1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright IBM Corporation, 2018
4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5 * Paul Mackerras <paulus@ozlabs.org>
6 *
7 * Description: KVM functions specific to running nested KVM-HV guests
8 * on Book3S processors (specifically POWER9 and later).
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 #include <asm/plpar_wrappers.h>
23
24 static struct patb_entry *pseries_partition_tb;
25
26 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
27 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
28
kvmhv_save_hv_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)29 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
30 {
31 struct kvmppc_vcore *vc = vcpu->arch.vcore;
32
33 hr->pcr = vc->pcr | PCR_MASK;
34 hr->dpdes = vc->dpdes;
35 hr->hfscr = vcpu->arch.hfscr;
36 hr->tb_offset = vc->tb_offset;
37 hr->dawr0 = vcpu->arch.dawr0;
38 hr->dawrx0 = vcpu->arch.dawrx0;
39 hr->ciabr = vcpu->arch.ciabr;
40 hr->purr = vcpu->arch.purr;
41 hr->spurr = vcpu->arch.spurr;
42 hr->ic = vcpu->arch.ic;
43 hr->vtb = vc->vtb;
44 hr->srr0 = vcpu->arch.shregs.srr0;
45 hr->srr1 = vcpu->arch.shregs.srr1;
46 hr->sprg[0] = vcpu->arch.shregs.sprg0;
47 hr->sprg[1] = vcpu->arch.shregs.sprg1;
48 hr->sprg[2] = vcpu->arch.shregs.sprg2;
49 hr->sprg[3] = vcpu->arch.shregs.sprg3;
50 hr->pidr = vcpu->arch.pid;
51 hr->cfar = vcpu->arch.cfar;
52 hr->ppr = vcpu->arch.ppr;
53 hr->dawr1 = vcpu->arch.dawr1;
54 hr->dawrx1 = vcpu->arch.dawrx1;
55 }
56
57 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */
byteswap_pt_regs(struct pt_regs * regs)58 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
59 {
60 unsigned long *addr = (unsigned long *) regs;
61
62 for (; addr < ((unsigned long *) (regs + 1)); addr++)
63 *addr = swab64(*addr);
64 }
65
byteswap_hv_regs(struct hv_guest_state * hr)66 static void byteswap_hv_regs(struct hv_guest_state *hr)
67 {
68 hr->version = swab64(hr->version);
69 hr->lpid = swab32(hr->lpid);
70 hr->vcpu_token = swab32(hr->vcpu_token);
71 hr->lpcr = swab64(hr->lpcr);
72 hr->pcr = swab64(hr->pcr) | PCR_MASK;
73 hr->amor = swab64(hr->amor);
74 hr->dpdes = swab64(hr->dpdes);
75 hr->hfscr = swab64(hr->hfscr);
76 hr->tb_offset = swab64(hr->tb_offset);
77 hr->dawr0 = swab64(hr->dawr0);
78 hr->dawrx0 = swab64(hr->dawrx0);
79 hr->ciabr = swab64(hr->ciabr);
80 hr->hdec_expiry = swab64(hr->hdec_expiry);
81 hr->purr = swab64(hr->purr);
82 hr->spurr = swab64(hr->spurr);
83 hr->ic = swab64(hr->ic);
84 hr->vtb = swab64(hr->vtb);
85 hr->hdar = swab64(hr->hdar);
86 hr->hdsisr = swab64(hr->hdsisr);
87 hr->heir = swab64(hr->heir);
88 hr->asdr = swab64(hr->asdr);
89 hr->srr0 = swab64(hr->srr0);
90 hr->srr1 = swab64(hr->srr1);
91 hr->sprg[0] = swab64(hr->sprg[0]);
92 hr->sprg[1] = swab64(hr->sprg[1]);
93 hr->sprg[2] = swab64(hr->sprg[2]);
94 hr->sprg[3] = swab64(hr->sprg[3]);
95 hr->pidr = swab64(hr->pidr);
96 hr->cfar = swab64(hr->cfar);
97 hr->ppr = swab64(hr->ppr);
98 hr->dawr1 = swab64(hr->dawr1);
99 hr->dawrx1 = swab64(hr->dawrx1);
100 }
101
save_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)102 static void save_hv_return_state(struct kvm_vcpu *vcpu,
103 struct hv_guest_state *hr)
104 {
105 struct kvmppc_vcore *vc = vcpu->arch.vcore;
106
107 hr->dpdes = vc->dpdes;
108 hr->purr = vcpu->arch.purr;
109 hr->spurr = vcpu->arch.spurr;
110 hr->ic = vcpu->arch.ic;
111 hr->vtb = vc->vtb;
112 hr->srr0 = vcpu->arch.shregs.srr0;
113 hr->srr1 = vcpu->arch.shregs.srr1;
114 hr->sprg[0] = vcpu->arch.shregs.sprg0;
115 hr->sprg[1] = vcpu->arch.shregs.sprg1;
116 hr->sprg[2] = vcpu->arch.shregs.sprg2;
117 hr->sprg[3] = vcpu->arch.shregs.sprg3;
118 hr->pidr = vcpu->arch.pid;
119 hr->cfar = vcpu->arch.cfar;
120 hr->ppr = vcpu->arch.ppr;
121 switch (vcpu->arch.trap) {
122 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
123 hr->hdar = vcpu->arch.fault_dar;
124 hr->hdsisr = vcpu->arch.fault_dsisr;
125 hr->asdr = vcpu->arch.fault_gpa;
126 break;
127 case BOOK3S_INTERRUPT_H_INST_STORAGE:
128 hr->asdr = vcpu->arch.fault_gpa;
129 break;
130 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
131 hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
132 (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
133 break;
134 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
135 hr->heir = vcpu->arch.emul_inst;
136 break;
137 }
138 }
139
restore_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * hr)140 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
141 {
142 struct kvmppc_vcore *vc = vcpu->arch.vcore;
143
144 vc->pcr = hr->pcr | PCR_MASK;
145 vc->dpdes = hr->dpdes;
146 vcpu->arch.hfscr = hr->hfscr;
147 vcpu->arch.dawr0 = hr->dawr0;
148 vcpu->arch.dawrx0 = hr->dawrx0;
149 vcpu->arch.ciabr = hr->ciabr;
150 vcpu->arch.purr = hr->purr;
151 vcpu->arch.spurr = hr->spurr;
152 vcpu->arch.ic = hr->ic;
153 vc->vtb = hr->vtb;
154 vcpu->arch.shregs.srr0 = hr->srr0;
155 vcpu->arch.shregs.srr1 = hr->srr1;
156 vcpu->arch.shregs.sprg0 = hr->sprg[0];
157 vcpu->arch.shregs.sprg1 = hr->sprg[1];
158 vcpu->arch.shregs.sprg2 = hr->sprg[2];
159 vcpu->arch.shregs.sprg3 = hr->sprg[3];
160 vcpu->arch.pid = hr->pidr;
161 vcpu->arch.cfar = hr->cfar;
162 vcpu->arch.ppr = hr->ppr;
163 vcpu->arch.dawr1 = hr->dawr1;
164 vcpu->arch.dawrx1 = hr->dawrx1;
165 }
166
kvmhv_restore_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)167 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
168 struct hv_guest_state *hr)
169 {
170 struct kvmppc_vcore *vc = vcpu->arch.vcore;
171
172 vc->dpdes = hr->dpdes;
173 vcpu->arch.hfscr = hr->hfscr;
174 vcpu->arch.purr = hr->purr;
175 vcpu->arch.spurr = hr->spurr;
176 vcpu->arch.ic = hr->ic;
177 vc->vtb = hr->vtb;
178 vcpu->arch.fault_dar = hr->hdar;
179 vcpu->arch.fault_dsisr = hr->hdsisr;
180 vcpu->arch.fault_gpa = hr->asdr;
181 vcpu->arch.emul_inst = hr->heir;
182 vcpu->arch.shregs.srr0 = hr->srr0;
183 vcpu->arch.shregs.srr1 = hr->srr1;
184 vcpu->arch.shregs.sprg0 = hr->sprg[0];
185 vcpu->arch.shregs.sprg1 = hr->sprg[1];
186 vcpu->arch.shregs.sprg2 = hr->sprg[2];
187 vcpu->arch.shregs.sprg3 = hr->sprg[3];
188 vcpu->arch.pid = hr->pidr;
189 vcpu->arch.cfar = hr->cfar;
190 vcpu->arch.ppr = hr->ppr;
191 }
192
kvmhv_nested_mmio_needed(struct kvm_vcpu * vcpu,u64 regs_ptr)193 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
194 {
195 /* No need to reflect the page fault to L1, we've handled it */
196 vcpu->arch.trap = 0;
197
198 /*
199 * Since the L2 gprs have already been written back into L1 memory when
200 * we complete the mmio, store the L1 memory location of the L2 gpr
201 * being loaded into by the mmio so that the loaded value can be
202 * written there in kvmppc_complete_mmio_load()
203 */
204 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
205 && (vcpu->mmio_is_write == 0)) {
206 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
207 offsetof(struct pt_regs,
208 gpr[vcpu->arch.io_gpr]);
209 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
210 }
211 }
212
kvmhv_read_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)213 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
214 struct hv_guest_state *l2_hv,
215 struct pt_regs *l2_regs,
216 u64 hv_ptr, u64 regs_ptr)
217 {
218 int size;
219
220 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
221 sizeof(l2_hv->version)))
222 return -1;
223
224 if (kvmppc_need_byteswap(vcpu))
225 l2_hv->version = swab64(l2_hv->version);
226
227 size = hv_guest_state_size(l2_hv->version);
228 if (size < 0)
229 return -1;
230
231 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
232 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
233 sizeof(struct pt_regs));
234 }
235
kvmhv_write_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)236 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
237 struct hv_guest_state *l2_hv,
238 struct pt_regs *l2_regs,
239 u64 hv_ptr, u64 regs_ptr)
240 {
241 int size;
242
243 size = hv_guest_state_size(l2_hv->version);
244 if (size < 0)
245 return -1;
246
247 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
248 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
249 sizeof(struct pt_regs));
250 }
251
load_l2_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * l2_hv,const struct hv_guest_state * l1_hv,u64 * lpcr)252 static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
253 const struct hv_guest_state *l2_hv,
254 const struct hv_guest_state *l1_hv, u64 *lpcr)
255 {
256 struct kvmppc_vcore *vc = vcpu->arch.vcore;
257 u64 mask;
258
259 restore_hv_regs(vcpu, l2_hv);
260
261 /*
262 * Don't let L1 change LPCR bits for the L2 except these:
263 */
264 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD |
265 LPCR_LPES | LPCR_MER;
266
267 /*
268 * Additional filtering is required depending on hardware
269 * and configuration.
270 */
271 *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
272 (vc->lpcr & ~mask) | (*lpcr & mask));
273
274 /*
275 * Don't let L1 enable features for L2 which we don't allow for L1,
276 * but preserve the interrupt cause field.
277 */
278 vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
279
280 /* Don't let data address watchpoint match in hypervisor state */
281 vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
282 vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
283
284 /* Don't let completed instruction address breakpt match in HV state */
285 if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
286 vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
287 }
288
kvmhv_enter_nested_guest(struct kvm_vcpu * vcpu)289 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
290 {
291 long int err, r;
292 struct kvm_nested_guest *l2;
293 struct pt_regs l2_regs, saved_l1_regs;
294 struct hv_guest_state l2_hv = {0}, saved_l1_hv;
295 struct kvmppc_vcore *vc = vcpu->arch.vcore;
296 u64 hv_ptr, regs_ptr;
297 u64 hdec_exp, lpcr;
298 s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
299
300 if (vcpu->kvm->arch.l1_ptcr == 0)
301 return H_NOT_AVAILABLE;
302
303 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
304 return H_BAD_MODE;
305
306 /* copy parameters in */
307 hv_ptr = kvmppc_get_gpr(vcpu, 4);
308 regs_ptr = kvmppc_get_gpr(vcpu, 5);
309 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
310 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
311 hv_ptr, regs_ptr);
312 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
313 if (err)
314 return H_PARAMETER;
315
316 if (kvmppc_need_byteswap(vcpu))
317 byteswap_hv_regs(&l2_hv);
318 if (l2_hv.version > HV_GUEST_STATE_VERSION)
319 return H_P2;
320
321 if (kvmppc_need_byteswap(vcpu))
322 byteswap_pt_regs(&l2_regs);
323 if (l2_hv.vcpu_token >= NR_CPUS)
324 return H_PARAMETER;
325
326 /*
327 * L1 must have set up a suspended state to enter the L2 in a
328 * transactional state, and only in that case. These have to be
329 * filtered out here to prevent causing a TM Bad Thing in the
330 * host HRFID. We could synthesize a TM Bad Thing back to the L1
331 * here but there doesn't seem like much point.
332 */
333 if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
334 if (!MSR_TM_ACTIVE(l2_regs.msr))
335 return H_BAD_MODE;
336 } else {
337 if (l2_regs.msr & MSR_TS_MASK)
338 return H_BAD_MODE;
339 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
340 return H_BAD_MODE;
341 }
342
343 /* translate lpid */
344 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
345 if (!l2)
346 return H_PARAMETER;
347 if (!l2->l1_gr_to_hr) {
348 mutex_lock(&l2->tlb_lock);
349 kvmhv_update_ptbl_cache(l2);
350 mutex_unlock(&l2->tlb_lock);
351 }
352
353 /* save l1 values of things */
354 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
355 saved_l1_regs = vcpu->arch.regs;
356 kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
357
358 /* convert TB values/offsets to host (L0) values */
359 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
360 vc->tb_offset += l2_hv.tb_offset;
361
362 /* set L1 state to L2 state */
363 vcpu->arch.nested = l2;
364 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
365 l2->hfscr = l2_hv.hfscr;
366 vcpu->arch.regs = l2_regs;
367
368 /* Guest must always run with ME enabled, HV disabled. */
369 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
370
371 lpcr = l2_hv.lpcr;
372 load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
373
374 vcpu->arch.ret = RESUME_GUEST;
375 vcpu->arch.trap = 0;
376 do {
377 if (mftb() >= hdec_exp) {
378 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
379 r = RESUME_HOST;
380 break;
381 }
382 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
383 } while (is_kvmppc_resume_guest(r));
384
385 /* save L2 state for return */
386 l2_regs = vcpu->arch.regs;
387 l2_regs.msr = vcpu->arch.shregs.msr;
388 delta_purr = vcpu->arch.purr - l2_hv.purr;
389 delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
390 delta_ic = vcpu->arch.ic - l2_hv.ic;
391 delta_vtb = vc->vtb - l2_hv.vtb;
392 save_hv_return_state(vcpu, &l2_hv);
393
394 /* restore L1 state */
395 vcpu->arch.nested = NULL;
396 vcpu->arch.regs = saved_l1_regs;
397 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
398 /* set L1 MSR TS field according to L2 transaction state */
399 if (l2_regs.msr & MSR_TS_MASK)
400 vcpu->arch.shregs.msr |= MSR_TS_S;
401 vc->tb_offset = saved_l1_hv.tb_offset;
402 restore_hv_regs(vcpu, &saved_l1_hv);
403 vcpu->arch.purr += delta_purr;
404 vcpu->arch.spurr += delta_spurr;
405 vcpu->arch.ic += delta_ic;
406 vc->vtb += delta_vtb;
407
408 kvmhv_put_nested(l2);
409
410 /* copy l2_hv_state and regs back to guest */
411 if (kvmppc_need_byteswap(vcpu)) {
412 byteswap_hv_regs(&l2_hv);
413 byteswap_pt_regs(&l2_regs);
414 }
415 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
416 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
417 hv_ptr, regs_ptr);
418 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
419 if (err)
420 return H_AUTHORITY;
421
422 if (r == -EINTR)
423 return H_INTERRUPT;
424
425 if (vcpu->mmio_needed) {
426 kvmhv_nested_mmio_needed(vcpu, regs_ptr);
427 return H_TOO_HARD;
428 }
429
430 return vcpu->arch.trap;
431 }
432
kvmhv_nested_init(void)433 long kvmhv_nested_init(void)
434 {
435 long int ptb_order;
436 unsigned long ptcr;
437 long rc;
438
439 if (!kvmhv_on_pseries())
440 return 0;
441 if (!radix_enabled())
442 return -ENODEV;
443
444 /* find log base 2 of KVMPPC_NR_LPIDS, rounding up */
445 ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1;
446 if (ptb_order < 8)
447 ptb_order = 8;
448 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
449 GFP_KERNEL);
450 if (!pseries_partition_tb) {
451 pr_err("kvm-hv: failed to allocated nested partition table\n");
452 return -ENOMEM;
453 }
454
455 ptcr = __pa(pseries_partition_tb) | (ptb_order - 8);
456 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
457 if (rc != H_SUCCESS) {
458 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
459 rc);
460 kfree(pseries_partition_tb);
461 pseries_partition_tb = NULL;
462 return -ENODEV;
463 }
464
465 return 0;
466 }
467
kvmhv_nested_exit(void)468 void kvmhv_nested_exit(void)
469 {
470 /*
471 * N.B. the kvmhv_on_pseries() test is there because it enables
472 * the compiler to remove the call to plpar_hcall_norets()
473 * when CONFIG_PPC_PSERIES=n.
474 */
475 if (kvmhv_on_pseries() && pseries_partition_tb) {
476 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
477 kfree(pseries_partition_tb);
478 pseries_partition_tb = NULL;
479 }
480 }
481
kvmhv_flush_lpid(unsigned int lpid)482 static void kvmhv_flush_lpid(unsigned int lpid)
483 {
484 long rc;
485
486 if (!kvmhv_on_pseries()) {
487 radix__flush_all_lpid(lpid);
488 return;
489 }
490
491 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
492 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
493 lpid, TLBIEL_INVAL_SET_LPID);
494 else
495 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
496 H_RPTI_TYPE_NESTED |
497 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
498 H_RPTI_TYPE_PAT,
499 H_RPTI_PAGE_ALL, 0, -1UL);
500 if (rc)
501 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
502 }
503
kvmhv_set_ptbl_entry(unsigned int lpid,u64 dw0,u64 dw1)504 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
505 {
506 if (!kvmhv_on_pseries()) {
507 mmu_partition_table_set_entry(lpid, dw0, dw1, true);
508 return;
509 }
510
511 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
512 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
513 /* L0 will do the necessary barriers */
514 kvmhv_flush_lpid(lpid);
515 }
516
kvmhv_set_nested_ptbl(struct kvm_nested_guest * gp)517 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
518 {
519 unsigned long dw0;
520
521 dw0 = PATB_HR | radix__get_tree_size() |
522 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
523 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
524 }
525
kvmhv_vm_nested_init(struct kvm * kvm)526 void kvmhv_vm_nested_init(struct kvm *kvm)
527 {
528 kvm->arch.max_nested_lpid = -1;
529 }
530
531 /*
532 * Handle the H_SET_PARTITION_TABLE hcall.
533 * r4 = guest real address of partition table + log_2(size) - 12
534 * (formatted as for the PTCR).
535 */
kvmhv_set_partition_table(struct kvm_vcpu * vcpu)536 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
537 {
538 struct kvm *kvm = vcpu->kvm;
539 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
540 int srcu_idx;
541 long ret = H_SUCCESS;
542
543 srcu_idx = srcu_read_lock(&kvm->srcu);
544 /*
545 * Limit the partition table to 4096 entries (because that's what
546 * hardware supports), and check the base address.
547 */
548 if ((ptcr & PRTS_MASK) > 12 - 8 ||
549 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
550 ret = H_PARAMETER;
551 srcu_read_unlock(&kvm->srcu, srcu_idx);
552 if (ret == H_SUCCESS)
553 kvm->arch.l1_ptcr = ptcr;
554 return ret;
555 }
556
557 /*
558 * Handle the H_COPY_TOFROM_GUEST hcall.
559 * r4 = L1 lpid of nested guest
560 * r5 = pid
561 * r6 = eaddr to access
562 * r7 = to buffer (L1 gpa)
563 * r8 = from buffer (L1 gpa)
564 * r9 = n bytes to copy
565 */
kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu * vcpu)566 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
567 {
568 struct kvm_nested_guest *gp;
569 int l1_lpid = kvmppc_get_gpr(vcpu, 4);
570 int pid = kvmppc_get_gpr(vcpu, 5);
571 gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
572 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
573 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
574 void *buf;
575 unsigned long n = kvmppc_get_gpr(vcpu, 9);
576 bool is_load = !!gp_to;
577 long rc;
578
579 if (gp_to && gp_from) /* One must be NULL to determine the direction */
580 return H_PARAMETER;
581
582 if (eaddr & (0xFFFUL << 52))
583 return H_PARAMETER;
584
585 buf = kzalloc(n, GFP_KERNEL);
586 if (!buf)
587 return H_NO_MEM;
588
589 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
590 if (!gp) {
591 rc = H_PARAMETER;
592 goto out_free;
593 }
594
595 mutex_lock(&gp->tlb_lock);
596
597 if (is_load) {
598 /* Load from the nested guest into our buffer */
599 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
600 eaddr, buf, NULL, n);
601 if (rc)
602 goto not_found;
603
604 /* Write what was loaded into our buffer back to the L1 guest */
605 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
606 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
607 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
608 if (rc)
609 goto not_found;
610 } else {
611 /* Load the data to be stored from the L1 guest into our buf */
612 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
613 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
614 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
615 if (rc)
616 goto not_found;
617
618 /* Store from our buffer into the nested guest */
619 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
620 eaddr, NULL, buf, n);
621 if (rc)
622 goto not_found;
623 }
624
625 out_unlock:
626 mutex_unlock(&gp->tlb_lock);
627 kvmhv_put_nested(gp);
628 out_free:
629 kfree(buf);
630 return rc;
631 not_found:
632 rc = H_NOT_FOUND;
633 goto out_unlock;
634 }
635
636 /*
637 * Reload the partition table entry for a guest.
638 * Caller must hold gp->tlb_lock.
639 */
kvmhv_update_ptbl_cache(struct kvm_nested_guest * gp)640 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
641 {
642 int ret;
643 struct patb_entry ptbl_entry;
644 unsigned long ptbl_addr;
645 struct kvm *kvm = gp->l1_host;
646
647 ret = -EFAULT;
648 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
649 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8))) {
650 int srcu_idx = srcu_read_lock(&kvm->srcu);
651 ret = kvm_read_guest(kvm, ptbl_addr,
652 &ptbl_entry, sizeof(ptbl_entry));
653 srcu_read_unlock(&kvm->srcu, srcu_idx);
654 }
655 if (ret) {
656 gp->l1_gr_to_hr = 0;
657 gp->process_table = 0;
658 } else {
659 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
660 gp->process_table = be64_to_cpu(ptbl_entry.patb1);
661 }
662 kvmhv_set_nested_ptbl(gp);
663 }
664
kvmhv_alloc_nested(struct kvm * kvm,unsigned int lpid)665 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
666 {
667 struct kvm_nested_guest *gp;
668 long shadow_lpid;
669
670 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
671 if (!gp)
672 return NULL;
673 gp->l1_host = kvm;
674 gp->l1_lpid = lpid;
675 mutex_init(&gp->tlb_lock);
676 gp->shadow_pgtable = pgd_alloc(kvm->mm);
677 if (!gp->shadow_pgtable)
678 goto out_free;
679 shadow_lpid = kvmppc_alloc_lpid();
680 if (shadow_lpid < 0)
681 goto out_free2;
682 gp->shadow_lpid = shadow_lpid;
683 gp->radix = 1;
684
685 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
686
687 return gp;
688
689 out_free2:
690 pgd_free(kvm->mm, gp->shadow_pgtable);
691 out_free:
692 kfree(gp);
693 return NULL;
694 }
695
696 /*
697 * Free up any resources allocated for a nested guest.
698 */
kvmhv_release_nested(struct kvm_nested_guest * gp)699 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
700 {
701 struct kvm *kvm = gp->l1_host;
702
703 if (gp->shadow_pgtable) {
704 /*
705 * No vcpu is using this struct and no call to
706 * kvmhv_get_nested can find this struct,
707 * so we don't need to hold kvm->mmu_lock.
708 */
709 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
710 gp->shadow_lpid);
711 pgd_free(kvm->mm, gp->shadow_pgtable);
712 }
713 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
714 kvmppc_free_lpid(gp->shadow_lpid);
715 kfree(gp);
716 }
717
kvmhv_remove_nested(struct kvm_nested_guest * gp)718 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
719 {
720 struct kvm *kvm = gp->l1_host;
721 int lpid = gp->l1_lpid;
722 long ref;
723
724 spin_lock(&kvm->mmu_lock);
725 if (gp == kvm->arch.nested_guests[lpid]) {
726 kvm->arch.nested_guests[lpid] = NULL;
727 if (lpid == kvm->arch.max_nested_lpid) {
728 while (--lpid >= 0 && !kvm->arch.nested_guests[lpid])
729 ;
730 kvm->arch.max_nested_lpid = lpid;
731 }
732 --gp->refcnt;
733 }
734 ref = gp->refcnt;
735 spin_unlock(&kvm->mmu_lock);
736 if (ref == 0)
737 kvmhv_release_nested(gp);
738 }
739
740 /*
741 * Free up all nested resources allocated for this guest.
742 * This is called with no vcpus of the guest running, when
743 * switching the guest to HPT mode or when destroying the
744 * guest.
745 */
kvmhv_release_all_nested(struct kvm * kvm)746 void kvmhv_release_all_nested(struct kvm *kvm)
747 {
748 int i;
749 struct kvm_nested_guest *gp;
750 struct kvm_nested_guest *freelist = NULL;
751 struct kvm_memory_slot *memslot;
752 int srcu_idx;
753
754 spin_lock(&kvm->mmu_lock);
755 for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
756 gp = kvm->arch.nested_guests[i];
757 if (!gp)
758 continue;
759 kvm->arch.nested_guests[i] = NULL;
760 if (--gp->refcnt == 0) {
761 gp->next = freelist;
762 freelist = gp;
763 }
764 }
765 kvm->arch.max_nested_lpid = -1;
766 spin_unlock(&kvm->mmu_lock);
767 while ((gp = freelist) != NULL) {
768 freelist = gp->next;
769 kvmhv_release_nested(gp);
770 }
771
772 srcu_idx = srcu_read_lock(&kvm->srcu);
773 kvm_for_each_memslot(memslot, kvm_memslots(kvm))
774 kvmhv_free_memslot_nest_rmap(memslot);
775 srcu_read_unlock(&kvm->srcu, srcu_idx);
776 }
777
778 /* caller must hold gp->tlb_lock */
kvmhv_flush_nested(struct kvm_nested_guest * gp)779 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
780 {
781 struct kvm *kvm = gp->l1_host;
782
783 spin_lock(&kvm->mmu_lock);
784 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
785 spin_unlock(&kvm->mmu_lock);
786 kvmhv_flush_lpid(gp->shadow_lpid);
787 kvmhv_update_ptbl_cache(gp);
788 if (gp->l1_gr_to_hr == 0)
789 kvmhv_remove_nested(gp);
790 }
791
kvmhv_get_nested(struct kvm * kvm,int l1_lpid,bool create)792 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
793 bool create)
794 {
795 struct kvm_nested_guest *gp, *newgp;
796
797 if (l1_lpid >= KVM_MAX_NESTED_GUESTS ||
798 l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
799 return NULL;
800
801 spin_lock(&kvm->mmu_lock);
802 gp = kvm->arch.nested_guests[l1_lpid];
803 if (gp)
804 ++gp->refcnt;
805 spin_unlock(&kvm->mmu_lock);
806
807 if (gp || !create)
808 return gp;
809
810 newgp = kvmhv_alloc_nested(kvm, l1_lpid);
811 if (!newgp)
812 return NULL;
813 spin_lock(&kvm->mmu_lock);
814 if (kvm->arch.nested_guests[l1_lpid]) {
815 /* someone else beat us to it */
816 gp = kvm->arch.nested_guests[l1_lpid];
817 } else {
818 kvm->arch.nested_guests[l1_lpid] = newgp;
819 ++newgp->refcnt;
820 gp = newgp;
821 newgp = NULL;
822 if (l1_lpid > kvm->arch.max_nested_lpid)
823 kvm->arch.max_nested_lpid = l1_lpid;
824 }
825 ++gp->refcnt;
826 spin_unlock(&kvm->mmu_lock);
827
828 if (newgp)
829 kvmhv_release_nested(newgp);
830
831 return gp;
832 }
833
kvmhv_put_nested(struct kvm_nested_guest * gp)834 void kvmhv_put_nested(struct kvm_nested_guest *gp)
835 {
836 struct kvm *kvm = gp->l1_host;
837 long ref;
838
839 spin_lock(&kvm->mmu_lock);
840 ref = --gp->refcnt;
841 spin_unlock(&kvm->mmu_lock);
842 if (ref == 0)
843 kvmhv_release_nested(gp);
844 }
845
kvmhv_find_nested(struct kvm * kvm,int lpid)846 static struct kvm_nested_guest *kvmhv_find_nested(struct kvm *kvm, int lpid)
847 {
848 if (lpid > kvm->arch.max_nested_lpid)
849 return NULL;
850 return kvm->arch.nested_guests[lpid];
851 }
852
find_kvm_nested_guest_pte(struct kvm * kvm,unsigned long lpid,unsigned long ea,unsigned * hshift)853 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
854 unsigned long ea, unsigned *hshift)
855 {
856 struct kvm_nested_guest *gp;
857 pte_t *pte;
858
859 gp = kvmhv_find_nested(kvm, lpid);
860 if (!gp)
861 return NULL;
862
863 VM_WARN(!spin_is_locked(&kvm->mmu_lock),
864 "%s called with kvm mmu_lock not held \n", __func__);
865 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
866
867 return pte;
868 }
869
kvmhv_n_rmap_is_equal(u64 rmap_1,u64 rmap_2)870 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
871 {
872 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
873 RMAP_NESTED_GPA_MASK));
874 }
875
kvmhv_insert_nest_rmap(struct kvm * kvm,unsigned long * rmapp,struct rmap_nested ** n_rmap)876 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
877 struct rmap_nested **n_rmap)
878 {
879 struct llist_node *entry = ((struct llist_head *) rmapp)->first;
880 struct rmap_nested *cursor;
881 u64 rmap, new_rmap = (*n_rmap)->rmap;
882
883 /* Are there any existing entries? */
884 if (!(*rmapp)) {
885 /* No -> use the rmap as a single entry */
886 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
887 return;
888 }
889
890 /* Do any entries match what we're trying to insert? */
891 for_each_nest_rmap_safe(cursor, entry, &rmap) {
892 if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
893 return;
894 }
895
896 /* Do we need to create a list or just add the new entry? */
897 rmap = *rmapp;
898 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
899 *rmapp = 0UL;
900 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
901 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
902 (*n_rmap)->list.next = (struct llist_node *) rmap;
903
904 /* Set NULL so not freed by caller */
905 *n_rmap = NULL;
906 }
907
kvmhv_update_nest_rmap_rc(struct kvm * kvm,u64 n_rmap,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long mask)908 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
909 unsigned long clr, unsigned long set,
910 unsigned long hpa, unsigned long mask)
911 {
912 unsigned long gpa;
913 unsigned int shift, lpid;
914 pte_t *ptep;
915
916 gpa = n_rmap & RMAP_NESTED_GPA_MASK;
917 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
918
919 /* Find the pte */
920 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
921 /*
922 * If the pte is present and the pfn is still the same, update the pte.
923 * If the pfn has changed then this is a stale rmap entry, the nested
924 * gpa actually points somewhere else now, and there is nothing to do.
925 * XXX A future optimisation would be to remove the rmap entry here.
926 */
927 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
928 __radix_pte_update(ptep, clr, set);
929 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
930 }
931 }
932
933 /*
934 * For a given list of rmap entries, update the rc bits in all ptes in shadow
935 * page tables for nested guests which are referenced by the rmap list.
936 */
kvmhv_update_nest_rmap_rc_list(struct kvm * kvm,unsigned long * rmapp,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long nbytes)937 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
938 unsigned long clr, unsigned long set,
939 unsigned long hpa, unsigned long nbytes)
940 {
941 struct llist_node *entry = ((struct llist_head *) rmapp)->first;
942 struct rmap_nested *cursor;
943 unsigned long rmap, mask;
944
945 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
946 return;
947
948 mask = PTE_RPN_MASK & ~(nbytes - 1);
949 hpa &= mask;
950
951 for_each_nest_rmap_safe(cursor, entry, &rmap)
952 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
953 }
954
kvmhv_remove_nest_rmap(struct kvm * kvm,u64 n_rmap,unsigned long hpa,unsigned long mask)955 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
956 unsigned long hpa, unsigned long mask)
957 {
958 struct kvm_nested_guest *gp;
959 unsigned long gpa;
960 unsigned int shift, lpid;
961 pte_t *ptep;
962
963 gpa = n_rmap & RMAP_NESTED_GPA_MASK;
964 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
965 gp = kvmhv_find_nested(kvm, lpid);
966 if (!gp)
967 return;
968
969 /* Find and invalidate the pte */
970 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
971 /* Don't spuriously invalidate ptes if the pfn has changed */
972 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
973 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
974 }
975
kvmhv_remove_nest_rmap_list(struct kvm * kvm,unsigned long * rmapp,unsigned long hpa,unsigned long mask)976 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
977 unsigned long hpa, unsigned long mask)
978 {
979 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
980 struct rmap_nested *cursor;
981 unsigned long rmap;
982
983 for_each_nest_rmap_safe(cursor, entry, &rmap) {
984 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
985 kfree(cursor);
986 }
987 }
988
989 /* called with kvm->mmu_lock held */
kvmhv_remove_nest_rmap_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,unsigned long gpa,unsigned long hpa,unsigned long nbytes)990 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
991 const struct kvm_memory_slot *memslot,
992 unsigned long gpa, unsigned long hpa,
993 unsigned long nbytes)
994 {
995 unsigned long gfn, end_gfn;
996 unsigned long addr_mask;
997
998 if (!memslot)
999 return;
1000 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
1001 end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1002
1003 addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1004 hpa &= addr_mask;
1005
1006 for (; gfn < end_gfn; gfn++) {
1007 unsigned long *rmap = &memslot->arch.rmap[gfn];
1008 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1009 }
1010 }
1011
kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot * free)1012 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1013 {
1014 unsigned long page;
1015
1016 for (page = 0; page < free->npages; page++) {
1017 unsigned long rmap, *rmapp = &free->arch.rmap[page];
1018 struct rmap_nested *cursor;
1019 struct llist_node *entry;
1020
1021 entry = llist_del_all((struct llist_head *) rmapp);
1022 for_each_nest_rmap_safe(cursor, entry, &rmap)
1023 kfree(cursor);
1024 }
1025 }
1026
kvmhv_invalidate_shadow_pte(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,long gpa,int * shift_ret)1027 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1028 struct kvm_nested_guest *gp,
1029 long gpa, int *shift_ret)
1030 {
1031 struct kvm *kvm = vcpu->kvm;
1032 bool ret = false;
1033 pte_t *ptep;
1034 int shift;
1035
1036 spin_lock(&kvm->mmu_lock);
1037 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1038 if (!shift)
1039 shift = PAGE_SHIFT;
1040 if (ptep && pte_present(*ptep)) {
1041 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1042 ret = true;
1043 }
1044 spin_unlock(&kvm->mmu_lock);
1045
1046 if (shift_ret)
1047 *shift_ret = shift;
1048 return ret;
1049 }
1050
get_ric(unsigned int instr)1051 static inline int get_ric(unsigned int instr)
1052 {
1053 return (instr >> 18) & 0x3;
1054 }
1055
get_prs(unsigned int instr)1056 static inline int get_prs(unsigned int instr)
1057 {
1058 return (instr >> 17) & 0x1;
1059 }
1060
get_r(unsigned int instr)1061 static inline int get_r(unsigned int instr)
1062 {
1063 return (instr >> 16) & 0x1;
1064 }
1065
get_lpid(unsigned long r_val)1066 static inline int get_lpid(unsigned long r_val)
1067 {
1068 return r_val & 0xffffffff;
1069 }
1070
get_is(unsigned long r_val)1071 static inline int get_is(unsigned long r_val)
1072 {
1073 return (r_val >> 10) & 0x3;
1074 }
1075
get_ap(unsigned long r_val)1076 static inline int get_ap(unsigned long r_val)
1077 {
1078 return (r_val >> 5) & 0x7;
1079 }
1080
get_epn(unsigned long r_val)1081 static inline long get_epn(unsigned long r_val)
1082 {
1083 return r_val >> 12;
1084 }
1085
kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu * vcpu,int lpid,int ap,long epn)1086 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1087 int ap, long epn)
1088 {
1089 struct kvm *kvm = vcpu->kvm;
1090 struct kvm_nested_guest *gp;
1091 long npages;
1092 int shift, shadow_shift;
1093 unsigned long addr;
1094
1095 shift = ap_to_shift(ap);
1096 addr = epn << 12;
1097 if (shift < 0)
1098 /* Invalid ap encoding */
1099 return -EINVAL;
1100
1101 addr &= ~((1UL << shift) - 1);
1102 npages = 1UL << (shift - PAGE_SHIFT);
1103
1104 gp = kvmhv_get_nested(kvm, lpid, false);
1105 if (!gp) /* No such guest -> nothing to do */
1106 return 0;
1107 mutex_lock(&gp->tlb_lock);
1108
1109 /* There may be more than one host page backing this single guest pte */
1110 do {
1111 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1112
1113 npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1114 addr += 1UL << shadow_shift;
1115 } while (npages > 0);
1116
1117 mutex_unlock(&gp->tlb_lock);
1118 kvmhv_put_nested(gp);
1119 return 0;
1120 }
1121
kvmhv_emulate_tlbie_lpid(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,int ric)1122 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1123 struct kvm_nested_guest *gp, int ric)
1124 {
1125 struct kvm *kvm = vcpu->kvm;
1126
1127 mutex_lock(&gp->tlb_lock);
1128 switch (ric) {
1129 case 0:
1130 /* Invalidate TLB */
1131 spin_lock(&kvm->mmu_lock);
1132 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1133 gp->shadow_lpid);
1134 kvmhv_flush_lpid(gp->shadow_lpid);
1135 spin_unlock(&kvm->mmu_lock);
1136 break;
1137 case 1:
1138 /*
1139 * Invalidate PWC
1140 * We don't cache this -> nothing to do
1141 */
1142 break;
1143 case 2:
1144 /* Invalidate TLB, PWC and caching of partition table entries */
1145 kvmhv_flush_nested(gp);
1146 break;
1147 default:
1148 break;
1149 }
1150 mutex_unlock(&gp->tlb_lock);
1151 }
1152
kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu * vcpu,int ric)1153 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1154 {
1155 struct kvm *kvm = vcpu->kvm;
1156 struct kvm_nested_guest *gp;
1157 int i;
1158
1159 spin_lock(&kvm->mmu_lock);
1160 for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
1161 gp = kvm->arch.nested_guests[i];
1162 if (gp) {
1163 spin_unlock(&kvm->mmu_lock);
1164 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1165 spin_lock(&kvm->mmu_lock);
1166 }
1167 }
1168 spin_unlock(&kvm->mmu_lock);
1169 }
1170
kvmhv_emulate_priv_tlbie(struct kvm_vcpu * vcpu,unsigned int instr,unsigned long rsval,unsigned long rbval)1171 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1172 unsigned long rsval, unsigned long rbval)
1173 {
1174 struct kvm *kvm = vcpu->kvm;
1175 struct kvm_nested_guest *gp;
1176 int r, ric, prs, is, ap;
1177 int lpid;
1178 long epn;
1179 int ret = 0;
1180
1181 ric = get_ric(instr);
1182 prs = get_prs(instr);
1183 r = get_r(instr);
1184 lpid = get_lpid(rsval);
1185 is = get_is(rbval);
1186
1187 /*
1188 * These cases are invalid and are not handled:
1189 * r != 1 -> Only radix supported
1190 * prs == 1 -> Not HV privileged
1191 * ric == 3 -> No cluster bombs for radix
1192 * is == 1 -> Partition scoped translations not associated with pid
1193 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1194 */
1195 if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1196 ((!is) && (ric == 1 || ric == 2)))
1197 return -EINVAL;
1198
1199 switch (is) {
1200 case 0:
1201 /*
1202 * We know ric == 0
1203 * Invalidate TLB for a given target address
1204 */
1205 epn = get_epn(rbval);
1206 ap = get_ap(rbval);
1207 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1208 break;
1209 case 2:
1210 /* Invalidate matching LPID */
1211 gp = kvmhv_get_nested(kvm, lpid, false);
1212 if (gp) {
1213 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1214 kvmhv_put_nested(gp);
1215 }
1216 break;
1217 case 3:
1218 /* Invalidate ALL LPIDs */
1219 kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1220 break;
1221 default:
1222 ret = -EINVAL;
1223 break;
1224 }
1225
1226 return ret;
1227 }
1228
1229 /*
1230 * This handles the H_TLB_INVALIDATE hcall.
1231 * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1232 * (r6) rB contents.
1233 */
kvmhv_do_nested_tlbie(struct kvm_vcpu * vcpu)1234 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1235 {
1236 int ret;
1237
1238 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1239 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1240 if (ret)
1241 return H_PARAMETER;
1242 return H_SUCCESS;
1243 }
1244
do_tlb_invalidate_nested_all(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long ric)1245 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1246 unsigned long lpid, unsigned long ric)
1247 {
1248 struct kvm *kvm = vcpu->kvm;
1249 struct kvm_nested_guest *gp;
1250
1251 gp = kvmhv_get_nested(kvm, lpid, false);
1252 if (gp) {
1253 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1254 kvmhv_put_nested(gp);
1255 }
1256 return H_SUCCESS;
1257 }
1258
1259 /*
1260 * Number of pages above which we invalidate the entire LPID rather than
1261 * flush individual pages.
1262 */
1263 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1264
do_tlb_invalidate_nested_tlb(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long pg_sizes,unsigned long start,unsigned long end)1265 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1266 unsigned long lpid,
1267 unsigned long pg_sizes,
1268 unsigned long start,
1269 unsigned long end)
1270 {
1271 int ret = H_P4;
1272 unsigned long addr, nr_pages;
1273 struct mmu_psize_def *def;
1274 unsigned long psize, ap, page_size;
1275 bool flush_lpid;
1276
1277 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1278 def = &mmu_psize_defs[psize];
1279 if (!(pg_sizes & def->h_rpt_pgsize))
1280 continue;
1281
1282 nr_pages = (end - start) >> def->shift;
1283 flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1284 if (flush_lpid)
1285 return do_tlb_invalidate_nested_all(vcpu, lpid,
1286 RIC_FLUSH_TLB);
1287 addr = start;
1288 ap = mmu_get_ap(psize);
1289 page_size = 1UL << def->shift;
1290 do {
1291 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1292 get_epn(addr));
1293 if (ret)
1294 return H_P4;
1295 addr += page_size;
1296 } while (addr < end);
1297 }
1298 return ret;
1299 }
1300
1301 /*
1302 * Performs partition-scoped invalidations for nested guests
1303 * as part of H_RPT_INVALIDATE hcall.
1304 */
do_h_rpt_invalidate_pat(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)1305 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1306 unsigned long type, unsigned long pg_sizes,
1307 unsigned long start, unsigned long end)
1308 {
1309 /*
1310 * If L2 lpid isn't valid, we need to return H_PARAMETER.
1311 *
1312 * However, nested KVM issues a L2 lpid flush call when creating
1313 * partition table entries for L2. This happens even before the
1314 * corresponding shadow lpid is created in HV which happens in
1315 * H_ENTER_NESTED call. Since we can't differentiate this case from
1316 * the invalid case, we ignore such flush requests and return success.
1317 */
1318 if (!kvmhv_find_nested(vcpu->kvm, lpid))
1319 return H_SUCCESS;
1320
1321 /*
1322 * A flush all request can be handled by a full lpid flush only.
1323 */
1324 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1325 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1326
1327 /*
1328 * We don't need to handle a PWC flush like process table here,
1329 * because intermediate partition scoped table in nested guest doesn't
1330 * really have PWC. Only level we have PWC is in L0 and for nested
1331 * invalidate at L0 we always do kvm_flush_lpid() which does
1332 * radix__flush_all_lpid(). For range invalidate at any level, we
1333 * are not removing the higher level page tables and hence there is
1334 * no PWC invalidate needed.
1335 *
1336 * if (type & H_RPTI_TYPE_PWC) {
1337 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1338 * if (ret)
1339 * return H_P4;
1340 * }
1341 */
1342
1343 if (start == 0 && end == -1)
1344 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1345
1346 if (type & H_RPTI_TYPE_TLB)
1347 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1348 start, end);
1349 return H_SUCCESS;
1350 }
1351
1352 /* Used to convert a nested guest real address to a L1 guest real address */
kvmhv_translate_addr_nested(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,unsigned long dsisr,struct kvmppc_pte * gpte_p)1353 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1354 struct kvm_nested_guest *gp,
1355 unsigned long n_gpa, unsigned long dsisr,
1356 struct kvmppc_pte *gpte_p)
1357 {
1358 u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1359 int ret;
1360
1361 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1362 &fault_addr);
1363
1364 if (ret) {
1365 /* We didn't find a pte */
1366 if (ret == -EINVAL) {
1367 /* Unsupported mmu config */
1368 flags |= DSISR_UNSUPP_MMU;
1369 } else if (ret == -ENOENT) {
1370 /* No translation found */
1371 flags |= DSISR_NOHPTE;
1372 } else if (ret == -EFAULT) {
1373 /* Couldn't access L1 real address */
1374 flags |= DSISR_PRTABLE_FAULT;
1375 vcpu->arch.fault_gpa = fault_addr;
1376 } else {
1377 /* Unknown error */
1378 return ret;
1379 }
1380 goto forward_to_l1;
1381 } else {
1382 /* We found a pte -> check permissions */
1383 if (dsisr & DSISR_ISSTORE) {
1384 /* Can we write? */
1385 if (!gpte_p->may_write) {
1386 flags |= DSISR_PROTFAULT;
1387 goto forward_to_l1;
1388 }
1389 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1390 /* Can we execute? */
1391 if (!gpte_p->may_execute) {
1392 flags |= SRR1_ISI_N_G_OR_CIP;
1393 goto forward_to_l1;
1394 }
1395 } else {
1396 /* Can we read? */
1397 if (!gpte_p->may_read && !gpte_p->may_write) {
1398 flags |= DSISR_PROTFAULT;
1399 goto forward_to_l1;
1400 }
1401 }
1402 }
1403
1404 return 0;
1405
1406 forward_to_l1:
1407 vcpu->arch.fault_dsisr = flags;
1408 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1409 vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1410 vcpu->arch.shregs.msr |= flags;
1411 }
1412 return RESUME_HOST;
1413 }
1414
kvmhv_handle_nested_set_rc(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,struct kvmppc_pte gpte,unsigned long dsisr)1415 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1416 struct kvm_nested_guest *gp,
1417 unsigned long n_gpa,
1418 struct kvmppc_pte gpte,
1419 unsigned long dsisr)
1420 {
1421 struct kvm *kvm = vcpu->kvm;
1422 bool writing = !!(dsisr & DSISR_ISSTORE);
1423 u64 pgflags;
1424 long ret;
1425
1426 /* Are the rc bits set in the L1 partition scoped pte? */
1427 pgflags = _PAGE_ACCESSED;
1428 if (writing)
1429 pgflags |= _PAGE_DIRTY;
1430 if (pgflags & ~gpte.rc)
1431 return RESUME_HOST;
1432
1433 spin_lock(&kvm->mmu_lock);
1434 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1435 ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1436 gpte.raddr, kvm->arch.lpid);
1437 if (!ret) {
1438 ret = -EINVAL;
1439 goto out_unlock;
1440 }
1441
1442 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1443 ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1444 n_gpa, gp->l1_lpid);
1445 if (!ret)
1446 ret = -EINVAL;
1447 else
1448 ret = 0;
1449
1450 out_unlock:
1451 spin_unlock(&kvm->mmu_lock);
1452 return ret;
1453 }
1454
kvmppc_radix_level_to_shift(int level)1455 static inline int kvmppc_radix_level_to_shift(int level)
1456 {
1457 switch (level) {
1458 case 2:
1459 return PUD_SHIFT;
1460 case 1:
1461 return PMD_SHIFT;
1462 default:
1463 return PAGE_SHIFT;
1464 }
1465 }
1466
kvmppc_radix_shift_to_level(int shift)1467 static inline int kvmppc_radix_shift_to_level(int shift)
1468 {
1469 if (shift == PUD_SHIFT)
1470 return 2;
1471 if (shift == PMD_SHIFT)
1472 return 1;
1473 if (shift == PAGE_SHIFT)
1474 return 0;
1475 WARN_ON_ONCE(1);
1476 return 0;
1477 }
1478
1479 /* called with gp->tlb_lock held */
__kvmhv_nested_page_fault(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp)1480 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1481 struct kvm_nested_guest *gp)
1482 {
1483 struct kvm *kvm = vcpu->kvm;
1484 struct kvm_memory_slot *memslot;
1485 struct rmap_nested *n_rmap;
1486 struct kvmppc_pte gpte;
1487 pte_t pte, *pte_p;
1488 unsigned long mmu_seq;
1489 unsigned long dsisr = vcpu->arch.fault_dsisr;
1490 unsigned long ea = vcpu->arch.fault_dar;
1491 unsigned long *rmapp;
1492 unsigned long n_gpa, gpa, gfn, perm = 0UL;
1493 unsigned int shift, l1_shift, level;
1494 bool writing = !!(dsisr & DSISR_ISSTORE);
1495 bool kvm_ro = false;
1496 long int ret;
1497
1498 if (!gp->l1_gr_to_hr) {
1499 kvmhv_update_ptbl_cache(gp);
1500 if (!gp->l1_gr_to_hr)
1501 return RESUME_HOST;
1502 }
1503
1504 /* Convert the nested guest real address into a L1 guest real address */
1505
1506 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1507 if (!(dsisr & DSISR_PRTABLE_FAULT))
1508 n_gpa |= ea & 0xFFF;
1509 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1510
1511 /*
1512 * If the hardware found a translation but we don't now have a usable
1513 * translation in the l1 partition-scoped tree, remove the shadow pte
1514 * and let the guest retry.
1515 */
1516 if (ret == RESUME_HOST &&
1517 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1518 DSISR_BAD_COPYPASTE)))
1519 goto inval;
1520 if (ret)
1521 return ret;
1522
1523 /* Failed to set the reference/change bits */
1524 if (dsisr & DSISR_SET_RC) {
1525 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1526 if (ret == RESUME_HOST)
1527 return ret;
1528 if (ret)
1529 goto inval;
1530 dsisr &= ~DSISR_SET_RC;
1531 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1532 DSISR_PROTFAULT)))
1533 return RESUME_GUEST;
1534 }
1535
1536 /*
1537 * We took an HISI or HDSI while we were running a nested guest which
1538 * means we have no partition scoped translation for that. This means
1539 * we need to insert a pte for the mapping into our shadow_pgtable.
1540 */
1541
1542 l1_shift = gpte.page_shift;
1543 if (l1_shift < PAGE_SHIFT) {
1544 /* We don't support l1 using a page size smaller than our own */
1545 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1546 l1_shift, PAGE_SHIFT);
1547 return -EINVAL;
1548 }
1549 gpa = gpte.raddr;
1550 gfn = gpa >> PAGE_SHIFT;
1551
1552 /* 1. Get the corresponding host memslot */
1553
1554 memslot = gfn_to_memslot(kvm, gfn);
1555 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1556 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1557 /* unusual error -> reflect to the guest as a DSI */
1558 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
1559 return RESUME_GUEST;
1560 }
1561
1562 /* passthrough of emulated MMIO case */
1563 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1564 }
1565 if (memslot->flags & KVM_MEM_READONLY) {
1566 if (writing) {
1567 /* Give the guest a DSI */
1568 kvmppc_core_queue_data_storage(vcpu, ea,
1569 DSISR_ISSTORE | DSISR_PROTFAULT);
1570 return RESUME_GUEST;
1571 }
1572 kvm_ro = true;
1573 }
1574
1575 /* 2. Find the host pte for this L1 guest real address */
1576
1577 /* Used to check for invalidations in progress */
1578 mmu_seq = kvm->mmu_notifier_seq;
1579 smp_rmb();
1580
1581 /* See if can find translation in our partition scoped tables for L1 */
1582 pte = __pte(0);
1583 spin_lock(&kvm->mmu_lock);
1584 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1585 if (!shift)
1586 shift = PAGE_SHIFT;
1587 if (pte_p)
1588 pte = *pte_p;
1589 spin_unlock(&kvm->mmu_lock);
1590
1591 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1592 /* No suitable pte found -> try to insert a mapping */
1593 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1594 writing, kvm_ro, &pte, &level);
1595 if (ret == -EAGAIN)
1596 return RESUME_GUEST;
1597 else if (ret)
1598 return ret;
1599 shift = kvmppc_radix_level_to_shift(level);
1600 }
1601 /* Align gfn to the start of the page */
1602 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1603
1604 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1605
1606 /* The permissions is the combination of the host and l1 guest ptes */
1607 perm |= gpte.may_read ? 0UL : _PAGE_READ;
1608 perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1609 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1610 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1611 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1612 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1613 pte = __pte(pte_val(pte) & ~perm);
1614
1615 /* What size pte can we insert? */
1616 if (shift > l1_shift) {
1617 u64 mask;
1618 unsigned int actual_shift = PAGE_SHIFT;
1619 if (PMD_SHIFT < l1_shift)
1620 actual_shift = PMD_SHIFT;
1621 mask = (1UL << shift) - (1UL << actual_shift);
1622 pte = __pte(pte_val(pte) | (gpa & mask));
1623 shift = actual_shift;
1624 }
1625 level = kvmppc_radix_shift_to_level(shift);
1626 n_gpa &= ~((1UL << shift) - 1);
1627
1628 /* 4. Insert the pte into our shadow_pgtable */
1629
1630 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1631 if (!n_rmap)
1632 return RESUME_GUEST; /* Let the guest try again */
1633 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1634 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1635 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1636 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1637 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1638 kfree(n_rmap);
1639 if (ret == -EAGAIN)
1640 ret = RESUME_GUEST; /* Let the guest try again */
1641
1642 return ret;
1643
1644 inval:
1645 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1646 return RESUME_GUEST;
1647 }
1648
kvmhv_nested_page_fault(struct kvm_vcpu * vcpu)1649 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1650 {
1651 struct kvm_nested_guest *gp = vcpu->arch.nested;
1652 long int ret;
1653
1654 mutex_lock(&gp->tlb_lock);
1655 ret = __kvmhv_nested_page_fault(vcpu, gp);
1656 mutex_unlock(&gp->tlb_lock);
1657 return ret;
1658 }
1659
kvmhv_nested_next_lpid(struct kvm * kvm,int lpid)1660 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1661 {
1662 int ret = -1;
1663
1664 spin_lock(&kvm->mmu_lock);
1665 while (++lpid <= kvm->arch.max_nested_lpid) {
1666 if (kvm->arch.nested_guests[lpid]) {
1667 ret = lpid;
1668 break;
1669 }
1670 }
1671 spin_unlock(&kvm->mmu_lock);
1672 return ret;
1673 }
1674