1 */
2849 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2850 goto unknown_opcode;
2851 op->ea = dsform_ea(word, regs);
2852 op->reg = rd + 32;
2853 op->type = MKOP(STORE_VSX, 0, 8);
2854 op->element_size = 8;
2855 op->vsx_flags = VSX_CHECK_VEC;
2856 break;
2857
2858 case 3: /* stxssp with LSB of DS field = 0 */
2859 case 7: /* stxssp with LSB of DS field = 1 */
2860 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2861 goto unknown_opcode;
2862 op->ea = dsform_ea(word, regs);
2863 op->reg = rd + 32;
2864 op->type = MKOP(STORE_VSX, 0, 4);
2865 op->element_size = 8;
2866 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2867 break;
2868
2869 case 5: /* stxv */
2870 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2871 goto unknown_opcode;
2872 op->ea = dqform_ea(word, regs);
2873 if (word & 8)
2874 op->reg = rd + 32;
2875 op->type = MKOP(STORE_VSX, 0, 16);
2876 op->element_size = 16;
2877 op->vsx_flags = VSX_CHECK_VEC;
2878 break;
2879 }
2880 break;
2881 #endif /* CONFIG_VSX */
2882
2883 #ifdef __powerpc64__
2884 case 62: /* std[u] */
2885 op->ea = dsform_ea(word, regs);
2886 switch (word & 3) {
2887 case 0: /* std */
2888 op->type = MKOP(STORE, 0, 8);
2889 break;
2890 case 1: /* stdu */
2891 op->type = MKOP(STORE, UPDATE, 8);
2892 break;
2893 case 2: /* stq */
2894 if (!(rd & 1))
2895 op->type = MKOP(STORE, 0, 16);
2896 break;
2897 }
2898 break;
2899 case 1: /* Prefixed instructions */
2900 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2901 goto unknown_opcode;
2902
2903 prefix_r = GET_PREFIX_R(word);
2904 ra = GET_PREFIX_RA(suffix);
2905 op->update_reg = ra;
2906 rd = (suffix >> 21) & 0x1f;
2907 op->reg = rd;
2908 op->val = regs->gpr[rd];
2909
2910 suffixopcode = get_op(suffix);
2911 prefixtype = (word >> 24) & 0x3;
2912 switch (prefixtype) {
2913 case 0: /* Type 00 Eight-Byte Load/Store */
2914 if (prefix_r && ra)
2915 break;
2916 op->ea = mlsd_8lsd_ea(word, suffix, regs);
2917 switch (suffixopcode) {
2918 case 41: /* plwa */
2919 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2920 break;
2921 #ifdef CONFIG_VSX
2922 case 42: /* plxsd */
2923 op->reg = rd + 32;
2924 op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2925 op->element_size = 8;
2926 op->vsx_flags = VSX_CHECK_VEC;
2927 break;
2928 case 43: /* plxssp */
2929 op->reg = rd + 32;
2930 op->type = MKOP(LOAD_VSX, PREFIXED, 4);
2931 op->element_size = 8;
2932 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2933 break;
2934 case 46: /* pstxsd */
2935 op->reg = rd + 32;
2936 op->type = MKOP(STORE_VSX, PREFIXED, 8);
2937 op->element_size = 8;
2938 op->vsx_flags = VSX_CHECK_VEC;
2939 break;
2940 case 47: /* pstxssp */
2941 op->reg = rd + 32;
2942 op->type = MKOP(STORE_VSX, PREFIXED, 4);
2943 op->element_size = 8;
2944 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2945 break;
2946 case 51: /* plxv1 */
2947 op->reg += 32;
2948 fallthrough;
2949 case 50: /* plxv0 */
2950 op->type = MKOP(LOAD_VSX, PREFIXED, 16);
2951 op->element_size = 16;
2952 op->vsx_flags = VSX_CHECK_VEC;
2953 break;
2954 case 55: /* pstxv1 */
2955 op->reg = rd + 32;
2956 fallthrough;
2957 case 54: /* pstxv0 */
2958 op->type = MKOP(STORE_VSX, PREFIXED, 16);
2959 op->element_size = 16;
2960 op->vsx_flags = VSX_CHECK_VEC;
2961 break;
2962 #endif /* CONFIG_VSX */
2963 case 56: /* plq */
2964 op->type = MKOP(LOAD, PREFIXED, 16);
2965 break;
2966 case 57: /* pld */
2967 op->type = MKOP(LOAD, PREFIXED, 8);
2968 break;
2969 #ifdef CONFIG_VSX
2970 case 58: /* plxvp */
2971 op->reg = VSX_REGISTER_XTP(rd);
2972 op->type = MKOP(LOAD_VSX, PREFIXED, 32);
2973 op->element_size = 32;
2974 break;
2975 #endif /* CONFIG_VSX */
2976 case 60: /* pstq */
2977 op->type = MKOP(STORE, PREFIXED, 16);
2978 break;
2979 case 61: /* pstd */
2980 op->type = MKOP(STORE, PREFIXED, 8);
2981 break;
2982 #ifdef CONFIG_VSX
2983 case 62: /* pstxvp */
2984 op->reg = VSX_REGISTER_XTP(rd);
2985 op->type = MKOP(STORE_VSX, PREFIXED, 32);
2986 op->element_size = 32;
2987 break;
2988 #endif /* CONFIG_VSX */
2989 }
2990 break;
2991 case 1: /* Type 01 Eight-Byte Register-to-Register */
2992 break;
2993 case 2: /* Type 10 Modified Load/Store */
2994 if (prefix_r && ra)
2995 break;
2996 op->ea = mlsd_8lsd_ea(word, suffix, regs);
2997 switch (suffixopcode) {
2998 case 32: /* plwz */
2999 op->type = MKOP(LOAD, PREFIXED, 4);
3000 break;
3001 case 34: /* plbz */
3002 op->type = MKOP(LOAD, PREFIXED, 1);
3003 break;
3004 case 36: /* pstw */
3005 op->type = MKOP(STORE, PREFIXED, 4);
3006 break;
3007 case 38: /* pstb */
3008 op->type = MKOP(STORE, PREFIXED, 1);
3009 break;
3010 case 40: /* plhz */
3011 op->type = MKOP(LOAD, PREFIXED, 2);
3012 break;
3013 case 42: /* plha */
3014 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3015 break;
3016 case 44: /* psth */
3017 op->type = MKOP(STORE, PREFIXED, 2);
3018 break;
3019 case 48: /* plfs */
3020 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3021 break;
3022 case 50: /* plfd */
3023 op->type = MKOP(LOAD_FP, PREFIXED, 8);
3024 break;
3025 case 52: /* pstfs */
3026 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3027 break;
3028 case 54: /* pstfd */
3029 op->type = MKOP(STORE_FP, PREFIXED, 8);
3030 break;
3031 }
3032 break;
3033 case 3: /* Type 11 Modified Register-to-Register */
3034 break;
3035 }
3036 #endif /* __powerpc64__ */
3037
3038 }
3039
3040 if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3041 switch (GETTYPE(op->type)) {
3042 case LOAD:
3043 if (ra == rd)
3044 goto unknown_opcode;
3045 fallthrough;
3046 case STORE:
3047 case LOAD_FP:
3048 case STORE_FP:
3049 if (ra == 0)
3050 goto unknown_opcode;
3051 }
3052 }
3053
3054 #ifdef CONFIG_VSX
3055 if ((GETTYPE(op->type) == LOAD_VSX ||
3056 GETTYPE(op->type) == STORE_VSX) &&
3057 !cpu_has_feature(CPU_FTR_VSX)) {
3058 return -1;
3059 }
3060 #endif /* CONFIG_VSX */
3061
3062 return 0;
3063
3064 unknown_opcode:
3065 op->type = UNKNOWN;
3066 return 0;
3067
3068 logical_done:
3069 if (word & 1)
3070 set_cr0(regs, op);
3071 logical_done_nocc:
3072 op->reg = ra;
3073 op->type |= SETREG;
3074 return 1;
3075
3076 arith_done:
3077 if (word & 1)
3078 set_cr0(regs, op);
3079 compute_done:
3080 op->reg = rd;
3081 op->type |= SETREG;
3082 return 1;
3083
3084 priv:
3085 op->type = INTERRUPT | 0x700;
3086 op->val = SRR1_PROGPRIV;
3087 return 0;
3088
3089 trap:
3090 op->type = INTERRUPT | 0x700;
3091 op->val = SRR1_PROGTRAP;
3092 return 0;
3093 }
3094 EXPORT_SYMBOL_GPL(analyse_instr);
3095 NOKPROBE_SYMBOL(analyse_instr);
3096
3097 /*
3098 * For PPC32 we always use stwu with r1 to change the stack pointer.
3099 * So this emulated store may corrupt the exception frame, now we
3100 * have to provide the exception frame trampoline, which is pushed
3101 * below the kprobed function stack. So we only update gpr[1] but
3102 * don't emulate the real store operation. We will do real store
3103 * operation safely in exception return code by checking this flag.
3104 */
handle_stack_update(unsigned long ea,struct pt_regs * regs)3105 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3106 {
3107 /*
3108 * Check if we already set since that means we'll
3109 * lose the previous value.
3110 */
3111 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3112 set_thread_flag(TIF_EMULATE_STACK_STORE);
3113 return 0;
3114 }
3115
do_signext(unsigned long * valp,int size)3116 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3117 {
3118 switch (size) {
3119 case 2:
3120 *valp = (signed short) *valp;
3121 break;
3122 case 4:
3123 *valp = (signed int) *valp;
3124 break;
3125 }
3126 }
3127
do_byterev(unsigned long * valp,int size)3128 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3129 {
3130 switch (size) {
3131 case 2:
3132 *valp = byterev_2(*valp);
3133 break;
3134 case 4:
3135 *valp = byterev_4(*valp);
3136 break;
3137 #ifdef __powerpc64__
3138 case 8:
3139 *valp = byterev_8(*valp);
3140 break;
3141 #endif
3142 }
3143 }
3144
3145 /*
3146 * Emulate an instruction that can be executed just by updating
3147 * fields in *regs.
3148 */
emulate_update_regs(struct pt_regs * regs,struct instruction_op * op)3149 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3150 {
3151 unsigned long next_pc;
3152
3153 next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3154 switch (GETTYPE(op->type)) {
3155 case COMPUTE:
3156 if (op->type & SETREG)
3157 regs->gpr[op->reg] = op->val;
3158 if (op->type & SETCC)
3159 regs->ccr = op->ccval;
3160 if (op->type & SETXER)
3161 regs->xer = op->xerval;
3162 break;
3163
3164 case BRANCH:
3165 if (op->type & SETLK)
3166 regs->link = next_pc;
3167 if (op->type & BRTAKEN)
3168 next_pc = op->val;
3169 if (op->type & DECCTR)
3170 --regs->ctr;
3171 break;
3172
3173 case BARRIER:
3174 switch (op->type & BARRIER_MASK) {
3175 case BARRIER_SYNC:
3176 mb();
3177 break;
3178 case BARRIER_ISYNC:
3179 isync();
3180 break;
3181 case BARRIER_EIEIO:
3182 eieio();
3183 break;
3184 case BARRIER_LWSYNC:
3185 asm volatile("lwsync" : : : "memory");
3186 break;
3187 case BARRIER_PTESYNC:
3188 asm volatile("ptesync" : : : "memory");
3189 break;
3190 }
3191 break;
3192
3193 case MFSPR:
3194 switch (op->spr) {
3195 case SPRN_XER:
3196 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3197 break;
3198 case SPRN_LR:
3199 regs->gpr[op->reg] = regs->link;
3200 break;
3201 case SPRN_CTR:
3202 regs->gpr[op->reg] = regs->ctr;
3203 break;
3204 default:
3205 WARN_ON_ONCE(1);
3206 }
3207 break;
3208
3209 case MTSPR:
3210 switch (op->spr) {
3211 case SPRN_XER:
3212 regs->xer = op->val & 0xffffffffUL;
3213 break;
3214 case SPRN_LR:
3215 regs->link = op->val;
3216 break;
3217 case SPRN_CTR:
3218 regs->ctr = op->val;
3219 break;
3220 default:
3221 WARN_ON_ONCE(1);
3222 }
3223 break;
3224
3225 default:
3226 WARN_ON_ONCE(1);
3227 }
3228 regs_set_return_ip(regs, next_pc);
3229 }
3230 NOKPROBE_SYMBOL(emulate_update_regs);
3231
3232 /*
3233 * Emulate a previously-analysed load or store instruction.
3234 * Return values are:
3235 * 0 = instruction emulated successfully
3236 * -EFAULT = address out of range or access faulted (regs->dar
3237 * contains the faulting address)
3238 * -EACCES = misaligned access, instruction requires alignment
3239 * -EINVAL = unknown operation in *op
3240 */
emulate_loadstore(struct pt_regs * regs,struct instruction_op * op)3241 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3242 {
3243 int err, size, type;
3244 int i, rd, nb;
3245 unsigned int cr;
3246 unsigned long val;
3247 unsigned long ea;
3248 bool cross_endian;
3249
3250 err = 0;
3251 size = GETSIZE(op->type);
3252 type = GETTYPE(op->type);
3253 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3254 ea = truncate_if_32bit(regs->msr, op->ea);
3255
3256 switch (type) {
3257 case LARX:
3258 if (ea & (size - 1))
3259 return -EACCES; /* can't handle misaligned */
3260 if (!address_ok(regs, ea, size))
3261 return -EFAULT;
3262 err = 0;
3263 val = 0;
3264 switch (size) {
3265 #ifdef __powerpc64__
3266 case 1:
3267 __get_user_asmx(val, ea, err, "lbarx");
3268 break;
3269 case 2:
3270 __get_user_asmx(val, ea, err, "lharx");
3271 break;
3272 #endif
3273 case 4:
3274 __get_user_asmx(val, ea, err, "lwarx");
3275 break;
3276 #ifdef __powerpc64__
3277 case 8:
3278 __get_user_asmx(val, ea, err, "ldarx");
3279 break;
3280 case 16:
3281 err = do_lqarx(ea, ®s->gpr[op->reg]);
3282 break;
3283 #endif
3284 default:
3285 return -EINVAL;
3286 }
3287 if (err) {
3288 regs->dar = ea;
3289 break;
3290 }
3291 if (size < 16)
3292 regs->gpr[op->reg] = val;
3293 break;
3294
3295 case STCX:
3296 if (ea & (size - 1))
3297 return -EACCES; /* can't handle misaligned */
3298 if (!address_ok(regs, ea, size))
3299 return -EFAULT;
3300 err = 0;
3301 switch (size) {
3302 #ifdef __powerpc64__
3303 case 1:
3304 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3305 break;
3306 case 2:
3307 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3308 break;
3309 #endif
3310 case 4:
3311 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3312 break;
3313 #ifdef __powerpc64__
3314 case 8:
3315 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3316 break;
3317 case 16:
3318 err = do_stqcx(ea, regs->gpr[op->reg],
3319 regs->gpr[op->reg + 1], &cr);
3320 break;
3321 #endif
3322 default:
3323 return -EINVAL;
3324 }
3325 if (!err)
3326 regs->ccr = (regs->ccr & 0x0fffffff) |
3327 (cr & 0xe0000000) |
3328 ((regs->xer >> 3) & 0x10000000);
3329 else
3330 regs->dar = ea;
3331 break;
3332
3333 case LOAD:
3334 #ifdef __powerpc64__
3335 if (size == 16) {
3336 err = emulate_lq(regs, ea, op->reg, cross_endian);
3337 break;
3338 }
3339 #endif
3340 err = read_mem(®s->gpr[op->reg], ea, size, regs);
3341 if (!err) {
3342 if (op->type & SIGNEXT)
3343 do_signext(®s->gpr[op->reg], size);
3344 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3345 do_byterev(®s->gpr[op->reg], size);
3346 }
3347 break;
3348
3349 #ifdef CONFIG_PPC_FPU
3350 case LOAD_FP:
3351 /*
3352 * If the instruction is in userspace, we can emulate it even
3353 * if the VMX state is not live, because we have the state
3354 * stored in the thread_struct. If the instruction is in
3355 * the kernel, we must not touch the state in the thread_struct.
3356 */
3357 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3358 return 0;
3359 err = do_fp_load(op, ea, regs, cross_endian);
3360 break;
3361 #endif
3362 #ifdef CONFIG_ALTIVEC
3363 case LOAD_VMX:
3364 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3365 return 0;
3366 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3367 break;
3368 #endif
3369 #ifdef CONFIG_VSX
3370 case LOAD_VSX: {
3371 unsigned long msrbit = MSR_VSX;
3372
3373 /*
3374 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3375 * when the target of the instruction is a vector register.
3376 */
3377 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3378 msrbit = MSR_VEC;
3379 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3380 return 0;
3381 err = do_vsx_load(op, ea, regs, cross_endian);
3382 break;
3383 }
3384 #endif
3385 case LOAD_MULTI:
3386 if (!address_ok(regs, ea, size))
3387 return -EFAULT;
3388 rd = op->reg;
3389 for (i = 0; i < size; i += 4) {
3390 unsigned int v32 = 0;
3391
3392 nb = size - i;
3393 if (nb > 4)
3394 nb = 4;
3395 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3396 if (err)
3397 break;
3398 if (unlikely(cross_endian))
3399 v32 = byterev_4(v32);
3400 regs->gpr[rd] = v32;
3401 ea += 4;
3402 /* reg number wraps from 31 to 0 for lsw[ix] */
3403 rd = (rd + 1) & 0x1f;
3404 }
3405 break;
3406
3407 case STORE:
3408 #ifdef __powerpc64__
3409 if (size == 16) {
3410 err = emulate_stq(regs, ea, op->reg, cross_endian);
3411 break;
3412 }
3413 #endif
3414 if ((op->type & UPDATE) && size == sizeof(long) &&
3415 op->reg == 1 && op->update_reg == 1 &&
3416 !(regs->msr & MSR_PR) &&
3417 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3418 err = handle_stack_update(ea, regs);
3419 break;
3420 }
3421 if (unlikely(cross_endian))
3422 do_byterev(&op->val, size);
3423 err = write_mem(op->val, ea, size, regs);
3424 break;
3425
3426 #ifdef CONFIG_PPC_FPU
3427 case STORE_FP:
3428 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3429 return 0;
3430 err = do_fp_store(op, ea, regs, cross_endian);
3431 break;
3432 #endif
3433 #ifdef CONFIG_ALTIVEC
3434 case STORE_VMX:
3435 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3436 return 0;
3437 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3438 break;
3439 #endif
3440 #ifdef CONFIG_VSX
3441 case STORE_VSX: {
3442 unsigned long msrbit = MSR_VSX;
3443
3444 /*
3445 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3446 * when the target of the instruction is a vector register.
3447 */
3448 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3449 msrbit = MSR_VEC;
3450 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3451 return 0;
3452 err = do_vsx_store(op, ea, regs, cross_endian);
3453 break;
3454 }
3455 #endif
3456 case STORE_MULTI:
3457 if (!address_ok(regs, ea, size))
3458 return -EFAULT;
3459 rd = op->reg;
3460 for (i = 0; i < size; i += 4) {
3461 unsigned int v32 = regs->gpr[rd];
3462
3463 nb = size - i;
3464 if (nb > 4)
3465 nb = 4;
3466 if (unlikely(cross_endian))
3467 v32 = byterev_4(v32);
3468 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3469 if (err)
3470 break;
3471 ea += 4;
3472 /* reg number wraps from 31 to 0 for stsw[ix] */
3473 rd = (rd + 1) & 0x1f;
3474 }
3475 break;
3476
3477 default:
3478 return -EINVAL;
3479 }
3480
3481 if (err)
3482 return err;
3483
3484 if (op->type & UPDATE)
3485 regs->gpr[op->update_reg] = op->ea;
3486
3487 return 0;
3488 }
3489 NOKPROBE_SYMBOL(emulate_loadstore);
3490
3491 /*
3492 * Emulate instructions that cause a transfer of control,
3493 * loads and stores, and a few other instructions.
3494 * Returns 1 if the step was emulated, 0 if not,
3495 * or -1 if the instruction is one that should not be stepped,
3496 * such as an rfid, or a mtmsrd that would clear MSR_RI.
3497 */
emulate_step(struct pt_regs * regs,struct ppc_inst instr)3498 int emulate_step(struct pt_regs *regs, struct ppc_inst instr)
3499 {
3500 struct instruction_op op;
3501 int r, err, type;
3502 unsigned long val;
3503 unsigned long ea;
3504
3505 r = analyse_instr(&op, regs, instr);
3506 if (r < 0)
3507 return r;
3508 if (r > 0) {
3509 emulate_update_regs(regs, &op);
3510 return 1;
3511 }
3512
3513 err = 0;
3514 type = GETTYPE(op.type);
3515
3516 if (OP_IS_LOAD_STORE(type)) {
3517 err = emulate_loadstore(regs, &op);
3518 if (err)
3519 return 0;
3520 goto instr_done;
3521 }
3522
3523 switch (type) {
3524 case CACHEOP:
3525 ea = truncate_if_32bit(regs->msr, op.ea);
3526 if (!address_ok(regs, ea, 8))
3527 return 0;
3528 switch (op.type & CACHEOP_MASK) {
3529 case DCBST:
3530 __cacheop_user_asmx(ea, err, "dcbst");
3531 break;
3532 case DCBF:
3533 __cacheop_user_asmx(ea, err, "dcbf");
3534 break;
3535 case DCBTST:
3536 if (op.reg == 0)
3537 prefetchw((void *) ea);
3538 break;
3539 case DCBT:
3540 if (op.reg == 0)
3541 prefetch((void *) ea);
3542 break;
3543 case ICBI:
3544 __cacheop_user_asmx(ea, err, "icbi");
3545 break;
3546 case DCBZ:
3547 err = emulate_dcbz(ea, regs);
3548 break;
3549 }
3550 if (err) {
3551 regs->dar = ea;
3552 return 0;
3553 }
3554 goto instr_done;
3555
3556 case MFMSR:
3557 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3558 goto instr_done;
3559
3560 case MTMSR:
3561 val = regs->gpr[op.reg];
3562 if ((val & MSR_RI) == 0)
3563 /* can't step mtmsr[d] that would clear MSR_RI */
3564 return -1;
3565 /* here op.val is the mask of bits to change */
3566 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3567 goto instr_done;
3568
3569 #ifdef CONFIG_PPC64
3570 case SYSCALL: /* sc */
3571 /*
3572 * N.B. this uses knowledge about how the syscall
3573 * entry code works. If that is changed, this will
3574 * need to be changed also.
3575 */
3576 if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3577 cpu_has_feature(CPU_FTR_REAL_LE) &&
3578 regs->gpr[0] == 0x1ebe) {
3579 regs_set_return_msr(regs, regs->msr ^ MSR_LE);
3580 goto instr_done;
3581 }
3582 regs->gpr[9] = regs->gpr[13];
3583 regs->gpr[10] = MSR_KERNEL;
3584 regs->gpr[11] = regs->nip + 4;
3585 regs->gpr[12] = regs->msr & MSR_MASK;
3586 regs->gpr[13] = (unsigned long) get_paca();
3587 regs_set_return_ip(regs, (unsigned long) &system_call_common);
3588 regs_set_return_msr(regs, MSR_KERNEL);
3589 return 1;
3590
3591 #ifdef CONFIG_PPC_BOOK3S_64
3592 case SYSCALL_VECTORED_0: /* scv 0 */
3593 regs->gpr[9] = regs->gpr[13];
3594 regs->gpr[10] = MSR_KERNEL;
3595 regs->gpr[11] = regs->nip + 4;
3596 regs->gpr[12] = regs->msr & MSR_MASK;
3597 regs->gpr[13] = (unsigned long) get_paca();
3598 regs_set_return_ip(regs, (unsigned long) &system_call_vectored_emulate);
3599 regs_set_return_msr(regs, MSR_KERNEL);
3600 return 1;
3601 #endif
3602
3603 case RFI:
3604 return -1;
3605 #endif
3606 }
3607 return 0;
3608
3609 instr_done:
3610 regs_set_return_ip(regs,
3611 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3612 return 1;
3613 }
3614 NOKPROBE_SYMBOL(emulate_step);
3615