1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24 #include <linux/bug.h>
25 #include <linux/export.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/smp.h>
29 #include <linux/string.h>
30 #include <linux/cache.h>
31 #include <linux/pgtable.h>
32
33 #include <asm/cacheflush.h>
34 #include <asm/cpu-type.h>
35 #include <asm/mmu_context.h>
36 #include <asm/war.h>
37 #include <asm/uasm.h>
38 #include <asm/setup.h>
39 #include <asm/tlbex.h>
40
41 static int mips_xpa_disabled;
42
xpa_disable(char * s)43 static int __init xpa_disable(char *s)
44 {
45 mips_xpa_disabled = 1;
46
47 return 1;
48 }
49
50 __setup("noxpa", xpa_disable);
51
52 /*
53 * TLB load/store/modify handlers.
54 *
55 * Only the fastpath gets synthesized at runtime, the slowpath for
56 * do_page_fault remains normal asm.
57 */
58 extern void tlb_do_page_fault_0(void);
59 extern void tlb_do_page_fault_1(void);
60
61 struct work_registers {
62 int r1;
63 int r2;
64 int r3;
65 };
66
67 struct tlb_reg_save {
68 unsigned long a;
69 unsigned long b;
70 } ____cacheline_aligned_in_smp;
71
72 static struct tlb_reg_save handler_reg_save[NR_CPUS];
73
r45k_bvahwbug(void)74 static inline int r45k_bvahwbug(void)
75 {
76 /* XXX: We should probe for the presence of this bug, but we don't. */
77 return 0;
78 }
79
r4k_250MHZhwbug(void)80 static inline int r4k_250MHZhwbug(void)
81 {
82 /* XXX: We should probe for the presence of this bug, but we don't. */
83 return 0;
84 }
85
86 extern int sb1250_m3_workaround_needed(void);
87
bcm1250_m3_war(void)88 static inline int __maybe_unused bcm1250_m3_war(void)
89 {
90 if (IS_ENABLED(CONFIG_SB1_PASS_2_WORKAROUNDS))
91 return sb1250_m3_workaround_needed();
92 return 0;
93 }
94
r10000_llsc_war(void)95 static inline int __maybe_unused r10000_llsc_war(void)
96 {
97 return IS_ENABLED(CONFIG_WAR_R10000_LLSC);
98 }
99
use_bbit_insns(void)100 static int use_bbit_insns(void)
101 {
102 switch (current_cpu_type()) {
103 case CPU_CAVIUM_OCTEON:
104 case CPU_CAVIUM_OCTEON_PLUS:
105 case CPU_CAVIUM_OCTEON2:
106 case CPU_CAVIUM_OCTEON3:
107 return 1;
108 default:
109 return 0;
110 }
111 }
112
use_lwx_insns(void)113 static int use_lwx_insns(void)
114 {
115 switch (current_cpu_type()) {
116 case CPU_CAVIUM_OCTEON2:
117 case CPU_CAVIUM_OCTEON3:
118 return 1;
119 default:
120 return 0;
121 }
122 }
123 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
124 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
scratchpad_available(void)125 static bool scratchpad_available(void)
126 {
127 return true;
128 }
scratchpad_offset(int i)129 static int scratchpad_offset(int i)
130 {
131 /*
132 * CVMSEG starts at address -32768 and extends for
133 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
134 */
135 i += 1; /* Kernel use starts at the top and works down. */
136 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
137 }
138 #else
scratchpad_available(void)139 static bool scratchpad_available(void)
140 {
141 return false;
142 }
scratchpad_offset(int i)143 static int scratchpad_offset(int i)
144 {
145 BUG();
146 /* Really unreachable, but evidently some GCC want this. */
147 return 0;
148 }
149 #endif
150 /*
151 * Found by experiment: At least some revisions of the 4kc throw under
152 * some circumstances a machine check exception, triggered by invalid
153 * values in the index register. Delaying the tlbp instruction until
154 * after the next branch, plus adding an additional nop in front of
155 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
156 * why; it's not an issue caused by the core RTL.
157 *
158 */
m4kc_tlbp_war(void)159 static int m4kc_tlbp_war(void)
160 {
161 return current_cpu_type() == CPU_4KC;
162 }
163
164 /* Handle labels (which must be positive integers). */
165 enum label_id {
166 label_second_part = 1,
167 label_leave,
168 label_vmalloc,
169 label_vmalloc_done,
170 label_tlbw_hazard_0,
171 label_split = label_tlbw_hazard_0 + 8,
172 label_tlbl_goaround1,
173 label_tlbl_goaround2,
174 label_nopage_tlbl,
175 label_nopage_tlbs,
176 label_nopage_tlbm,
177 label_smp_pgtable_change,
178 label_r3000_write_probe_fail,
179 label_large_segbits_fault,
180 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
181 label_tlb_huge_update,
182 #endif
183 };
184
185 UASM_L_LA(_second_part)
186 UASM_L_LA(_leave)
187 UASM_L_LA(_vmalloc)
188 UASM_L_LA(_vmalloc_done)
189 /* _tlbw_hazard_x is handled differently. */
190 UASM_L_LA(_split)
191 UASM_L_LA(_tlbl_goaround1)
192 UASM_L_LA(_tlbl_goaround2)
193 UASM_L_LA(_nopage_tlbl)
194 UASM_L_LA(_nopage_tlbs)
195 UASM_L_LA(_nopage_tlbm)
196 UASM_L_LA(_smp_pgtable_change)
197 UASM_L_LA(_r3000_write_probe_fail)
198 UASM_L_LA(_large_segbits_fault)
199 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
200 UASM_L_LA(_tlb_huge_update)
201 #endif
202
203 static int hazard_instance;
204
uasm_bgezl_hazard(u32 ** p,struct uasm_reloc ** r,int instance)205 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
206 {
207 switch (instance) {
208 case 0 ... 7:
209 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
210 return;
211 default:
212 BUG();
213 }
214 }
215
uasm_bgezl_label(struct uasm_label ** l,u32 ** p,int instance)216 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
217 {
218 switch (instance) {
219 case 0 ... 7:
220 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
221 break;
222 default:
223 BUG();
224 }
225 }
226
227 /*
228 * pgtable bits are assigned dynamically depending on processor feature
229 * and statically based on kernel configuration. This spits out the actual
230 * values the kernel is using. Required to make sense from disassembled
231 * TLB exception handlers.
232 */
output_pgtable_bits_defines(void)233 static void output_pgtable_bits_defines(void)
234 {
235 #define pr_define(fmt, ...) \
236 pr_debug("#define " fmt, ##__VA_ARGS__)
237
238 pr_debug("#include <asm/asm.h>\n");
239 pr_debug("#include <asm/regdef.h>\n");
240 pr_debug("\n");
241
242 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
243 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
244 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
245 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
246 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
247 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
248 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
249 #endif
250 #ifdef _PAGE_NO_EXEC_SHIFT
251 if (cpu_has_rixi)
252 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
253 #endif
254 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
255 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
256 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
257 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
258 pr_debug("\n");
259 }
260
dump_handler(const char * symbol,const void * start,const void * end)261 static inline void dump_handler(const char *symbol, const void *start, const void *end)
262 {
263 unsigned int count = (end - start) / sizeof(u32);
264 const u32 *handler = start;
265 int i;
266
267 pr_debug("LEAF(%s)\n", symbol);
268
269 pr_debug("\t.set push\n");
270 pr_debug("\t.set noreorder\n");
271
272 for (i = 0; i < count; i++)
273 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
274
275 pr_debug("\t.set\tpop\n");
276
277 pr_debug("\tEND(%s)\n", symbol);
278 }
279
280 /* The only general purpose registers allowed in TLB handlers. */
281 #define K0 26
282 #define K1 27
283
284 /* Some CP0 registers */
285 #define C0_INDEX 0, 0
286 #define C0_ENTRYLO0 2, 0
287 #define C0_TCBIND 2, 2
288 #define C0_ENTRYLO1 3, 0
289 #define C0_CONTEXT 4, 0
290 #define C0_PAGEMASK 5, 0
291 #define C0_PWBASE 5, 5
292 #define C0_PWFIELD 5, 6
293 #define C0_PWSIZE 5, 7
294 #define C0_PWCTL 6, 6
295 #define C0_BADVADDR 8, 0
296 #define C0_PGD 9, 7
297 #define C0_ENTRYHI 10, 0
298 #define C0_EPC 14, 0
299 #define C0_XCONTEXT 20, 0
300
301 #ifdef CONFIG_64BIT
302 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
303 #else
304 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
305 #endif
306
307 /* The worst case length of the handler is around 18 instructions for
308 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
309 * Maximum space available is 32 instructions for R3000 and 64
310 * instructions for R4000.
311 *
312 * We deliberately chose a buffer size of 128, so we won't scribble
313 * over anything important on overflow before we panic.
314 */
315 static u32 tlb_handler[128];
316
317 /* simply assume worst case size for labels and relocs */
318 static struct uasm_label labels[128];
319 static struct uasm_reloc relocs[128];
320
321 static int check_for_high_segbits;
322 static bool fill_includes_sw_bits;
323
324 static unsigned int kscratch_used_mask;
325
c0_kscratch(void)326 static inline int __maybe_unused c0_kscratch(void)
327 {
328 switch (current_cpu_type()) {
329 case CPU_XLP:
330 case CPU_XLR:
331 return 22;
332 default:
333 return 31;
334 }
335 }
336
allocate_kscratch(void)337 static int allocate_kscratch(void)
338 {
339 int r;
340 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
341
342 r = ffs(a);
343
344 if (r == 0)
345 return -1;
346
347 r--; /* make it zero based */
348
349 kscratch_used_mask |= (1 << r);
350
351 return r;
352 }
353
354 static int scratch_reg;
355 int pgd_reg;
356 EXPORT_SYMBOL_GPL(pgd_reg);
357 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
358
build_get_work_registers(u32 ** p)359 static struct work_registers build_get_work_registers(u32 **p)
360 {
361 struct work_registers r;
362
363 if (scratch_reg >= 0) {
364 /* Save in CPU local C0_KScratch? */
365 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
366 r.r1 = K0;
367 r.r2 = K1;
368 r.r3 = 1;
369 return r;
370 }
371
372 if (num_possible_cpus() > 1) {
373 /* Get smp_processor_id */
374 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
375 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
376
377 /* handler_reg_save index in K0 */
378 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
379
380 UASM_i_LA(p, K1, (long)&handler_reg_save);
381 UASM_i_ADDU(p, K0, K0, K1);
382 } else {
383 UASM_i_LA(p, K0, (long)&handler_reg_save);
384 }
385 /* K0 now points to save area, save $1 and $2 */
386 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
387 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
388
389 r.r1 = K1;
390 r.r2 = 1;
391 r.r3 = 2;
392 return r;
393 }
394
build_restore_work_registers(u32 ** p)395 static void build_restore_work_registers(u32 **p)
396 {
397 if (scratch_reg >= 0) {
398 uasm_i_ehb(p);
399 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
400 return;
401 }
402 /* K0 already points to save area, restore $1 and $2 */
403 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
404 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
405 }
406
407 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
408
409 /*
410 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
411 * we cannot do r3000 under these circumstances.
412 *
413 * The R3000 TLB handler is simple.
414 */
build_r3000_tlb_refill_handler(void)415 static void build_r3000_tlb_refill_handler(void)
416 {
417 long pgdc = (long)pgd_current;
418 u32 *p;
419
420 memset(tlb_handler, 0, sizeof(tlb_handler));
421 p = tlb_handler;
422
423 uasm_i_mfc0(&p, K0, C0_BADVADDR);
424 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
425 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
426 uasm_i_srl(&p, K0, K0, 22); /* load delay */
427 uasm_i_sll(&p, K0, K0, 2);
428 uasm_i_addu(&p, K1, K1, K0);
429 uasm_i_mfc0(&p, K0, C0_CONTEXT);
430 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
431 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
432 uasm_i_addu(&p, K1, K1, K0);
433 uasm_i_lw(&p, K0, 0, K1);
434 uasm_i_nop(&p); /* load delay */
435 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
436 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
437 uasm_i_tlbwr(&p); /* cp0 delay */
438 uasm_i_jr(&p, K1);
439 uasm_i_rfe(&p); /* branch delay */
440
441 if (p > tlb_handler + 32)
442 panic("TLB refill handler space exceeded");
443
444 pr_debug("Wrote TLB refill handler (%u instructions).\n",
445 (unsigned int)(p - tlb_handler));
446
447 memcpy((void *)ebase, tlb_handler, 0x80);
448 local_flush_icache_range(ebase, ebase + 0x80);
449 dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
450 }
451 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
452
453 /*
454 * The R4000 TLB handler is much more complicated. We have two
455 * consecutive handler areas with 32 instructions space each.
456 * Since they aren't used at the same time, we can overflow in the
457 * other one.To keep things simple, we first assume linear space,
458 * then we relocate it to the final handler layout as needed.
459 */
460 static u32 final_handler[64];
461
462 /*
463 * Hazards
464 *
465 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
466 * 2. A timing hazard exists for the TLBP instruction.
467 *
468 * stalling_instruction
469 * TLBP
470 *
471 * The JTLB is being read for the TLBP throughout the stall generated by the
472 * previous instruction. This is not really correct as the stalling instruction
473 * can modify the address used to access the JTLB. The failure symptom is that
474 * the TLBP instruction will use an address created for the stalling instruction
475 * and not the address held in C0_ENHI and thus report the wrong results.
476 *
477 * The software work-around is to not allow the instruction preceding the TLBP
478 * to stall - make it an NOP or some other instruction guaranteed not to stall.
479 *
480 * Errata 2 will not be fixed. This errata is also on the R5000.
481 *
482 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
483 */
build_tlb_probe_entry(u32 ** p)484 static void __maybe_unused build_tlb_probe_entry(u32 **p)
485 {
486 switch (current_cpu_type()) {
487 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
488 case CPU_R4600:
489 case CPU_R4700:
490 case CPU_R5000:
491 case CPU_NEVADA:
492 uasm_i_nop(p);
493 uasm_i_tlbp(p);
494 break;
495
496 default:
497 uasm_i_tlbp(p);
498 break;
499 }
500 }
501
build_tlb_write_entry(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,enum tlb_write_entry wmode)502 void build_tlb_write_entry(u32 **p, struct uasm_label **l,
503 struct uasm_reloc **r,
504 enum tlb_write_entry wmode)
505 {
506 void(*tlbw)(u32 **) = NULL;
507
508 switch (wmode) {
509 case tlb_random: tlbw = uasm_i_tlbwr; break;
510 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
511 }
512
513 if (cpu_has_mips_r2_r6) {
514 if (cpu_has_mips_r2_exec_hazard)
515 uasm_i_ehb(p);
516 tlbw(p);
517 return;
518 }
519
520 switch (current_cpu_type()) {
521 case CPU_R4000PC:
522 case CPU_R4000SC:
523 case CPU_R4000MC:
524 case CPU_R4400PC:
525 case CPU_R4400SC:
526 case CPU_R4400MC:
527 /*
528 * This branch uses up a mtc0 hazard nop slot and saves
529 * two nops after the tlbw instruction.
530 */
531 uasm_bgezl_hazard(p, r, hazard_instance);
532 tlbw(p);
533 uasm_bgezl_label(l, p, hazard_instance);
534 hazard_instance++;
535 uasm_i_nop(p);
536 break;
537
538 case CPU_R4600:
539 case CPU_R4700:
540 uasm_i_nop(p);
541 tlbw(p);
542 uasm_i_nop(p);
543 break;
544
545 case CPU_R5000:
546 case CPU_NEVADA:
547 uasm_i_nop(p); /* QED specifies 2 nops hazard */
548 uasm_i_nop(p); /* QED specifies 2 nops hazard */
549 tlbw(p);
550 break;
551
552 case CPU_R4300:
553 case CPU_5KC:
554 case CPU_TX49XX:
555 case CPU_PR4450:
556 case CPU_XLR:
557 uasm_i_nop(p);
558 tlbw(p);
559 break;
560
561 case CPU_R10000:
562 case CPU_R12000:
563 case CPU_R14000:
564 case CPU_R16000:
565 case CPU_4KC:
566 case CPU_4KEC:
567 case CPU_M14KC:
568 case CPU_M14KEC:
569 case CPU_SB1:
570 case CPU_SB1A:
571 case CPU_4KSC:
572 case CPU_20KC:
573 case CPU_25KF:
574 case CPU_BMIPS32:
575 case CPU_BMIPS3300:
576 case CPU_BMIPS4350:
577 case CPU_BMIPS4380:
578 case CPU_BMIPS5000:
579 case CPU_LOONGSON2EF:
580 case CPU_LOONGSON64:
581 case CPU_R5500:
582 if (m4kc_tlbp_war())
583 uasm_i_nop(p);
584 fallthrough;
585 case CPU_ALCHEMY:
586 tlbw(p);
587 break;
588
589 case CPU_RM7000:
590 uasm_i_nop(p);
591 uasm_i_nop(p);
592 uasm_i_nop(p);
593 uasm_i_nop(p);
594 tlbw(p);
595 break;
596
597 case CPU_VR4111:
598 case CPU_VR4121:
599 case CPU_VR4122:
600 case CPU_VR4181:
601 case CPU_VR4181A:
602 uasm_i_nop(p);
603 uasm_i_nop(p);
604 tlbw(p);
605 uasm_i_nop(p);
606 uasm_i_nop(p);
607 break;
608
609 case CPU_VR4131:
610 case CPU_VR4133:
611 uasm_i_nop(p);
612 uasm_i_nop(p);
613 tlbw(p);
614 break;
615
616 case CPU_XBURST:
617 tlbw(p);
618 uasm_i_nop(p);
619 break;
620
621 default:
622 panic("No TLB refill handler yet (CPU type: %d)",
623 current_cpu_type());
624 break;
625 }
626 }
627 EXPORT_SYMBOL_GPL(build_tlb_write_entry);
628
build_convert_pte_to_entrylo(u32 ** p,unsigned int reg)629 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
630 unsigned int reg)
631 {
632 if (_PAGE_GLOBAL_SHIFT == 0) {
633 /* pte_t is already in EntryLo format */
634 return;
635 }
636
637 if (cpu_has_rixi && !!_PAGE_NO_EXEC) {
638 if (fill_includes_sw_bits) {
639 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
640 } else {
641 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
642 UASM_i_ROTR(p, reg, reg,
643 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
644 }
645 } else {
646 #ifdef CONFIG_PHYS_ADDR_T_64BIT
647 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
648 #else
649 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
650 #endif
651 }
652 }
653
654 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
655
build_restore_pagemask(u32 ** p,struct uasm_reloc ** r,unsigned int tmp,enum label_id lid,int restore_scratch)656 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
657 unsigned int tmp, enum label_id lid,
658 int restore_scratch)
659 {
660 if (restore_scratch) {
661 /*
662 * Ensure the MFC0 below observes the value written to the
663 * KScratch register by the prior MTC0.
664 */
665 if (scratch_reg >= 0)
666 uasm_i_ehb(p);
667
668 /* Reset default page size */
669 if (PM_DEFAULT_MASK >> 16) {
670 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
671 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
672 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
673 uasm_il_b(p, r, lid);
674 } else if (PM_DEFAULT_MASK) {
675 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
676 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
677 uasm_il_b(p, r, lid);
678 } else {
679 uasm_i_mtc0(p, 0, C0_PAGEMASK);
680 uasm_il_b(p, r, lid);
681 }
682 if (scratch_reg >= 0)
683 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
684 else
685 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
686 } else {
687 /* Reset default page size */
688 if (PM_DEFAULT_MASK >> 16) {
689 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
690 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
691 uasm_il_b(p, r, lid);
692 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
693 } else if (PM_DEFAULT_MASK) {
694 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
695 uasm_il_b(p, r, lid);
696 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
697 } else {
698 uasm_il_b(p, r, lid);
699 uasm_i_mtc0(p, 0, C0_PAGEMASK);
700 }
701 }
702 }
703
build_huge_tlb_write_entry(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,enum tlb_write_entry wmode,int restore_scratch)704 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
705 struct uasm_reloc **r,
706 unsigned int tmp,
707 enum tlb_write_entry wmode,
708 int restore_scratch)
709 {
710 /* Set huge page tlb entry size */
711 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
712 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
713 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
714
715 build_tlb_write_entry(p, l, r, wmode);
716
717 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
718 }
719
720 /*
721 * Check if Huge PTE is present, if so then jump to LABEL.
722 */
723 static void
build_is_huge_pte(u32 ** p,struct uasm_reloc ** r,unsigned int tmp,unsigned int pmd,int lid)724 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
725 unsigned int pmd, int lid)
726 {
727 UASM_i_LW(p, tmp, 0, pmd);
728 if (use_bbit_insns()) {
729 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
730 } else {
731 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
732 uasm_il_bnez(p, r, tmp, lid);
733 }
734 }
735
build_huge_update_entries(u32 ** p,unsigned int pte,unsigned int tmp)736 static void build_huge_update_entries(u32 **p, unsigned int pte,
737 unsigned int tmp)
738 {
739 int small_sequence;
740
741 /*
742 * A huge PTE describes an area the size of the
743 * configured huge page size. This is twice the
744 * of the large TLB entry size we intend to use.
745 * A TLB entry half the size of the configured
746 * huge page size is configured into entrylo0
747 * and entrylo1 to cover the contiguous huge PTE
748 * address space.
749 */
750 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
751
752 /* We can clobber tmp. It isn't used after this.*/
753 if (!small_sequence)
754 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
755
756 build_convert_pte_to_entrylo(p, pte);
757 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
758 /* convert to entrylo1 */
759 if (small_sequence)
760 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
761 else
762 UASM_i_ADDU(p, pte, pte, tmp);
763
764 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
765 }
766
build_huge_handler_tail(u32 ** p,struct uasm_reloc ** r,struct uasm_label ** l,unsigned int pte,unsigned int ptr,unsigned int flush)767 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
768 struct uasm_label **l,
769 unsigned int pte,
770 unsigned int ptr,
771 unsigned int flush)
772 {
773 #ifdef CONFIG_SMP
774 UASM_i_SC(p, pte, 0, ptr);
775 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
776 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
777 #else
778 UASM_i_SW(p, pte, 0, ptr);
779 #endif
780 if (cpu_has_ftlb && flush) {
781 BUG_ON(!cpu_has_tlbinv);
782
783 UASM_i_MFC0(p, ptr, C0_ENTRYHI);
784 uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
785 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
786 build_tlb_write_entry(p, l, r, tlb_indexed);
787
788 uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
789 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
790 build_huge_update_entries(p, pte, ptr);
791 build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
792
793 return;
794 }
795
796 build_huge_update_entries(p, pte, ptr);
797 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
798 }
799 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
800
801 #ifdef CONFIG_64BIT
802 /*
803 * TMP and PTR are scratch.
804 * TMP will be clobbered, PTR will hold the pmd entry.
805 */
build_get_pmde64(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,unsigned int ptr)806 void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
807 unsigned int tmp, unsigned int ptr)
808 {
809 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
810 long pgdc = (long)pgd_current;
811 #endif
812 /*
813 * The vmalloc handling is not in the hotpath.
814 */
815 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
816
817 if (check_for_high_segbits) {
818 /*
819 * The kernel currently implicitely assumes that the
820 * MIPS SEGBITS parameter for the processor is
821 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
822 * allocate virtual addresses outside the maximum
823 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
824 * that doesn't prevent user code from accessing the
825 * higher xuseg addresses. Here, we make sure that
826 * everything but the lower xuseg addresses goes down
827 * the module_alloc/vmalloc path.
828 */
829 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
830 uasm_il_bnez(p, r, ptr, label_vmalloc);
831 } else {
832 uasm_il_bltz(p, r, tmp, label_vmalloc);
833 }
834 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
835
836 if (pgd_reg != -1) {
837 /* pgd is in pgd_reg */
838 if (cpu_has_ldpte)
839 UASM_i_MFC0(p, ptr, C0_PWBASE);
840 else
841 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
842 } else {
843 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
844 /*
845 * &pgd << 11 stored in CONTEXT [23..63].
846 */
847 UASM_i_MFC0(p, ptr, C0_CONTEXT);
848
849 /* Clear lower 23 bits of context. */
850 uasm_i_dins(p, ptr, 0, 0, 23);
851
852 /* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
853 uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
854 uasm_i_drotr(p, ptr, ptr, 11);
855 #elif defined(CONFIG_SMP)
856 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
857 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
858 UASM_i_LA_mostly(p, tmp, pgdc);
859 uasm_i_daddu(p, ptr, ptr, tmp);
860 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
861 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
862 #else
863 UASM_i_LA_mostly(p, ptr, pgdc);
864 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
865 #endif
866 }
867
868 uasm_l_vmalloc_done(l, *p);
869
870 /* get pgd offset in bytes */
871 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
872
873 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
874 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
875 #ifndef __PAGETABLE_PUD_FOLDED
876 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
877 uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
878 uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
879 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
880 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
881 #endif
882 #ifndef __PAGETABLE_PMD_FOLDED
883 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
884 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
885 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
886 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
887 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
888 #endif
889 }
890 EXPORT_SYMBOL_GPL(build_get_pmde64);
891
892 /*
893 * BVADDR is the faulting address, PTR is scratch.
894 * PTR will hold the pgd for vmalloc.
895 */
896 static void
build_get_pgd_vmalloc64(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int bvaddr,unsigned int ptr,enum vmalloc64_mode mode)897 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
898 unsigned int bvaddr, unsigned int ptr,
899 enum vmalloc64_mode mode)
900 {
901 long swpd = (long)swapper_pg_dir;
902 int single_insn_swpd;
903 int did_vmalloc_branch = 0;
904
905 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
906
907 uasm_l_vmalloc(l, *p);
908
909 if (mode != not_refill && check_for_high_segbits) {
910 if (single_insn_swpd) {
911 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
912 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
913 did_vmalloc_branch = 1;
914 /* fall through */
915 } else {
916 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
917 }
918 }
919 if (!did_vmalloc_branch) {
920 if (single_insn_swpd) {
921 uasm_il_b(p, r, label_vmalloc_done);
922 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
923 } else {
924 UASM_i_LA_mostly(p, ptr, swpd);
925 uasm_il_b(p, r, label_vmalloc_done);
926 if (uasm_in_compat_space_p(swpd))
927 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
928 else
929 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
930 }
931 }
932 if (mode != not_refill && check_for_high_segbits) {
933 uasm_l_large_segbits_fault(l, *p);
934
935 if (mode == refill_scratch && scratch_reg >= 0)
936 uasm_i_ehb(p);
937
938 /*
939 * We get here if we are an xsseg address, or if we are
940 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
941 *
942 * Ignoring xsseg (assume disabled so would generate
943 * (address errors?), the only remaining possibility
944 * is the upper xuseg addresses. On processors with
945 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
946 * addresses would have taken an address error. We try
947 * to mimic that here by taking a load/istream page
948 * fault.
949 */
950 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
951 uasm_i_sync(p, 0);
952 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
953 uasm_i_jr(p, ptr);
954
955 if (mode == refill_scratch) {
956 if (scratch_reg >= 0)
957 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
958 else
959 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
960 } else {
961 uasm_i_nop(p);
962 }
963 }
964 }
965
966 #else /* !CONFIG_64BIT */
967
968 /*
969 * TMP and PTR are scratch.
970 * TMP will be clobbered, PTR will hold the pgd entry.
971 */
build_get_pgde32(u32 ** p,unsigned int tmp,unsigned int ptr)972 void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
973 {
974 if (pgd_reg != -1) {
975 /* pgd is in pgd_reg */
976 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
977 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
978 } else {
979 long pgdc = (long)pgd_current;
980
981 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
982 #ifdef CONFIG_SMP
983 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
984 UASM_i_LA_mostly(p, tmp, pgdc);
985 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
986 uasm_i_addu(p, ptr, tmp, ptr);
987 #else
988 UASM_i_LA_mostly(p, ptr, pgdc);
989 #endif
990 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
991 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
992 }
993 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
994 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
995 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
996 }
997 EXPORT_SYMBOL_GPL(build_get_pgde32);
998
999 #endif /* !CONFIG_64BIT */
1000
build_adjust_context(u32 ** p,unsigned int ctx)1001 static void build_adjust_context(u32 **p, unsigned int ctx)
1002 {
1003 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
1004 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1005
1006 switch (current_cpu_type()) {
1007 case CPU_VR41XX:
1008 case CPU_VR4111:
1009 case CPU_VR4121:
1010 case CPU_VR4122:
1011 case CPU_VR4131:
1012 case CPU_VR4181:
1013 case CPU_VR4181A:
1014 case CPU_VR4133:
1015 shift += 2;
1016 break;
1017
1018 default:
1019 break;
1020 }
1021
1022 if (shift)
1023 UASM_i_SRL(p, ctx, ctx, shift);
1024 uasm_i_andi(p, ctx, ctx, mask);
1025 }
1026
build_get_ptep(u32 ** p,unsigned int tmp,unsigned int ptr)1027 void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1028 {
1029 /*
1030 * Bug workaround for the Nevada. It seems as if under certain
1031 * circumstances the move from cp0_context might produce a
1032 * bogus result when the mfc0 instruction and its consumer are
1033 * in a different cacheline or a load instruction, probably any
1034 * memory reference, is between them.
1035 */
1036 switch (current_cpu_type()) {
1037 case CPU_NEVADA:
1038 UASM_i_LW(p, ptr, 0, ptr);
1039 GET_CONTEXT(p, tmp); /* get context reg */
1040 break;
1041
1042 default:
1043 GET_CONTEXT(p, tmp); /* get context reg */
1044 UASM_i_LW(p, ptr, 0, ptr);
1045 break;
1046 }
1047
1048 build_adjust_context(p, tmp);
1049 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1050 }
1051 EXPORT_SYMBOL_GPL(build_get_ptep);
1052
build_update_entries(u32 ** p,unsigned int tmp,unsigned int ptep)1053 void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1054 {
1055 int pte_off_even = 0;
1056 int pte_off_odd = sizeof(pte_t);
1057
1058 #if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
1059 /* The low 32 bits of EntryLo is stored in pte_high */
1060 pte_off_even += offsetof(pte_t, pte_high);
1061 pte_off_odd += offsetof(pte_t, pte_high);
1062 #endif
1063
1064 if (IS_ENABLED(CONFIG_XPA)) {
1065 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1066 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1067 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1068
1069 if (cpu_has_xpa && !mips_xpa_disabled) {
1070 uasm_i_lw(p, tmp, 0, ptep);
1071 uasm_i_ext(p, tmp, tmp, 0, 24);
1072 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1073 }
1074
1075 uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1076 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1077 UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1078
1079 if (cpu_has_xpa && !mips_xpa_disabled) {
1080 uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1081 uasm_i_ext(p, tmp, tmp, 0, 24);
1082 uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1083 }
1084 return;
1085 }
1086
1087 UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1088 UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1089 if (r45k_bvahwbug())
1090 build_tlb_probe_entry(p);
1091 build_convert_pte_to_entrylo(p, tmp);
1092 if (r4k_250MHZhwbug())
1093 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1094 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1095 build_convert_pte_to_entrylo(p, ptep);
1096 if (r45k_bvahwbug())
1097 uasm_i_mfc0(p, tmp, C0_INDEX);
1098 if (r4k_250MHZhwbug())
1099 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1100 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1101 }
1102 EXPORT_SYMBOL_GPL(build_update_entries);
1103
1104 struct mips_huge_tlb_info {
1105 int huge_pte;
1106 int restore_scratch;
1107 bool need_reload_pte;
1108 };
1109
1110 static struct mips_huge_tlb_info
build_fast_tlb_refill_handler(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,unsigned int ptr,int c0_scratch_reg)1111 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1112 struct uasm_reloc **r, unsigned int tmp,
1113 unsigned int ptr, int c0_scratch_reg)
1114 {
1115 struct mips_huge_tlb_info rv;
1116 unsigned int even, odd;
1117 int vmalloc_branch_delay_filled = 0;
1118 const int scratch = 1; /* Our extra working register */
1119
1120 rv.huge_pte = scratch;
1121 rv.restore_scratch = 0;
1122 rv.need_reload_pte = false;
1123
1124 if (check_for_high_segbits) {
1125 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1126
1127 if (pgd_reg != -1)
1128 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1129 else
1130 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1131
1132 if (c0_scratch_reg >= 0)
1133 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1134 else
1135 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1136
1137 uasm_i_dsrl_safe(p, scratch, tmp,
1138 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1139 uasm_il_bnez(p, r, scratch, label_vmalloc);
1140
1141 if (pgd_reg == -1) {
1142 vmalloc_branch_delay_filled = 1;
1143 /* Clear lower 23 bits of context. */
1144 uasm_i_dins(p, ptr, 0, 0, 23);
1145 }
1146 } else {
1147 if (pgd_reg != -1)
1148 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1149 else
1150 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1151
1152 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1153
1154 if (c0_scratch_reg >= 0)
1155 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1156 else
1157 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1158
1159 if (pgd_reg == -1)
1160 /* Clear lower 23 bits of context. */
1161 uasm_i_dins(p, ptr, 0, 0, 23);
1162
1163 uasm_il_bltz(p, r, tmp, label_vmalloc);
1164 }
1165
1166 if (pgd_reg == -1) {
1167 vmalloc_branch_delay_filled = 1;
1168 /* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
1169 uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
1170
1171 uasm_i_drotr(p, ptr, ptr, 11);
1172 }
1173
1174 #ifdef __PAGETABLE_PMD_FOLDED
1175 #define LOC_PTEP scratch
1176 #else
1177 #define LOC_PTEP ptr
1178 #endif
1179
1180 if (!vmalloc_branch_delay_filled)
1181 /* get pgd offset in bytes */
1182 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1183
1184 uasm_l_vmalloc_done(l, *p);
1185
1186 /*
1187 * tmp ptr
1188 * fall-through case = badvaddr *pgd_current
1189 * vmalloc case = badvaddr swapper_pg_dir
1190 */
1191
1192 if (vmalloc_branch_delay_filled)
1193 /* get pgd offset in bytes */
1194 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1195
1196 #ifdef __PAGETABLE_PMD_FOLDED
1197 GET_CONTEXT(p, tmp); /* get context reg */
1198 #endif
1199 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1200
1201 if (use_lwx_insns()) {
1202 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1203 } else {
1204 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1205 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1206 }
1207
1208 #ifndef __PAGETABLE_PUD_FOLDED
1209 /* get pud offset in bytes */
1210 uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1211 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1212
1213 if (use_lwx_insns()) {
1214 UASM_i_LWX(p, ptr, scratch, ptr);
1215 } else {
1216 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1217 UASM_i_LW(p, ptr, 0, ptr);
1218 }
1219 /* ptr contains a pointer to PMD entry */
1220 /* tmp contains the address */
1221 #endif
1222
1223 #ifndef __PAGETABLE_PMD_FOLDED
1224 /* get pmd offset in bytes */
1225 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1226 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1227 GET_CONTEXT(p, tmp); /* get context reg */
1228
1229 if (use_lwx_insns()) {
1230 UASM_i_LWX(p, scratch, scratch, ptr);
1231 } else {
1232 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1233 UASM_i_LW(p, scratch, 0, ptr);
1234 }
1235 #endif
1236 /* Adjust the context during the load latency. */
1237 build_adjust_context(p, tmp);
1238
1239 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1240 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1241 /*
1242 * The in the LWX case we don't want to do the load in the
1243 * delay slot. It cannot issue in the same cycle and may be
1244 * speculative and unneeded.
1245 */
1246 if (use_lwx_insns())
1247 uasm_i_nop(p);
1248 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1249
1250
1251 /* build_update_entries */
1252 if (use_lwx_insns()) {
1253 even = ptr;
1254 odd = tmp;
1255 UASM_i_LWX(p, even, scratch, tmp);
1256 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1257 UASM_i_LWX(p, odd, scratch, tmp);
1258 } else {
1259 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1260 even = tmp;
1261 odd = ptr;
1262 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1263 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1264 }
1265 if (cpu_has_rixi) {
1266 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1267 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1268 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1269 } else {
1270 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1271 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1272 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1273 }
1274 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1275
1276 if (c0_scratch_reg >= 0) {
1277 uasm_i_ehb(p);
1278 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1279 build_tlb_write_entry(p, l, r, tlb_random);
1280 uasm_l_leave(l, *p);
1281 rv.restore_scratch = 1;
1282 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1283 build_tlb_write_entry(p, l, r, tlb_random);
1284 uasm_l_leave(l, *p);
1285 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1286 } else {
1287 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1288 build_tlb_write_entry(p, l, r, tlb_random);
1289 uasm_l_leave(l, *p);
1290 rv.restore_scratch = 1;
1291 }
1292
1293 uasm_i_eret(p); /* return from trap */
1294
1295 return rv;
1296 }
1297
1298 /*
1299 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1300 * because EXL == 0. If we wrap, we can also use the 32 instruction
1301 * slots before the XTLB refill exception handler which belong to the
1302 * unused TLB refill exception.
1303 */
1304 #define MIPS64_REFILL_INSNS 32
1305
build_r4000_tlb_refill_handler(void)1306 static void build_r4000_tlb_refill_handler(void)
1307 {
1308 u32 *p = tlb_handler;
1309 struct uasm_label *l = labels;
1310 struct uasm_reloc *r = relocs;
1311 u32 *f;
1312 unsigned int final_len;
1313 struct mips_huge_tlb_info htlb_info __maybe_unused;
1314 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1315
1316 memset(tlb_handler, 0, sizeof(tlb_handler));
1317 memset(labels, 0, sizeof(labels));
1318 memset(relocs, 0, sizeof(relocs));
1319 memset(final_handler, 0, sizeof(final_handler));
1320
1321 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1322 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1323 scratch_reg);
1324 vmalloc_mode = refill_scratch;
1325 } else {
1326 htlb_info.huge_pte = K0;
1327 htlb_info.restore_scratch = 0;
1328 htlb_info.need_reload_pte = true;
1329 vmalloc_mode = refill_noscratch;
1330 /*
1331 * create the plain linear handler
1332 */
1333 if (bcm1250_m3_war()) {
1334 unsigned int segbits = 44;
1335
1336 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1337 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1338 uasm_i_xor(&p, K0, K0, K1);
1339 uasm_i_dsrl_safe(&p, K1, K0, 62);
1340 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1341 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1342 uasm_i_or(&p, K0, K0, K1);
1343 uasm_il_bnez(&p, &r, K0, label_leave);
1344 /* No need for uasm_i_nop */
1345 }
1346
1347 #ifdef CONFIG_64BIT
1348 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1349 #else
1350 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1351 #endif
1352
1353 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1354 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1355 #endif
1356
1357 build_get_ptep(&p, K0, K1);
1358 build_update_entries(&p, K0, K1);
1359 build_tlb_write_entry(&p, &l, &r, tlb_random);
1360 uasm_l_leave(&l, p);
1361 uasm_i_eret(&p); /* return from trap */
1362 }
1363 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1364 uasm_l_tlb_huge_update(&l, p);
1365 if (htlb_info.need_reload_pte)
1366 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1367 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1368 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1369 htlb_info.restore_scratch);
1370 #endif
1371
1372 #ifdef CONFIG_64BIT
1373 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1374 #endif
1375
1376 /*
1377 * Overflow check: For the 64bit handler, we need at least one
1378 * free instruction slot for the wrap-around branch. In worst
1379 * case, if the intended insertion point is a delay slot, we
1380 * need three, with the second nop'ed and the third being
1381 * unused.
1382 */
1383 switch (boot_cpu_type()) {
1384 default:
1385 if (sizeof(long) == 4) {
1386 fallthrough;
1387 case CPU_LOONGSON2EF:
1388 /* Loongson2 ebase is different than r4k, we have more space */
1389 if ((p - tlb_handler) > 64)
1390 panic("TLB refill handler space exceeded");
1391 /*
1392 * Now fold the handler in the TLB refill handler space.
1393 */
1394 f = final_handler;
1395 /* Simplest case, just copy the handler. */
1396 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1397 final_len = p - tlb_handler;
1398 break;
1399 } else {
1400 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1401 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1402 && uasm_insn_has_bdelay(relocs,
1403 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1404 panic("TLB refill handler space exceeded");
1405 /*
1406 * Now fold the handler in the TLB refill handler space.
1407 */
1408 f = final_handler + MIPS64_REFILL_INSNS;
1409 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1410 /* Just copy the handler. */
1411 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1412 final_len = p - tlb_handler;
1413 } else {
1414 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1415 const enum label_id ls = label_tlb_huge_update;
1416 #else
1417 const enum label_id ls = label_vmalloc;
1418 #endif
1419 u32 *split;
1420 int ov = 0;
1421 int i;
1422
1423 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1424 ;
1425 BUG_ON(i == ARRAY_SIZE(labels));
1426 split = labels[i].addr;
1427
1428 /*
1429 * See if we have overflown one way or the other.
1430 */
1431 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1432 split < p - MIPS64_REFILL_INSNS)
1433 ov = 1;
1434
1435 if (ov) {
1436 /*
1437 * Split two instructions before the end. One
1438 * for the branch and one for the instruction
1439 * in the delay slot.
1440 */
1441 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1442
1443 /*
1444 * If the branch would fall in a delay slot,
1445 * we must back up an additional instruction
1446 * so that it is no longer in a delay slot.
1447 */
1448 if (uasm_insn_has_bdelay(relocs, split - 1))
1449 split--;
1450 }
1451 /* Copy first part of the handler. */
1452 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1453 f += split - tlb_handler;
1454
1455 if (ov) {
1456 /* Insert branch. */
1457 uasm_l_split(&l, final_handler);
1458 uasm_il_b(&f, &r, label_split);
1459 if (uasm_insn_has_bdelay(relocs, split))
1460 uasm_i_nop(&f);
1461 else {
1462 uasm_copy_handler(relocs, labels,
1463 split, split + 1, f);
1464 uasm_move_labels(labels, f, f + 1, -1);
1465 f++;
1466 split++;
1467 }
1468 }
1469
1470 /* Copy the rest of the handler. */
1471 uasm_copy_handler(relocs, labels, split, p, final_handler);
1472 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1473 (p - split);
1474 }
1475 }
1476 break;
1477 }
1478
1479 uasm_resolve_relocs(relocs, labels);
1480 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1481 final_len);
1482
1483 memcpy((void *)ebase, final_handler, 0x100);
1484 local_flush_icache_range(ebase, ebase + 0x100);
1485 dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1486 }
1487
setup_pw(void)1488 static void setup_pw(void)
1489 {
1490 unsigned int pwctl;
1491 unsigned long pgd_i, pgd_w;
1492 #ifndef __PAGETABLE_PMD_FOLDED
1493 unsigned long pmd_i, pmd_w;
1494 #endif
1495 unsigned long pt_i, pt_w;
1496 unsigned long pte_i, pte_w;
1497 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1498 unsigned long psn;
1499
1500 psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */
1501 #endif
1502 pgd_i = PGDIR_SHIFT; /* 1st level PGD */
1503 #ifndef __PAGETABLE_PMD_FOLDED
1504 pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_ORDER;
1505
1506 pmd_i = PMD_SHIFT; /* 2nd level PMD */
1507 pmd_w = PMD_SHIFT - PAGE_SHIFT;
1508 #else
1509 pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_ORDER;
1510 #endif
1511
1512 pt_i = PAGE_SHIFT; /* 3rd level PTE */
1513 pt_w = PAGE_SHIFT - 3;
1514
1515 pte_i = ilog2(_PAGE_GLOBAL);
1516 pte_w = 0;
1517 pwctl = 1 << 30; /* Set PWDirExt */
1518
1519 #ifndef __PAGETABLE_PMD_FOLDED
1520 write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1521 write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1522 #else
1523 write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1524 write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1525 #endif
1526
1527 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1528 pwctl |= (1 << 6 | psn);
1529 #endif
1530 write_c0_pwctl(pwctl);
1531 write_c0_kpgd((long)swapper_pg_dir);
1532 kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1533 }
1534
build_loongson3_tlb_refill_handler(void)1535 static void build_loongson3_tlb_refill_handler(void)
1536 {
1537 u32 *p = tlb_handler;
1538 struct uasm_label *l = labels;
1539 struct uasm_reloc *r = relocs;
1540
1541 memset(labels, 0, sizeof(labels));
1542 memset(relocs, 0, sizeof(relocs));
1543 memset(tlb_handler, 0, sizeof(tlb_handler));
1544
1545 if (check_for_high_segbits) {
1546 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1547 uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1548 uasm_il_beqz(&p, &r, K1, label_vmalloc);
1549 uasm_i_nop(&p);
1550
1551 uasm_il_bgez(&p, &r, K0, label_large_segbits_fault);
1552 uasm_i_nop(&p);
1553 uasm_l_vmalloc(&l, p);
1554 }
1555
1556 uasm_i_dmfc0(&p, K1, C0_PGD);
1557
1558 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */
1559 #ifndef __PAGETABLE_PMD_FOLDED
1560 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */
1561 #endif
1562 uasm_i_ldpte(&p, K1, 0); /* even */
1563 uasm_i_ldpte(&p, K1, 1); /* odd */
1564 uasm_i_tlbwr(&p);
1565
1566 /* restore page mask */
1567 if (PM_DEFAULT_MASK >> 16) {
1568 uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16);
1569 uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff);
1570 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1571 } else if (PM_DEFAULT_MASK) {
1572 uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK);
1573 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1574 } else {
1575 uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1576 }
1577
1578 uasm_i_eret(&p);
1579
1580 if (check_for_high_segbits) {
1581 uasm_l_large_segbits_fault(&l, p);
1582 UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0);
1583 uasm_i_jr(&p, K1);
1584 uasm_i_nop(&p);
1585 }
1586
1587 uasm_resolve_relocs(relocs, labels);
1588 memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1589 local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1590 dump_handler("loongson3_tlb_refill",
1591 (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1592 }
1593
build_setup_pgd(void)1594 static void build_setup_pgd(void)
1595 {
1596 const int a0 = 4;
1597 const int __maybe_unused a1 = 5;
1598 const int __maybe_unused a2 = 6;
1599 u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1600 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1601 long pgdc = (long)pgd_current;
1602 #endif
1603
1604 memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1605 memset(labels, 0, sizeof(labels));
1606 memset(relocs, 0, sizeof(relocs));
1607 pgd_reg = allocate_kscratch();
1608 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1609 if (pgd_reg == -1) {
1610 struct uasm_label *l = labels;
1611 struct uasm_reloc *r = relocs;
1612
1613 /* PGD << 11 in c0_Context */
1614 /*
1615 * If it is a ckseg0 address, convert to a physical
1616 * address. Shifting right by 29 and adding 4 will
1617 * result in zero for these addresses.
1618 *
1619 */
1620 UASM_i_SRA(&p, a1, a0, 29);
1621 UASM_i_ADDIU(&p, a1, a1, 4);
1622 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1623 uasm_i_nop(&p);
1624 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1625 uasm_l_tlbl_goaround1(&l, p);
1626 UASM_i_SLL(&p, a0, a0, 11);
1627 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1628 uasm_i_jr(&p, 31);
1629 uasm_i_ehb(&p);
1630 } else {
1631 /* PGD in c0_KScratch */
1632 if (cpu_has_ldpte)
1633 UASM_i_MTC0(&p, a0, C0_PWBASE);
1634 else
1635 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1636 uasm_i_jr(&p, 31);
1637 uasm_i_ehb(&p);
1638 }
1639 #else
1640 #ifdef CONFIG_SMP
1641 /* Save PGD to pgd_current[smp_processor_id()] */
1642 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1643 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1644 UASM_i_LA_mostly(&p, a2, pgdc);
1645 UASM_i_ADDU(&p, a2, a2, a1);
1646 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1647 #else
1648 UASM_i_LA_mostly(&p, a2, pgdc);
1649 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1650 #endif /* SMP */
1651
1652 /* if pgd_reg is allocated, save PGD also to scratch register */
1653 if (pgd_reg != -1) {
1654 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1655 uasm_i_jr(&p, 31);
1656 uasm_i_ehb(&p);
1657 } else {
1658 uasm_i_jr(&p, 31);
1659 uasm_i_nop(&p);
1660 }
1661 #endif
1662 if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1663 panic("tlbmiss_handler_setup_pgd space exceeded");
1664
1665 uasm_resolve_relocs(relocs, labels);
1666 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1667 (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1668
1669 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1670 tlbmiss_handler_setup_pgd_end);
1671 }
1672
1673 static void
iPTE_LW(u32 ** p,unsigned int pte,unsigned int ptr)1674 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1675 {
1676 #ifdef CONFIG_SMP
1677 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1678 uasm_i_sync(p, 0);
1679 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1680 if (cpu_has_64bits)
1681 uasm_i_lld(p, pte, 0, ptr);
1682 else
1683 # endif
1684 UASM_i_LL(p, pte, 0, ptr);
1685 #else
1686 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1687 if (cpu_has_64bits)
1688 uasm_i_ld(p, pte, 0, ptr);
1689 else
1690 # endif
1691 UASM_i_LW(p, pte, 0, ptr);
1692 #endif
1693 }
1694
1695 static void
iPTE_SW(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,unsigned int mode,unsigned int scratch)1696 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1697 unsigned int mode, unsigned int scratch)
1698 {
1699 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1700 unsigned int swmode = mode & ~hwmode;
1701
1702 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1703 uasm_i_lui(p, scratch, swmode >> 16);
1704 uasm_i_or(p, pte, pte, scratch);
1705 BUG_ON(swmode & 0xffff);
1706 } else {
1707 uasm_i_ori(p, pte, pte, mode);
1708 }
1709
1710 #ifdef CONFIG_SMP
1711 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1712 if (cpu_has_64bits)
1713 uasm_i_scd(p, pte, 0, ptr);
1714 else
1715 # endif
1716 UASM_i_SC(p, pte, 0, ptr);
1717
1718 if (r10000_llsc_war())
1719 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1720 else
1721 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1722
1723 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1724 if (!cpu_has_64bits) {
1725 /* no uasm_i_nop needed */
1726 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1727 uasm_i_ori(p, pte, pte, hwmode);
1728 BUG_ON(hwmode & ~0xffff);
1729 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1730 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1731 /* no uasm_i_nop needed */
1732 uasm_i_lw(p, pte, 0, ptr);
1733 } else
1734 uasm_i_nop(p);
1735 # else
1736 uasm_i_nop(p);
1737 # endif
1738 #else
1739 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1740 if (cpu_has_64bits)
1741 uasm_i_sd(p, pte, 0, ptr);
1742 else
1743 # endif
1744 UASM_i_SW(p, pte, 0, ptr);
1745
1746 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1747 if (!cpu_has_64bits) {
1748 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1749 uasm_i_ori(p, pte, pte, hwmode);
1750 BUG_ON(hwmode & ~0xffff);
1751 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1752 uasm_i_lw(p, pte, 0, ptr);
1753 }
1754 # endif
1755 #endif
1756 }
1757
1758 /*
1759 * Check if PTE is present, if not then jump to LABEL. PTR points to
1760 * the page table where this PTE is located, PTE will be re-loaded
1761 * with it's original value.
1762 */
1763 static void
build_pte_present(u32 ** p,struct uasm_reloc ** r,int pte,int ptr,int scratch,enum label_id lid)1764 build_pte_present(u32 **p, struct uasm_reloc **r,
1765 int pte, int ptr, int scratch, enum label_id lid)
1766 {
1767 int t = scratch >= 0 ? scratch : pte;
1768 int cur = pte;
1769
1770 if (cpu_has_rixi) {
1771 if (use_bbit_insns()) {
1772 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1773 uasm_i_nop(p);
1774 } else {
1775 if (_PAGE_PRESENT_SHIFT) {
1776 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1777 cur = t;
1778 }
1779 uasm_i_andi(p, t, cur, 1);
1780 uasm_il_beqz(p, r, t, lid);
1781 if (pte == t)
1782 /* You lose the SMP race :-(*/
1783 iPTE_LW(p, pte, ptr);
1784 }
1785 } else {
1786 if (_PAGE_PRESENT_SHIFT) {
1787 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1788 cur = t;
1789 }
1790 uasm_i_andi(p, t, cur,
1791 (_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1792 uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1793 uasm_il_bnez(p, r, t, lid);
1794 if (pte == t)
1795 /* You lose the SMP race :-(*/
1796 iPTE_LW(p, pte, ptr);
1797 }
1798 }
1799
1800 /* Make PTE valid, store result in PTR. */
1801 static void
build_make_valid(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,unsigned int scratch)1802 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1803 unsigned int ptr, unsigned int scratch)
1804 {
1805 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1806
1807 iPTE_SW(p, r, pte, ptr, mode, scratch);
1808 }
1809
1810 /*
1811 * Check if PTE can be written to, if not branch to LABEL. Regardless
1812 * restore PTE with value from PTR when done.
1813 */
1814 static void
build_pte_writable(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,int scratch,enum label_id lid)1815 build_pte_writable(u32 **p, struct uasm_reloc **r,
1816 unsigned int pte, unsigned int ptr, int scratch,
1817 enum label_id lid)
1818 {
1819 int t = scratch >= 0 ? scratch : pte;
1820 int cur = pte;
1821
1822 if (_PAGE_PRESENT_SHIFT) {
1823 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1824 cur = t;
1825 }
1826 uasm_i_andi(p, t, cur,
1827 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1828 uasm_i_xori(p, t, t,
1829 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1830 uasm_il_bnez(p, r, t, lid);
1831 if (pte == t)
1832 /* You lose the SMP race :-(*/
1833 iPTE_LW(p, pte, ptr);
1834 else
1835 uasm_i_nop(p);
1836 }
1837
1838 /* Make PTE writable, update software status bits as well, then store
1839 * at PTR.
1840 */
1841 static void
build_make_write(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,unsigned int scratch)1842 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1843 unsigned int ptr, unsigned int scratch)
1844 {
1845 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1846 | _PAGE_DIRTY);
1847
1848 iPTE_SW(p, r, pte, ptr, mode, scratch);
1849 }
1850
1851 /*
1852 * Check if PTE can be modified, if not branch to LABEL. Regardless
1853 * restore PTE with value from PTR when done.
1854 */
1855 static void
build_pte_modifiable(u32 ** p,struct uasm_reloc ** r,unsigned int pte,unsigned int ptr,int scratch,enum label_id lid)1856 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1857 unsigned int pte, unsigned int ptr, int scratch,
1858 enum label_id lid)
1859 {
1860 if (use_bbit_insns()) {
1861 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1862 uasm_i_nop(p);
1863 } else {
1864 int t = scratch >= 0 ? scratch : pte;
1865 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1866 uasm_i_andi(p, t, t, 1);
1867 uasm_il_beqz(p, r, t, lid);
1868 if (pte == t)
1869 /* You lose the SMP race :-(*/
1870 iPTE_LW(p, pte, ptr);
1871 }
1872 }
1873
1874 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1875
1876
1877 /*
1878 * R3000 style TLB load/store/modify handlers.
1879 */
1880
1881 /*
1882 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1883 * Then it returns.
1884 */
1885 static void
build_r3000_pte_reload_tlbwi(u32 ** p,unsigned int pte,unsigned int tmp)1886 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1887 {
1888 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1889 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1890 uasm_i_tlbwi(p);
1891 uasm_i_jr(p, tmp);
1892 uasm_i_rfe(p); /* branch delay */
1893 }
1894
1895 /*
1896 * This places the pte into ENTRYLO0 and writes it with tlbwi
1897 * or tlbwr as appropriate. This is because the index register
1898 * may have the probe fail bit set as a result of a trap on a
1899 * kseg2 access, i.e. without refill. Then it returns.
1900 */
1901 static void
build_r3000_tlb_reload_write(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int pte,unsigned int tmp)1902 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1903 struct uasm_reloc **r, unsigned int pte,
1904 unsigned int tmp)
1905 {
1906 uasm_i_mfc0(p, tmp, C0_INDEX);
1907 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1908 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1909 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1910 uasm_i_tlbwi(p); /* cp0 delay */
1911 uasm_i_jr(p, tmp);
1912 uasm_i_rfe(p); /* branch delay */
1913 uasm_l_r3000_write_probe_fail(l, *p);
1914 uasm_i_tlbwr(p); /* cp0 delay */
1915 uasm_i_jr(p, tmp);
1916 uasm_i_rfe(p); /* branch delay */
1917 }
1918
1919 static void
build_r3000_tlbchange_handler_head(u32 ** p,unsigned int pte,unsigned int ptr)1920 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1921 unsigned int ptr)
1922 {
1923 long pgdc = (long)pgd_current;
1924
1925 uasm_i_mfc0(p, pte, C0_BADVADDR);
1926 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1927 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1928 uasm_i_srl(p, pte, pte, 22); /* load delay */
1929 uasm_i_sll(p, pte, pte, 2);
1930 uasm_i_addu(p, ptr, ptr, pte);
1931 uasm_i_mfc0(p, pte, C0_CONTEXT);
1932 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1933 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1934 uasm_i_addu(p, ptr, ptr, pte);
1935 uasm_i_lw(p, pte, 0, ptr);
1936 uasm_i_tlbp(p); /* load delay */
1937 }
1938
build_r3000_tlb_load_handler(void)1939 static void build_r3000_tlb_load_handler(void)
1940 {
1941 u32 *p = (u32 *)handle_tlbl;
1942 struct uasm_label *l = labels;
1943 struct uasm_reloc *r = relocs;
1944
1945 memset(p, 0, handle_tlbl_end - (char *)p);
1946 memset(labels, 0, sizeof(labels));
1947 memset(relocs, 0, sizeof(relocs));
1948
1949 build_r3000_tlbchange_handler_head(&p, K0, K1);
1950 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1951 uasm_i_nop(&p); /* load delay */
1952 build_make_valid(&p, &r, K0, K1, -1);
1953 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1954
1955 uasm_l_nopage_tlbl(&l, p);
1956 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1957 uasm_i_nop(&p);
1958
1959 if (p >= (u32 *)handle_tlbl_end)
1960 panic("TLB load handler fastpath space exceeded");
1961
1962 uasm_resolve_relocs(relocs, labels);
1963 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1964 (unsigned int)(p - (u32 *)handle_tlbl));
1965
1966 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1967 }
1968
build_r3000_tlb_store_handler(void)1969 static void build_r3000_tlb_store_handler(void)
1970 {
1971 u32 *p = (u32 *)handle_tlbs;
1972 struct uasm_label *l = labels;
1973 struct uasm_reloc *r = relocs;
1974
1975 memset(p, 0, handle_tlbs_end - (char *)p);
1976 memset(labels, 0, sizeof(labels));
1977 memset(relocs, 0, sizeof(relocs));
1978
1979 build_r3000_tlbchange_handler_head(&p, K0, K1);
1980 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1981 uasm_i_nop(&p); /* load delay */
1982 build_make_write(&p, &r, K0, K1, -1);
1983 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1984
1985 uasm_l_nopage_tlbs(&l, p);
1986 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1987 uasm_i_nop(&p);
1988
1989 if (p >= (u32 *)handle_tlbs_end)
1990 panic("TLB store handler fastpath space exceeded");
1991
1992 uasm_resolve_relocs(relocs, labels);
1993 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1994 (unsigned int)(p - (u32 *)handle_tlbs));
1995
1996 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1997 }
1998
build_r3000_tlb_modify_handler(void)1999 static void build_r3000_tlb_modify_handler(void)
2000 {
2001 u32 *p = (u32 *)handle_tlbm;
2002 struct uasm_label *l = labels;
2003 struct uasm_reloc *r = relocs;
2004
2005 memset(p, 0, handle_tlbm_end - (char *)p);
2006 memset(labels, 0, sizeof(labels));
2007 memset(relocs, 0, sizeof(relocs));
2008
2009 build_r3000_tlbchange_handler_head(&p, K0, K1);
2010 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
2011 uasm_i_nop(&p); /* load delay */
2012 build_make_write(&p, &r, K0, K1, -1);
2013 build_r3000_pte_reload_tlbwi(&p, K0, K1);
2014
2015 uasm_l_nopage_tlbm(&l, p);
2016 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2017 uasm_i_nop(&p);
2018
2019 if (p >= (u32 *)handle_tlbm_end)
2020 panic("TLB modify handler fastpath space exceeded");
2021
2022 uasm_resolve_relocs(relocs, labels);
2023 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2024 (unsigned int)(p - (u32 *)handle_tlbm));
2025
2026 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
2027 }
2028 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
2029
cpu_has_tlbex_tlbp_race(void)2030 static bool cpu_has_tlbex_tlbp_race(void)
2031 {
2032 /*
2033 * When a Hardware Table Walker is running it can replace TLB entries
2034 * at any time, leading to a race between it & the CPU.
2035 */
2036 if (cpu_has_htw)
2037 return true;
2038
2039 /*
2040 * If the CPU shares FTLB RAM with its siblings then our entry may be
2041 * replaced at any time by a sibling performing a write to the FTLB.
2042 */
2043 if (cpu_has_shared_ftlb_ram)
2044 return true;
2045
2046 /* In all other cases there ought to be no race condition to handle */
2047 return false;
2048 }
2049
2050 /*
2051 * R4000 style TLB load/store/modify handlers.
2052 */
2053 static struct work_registers
build_r4000_tlbchange_handler_head(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r)2054 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
2055 struct uasm_reloc **r)
2056 {
2057 struct work_registers wr = build_get_work_registers(p);
2058
2059 #ifdef CONFIG_64BIT
2060 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2061 #else
2062 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2063 #endif
2064
2065 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2066 /*
2067 * For huge tlb entries, pmd doesn't contain an address but
2068 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2069 * see if we need to jump to huge tlb processing.
2070 */
2071 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2072 #endif
2073
2074 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2075 UASM_i_LW(p, wr.r2, 0, wr.r2);
2076 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
2077 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2078 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2079
2080 #ifdef CONFIG_SMP
2081 uasm_l_smp_pgtable_change(l, *p);
2082 #endif
2083 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2084 if (!m4kc_tlbp_war()) {
2085 build_tlb_probe_entry(p);
2086 if (cpu_has_tlbex_tlbp_race()) {
2087 /* race condition happens, leaving */
2088 uasm_i_ehb(p);
2089 uasm_i_mfc0(p, wr.r3, C0_INDEX);
2090 uasm_il_bltz(p, r, wr.r3, label_leave);
2091 uasm_i_nop(p);
2092 }
2093 }
2094 return wr;
2095 }
2096
2097 static void
build_r4000_tlbchange_handler_tail(u32 ** p,struct uasm_label ** l,struct uasm_reloc ** r,unsigned int tmp,unsigned int ptr)2098 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2099 struct uasm_reloc **r, unsigned int tmp,
2100 unsigned int ptr)
2101 {
2102 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2103 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2104 build_update_entries(p, tmp, ptr);
2105 build_tlb_write_entry(p, l, r, tlb_indexed);
2106 uasm_l_leave(l, *p);
2107 build_restore_work_registers(p);
2108 uasm_i_eret(p); /* return from trap */
2109
2110 #ifdef CONFIG_64BIT
2111 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2112 #endif
2113 }
2114
build_r4000_tlb_load_handler(void)2115 static void build_r4000_tlb_load_handler(void)
2116 {
2117 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2118 struct uasm_label *l = labels;
2119 struct uasm_reloc *r = relocs;
2120 struct work_registers wr;
2121
2122 memset(p, 0, handle_tlbl_end - (char *)p);
2123 memset(labels, 0, sizeof(labels));
2124 memset(relocs, 0, sizeof(relocs));
2125
2126 if (bcm1250_m3_war()) {
2127 unsigned int segbits = 44;
2128
2129 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
2130 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
2131 uasm_i_xor(&p, K0, K0, K1);
2132 uasm_i_dsrl_safe(&p, K1, K0, 62);
2133 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
2134 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
2135 uasm_i_or(&p, K0, K0, K1);
2136 uasm_il_bnez(&p, &r, K0, label_leave);
2137 /* No need for uasm_i_nop */
2138 }
2139
2140 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2141 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2142 if (m4kc_tlbp_war())
2143 build_tlb_probe_entry(&p);
2144
2145 if (cpu_has_rixi && !cpu_has_rixiex) {
2146 /*
2147 * If the page is not _PAGE_VALID, RI or XI could not
2148 * have triggered it. Skip the expensive test..
2149 */
2150 if (use_bbit_insns()) {
2151 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2152 label_tlbl_goaround1);
2153 } else {
2154 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2155 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2156 }
2157 uasm_i_nop(&p);
2158
2159 /*
2160 * Warn if something may race with us & replace the TLB entry
2161 * before we read it here. Everything with such races should
2162 * also have dedicated RiXi exception handlers, so this
2163 * shouldn't be hit.
2164 */
2165 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2166
2167 uasm_i_tlbr(&p);
2168
2169 switch (current_cpu_type()) {
2170 default:
2171 if (cpu_has_mips_r2_exec_hazard) {
2172 uasm_i_ehb(&p);
2173 fallthrough;
2174
2175 case CPU_CAVIUM_OCTEON:
2176 case CPU_CAVIUM_OCTEON_PLUS:
2177 case CPU_CAVIUM_OCTEON2:
2178 break;
2179 }
2180 }
2181
2182 /* Examine entrylo 0 or 1 based on ptr. */
2183 if (use_bbit_insns()) {
2184 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2185 } else {
2186 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2187 uasm_i_beqz(&p, wr.r3, 8);
2188 }
2189 /* load it in the delay slot*/
2190 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2191 /* load it if ptr is odd */
2192 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2193 /*
2194 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2195 * XI must have triggered it.
2196 */
2197 if (use_bbit_insns()) {
2198 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2199 uasm_i_nop(&p);
2200 uasm_l_tlbl_goaround1(&l, p);
2201 } else {
2202 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2203 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2204 uasm_i_nop(&p);
2205 }
2206 uasm_l_tlbl_goaround1(&l, p);
2207 }
2208 build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2209 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2210
2211 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2212 /*
2213 * This is the entry point when build_r4000_tlbchange_handler_head
2214 * spots a huge page.
2215 */
2216 uasm_l_tlb_huge_update(&l, p);
2217 iPTE_LW(&p, wr.r1, wr.r2);
2218 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2219 build_tlb_probe_entry(&p);
2220
2221 if (cpu_has_rixi && !cpu_has_rixiex) {
2222 /*
2223 * If the page is not _PAGE_VALID, RI or XI could not
2224 * have triggered it. Skip the expensive test..
2225 */
2226 if (use_bbit_insns()) {
2227 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2228 label_tlbl_goaround2);
2229 } else {
2230 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2231 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2232 }
2233 uasm_i_nop(&p);
2234
2235 /*
2236 * Warn if something may race with us & replace the TLB entry
2237 * before we read it here. Everything with such races should
2238 * also have dedicated RiXi exception handlers, so this
2239 * shouldn't be hit.
2240 */
2241 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2242
2243 uasm_i_tlbr(&p);
2244
2245 switch (current_cpu_type()) {
2246 default:
2247 if (cpu_has_mips_r2_exec_hazard) {
2248 uasm_i_ehb(&p);
2249
2250 case CPU_CAVIUM_OCTEON:
2251 case CPU_CAVIUM_OCTEON_PLUS:
2252 case CPU_CAVIUM_OCTEON2:
2253 break;
2254 }
2255 }
2256
2257 /* Examine entrylo 0 or 1 based on ptr. */
2258 if (use_bbit_insns()) {
2259 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2260 } else {
2261 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2262 uasm_i_beqz(&p, wr.r3, 8);
2263 }
2264 /* load it in the delay slot*/
2265 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2266 /* load it if ptr is odd */
2267 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2268 /*
2269 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2270 * XI must have triggered it.
2271 */
2272 if (use_bbit_insns()) {
2273 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2274 } else {
2275 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2276 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2277 }
2278 if (PM_DEFAULT_MASK == 0)
2279 uasm_i_nop(&p);
2280 /*
2281 * We clobbered C0_PAGEMASK, restore it. On the other branch
2282 * it is restored in build_huge_tlb_write_entry.
2283 */
2284 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2285
2286 uasm_l_tlbl_goaround2(&l, p);
2287 }
2288 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2289 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2290 #endif
2291
2292 uasm_l_nopage_tlbl(&l, p);
2293 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2294 uasm_i_sync(&p, 0);
2295 build_restore_work_registers(&p);
2296 #ifdef CONFIG_CPU_MICROMIPS
2297 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2298 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2299 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2300 uasm_i_jr(&p, K0);
2301 } else
2302 #endif
2303 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2304 uasm_i_nop(&p);
2305
2306 if (p >= (u32 *)handle_tlbl_end)
2307 panic("TLB load handler fastpath space exceeded");
2308
2309 uasm_resolve_relocs(relocs, labels);
2310 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2311 (unsigned int)(p - (u32 *)handle_tlbl));
2312
2313 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2314 }
2315
build_r4000_tlb_store_handler(void)2316 static void build_r4000_tlb_store_handler(void)
2317 {
2318 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2319 struct uasm_label *l = labels;
2320 struct uasm_reloc *r = relocs;
2321 struct work_registers wr;
2322
2323 memset(p, 0, handle_tlbs_end - (char *)p);
2324 memset(labels, 0, sizeof(labels));
2325 memset(relocs, 0, sizeof(relocs));
2326
2327 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2328 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2329 if (m4kc_tlbp_war())
2330 build_tlb_probe_entry(&p);
2331 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2332 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2333
2334 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2335 /*
2336 * This is the entry point when
2337 * build_r4000_tlbchange_handler_head spots a huge page.
2338 */
2339 uasm_l_tlb_huge_update(&l, p);
2340 iPTE_LW(&p, wr.r1, wr.r2);
2341 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2342 build_tlb_probe_entry(&p);
2343 uasm_i_ori(&p, wr.r1, wr.r1,
2344 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2345 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2346 #endif
2347
2348 uasm_l_nopage_tlbs(&l, p);
2349 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2350 uasm_i_sync(&p, 0);
2351 build_restore_work_registers(&p);
2352 #ifdef CONFIG_CPU_MICROMIPS
2353 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2354 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2355 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2356 uasm_i_jr(&p, K0);
2357 } else
2358 #endif
2359 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2360 uasm_i_nop(&p);
2361
2362 if (p >= (u32 *)handle_tlbs_end)
2363 panic("TLB store handler fastpath space exceeded");
2364
2365 uasm_resolve_relocs(relocs, labels);
2366 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2367 (unsigned int)(p - (u32 *)handle_tlbs));
2368
2369 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2370 }
2371
build_r4000_tlb_modify_handler(void)2372 static void build_r4000_tlb_modify_handler(void)
2373 {
2374 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2375 struct uasm_label *l = labels;
2376 struct uasm_reloc *r = relocs;
2377 struct work_registers wr;
2378
2379 memset(p, 0, handle_tlbm_end - (char *)p);
2380 memset(labels, 0, sizeof(labels));
2381 memset(relocs, 0, sizeof(relocs));
2382
2383 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2384 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2385 if (m4kc_tlbp_war())
2386 build_tlb_probe_entry(&p);
2387 /* Present and writable bits set, set accessed and dirty bits. */
2388 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2389 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2390
2391 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2392 /*
2393 * This is the entry point when
2394 * build_r4000_tlbchange_handler_head spots a huge page.
2395 */
2396 uasm_l_tlb_huge_update(&l, p);
2397 iPTE_LW(&p, wr.r1, wr.r2);
2398 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2399 build_tlb_probe_entry(&p);
2400 uasm_i_ori(&p, wr.r1, wr.r1,
2401 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2402 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2403 #endif
2404
2405 uasm_l_nopage_tlbm(&l, p);
2406 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2407 uasm_i_sync(&p, 0);
2408 build_restore_work_registers(&p);
2409 #ifdef CONFIG_CPU_MICROMIPS
2410 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2411 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2412 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2413 uasm_i_jr(&p, K0);
2414 } else
2415 #endif
2416 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2417 uasm_i_nop(&p);
2418
2419 if (p >= (u32 *)handle_tlbm_end)
2420 panic("TLB modify handler fastpath space exceeded");
2421
2422 uasm_resolve_relocs(relocs, labels);
2423 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2424 (unsigned int)(p - (u32 *)handle_tlbm));
2425
2426 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2427 }
2428
flush_tlb_handlers(void)2429 static void flush_tlb_handlers(void)
2430 {
2431 local_flush_icache_range((unsigned long)handle_tlbl,
2432 (unsigned long)handle_tlbl_end);
2433 local_flush_icache_range((unsigned long)handle_tlbs,
2434 (unsigned long)handle_tlbs_end);
2435 local_flush_icache_range((unsigned long)handle_tlbm,
2436 (unsigned long)handle_tlbm_end);
2437 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2438 (unsigned long)tlbmiss_handler_setup_pgd_end);
2439 }
2440
print_htw_config(void)2441 static void print_htw_config(void)
2442 {
2443 unsigned long config;
2444 unsigned int pwctl;
2445 const int field = 2 * sizeof(unsigned long);
2446
2447 config = read_c0_pwfield();
2448 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2449 field, config,
2450 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2451 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2452 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2453 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2454 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2455
2456 config = read_c0_pwsize();
2457 pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2458 field, config,
2459 (config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2460 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2461 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2462 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2463 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2464 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2465
2466 pwctl = read_c0_pwctl();
2467 pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2468 pwctl,
2469 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2470 (pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2471 (pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2472 (pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2473 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2474 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2475 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2476 }
2477
config_htw_params(void)2478 static void config_htw_params(void)
2479 {
2480 unsigned long pwfield, pwsize, ptei;
2481 unsigned int config;
2482
2483 /*
2484 * We are using 2-level page tables, so we only need to
2485 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2486 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2487 * write values less than 0xc in these fields because the entire
2488 * write will be dropped. As a result of which, we must preserve
2489 * the original reset values and overwrite only what we really want.
2490 */
2491
2492 pwfield = read_c0_pwfield();
2493 /* re-initialize the GDI field */
2494 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2495 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2496 /* re-initialize the PTI field including the even/odd bit */
2497 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2498 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2499 if (CONFIG_PGTABLE_LEVELS >= 3) {
2500 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2501 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2502 }
2503 /* Set the PTEI right shift */
2504 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2505 pwfield |= ptei;
2506 write_c0_pwfield(pwfield);
2507 /* Check whether the PTEI value is supported */
2508 back_to_back_c0_hazard();
2509 pwfield = read_c0_pwfield();
2510 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2511 != ptei) {
2512 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2513 ptei);
2514 /*
2515 * Drop option to avoid HTW being enabled via another path
2516 * (eg htw_reset())
2517 */
2518 current_cpu_data.options &= ~MIPS_CPU_HTW;
2519 return;
2520 }
2521
2522 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2523 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2524 if (CONFIG_PGTABLE_LEVELS >= 3)
2525 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2526
2527 /* Set pointer size to size of directory pointers */
2528 if (IS_ENABLED(CONFIG_64BIT))
2529 pwsize |= MIPS_PWSIZE_PS_MASK;
2530 /* PTEs may be multiple pointers long (e.g. with XPA) */
2531 pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2532 & MIPS_PWSIZE_PTEW_MASK;
2533
2534 write_c0_pwsize(pwsize);
2535
2536 /* Make sure everything is set before we enable the HTW */
2537 back_to_back_c0_hazard();
2538
2539 /*
2540 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2541 * the pwctl fields.
2542 */
2543 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2544 if (IS_ENABLED(CONFIG_64BIT))
2545 config |= MIPS_PWCTL_XU_MASK;
2546 write_c0_pwctl(config);
2547 pr_info("Hardware Page Table Walker enabled\n");
2548
2549 print_htw_config();
2550 }
2551
config_xpa_params(void)2552 static void config_xpa_params(void)
2553 {
2554 #ifdef CONFIG_XPA
2555 unsigned int pagegrain;
2556
2557 if (mips_xpa_disabled) {
2558 pr_info("Extended Physical Addressing (XPA) disabled\n");
2559 return;
2560 }
2561
2562 pagegrain = read_c0_pagegrain();
2563 write_c0_pagegrain(pagegrain | PG_ELPA);
2564 back_to_back_c0_hazard();
2565 pagegrain = read_c0_pagegrain();
2566
2567 if (pagegrain & PG_ELPA)
2568 pr_info("Extended Physical Addressing (XPA) enabled\n");
2569 else
2570 panic("Extended Physical Addressing (XPA) disabled");
2571 #endif
2572 }
2573
check_pabits(void)2574 static void check_pabits(void)
2575 {
2576 unsigned long entry;
2577 unsigned pabits, fillbits;
2578
2579 if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2580 /*
2581 * We'll only be making use of the fact that we can rotate bits
2582 * into the fill if the CPU supports RIXI, so don't bother
2583 * probing this for CPUs which don't.
2584 */
2585 return;
2586 }
2587
2588 write_c0_entrylo0(~0ul);
2589 back_to_back_c0_hazard();
2590 entry = read_c0_entrylo0();
2591
2592 /* clear all non-PFN bits */
2593 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2594 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2595
2596 /* find a lower bound on PABITS, and upper bound on fill bits */
2597 pabits = fls_long(entry) + 6;
2598 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2599
2600 /* minus the RI & XI bits */
2601 fillbits -= min_t(unsigned, fillbits, 2);
2602
2603 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2604 fill_includes_sw_bits = true;
2605
2606 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2607 }
2608
build_tlb_refill_handler(void)2609 void build_tlb_refill_handler(void)
2610 {
2611 /*
2612 * The refill handler is generated per-CPU, multi-node systems
2613 * may have local storage for it. The other handlers are only
2614 * needed once.
2615 */
2616 static int run_once = 0;
2617
2618 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2619 panic("Kernels supporting XPA currently require CPUs with RIXI");
2620
2621 output_pgtable_bits_defines();
2622 check_pabits();
2623
2624 #ifdef CONFIG_64BIT
2625 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2626 #endif
2627
2628 if (cpu_has_3kex) {
2629 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2630 if (!run_once) {
2631 build_setup_pgd();
2632 build_r3000_tlb_refill_handler();
2633 build_r3000_tlb_load_handler();
2634 build_r3000_tlb_store_handler();
2635 build_r3000_tlb_modify_handler();
2636 flush_tlb_handlers();
2637 run_once++;
2638 }
2639 #else
2640 panic("No R3000 TLB refill handler");
2641 #endif
2642 return;
2643 }
2644
2645 if (cpu_has_ldpte)
2646 setup_pw();
2647
2648 if (!run_once) {
2649 scratch_reg = allocate_kscratch();
2650 build_setup_pgd();
2651 build_r4000_tlb_load_handler();
2652 build_r4000_tlb_store_handler();
2653 build_r4000_tlb_modify_handler();
2654 if (cpu_has_ldpte)
2655 build_loongson3_tlb_refill_handler();
2656 else
2657 build_r4000_tlb_refill_handler();
2658 flush_tlb_handlers();
2659 run_once++;
2660 }
2661 if (cpu_has_xpa)
2662 config_xpa_params();
2663 if (cpu_has_htw)
2664 config_htw_params();
2665 }
2666