1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corporation, 2018
4  * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5  *	   Paul Mackerras <paulus@ozlabs.org>
6  *
7  * Description: KVM functions specific to running nested KVM-HV guests
8  * on Book3S processors (specifically POWER9 and later).
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15 
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 #include <asm/plpar_wrappers.h>
23 
24 static struct patb_entry *pseries_partition_tb;
25 
26 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
27 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
28 
kvmhv_save_hv_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)29 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
30 {
31 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
32 
33 	hr->pcr = vc->pcr | PCR_MASK;
34 	hr->dpdes = vc->dpdes;
35 	hr->hfscr = vcpu->arch.hfscr;
36 	hr->tb_offset = vc->tb_offset;
37 	hr->dawr0 = vcpu->arch.dawr0;
38 	hr->dawrx0 = vcpu->arch.dawrx0;
39 	hr->ciabr = vcpu->arch.ciabr;
40 	hr->purr = vcpu->arch.purr;
41 	hr->spurr = vcpu->arch.spurr;
42 	hr->ic = vcpu->arch.ic;
43 	hr->vtb = vc->vtb;
44 	hr->srr0 = vcpu->arch.shregs.srr0;
45 	hr->srr1 = vcpu->arch.shregs.srr1;
46 	hr->sprg[0] = vcpu->arch.shregs.sprg0;
47 	hr->sprg[1] = vcpu->arch.shregs.sprg1;
48 	hr->sprg[2] = vcpu->arch.shregs.sprg2;
49 	hr->sprg[3] = vcpu->arch.shregs.sprg3;
50 	hr->pidr = vcpu->arch.pid;
51 	hr->cfar = vcpu->arch.cfar;
52 	hr->ppr = vcpu->arch.ppr;
53 	hr->dawr1 = vcpu->arch.dawr1;
54 	hr->dawrx1 = vcpu->arch.dawrx1;
55 }
56 
57 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */
byteswap_pt_regs(struct pt_regs * regs)58 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
59 {
60 	unsigned long *addr = (unsigned long *) regs;
61 
62 	for (; addr < ((unsigned long *) (regs + 1)); addr++)
63 		*addr = swab64(*addr);
64 }
65 
byteswap_hv_regs(struct hv_guest_state * hr)66 static void byteswap_hv_regs(struct hv_guest_state *hr)
67 {
68 	hr->version = swab64(hr->version);
69 	hr->lpid = swab32(hr->lpid);
70 	hr->vcpu_token = swab32(hr->vcpu_token);
71 	hr->lpcr = swab64(hr->lpcr);
72 	hr->pcr = swab64(hr->pcr) | PCR_MASK;
73 	hr->amor = swab64(hr->amor);
74 	hr->dpdes = swab64(hr->dpdes);
75 	hr->hfscr = swab64(hr->hfscr);
76 	hr->tb_offset = swab64(hr->tb_offset);
77 	hr->dawr0 = swab64(hr->dawr0);
78 	hr->dawrx0 = swab64(hr->dawrx0);
79 	hr->ciabr = swab64(hr->ciabr);
80 	hr->hdec_expiry = swab64(hr->hdec_expiry);
81 	hr->purr = swab64(hr->purr);
82 	hr->spurr = swab64(hr->spurr);
83 	hr->ic = swab64(hr->ic);
84 	hr->vtb = swab64(hr->vtb);
85 	hr->hdar = swab64(hr->hdar);
86 	hr->hdsisr = swab64(hr->hdsisr);
87 	hr->heir = swab64(hr->heir);
88 	hr->asdr = swab64(hr->asdr);
89 	hr->srr0 = swab64(hr->srr0);
90 	hr->srr1 = swab64(hr->srr1);
91 	hr->sprg[0] = swab64(hr->sprg[0]);
92 	hr->sprg[1] = swab64(hr->sprg[1]);
93 	hr->sprg[2] = swab64(hr->sprg[2]);
94 	hr->sprg[3] = swab64(hr->sprg[3]);
95 	hr->pidr = swab64(hr->pidr);
96 	hr->cfar = swab64(hr->cfar);
97 	hr->ppr = swab64(hr->ppr);
98 	hr->dawr1 = swab64(hr->dawr1);
99 	hr->dawrx1 = swab64(hr->dawrx1);
100 }
101 
save_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)102 static void save_hv_return_state(struct kvm_vcpu *vcpu,
103 				 struct hv_guest_state *hr)
104 {
105 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
106 
107 	hr->dpdes = vc->dpdes;
108 	hr->purr = vcpu->arch.purr;
109 	hr->spurr = vcpu->arch.spurr;
110 	hr->ic = vcpu->arch.ic;
111 	hr->vtb = vc->vtb;
112 	hr->srr0 = vcpu->arch.shregs.srr0;
113 	hr->srr1 = vcpu->arch.shregs.srr1;
114 	hr->sprg[0] = vcpu->arch.shregs.sprg0;
115 	hr->sprg[1] = vcpu->arch.shregs.sprg1;
116 	hr->sprg[2] = vcpu->arch.shregs.sprg2;
117 	hr->sprg[3] = vcpu->arch.shregs.sprg3;
118 	hr->pidr = vcpu->arch.pid;
119 	hr->cfar = vcpu->arch.cfar;
120 	hr->ppr = vcpu->arch.ppr;
121 	switch (vcpu->arch.trap) {
122 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
123 		hr->hdar = vcpu->arch.fault_dar;
124 		hr->hdsisr = vcpu->arch.fault_dsisr;
125 		hr->asdr = vcpu->arch.fault_gpa;
126 		break;
127 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
128 		hr->asdr = vcpu->arch.fault_gpa;
129 		break;
130 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
131 		hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
132 			     (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
133 		break;
134 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
135 		hr->heir = vcpu->arch.emul_inst;
136 		break;
137 	}
138 }
139 
restore_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * hr)140 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
141 {
142 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
143 
144 	vc->pcr = hr->pcr | PCR_MASK;
145 	vc->dpdes = hr->dpdes;
146 	vcpu->arch.hfscr = hr->hfscr;
147 	vcpu->arch.dawr0 = hr->dawr0;
148 	vcpu->arch.dawrx0 = hr->dawrx0;
149 	vcpu->arch.ciabr = hr->ciabr;
150 	vcpu->arch.purr = hr->purr;
151 	vcpu->arch.spurr = hr->spurr;
152 	vcpu->arch.ic = hr->ic;
153 	vc->vtb = hr->vtb;
154 	vcpu->arch.shregs.srr0 = hr->srr0;
155 	vcpu->arch.shregs.srr1 = hr->srr1;
156 	vcpu->arch.shregs.sprg0 = hr->sprg[0];
157 	vcpu->arch.shregs.sprg1 = hr->sprg[1];
158 	vcpu->arch.shregs.sprg2 = hr->sprg[2];
159 	vcpu->arch.shregs.sprg3 = hr->sprg[3];
160 	vcpu->arch.pid = hr->pidr;
161 	vcpu->arch.cfar = hr->cfar;
162 	vcpu->arch.ppr = hr->ppr;
163 	vcpu->arch.dawr1 = hr->dawr1;
164 	vcpu->arch.dawrx1 = hr->dawrx1;
165 }
166 
kvmhv_restore_hv_return_state(struct kvm_vcpu * vcpu,struct hv_guest_state * hr)167 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
168 				   struct hv_guest_state *hr)
169 {
170 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
171 
172 	vc->dpdes = hr->dpdes;
173 	vcpu->arch.hfscr = hr->hfscr;
174 	vcpu->arch.purr = hr->purr;
175 	vcpu->arch.spurr = hr->spurr;
176 	vcpu->arch.ic = hr->ic;
177 	vc->vtb = hr->vtb;
178 	vcpu->arch.fault_dar = hr->hdar;
179 	vcpu->arch.fault_dsisr = hr->hdsisr;
180 	vcpu->arch.fault_gpa = hr->asdr;
181 	vcpu->arch.emul_inst = hr->heir;
182 	vcpu->arch.shregs.srr0 = hr->srr0;
183 	vcpu->arch.shregs.srr1 = hr->srr1;
184 	vcpu->arch.shregs.sprg0 = hr->sprg[0];
185 	vcpu->arch.shregs.sprg1 = hr->sprg[1];
186 	vcpu->arch.shregs.sprg2 = hr->sprg[2];
187 	vcpu->arch.shregs.sprg3 = hr->sprg[3];
188 	vcpu->arch.pid = hr->pidr;
189 	vcpu->arch.cfar = hr->cfar;
190 	vcpu->arch.ppr = hr->ppr;
191 }
192 
kvmhv_nested_mmio_needed(struct kvm_vcpu * vcpu,u64 regs_ptr)193 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
194 {
195 	/* No need to reflect the page fault to L1, we've handled it */
196 	vcpu->arch.trap = 0;
197 
198 	/*
199 	 * Since the L2 gprs have already been written back into L1 memory when
200 	 * we complete the mmio, store the L1 memory location of the L2 gpr
201 	 * being loaded into by the mmio so that the loaded value can be
202 	 * written there in kvmppc_complete_mmio_load()
203 	 */
204 	if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
205 	    && (vcpu->mmio_is_write == 0)) {
206 		vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
207 					   offsetof(struct pt_regs,
208 						    gpr[vcpu->arch.io_gpr]);
209 		vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
210 	}
211 }
212 
kvmhv_read_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)213 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
214 					   struct hv_guest_state *l2_hv,
215 					   struct pt_regs *l2_regs,
216 					   u64 hv_ptr, u64 regs_ptr)
217 {
218 	int size;
219 
220 	if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
221 				sizeof(l2_hv->version)))
222 		return -1;
223 
224 	if (kvmppc_need_byteswap(vcpu))
225 		l2_hv->version = swab64(l2_hv->version);
226 
227 	size = hv_guest_state_size(l2_hv->version);
228 	if (size < 0)
229 		return -1;
230 
231 	return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
232 		kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
233 				    sizeof(struct pt_regs));
234 }
235 
kvmhv_write_guest_state_and_regs(struct kvm_vcpu * vcpu,struct hv_guest_state * l2_hv,struct pt_regs * l2_regs,u64 hv_ptr,u64 regs_ptr)236 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
237 					    struct hv_guest_state *l2_hv,
238 					    struct pt_regs *l2_regs,
239 					    u64 hv_ptr, u64 regs_ptr)
240 {
241 	int size;
242 
243 	size = hv_guest_state_size(l2_hv->version);
244 	if (size < 0)
245 		return -1;
246 
247 	return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
248 		kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
249 				     sizeof(struct pt_regs));
250 }
251 
load_l2_hv_regs(struct kvm_vcpu * vcpu,const struct hv_guest_state * l2_hv,const struct hv_guest_state * l1_hv,u64 * lpcr)252 static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
253 			    const struct hv_guest_state *l2_hv,
254 			    const struct hv_guest_state *l1_hv, u64 *lpcr)
255 {
256 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
257 	u64 mask;
258 
259 	restore_hv_regs(vcpu, l2_hv);
260 
261 	/*
262 	 * Don't let L1 change LPCR bits for the L2 except these:
263 	 */
264 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD |
265 		LPCR_LPES | LPCR_MER;
266 
267 	/*
268 	 * Additional filtering is required depending on hardware
269 	 * and configuration.
270 	 */
271 	*lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
272 				      (vc->lpcr & ~mask) | (*lpcr & mask));
273 
274 	/*
275 	 * Don't let L1 enable features for L2 which we don't allow for L1,
276 	 * but preserve the interrupt cause field.
277 	 */
278 	vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
279 
280 	/* Don't let data address watchpoint match in hypervisor state */
281 	vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
282 	vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
283 
284 	/* Don't let completed instruction address breakpt match in HV state */
285 	if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
286 		vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
287 }
288 
kvmhv_enter_nested_guest(struct kvm_vcpu * vcpu)289 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
290 {
291 	long int err, r;
292 	struct kvm_nested_guest *l2;
293 	struct pt_regs l2_regs, saved_l1_regs;
294 	struct hv_guest_state l2_hv = {0}, saved_l1_hv;
295 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
296 	u64 hv_ptr, regs_ptr;
297 	u64 hdec_exp, lpcr;
298 	s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
299 
300 	if (vcpu->kvm->arch.l1_ptcr == 0)
301 		return H_NOT_AVAILABLE;
302 
303 	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
304 		return H_BAD_MODE;
305 
306 	/* copy parameters in */
307 	hv_ptr = kvmppc_get_gpr(vcpu, 4);
308 	regs_ptr = kvmppc_get_gpr(vcpu, 5);
309 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
310 	err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
311 					      hv_ptr, regs_ptr);
312 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
313 	if (err)
314 		return H_PARAMETER;
315 
316 	if (kvmppc_need_byteswap(vcpu))
317 		byteswap_hv_regs(&l2_hv);
318 	if (l2_hv.version > HV_GUEST_STATE_VERSION)
319 		return H_P2;
320 
321 	if (kvmppc_need_byteswap(vcpu))
322 		byteswap_pt_regs(&l2_regs);
323 	if (l2_hv.vcpu_token >= NR_CPUS)
324 		return H_PARAMETER;
325 
326 	/*
327 	 * L1 must have set up a suspended state to enter the L2 in a
328 	 * transactional state, and only in that case. These have to be
329 	 * filtered out here to prevent causing a TM Bad Thing in the
330 	 * host HRFID. We could synthesize a TM Bad Thing back to the L1
331 	 * here but there doesn't seem like much point.
332 	 */
333 	if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
334 		if (!MSR_TM_ACTIVE(l2_regs.msr))
335 			return H_BAD_MODE;
336 	} else {
337 		if (l2_regs.msr & MSR_TS_MASK)
338 			return H_BAD_MODE;
339 		if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
340 			return H_BAD_MODE;
341 	}
342 
343 	/* translate lpid */
344 	l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
345 	if (!l2)
346 		return H_PARAMETER;
347 	if (!l2->l1_gr_to_hr) {
348 		mutex_lock(&l2->tlb_lock);
349 		kvmhv_update_ptbl_cache(l2);
350 		mutex_unlock(&l2->tlb_lock);
351 	}
352 
353 	/* save l1 values of things */
354 	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
355 	saved_l1_regs = vcpu->arch.regs;
356 	kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
357 
358 	/* convert TB values/offsets to host (L0) values */
359 	hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
360 	vc->tb_offset += l2_hv.tb_offset;
361 
362 	/* set L1 state to L2 state */
363 	vcpu->arch.nested = l2;
364 	vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
365 	l2->hfscr = l2_hv.hfscr;
366 	vcpu->arch.regs = l2_regs;
367 
368 	/* Guest must always run with ME enabled, HV disabled. */
369 	vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
370 
371 	lpcr = l2_hv.lpcr;
372 	load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
373 
374 	vcpu->arch.ret = RESUME_GUEST;
375 	vcpu->arch.trap = 0;
376 	do {
377 		if (mftb() >= hdec_exp) {
378 			vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
379 			r = RESUME_HOST;
380 			break;
381 		}
382 		r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
383 	} while (is_kvmppc_resume_guest(r));
384 
385 	/* save L2 state for return */
386 	l2_regs = vcpu->arch.regs;
387 	l2_regs.msr = vcpu->arch.shregs.msr;
388 	delta_purr = vcpu->arch.purr - l2_hv.purr;
389 	delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
390 	delta_ic = vcpu->arch.ic - l2_hv.ic;
391 	delta_vtb = vc->vtb - l2_hv.vtb;
392 	save_hv_return_state(vcpu, &l2_hv);
393 
394 	/* restore L1 state */
395 	vcpu->arch.nested = NULL;
396 	vcpu->arch.regs = saved_l1_regs;
397 	vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
398 	/* set L1 MSR TS field according to L2 transaction state */
399 	if (l2_regs.msr & MSR_TS_MASK)
400 		vcpu->arch.shregs.msr |= MSR_TS_S;
401 	vc->tb_offset = saved_l1_hv.tb_offset;
402 	restore_hv_regs(vcpu, &saved_l1_hv);
403 	vcpu->arch.purr += delta_purr;
404 	vcpu->arch.spurr += delta_spurr;
405 	vcpu->arch.ic += delta_ic;
406 	vc->vtb += delta_vtb;
407 
408 	kvmhv_put_nested(l2);
409 
410 	/* copy l2_hv_state and regs back to guest */
411 	if (kvmppc_need_byteswap(vcpu)) {
412 		byteswap_hv_regs(&l2_hv);
413 		byteswap_pt_regs(&l2_regs);
414 	}
415 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
416 	err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
417 					       hv_ptr, regs_ptr);
418 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
419 	if (err)
420 		return H_AUTHORITY;
421 
422 	if (r == -EINTR)
423 		return H_INTERRUPT;
424 
425 	if (vcpu->mmio_needed) {
426 		kvmhv_nested_mmio_needed(vcpu, regs_ptr);
427 		return H_TOO_HARD;
428 	}
429 
430 	return vcpu->arch.trap;
431 }
432 
kvmhv_nested_init(void)433 long kvmhv_nested_init(void)
434 {
435 	long int ptb_order;
436 	unsigned long ptcr;
437 	long rc;
438 
439 	if (!kvmhv_on_pseries())
440 		return 0;
441 	if (!radix_enabled())
442 		return -ENODEV;
443 
444 	/* find log base 2 of KVMPPC_NR_LPIDS, rounding up */
445 	ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1;
446 	if (ptb_order < 8)
447 		ptb_order = 8;
448 	pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
449 				       GFP_KERNEL);
450 	if (!pseries_partition_tb) {
451 		pr_err("kvm-hv: failed to allocated nested partition table\n");
452 		return -ENOMEM;
453 	}
454 
455 	ptcr = __pa(pseries_partition_tb) | (ptb_order - 8);
456 	rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
457 	if (rc != H_SUCCESS) {
458 		pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
459 		       rc);
460 		kfree(pseries_partition_tb);
461 		pseries_partition_tb = NULL;
462 		return -ENODEV;
463 	}
464 
465 	return 0;
466 }
467 
kvmhv_nested_exit(void)468 void kvmhv_nested_exit(void)
469 {
470 	/*
471 	 * N.B. the kvmhv_on_pseries() test is there because it enables
472 	 * the compiler to remove the call to plpar_hcall_norets()
473 	 * when CONFIG_PPC_PSERIES=n.
474 	 */
475 	if (kvmhv_on_pseries() && pseries_partition_tb) {
476 		plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
477 		kfree(pseries_partition_tb);
478 		pseries_partition_tb = NULL;
479 	}
480 }
481 
kvmhv_flush_lpid(unsigned int lpid)482 static void kvmhv_flush_lpid(unsigned int lpid)
483 {
484 	long rc;
485 
486 	if (!kvmhv_on_pseries()) {
487 		radix__flush_all_lpid(lpid);
488 		return;
489 	}
490 
491 	if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
492 		rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
493 					lpid, TLBIEL_INVAL_SET_LPID);
494 	else
495 		rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
496 					    H_RPTI_TYPE_NESTED |
497 					    H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
498 					    H_RPTI_TYPE_PAT,
499 					    H_RPTI_PAGE_ALL, 0, -1UL);
500 	if (rc)
501 		pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
502 }
503 
kvmhv_set_ptbl_entry(unsigned int lpid,u64 dw0,u64 dw1)504 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
505 {
506 	if (!kvmhv_on_pseries()) {
507 		mmu_partition_table_set_entry(lpid, dw0, dw1, true);
508 		return;
509 	}
510 
511 	pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
512 	pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
513 	/* L0 will do the necessary barriers */
514 	kvmhv_flush_lpid(lpid);
515 }
516 
kvmhv_set_nested_ptbl(struct kvm_nested_guest * gp)517 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
518 {
519 	unsigned long dw0;
520 
521 	dw0 = PATB_HR | radix__get_tree_size() |
522 		__pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
523 	kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
524 }
525 
kvmhv_vm_nested_init(struct kvm * kvm)526 void kvmhv_vm_nested_init(struct kvm *kvm)
527 {
528 	kvm->arch.max_nested_lpid = -1;
529 }
530 
531 /*
532  * Handle the H_SET_PARTITION_TABLE hcall.
533  * r4 = guest real address of partition table + log_2(size) - 12
534  * (formatted as for the PTCR).
535  */
kvmhv_set_partition_table(struct kvm_vcpu * vcpu)536 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
537 {
538 	struct kvm *kvm = vcpu->kvm;
539 	unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
540 	int srcu_idx;
541 	long ret = H_SUCCESS;
542 
543 	srcu_idx = srcu_read_lock(&kvm->srcu);
544 	/*
545 	 * Limit the partition table to 4096 entries (because that's what
546 	 * hardware supports), and check the base address.
547 	 */
548 	if ((ptcr & PRTS_MASK) > 12 - 8 ||
549 	    !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
550 		ret = H_PARAMETER;
551 	srcu_read_unlock(&kvm->srcu, srcu_idx);
552 	if (ret == H_SUCCESS)
553 		kvm->arch.l1_ptcr = ptcr;
554 	return ret;
555 }
556 
557 /*
558  * Handle the H_COPY_TOFROM_GUEST hcall.
559  * r4 = L1 lpid of nested guest
560  * r5 = pid
561  * r6 = eaddr to access
562  * r7 = to buffer (L1 gpa)
563  * r8 = from buffer (L1 gpa)
564  * r9 = n bytes to copy
565  */
kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu * vcpu)566 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
567 {
568 	struct kvm_nested_guest *gp;
569 	int l1_lpid = kvmppc_get_gpr(vcpu, 4);
570 	int pid = kvmppc_get_gpr(vcpu, 5);
571 	gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
572 	gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
573 	gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
574 	void *buf;
575 	unsigned long n = kvmppc_get_gpr(vcpu, 9);
576 	bool is_load = !!gp_to;
577 	long rc;
578 
579 	if (gp_to && gp_from) /* One must be NULL to determine the direction */
580 		return H_PARAMETER;
581 
582 	if (eaddr & (0xFFFUL << 52))
583 		return H_PARAMETER;
584 
585 	buf = kzalloc(n, GFP_KERNEL);
586 	if (!buf)
587 		return H_NO_MEM;
588 
589 	gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
590 	if (!gp) {
591 		rc = H_PARAMETER;
592 		goto out_free;
593 	}
594 
595 	mutex_lock(&gp->tlb_lock);
596 
597 	if (is_load) {
598 		/* Load from the nested guest into our buffer */
599 		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
600 						     eaddr, buf, NULL, n);
601 		if (rc)
602 			goto not_found;
603 
604 		/* Write what was loaded into our buffer back to the L1 guest */
605 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
606 		rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
607 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
608 		if (rc)
609 			goto not_found;
610 	} else {
611 		/* Load the data to be stored from the L1 guest into our buf */
612 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
613 		rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
614 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
615 		if (rc)
616 			goto not_found;
617 
618 		/* Store from our buffer into the nested guest */
619 		rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
620 						     eaddr, NULL, buf, n);
621 		if (rc)
622 			goto not_found;
623 	}
624 
625 out_unlock:
626 	mutex_unlock(&gp->tlb_lock);
627 	kvmhv_put_nested(gp);
628 out_free:
629 	kfree(buf);
630 	return rc;
631 not_found:
632 	rc = H_NOT_FOUND;
633 	goto out_unlock;
634 }
635 
636 /*
637  * Reload the partition table entry for a guest.
638  * Caller must hold gp->tlb_lock.
639  */
kvmhv_update_ptbl_cache(struct kvm_nested_guest * gp)640 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
641 {
642 	int ret;
643 	struct patb_entry ptbl_entry;
644 	unsigned long ptbl_addr;
645 	struct kvm *kvm = gp->l1_host;
646 
647 	ret = -EFAULT;
648 	ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
649 	if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8))) {
650 		int srcu_idx = srcu_read_lock(&kvm->srcu);
651 		ret = kvm_read_guest(kvm, ptbl_addr,
652 				     &ptbl_entry, sizeof(ptbl_entry));
653 		srcu_read_unlock(&kvm->srcu, srcu_idx);
654 	}
655 	if (ret) {
656 		gp->l1_gr_to_hr = 0;
657 		gp->process_table = 0;
658 	} else {
659 		gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
660 		gp->process_table = be64_to_cpu(ptbl_entry.patb1);
661 	}
662 	kvmhv_set_nested_ptbl(gp);
663 }
664 
kvmhv_alloc_nested(struct kvm * kvm,unsigned int lpid)665 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
666 {
667 	struct kvm_nested_guest *gp;
668 	long shadow_lpid;
669 
670 	gp = kzalloc(sizeof(*gp), GFP_KERNEL);
671 	if (!gp)
672 		return NULL;
673 	gp->l1_host = kvm;
674 	gp->l1_lpid = lpid;
675 	mutex_init(&gp->tlb_lock);
676 	gp->shadow_pgtable = pgd_alloc(kvm->mm);
677 	if (!gp->shadow_pgtable)
678 		goto out_free;
679 	shadow_lpid = kvmppc_alloc_lpid();
680 	if (shadow_lpid < 0)
681 		goto out_free2;
682 	gp->shadow_lpid = shadow_lpid;
683 	gp->radix = 1;
684 
685 	memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
686 
687 	return gp;
688 
689  out_free2:
690 	pgd_free(kvm->mm, gp->shadow_pgtable);
691  out_free:
692 	kfree(gp);
693 	return NULL;
694 }
695 
696 /*
697  * Free up any resources allocated for a nested guest.
698  */
kvmhv_release_nested(struct kvm_nested_guest * gp)699 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
700 {
701 	struct kvm *kvm = gp->l1_host;
702 
703 	if (gp->shadow_pgtable) {
704 		/*
705 		 * No vcpu is using this struct and no call to
706 		 * kvmhv_get_nested can find this struct,
707 		 * so we don't need to hold kvm->mmu_lock.
708 		 */
709 		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
710 					  gp->shadow_lpid);
711 		pgd_free(kvm->mm, gp->shadow_pgtable);
712 	}
713 	kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
714 	kvmppc_free_lpid(gp->shadow_lpid);
715 	kfree(gp);
716 }
717 
kvmhv_remove_nested(struct kvm_nested_guest * gp)718 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
719 {
720 	struct kvm *kvm = gp->l1_host;
721 	int lpid = gp->l1_lpid;
722 	long ref;
723 
724 	spin_lock(&kvm->mmu_lock);
725 	if (gp == kvm->arch.nested_guests[lpid]) {
726 		kvm->arch.nested_guests[lpid] = NULL;
727 		if (lpid == kvm->arch.max_nested_lpid) {
728 			while (--lpid >= 0 && !kvm->arch.nested_guests[lpid])
729 				;
730 			kvm->arch.max_nested_lpid = lpid;
731 		}
732 		--gp->refcnt;
733 	}
734 	ref = gp->refcnt;
735 	spin_unlock(&kvm->mmu_lock);
736 	if (ref == 0)
737 		kvmhv_release_nested(gp);
738 }
739 
740 /*
741  * Free up all nested resources allocated for this guest.
742  * This is called with no vcpus of the guest running, when
743  * switching the guest to HPT mode or when destroying the
744  * guest.
745  */
kvmhv_release_all_nested(struct kvm * kvm)746 void kvmhv_release_all_nested(struct kvm *kvm)
747 {
748 	int i;
749 	struct kvm_nested_guest *gp;
750 	struct kvm_nested_guest *freelist = NULL;
751 	struct kvm_memory_slot *memslot;
752 	int srcu_idx;
753 
754 	spin_lock(&kvm->mmu_lock);
755 	for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
756 		gp = kvm->arch.nested_guests[i];
757 		if (!gp)
758 			continue;
759 		kvm->arch.nested_guests[i] = NULL;
760 		if (--gp->refcnt == 0) {
761 			gp->next = freelist;
762 			freelist = gp;
763 		}
764 	}
765 	kvm->arch.max_nested_lpid = -1;
766 	spin_unlock(&kvm->mmu_lock);
767 	while ((gp = freelist) != NULL) {
768 		freelist = gp->next;
769 		kvmhv_release_nested(gp);
770 	}
771 
772 	srcu_idx = srcu_read_lock(&kvm->srcu);
773 	kvm_for_each_memslot(memslot, kvm_memslots(kvm))
774 		kvmhv_free_memslot_nest_rmap(memslot);
775 	srcu_read_unlock(&kvm->srcu, srcu_idx);
776 }
777 
778 /* caller must hold gp->tlb_lock */
kvmhv_flush_nested(struct kvm_nested_guest * gp)779 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
780 {
781 	struct kvm *kvm = gp->l1_host;
782 
783 	spin_lock(&kvm->mmu_lock);
784 	kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
785 	spin_unlock(&kvm->mmu_lock);
786 	kvmhv_flush_lpid(gp->shadow_lpid);
787 	kvmhv_update_ptbl_cache(gp);
788 	if (gp->l1_gr_to_hr == 0)
789 		kvmhv_remove_nested(gp);
790 }
791 
kvmhv_get_nested(struct kvm * kvm,int l1_lpid,bool create)792 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
793 					  bool create)
794 {
795 	struct kvm_nested_guest *gp, *newgp;
796 
797 	if (l1_lpid >= KVM_MAX_NESTED_GUESTS ||
798 	    l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
799 		return NULL;
800 
801 	spin_lock(&kvm->mmu_lock);
802 	gp = kvm->arch.nested_guests[l1_lpid];
803 	if (gp)
804 		++gp->refcnt;
805 	spin_unlock(&kvm->mmu_lock);
806 
807 	if (gp || !create)
808 		return gp;
809 
810 	newgp = kvmhv_alloc_nested(kvm, l1_lpid);
811 	if (!newgp)
812 		return NULL;
813 	spin_lock(&kvm->mmu_lock);
814 	if (kvm->arch.nested_guests[l1_lpid]) {
815 		/* someone else beat us to it */
816 		gp = kvm->arch.nested_guests[l1_lpid];
817 	} else {
818 		kvm->arch.nested_guests[l1_lpid] = newgp;
819 		++newgp->refcnt;
820 		gp = newgp;
821 		newgp = NULL;
822 		if (l1_lpid > kvm->arch.max_nested_lpid)
823 			kvm->arch.max_nested_lpid = l1_lpid;
824 	}
825 	++gp->refcnt;
826 	spin_unlock(&kvm->mmu_lock);
827 
828 	if (newgp)
829 		kvmhv_release_nested(newgp);
830 
831 	return gp;
832 }
833 
kvmhv_put_nested(struct kvm_nested_guest * gp)834 void kvmhv_put_nested(struct kvm_nested_guest *gp)
835 {
836 	struct kvm *kvm = gp->l1_host;
837 	long ref;
838 
839 	spin_lock(&kvm->mmu_lock);
840 	ref = --gp->refcnt;
841 	spin_unlock(&kvm->mmu_lock);
842 	if (ref == 0)
843 		kvmhv_release_nested(gp);
844 }
845 
kvmhv_find_nested(struct kvm * kvm,int lpid)846 static struct kvm_nested_guest *kvmhv_find_nested(struct kvm *kvm, int lpid)
847 {
848 	if (lpid > kvm->arch.max_nested_lpid)
849 		return NULL;
850 	return kvm->arch.nested_guests[lpid];
851 }
852 
find_kvm_nested_guest_pte(struct kvm * kvm,unsigned long lpid,unsigned long ea,unsigned * hshift)853 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
854 				 unsigned long ea, unsigned *hshift)
855 {
856 	struct kvm_nested_guest *gp;
857 	pte_t *pte;
858 
859 	gp = kvmhv_find_nested(kvm, lpid);
860 	if (!gp)
861 		return NULL;
862 
863 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
864 		"%s called with kvm mmu_lock not held \n", __func__);
865 	pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
866 
867 	return pte;
868 }
869 
kvmhv_n_rmap_is_equal(u64 rmap_1,u64 rmap_2)870 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
871 {
872 	return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
873 				       RMAP_NESTED_GPA_MASK));
874 }
875 
kvmhv_insert_nest_rmap(struct kvm * kvm,unsigned long * rmapp,struct rmap_nested ** n_rmap)876 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
877 			    struct rmap_nested **n_rmap)
878 {
879 	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
880 	struct rmap_nested *cursor;
881 	u64 rmap, new_rmap = (*n_rmap)->rmap;
882 
883 	/* Are there any existing entries? */
884 	if (!(*rmapp)) {
885 		/* No -> use the rmap as a single entry */
886 		*rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
887 		return;
888 	}
889 
890 	/* Do any entries match what we're trying to insert? */
891 	for_each_nest_rmap_safe(cursor, entry, &rmap) {
892 		if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
893 			return;
894 	}
895 
896 	/* Do we need to create a list or just add the new entry? */
897 	rmap = *rmapp;
898 	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
899 		*rmapp = 0UL;
900 	llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
901 	if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
902 		(*n_rmap)->list.next = (struct llist_node *) rmap;
903 
904 	/* Set NULL so not freed by caller */
905 	*n_rmap = NULL;
906 }
907 
kvmhv_update_nest_rmap_rc(struct kvm * kvm,u64 n_rmap,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long mask)908 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
909 				      unsigned long clr, unsigned long set,
910 				      unsigned long hpa, unsigned long mask)
911 {
912 	unsigned long gpa;
913 	unsigned int shift, lpid;
914 	pte_t *ptep;
915 
916 	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
917 	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
918 
919 	/* Find the pte */
920 	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
921 	/*
922 	 * If the pte is present and the pfn is still the same, update the pte.
923 	 * If the pfn has changed then this is a stale rmap entry, the nested
924 	 * gpa actually points somewhere else now, and there is nothing to do.
925 	 * XXX A future optimisation would be to remove the rmap entry here.
926 	 */
927 	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
928 		__radix_pte_update(ptep, clr, set);
929 		kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
930 	}
931 }
932 
933 /*
934  * For a given list of rmap entries, update the rc bits in all ptes in shadow
935  * page tables for nested guests which are referenced by the rmap list.
936  */
kvmhv_update_nest_rmap_rc_list(struct kvm * kvm,unsigned long * rmapp,unsigned long clr,unsigned long set,unsigned long hpa,unsigned long nbytes)937 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
938 				    unsigned long clr, unsigned long set,
939 				    unsigned long hpa, unsigned long nbytes)
940 {
941 	struct llist_node *entry = ((struct llist_head *) rmapp)->first;
942 	struct rmap_nested *cursor;
943 	unsigned long rmap, mask;
944 
945 	if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
946 		return;
947 
948 	mask = PTE_RPN_MASK & ~(nbytes - 1);
949 	hpa &= mask;
950 
951 	for_each_nest_rmap_safe(cursor, entry, &rmap)
952 		kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
953 }
954 
kvmhv_remove_nest_rmap(struct kvm * kvm,u64 n_rmap,unsigned long hpa,unsigned long mask)955 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
956 				   unsigned long hpa, unsigned long mask)
957 {
958 	struct kvm_nested_guest *gp;
959 	unsigned long gpa;
960 	unsigned int shift, lpid;
961 	pte_t *ptep;
962 
963 	gpa = n_rmap & RMAP_NESTED_GPA_MASK;
964 	lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
965 	gp = kvmhv_find_nested(kvm, lpid);
966 	if (!gp)
967 		return;
968 
969 	/* Find and invalidate the pte */
970 	ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
971 	/* Don't spuriously invalidate ptes if the pfn has changed */
972 	if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
973 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
974 }
975 
kvmhv_remove_nest_rmap_list(struct kvm * kvm,unsigned long * rmapp,unsigned long hpa,unsigned long mask)976 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
977 					unsigned long hpa, unsigned long mask)
978 {
979 	struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
980 	struct rmap_nested *cursor;
981 	unsigned long rmap;
982 
983 	for_each_nest_rmap_safe(cursor, entry, &rmap) {
984 		kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
985 		kfree(cursor);
986 	}
987 }
988 
989 /* called with kvm->mmu_lock held */
kvmhv_remove_nest_rmap_range(struct kvm * kvm,const struct kvm_memory_slot * memslot,unsigned long gpa,unsigned long hpa,unsigned long nbytes)990 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
991 				  const struct kvm_memory_slot *memslot,
992 				  unsigned long gpa, unsigned long hpa,
993 				  unsigned long nbytes)
994 {
995 	unsigned long gfn, end_gfn;
996 	unsigned long addr_mask;
997 
998 	if (!memslot)
999 		return;
1000 	gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
1001 	end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1002 
1003 	addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1004 	hpa &= addr_mask;
1005 
1006 	for (; gfn < end_gfn; gfn++) {
1007 		unsigned long *rmap = &memslot->arch.rmap[gfn];
1008 		kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1009 	}
1010 }
1011 
kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot * free)1012 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1013 {
1014 	unsigned long page;
1015 
1016 	for (page = 0; page < free->npages; page++) {
1017 		unsigned long rmap, *rmapp = &free->arch.rmap[page];
1018 		struct rmap_nested *cursor;
1019 		struct llist_node *entry;
1020 
1021 		entry = llist_del_all((struct llist_head *) rmapp);
1022 		for_each_nest_rmap_safe(cursor, entry, &rmap)
1023 			kfree(cursor);
1024 	}
1025 }
1026 
kvmhv_invalidate_shadow_pte(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,long gpa,int * shift_ret)1027 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1028 					struct kvm_nested_guest *gp,
1029 					long gpa, int *shift_ret)
1030 {
1031 	struct kvm *kvm = vcpu->kvm;
1032 	bool ret = false;
1033 	pte_t *ptep;
1034 	int shift;
1035 
1036 	spin_lock(&kvm->mmu_lock);
1037 	ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1038 	if (!shift)
1039 		shift = PAGE_SHIFT;
1040 	if (ptep && pte_present(*ptep)) {
1041 		kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1042 		ret = true;
1043 	}
1044 	spin_unlock(&kvm->mmu_lock);
1045 
1046 	if (shift_ret)
1047 		*shift_ret = shift;
1048 	return ret;
1049 }
1050 
get_ric(unsigned int instr)1051 static inline int get_ric(unsigned int instr)
1052 {
1053 	return (instr >> 18) & 0x3;
1054 }
1055 
get_prs(unsigned int instr)1056 static inline int get_prs(unsigned int instr)
1057 {
1058 	return (instr >> 17) & 0x1;
1059 }
1060 
get_r(unsigned int instr)1061 static inline int get_r(unsigned int instr)
1062 {
1063 	return (instr >> 16) & 0x1;
1064 }
1065 
get_lpid(unsigned long r_val)1066 static inline int get_lpid(unsigned long r_val)
1067 {
1068 	return r_val & 0xffffffff;
1069 }
1070 
get_is(unsigned long r_val)1071 static inline int get_is(unsigned long r_val)
1072 {
1073 	return (r_val >> 10) & 0x3;
1074 }
1075 
get_ap(unsigned long r_val)1076 static inline int get_ap(unsigned long r_val)
1077 {
1078 	return (r_val >> 5) & 0x7;
1079 }
1080 
get_epn(unsigned long r_val)1081 static inline long get_epn(unsigned long r_val)
1082 {
1083 	return r_val >> 12;
1084 }
1085 
kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu * vcpu,int lpid,int ap,long epn)1086 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1087 					int ap, long epn)
1088 {
1089 	struct kvm *kvm = vcpu->kvm;
1090 	struct kvm_nested_guest *gp;
1091 	long npages;
1092 	int shift, shadow_shift;
1093 	unsigned long addr;
1094 
1095 	shift = ap_to_shift(ap);
1096 	addr = epn << 12;
1097 	if (shift < 0)
1098 		/* Invalid ap encoding */
1099 		return -EINVAL;
1100 
1101 	addr &= ~((1UL << shift) - 1);
1102 	npages = 1UL << (shift - PAGE_SHIFT);
1103 
1104 	gp = kvmhv_get_nested(kvm, lpid, false);
1105 	if (!gp) /* No such guest -> nothing to do */
1106 		return 0;
1107 	mutex_lock(&gp->tlb_lock);
1108 
1109 	/* There may be more than one host page backing this single guest pte */
1110 	do {
1111 		kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1112 
1113 		npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1114 		addr += 1UL << shadow_shift;
1115 	} while (npages > 0);
1116 
1117 	mutex_unlock(&gp->tlb_lock);
1118 	kvmhv_put_nested(gp);
1119 	return 0;
1120 }
1121 
kvmhv_emulate_tlbie_lpid(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,int ric)1122 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1123 				     struct kvm_nested_guest *gp, int ric)
1124 {
1125 	struct kvm *kvm = vcpu->kvm;
1126 
1127 	mutex_lock(&gp->tlb_lock);
1128 	switch (ric) {
1129 	case 0:
1130 		/* Invalidate TLB */
1131 		spin_lock(&kvm->mmu_lock);
1132 		kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1133 					  gp->shadow_lpid);
1134 		kvmhv_flush_lpid(gp->shadow_lpid);
1135 		spin_unlock(&kvm->mmu_lock);
1136 		break;
1137 	case 1:
1138 		/*
1139 		 * Invalidate PWC
1140 		 * We don't cache this -> nothing to do
1141 		 */
1142 		break;
1143 	case 2:
1144 		/* Invalidate TLB, PWC and caching of partition table entries */
1145 		kvmhv_flush_nested(gp);
1146 		break;
1147 	default:
1148 		break;
1149 	}
1150 	mutex_unlock(&gp->tlb_lock);
1151 }
1152 
kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu * vcpu,int ric)1153 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1154 {
1155 	struct kvm *kvm = vcpu->kvm;
1156 	struct kvm_nested_guest *gp;
1157 	int i;
1158 
1159 	spin_lock(&kvm->mmu_lock);
1160 	for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
1161 		gp = kvm->arch.nested_guests[i];
1162 		if (gp) {
1163 			spin_unlock(&kvm->mmu_lock);
1164 			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1165 			spin_lock(&kvm->mmu_lock);
1166 		}
1167 	}
1168 	spin_unlock(&kvm->mmu_lock);
1169 }
1170 
kvmhv_emulate_priv_tlbie(struct kvm_vcpu * vcpu,unsigned int instr,unsigned long rsval,unsigned long rbval)1171 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1172 				    unsigned long rsval, unsigned long rbval)
1173 {
1174 	struct kvm *kvm = vcpu->kvm;
1175 	struct kvm_nested_guest *gp;
1176 	int r, ric, prs, is, ap;
1177 	int lpid;
1178 	long epn;
1179 	int ret = 0;
1180 
1181 	ric = get_ric(instr);
1182 	prs = get_prs(instr);
1183 	r = get_r(instr);
1184 	lpid = get_lpid(rsval);
1185 	is = get_is(rbval);
1186 
1187 	/*
1188 	 * These cases are invalid and are not handled:
1189 	 * r   != 1 -> Only radix supported
1190 	 * prs == 1 -> Not HV privileged
1191 	 * ric == 3 -> No cluster bombs for radix
1192 	 * is  == 1 -> Partition scoped translations not associated with pid
1193 	 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1194 	 */
1195 	if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1196 	    ((!is) && (ric == 1 || ric == 2)))
1197 		return -EINVAL;
1198 
1199 	switch (is) {
1200 	case 0:
1201 		/*
1202 		 * We know ric == 0
1203 		 * Invalidate TLB for a given target address
1204 		 */
1205 		epn = get_epn(rbval);
1206 		ap = get_ap(rbval);
1207 		ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1208 		break;
1209 	case 2:
1210 		/* Invalidate matching LPID */
1211 		gp = kvmhv_get_nested(kvm, lpid, false);
1212 		if (gp) {
1213 			kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1214 			kvmhv_put_nested(gp);
1215 		}
1216 		break;
1217 	case 3:
1218 		/* Invalidate ALL LPIDs */
1219 		kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1220 		break;
1221 	default:
1222 		ret = -EINVAL;
1223 		break;
1224 	}
1225 
1226 	return ret;
1227 }
1228 
1229 /*
1230  * This handles the H_TLB_INVALIDATE hcall.
1231  * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1232  * (r6) rB contents.
1233  */
kvmhv_do_nested_tlbie(struct kvm_vcpu * vcpu)1234 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1235 {
1236 	int ret;
1237 
1238 	ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1239 			kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1240 	if (ret)
1241 		return H_PARAMETER;
1242 	return H_SUCCESS;
1243 }
1244 
do_tlb_invalidate_nested_all(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long ric)1245 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1246 					 unsigned long lpid, unsigned long ric)
1247 {
1248 	struct kvm *kvm = vcpu->kvm;
1249 	struct kvm_nested_guest *gp;
1250 
1251 	gp = kvmhv_get_nested(kvm, lpid, false);
1252 	if (gp) {
1253 		kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1254 		kvmhv_put_nested(gp);
1255 	}
1256 	return H_SUCCESS;
1257 }
1258 
1259 /*
1260  * Number of pages above which we invalidate the entire LPID rather than
1261  * flush individual pages.
1262  */
1263 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1264 
do_tlb_invalidate_nested_tlb(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long pg_sizes,unsigned long start,unsigned long end)1265 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1266 					 unsigned long lpid,
1267 					 unsigned long pg_sizes,
1268 					 unsigned long start,
1269 					 unsigned long end)
1270 {
1271 	int ret = H_P4;
1272 	unsigned long addr, nr_pages;
1273 	struct mmu_psize_def *def;
1274 	unsigned long psize, ap, page_size;
1275 	bool flush_lpid;
1276 
1277 	for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1278 		def = &mmu_psize_defs[psize];
1279 		if (!(pg_sizes & def->h_rpt_pgsize))
1280 			continue;
1281 
1282 		nr_pages = (end - start) >> def->shift;
1283 		flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1284 		if (flush_lpid)
1285 			return do_tlb_invalidate_nested_all(vcpu, lpid,
1286 							RIC_FLUSH_TLB);
1287 		addr = start;
1288 		ap = mmu_get_ap(psize);
1289 		page_size = 1UL << def->shift;
1290 		do {
1291 			ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1292 						   get_epn(addr));
1293 			if (ret)
1294 				return H_P4;
1295 			addr += page_size;
1296 		} while (addr < end);
1297 	}
1298 	return ret;
1299 }
1300 
1301 /*
1302  * Performs partition-scoped invalidations for nested guests
1303  * as part of H_RPT_INVALIDATE hcall.
1304  */
do_h_rpt_invalidate_pat(struct kvm_vcpu * vcpu,unsigned long lpid,unsigned long type,unsigned long pg_sizes,unsigned long start,unsigned long end)1305 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1306 			     unsigned long type, unsigned long pg_sizes,
1307 			     unsigned long start, unsigned long end)
1308 {
1309 	/*
1310 	 * If L2 lpid isn't valid, we need to return H_PARAMETER.
1311 	 *
1312 	 * However, nested KVM issues a L2 lpid flush call when creating
1313 	 * partition table entries for L2. This happens even before the
1314 	 * corresponding shadow lpid is created in HV which happens in
1315 	 * H_ENTER_NESTED call. Since we can't differentiate this case from
1316 	 * the invalid case, we ignore such flush requests and return success.
1317 	 */
1318 	if (!kvmhv_find_nested(vcpu->kvm, lpid))
1319 		return H_SUCCESS;
1320 
1321 	/*
1322 	 * A flush all request can be handled by a full lpid flush only.
1323 	 */
1324 	if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1325 		return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1326 
1327 	/*
1328 	 * We don't need to handle a PWC flush like process table here,
1329 	 * because intermediate partition scoped table in nested guest doesn't
1330 	 * really have PWC. Only level we have PWC is in L0 and for nested
1331 	 * invalidate at L0 we always do kvm_flush_lpid() which does
1332 	 * radix__flush_all_lpid(). For range invalidate at any level, we
1333 	 * are not removing the higher level page tables and hence there is
1334 	 * no PWC invalidate needed.
1335 	 *
1336 	 * if (type & H_RPTI_TYPE_PWC) {
1337 	 *	ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1338 	 *	if (ret)
1339 	 *		return H_P4;
1340 	 * }
1341 	 */
1342 
1343 	if (start == 0 && end == -1)
1344 		return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1345 
1346 	if (type & H_RPTI_TYPE_TLB)
1347 		return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1348 						    start, end);
1349 	return H_SUCCESS;
1350 }
1351 
1352 /* Used to convert a nested guest real address to a L1 guest real address */
kvmhv_translate_addr_nested(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,unsigned long dsisr,struct kvmppc_pte * gpte_p)1353 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1354 				       struct kvm_nested_guest *gp,
1355 				       unsigned long n_gpa, unsigned long dsisr,
1356 				       struct kvmppc_pte *gpte_p)
1357 {
1358 	u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1359 	int ret;
1360 
1361 	ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1362 					 &fault_addr);
1363 
1364 	if (ret) {
1365 		/* We didn't find a pte */
1366 		if (ret == -EINVAL) {
1367 			/* Unsupported mmu config */
1368 			flags |= DSISR_UNSUPP_MMU;
1369 		} else if (ret == -ENOENT) {
1370 			/* No translation found */
1371 			flags |= DSISR_NOHPTE;
1372 		} else if (ret == -EFAULT) {
1373 			/* Couldn't access L1 real address */
1374 			flags |= DSISR_PRTABLE_FAULT;
1375 			vcpu->arch.fault_gpa = fault_addr;
1376 		} else {
1377 			/* Unknown error */
1378 			return ret;
1379 		}
1380 		goto forward_to_l1;
1381 	} else {
1382 		/* We found a pte -> check permissions */
1383 		if (dsisr & DSISR_ISSTORE) {
1384 			/* Can we write? */
1385 			if (!gpte_p->may_write) {
1386 				flags |= DSISR_PROTFAULT;
1387 				goto forward_to_l1;
1388 			}
1389 		} else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1390 			/* Can we execute? */
1391 			if (!gpte_p->may_execute) {
1392 				flags |= SRR1_ISI_N_G_OR_CIP;
1393 				goto forward_to_l1;
1394 			}
1395 		} else {
1396 			/* Can we read? */
1397 			if (!gpte_p->may_read && !gpte_p->may_write) {
1398 				flags |= DSISR_PROTFAULT;
1399 				goto forward_to_l1;
1400 			}
1401 		}
1402 	}
1403 
1404 	return 0;
1405 
1406 forward_to_l1:
1407 	vcpu->arch.fault_dsisr = flags;
1408 	if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1409 		vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1410 		vcpu->arch.shregs.msr |= flags;
1411 	}
1412 	return RESUME_HOST;
1413 }
1414 
kvmhv_handle_nested_set_rc(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp,unsigned long n_gpa,struct kvmppc_pte gpte,unsigned long dsisr)1415 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1416 				       struct kvm_nested_guest *gp,
1417 				       unsigned long n_gpa,
1418 				       struct kvmppc_pte gpte,
1419 				       unsigned long dsisr)
1420 {
1421 	struct kvm *kvm = vcpu->kvm;
1422 	bool writing = !!(dsisr & DSISR_ISSTORE);
1423 	u64 pgflags;
1424 	long ret;
1425 
1426 	/* Are the rc bits set in the L1 partition scoped pte? */
1427 	pgflags = _PAGE_ACCESSED;
1428 	if (writing)
1429 		pgflags |= _PAGE_DIRTY;
1430 	if (pgflags & ~gpte.rc)
1431 		return RESUME_HOST;
1432 
1433 	spin_lock(&kvm->mmu_lock);
1434 	/* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1435 	ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1436 				      gpte.raddr, kvm->arch.lpid);
1437 	if (!ret) {
1438 		ret = -EINVAL;
1439 		goto out_unlock;
1440 	}
1441 
1442 	/* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1443 	ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1444 				      n_gpa, gp->l1_lpid);
1445 	if (!ret)
1446 		ret = -EINVAL;
1447 	else
1448 		ret = 0;
1449 
1450 out_unlock:
1451 	spin_unlock(&kvm->mmu_lock);
1452 	return ret;
1453 }
1454 
kvmppc_radix_level_to_shift(int level)1455 static inline int kvmppc_radix_level_to_shift(int level)
1456 {
1457 	switch (level) {
1458 	case 2:
1459 		return PUD_SHIFT;
1460 	case 1:
1461 		return PMD_SHIFT;
1462 	default:
1463 		return PAGE_SHIFT;
1464 	}
1465 }
1466 
kvmppc_radix_shift_to_level(int shift)1467 static inline int kvmppc_radix_shift_to_level(int shift)
1468 {
1469 	if (shift == PUD_SHIFT)
1470 		return 2;
1471 	if (shift == PMD_SHIFT)
1472 		return 1;
1473 	if (shift == PAGE_SHIFT)
1474 		return 0;
1475 	WARN_ON_ONCE(1);
1476 	return 0;
1477 }
1478 
1479 /* called with gp->tlb_lock held */
__kvmhv_nested_page_fault(struct kvm_vcpu * vcpu,struct kvm_nested_guest * gp)1480 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1481 					  struct kvm_nested_guest *gp)
1482 {
1483 	struct kvm *kvm = vcpu->kvm;
1484 	struct kvm_memory_slot *memslot;
1485 	struct rmap_nested *n_rmap;
1486 	struct kvmppc_pte gpte;
1487 	pte_t pte, *pte_p;
1488 	unsigned long mmu_seq;
1489 	unsigned long dsisr = vcpu->arch.fault_dsisr;
1490 	unsigned long ea = vcpu->arch.fault_dar;
1491 	unsigned long *rmapp;
1492 	unsigned long n_gpa, gpa, gfn, perm = 0UL;
1493 	unsigned int shift, l1_shift, level;
1494 	bool writing = !!(dsisr & DSISR_ISSTORE);
1495 	bool kvm_ro = false;
1496 	long int ret;
1497 
1498 	if (!gp->l1_gr_to_hr) {
1499 		kvmhv_update_ptbl_cache(gp);
1500 		if (!gp->l1_gr_to_hr)
1501 			return RESUME_HOST;
1502 	}
1503 
1504 	/* Convert the nested guest real address into a L1 guest real address */
1505 
1506 	n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1507 	if (!(dsisr & DSISR_PRTABLE_FAULT))
1508 		n_gpa |= ea & 0xFFF;
1509 	ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1510 
1511 	/*
1512 	 * If the hardware found a translation but we don't now have a usable
1513 	 * translation in the l1 partition-scoped tree, remove the shadow pte
1514 	 * and let the guest retry.
1515 	 */
1516 	if (ret == RESUME_HOST &&
1517 	    (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1518 		      DSISR_BAD_COPYPASTE)))
1519 		goto inval;
1520 	if (ret)
1521 		return ret;
1522 
1523 	/* Failed to set the reference/change bits */
1524 	if (dsisr & DSISR_SET_RC) {
1525 		ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1526 		if (ret == RESUME_HOST)
1527 			return ret;
1528 		if (ret)
1529 			goto inval;
1530 		dsisr &= ~DSISR_SET_RC;
1531 		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1532 			       DSISR_PROTFAULT)))
1533 			return RESUME_GUEST;
1534 	}
1535 
1536 	/*
1537 	 * We took an HISI or HDSI while we were running a nested guest which
1538 	 * means we have no partition scoped translation for that. This means
1539 	 * we need to insert a pte for the mapping into our shadow_pgtable.
1540 	 */
1541 
1542 	l1_shift = gpte.page_shift;
1543 	if (l1_shift < PAGE_SHIFT) {
1544 		/* We don't support l1 using a page size smaller than our own */
1545 		pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1546 			l1_shift, PAGE_SHIFT);
1547 		return -EINVAL;
1548 	}
1549 	gpa = gpte.raddr;
1550 	gfn = gpa >> PAGE_SHIFT;
1551 
1552 	/* 1. Get the corresponding host memslot */
1553 
1554 	memslot = gfn_to_memslot(kvm, gfn);
1555 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1556 		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1557 			/* unusual error -> reflect to the guest as a DSI */
1558 			kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
1559 			return RESUME_GUEST;
1560 		}
1561 
1562 		/* passthrough of emulated MMIO case */
1563 		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1564 	}
1565 	if (memslot->flags & KVM_MEM_READONLY) {
1566 		if (writing) {
1567 			/* Give the guest a DSI */
1568 			kvmppc_core_queue_data_storage(vcpu, ea,
1569 					DSISR_ISSTORE | DSISR_PROTFAULT);
1570 			return RESUME_GUEST;
1571 		}
1572 		kvm_ro = true;
1573 	}
1574 
1575 	/* 2. Find the host pte for this L1 guest real address */
1576 
1577 	/* Used to check for invalidations in progress */
1578 	mmu_seq = kvm->mmu_notifier_seq;
1579 	smp_rmb();
1580 
1581 	/* See if can find translation in our partition scoped tables for L1 */
1582 	pte = __pte(0);
1583 	spin_lock(&kvm->mmu_lock);
1584 	pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1585 	if (!shift)
1586 		shift = PAGE_SHIFT;
1587 	if (pte_p)
1588 		pte = *pte_p;
1589 	spin_unlock(&kvm->mmu_lock);
1590 
1591 	if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1592 		/* No suitable pte found -> try to insert a mapping */
1593 		ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1594 					writing, kvm_ro, &pte, &level);
1595 		if (ret == -EAGAIN)
1596 			return RESUME_GUEST;
1597 		else if (ret)
1598 			return ret;
1599 		shift = kvmppc_radix_level_to_shift(level);
1600 	}
1601 	/* Align gfn to the start of the page */
1602 	gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1603 
1604 	/* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1605 
1606 	/* The permissions is the combination of the host and l1 guest ptes */
1607 	perm |= gpte.may_read ? 0UL : _PAGE_READ;
1608 	perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1609 	perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1610 	/* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1611 	perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1612 	perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1613 	pte = __pte(pte_val(pte) & ~perm);
1614 
1615 	/* What size pte can we insert? */
1616 	if (shift > l1_shift) {
1617 		u64 mask;
1618 		unsigned int actual_shift = PAGE_SHIFT;
1619 		if (PMD_SHIFT < l1_shift)
1620 			actual_shift = PMD_SHIFT;
1621 		mask = (1UL << shift) - (1UL << actual_shift);
1622 		pte = __pte(pte_val(pte) | (gpa & mask));
1623 		shift = actual_shift;
1624 	}
1625 	level = kvmppc_radix_shift_to_level(shift);
1626 	n_gpa &= ~((1UL << shift) - 1);
1627 
1628 	/* 4. Insert the pte into our shadow_pgtable */
1629 
1630 	n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1631 	if (!n_rmap)
1632 		return RESUME_GUEST; /* Let the guest try again */
1633 	n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1634 		(((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1635 	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1636 	ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1637 				mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1638 	kfree(n_rmap);
1639 	if (ret == -EAGAIN)
1640 		ret = RESUME_GUEST;	/* Let the guest try again */
1641 
1642 	return ret;
1643 
1644  inval:
1645 	kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1646 	return RESUME_GUEST;
1647 }
1648 
kvmhv_nested_page_fault(struct kvm_vcpu * vcpu)1649 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1650 {
1651 	struct kvm_nested_guest *gp = vcpu->arch.nested;
1652 	long int ret;
1653 
1654 	mutex_lock(&gp->tlb_lock);
1655 	ret = __kvmhv_nested_page_fault(vcpu, gp);
1656 	mutex_unlock(&gp->tlb_lock);
1657 	return ret;
1658 }
1659 
kvmhv_nested_next_lpid(struct kvm * kvm,int lpid)1660 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1661 {
1662 	int ret = -1;
1663 
1664 	spin_lock(&kvm->mmu_lock);
1665 	while (++lpid <= kvm->arch.max_nested_lpid) {
1666 		if (kvm->arch.nested_guests[lpid]) {
1667 			ret = lpid;
1668 			break;
1669 		}
1670 	}
1671 	spin_unlock(&kvm->mmu_lock);
1672 	return ret;
1673 }
1674