1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/compiler.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/kernel.h>
19 #include <linux/linkage.h>
20 #include <linux/irqflags.h>
21 #include <linux/init.h>
22 #include <linux/percpu.h>
23 #include <linux/prctl.h>
24 #include <linux/preempt.h>
25 #include <linux/ptrace.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/signal.h>
29 #include <linux/slab.h>
30 #include <linux/stddef.h>
31 #include <linux/sysctl.h>
32 #include <linux/swab.h>
33
34 #include <asm/esr.h>
35 #include <asm/exception.h>
36 #include <asm/fpsimd.h>
37 #include <asm/cpufeature.h>
38 #include <asm/cputype.h>
39 #include <asm/neon.h>
40 #include <asm/processor.h>
41 #include <asm/simd.h>
42 #include <asm/sigcontext.h>
43 #include <asm/sysreg.h>
44 #include <asm/traps.h>
45 #include <asm/virt.h>
46
47 #define FPEXC_IOF (1 << 0)
48 #define FPEXC_DZF (1 << 1)
49 #define FPEXC_OFF (1 << 2)
50 #define FPEXC_UFF (1 << 3)
51 #define FPEXC_IXF (1 << 4)
52 #define FPEXC_IDF (1 << 7)
53
54 /*
55 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
56 *
57 * In order to reduce the number of times the FPSIMD state is needlessly saved
58 * and restored, we need to keep track of two things:
59 * (a) for each task, we need to remember which CPU was the last one to have
60 * the task's FPSIMD state loaded into its FPSIMD registers;
61 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
62 * been loaded into its FPSIMD registers most recently, or whether it has
63 * been used to perform kernel mode NEON in the meantime.
64 *
65 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
66 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
67 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
68 * address of the userland FPSIMD state of the task that was loaded onto the CPU
69 * the most recently, or NULL if kernel mode NEON has been performed after that.
70 *
71 * With this in place, we no longer have to restore the next FPSIMD state right
72 * when switching between tasks. Instead, we can defer this check to userland
73 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
74 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
75 * can omit the FPSIMD restore.
76 *
77 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
78 * indicate whether or not the userland FPSIMD state of the current task is
79 * present in the registers. The flag is set unless the FPSIMD registers of this
80 * CPU currently contain the most recent userland FPSIMD state of the current
81 * task.
82 *
83 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
84 * save the task's FPSIMD context back to task_struct from softirq context.
85 * To prevent this from racing with the manipulation of the task's FPSIMD state
86 * from task context and thereby corrupting the state, it is necessary to
87 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
88 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
89 * run but prevent them to use FPSIMD.
90 *
91 * For a certain task, the sequence may look something like this:
92 * - the task gets scheduled in; if both the task's fpsimd_cpu field
93 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
94 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
95 * cleared, otherwise it is set;
96 *
97 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
98 * userland FPSIMD state is copied from memory to the registers, the task's
99 * fpsimd_cpu field is set to the id of the current CPU, the current
100 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
101 * TIF_FOREIGN_FPSTATE flag is cleared;
102 *
103 * - the task executes an ordinary syscall; upon return to userland, the
104 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
105 * restored;
106 *
107 * - the task executes a syscall which executes some NEON instructions; this is
108 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
109 * register contents to memory, clears the fpsimd_last_state per-cpu variable
110 * and sets the TIF_FOREIGN_FPSTATE flag;
111 *
112 * - the task gets preempted after kernel_neon_end() is called; as we have not
113 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
114 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
115 */
116 struct fpsimd_last_state_struct {
117 struct user_fpsimd_state *st;
118 void *sve_state;
119 unsigned int sve_vl;
120 };
121
122 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
123
124 /* Default VL for tasks that don't set it explicitly: */
125 static int __sve_default_vl = -1;
126
get_sve_default_vl(void)127 static int get_sve_default_vl(void)
128 {
129 return READ_ONCE(__sve_default_vl);
130 }
131
132 #ifdef CONFIG_ARM64_SVE
133
set_sve_default_vl(int val)134 static void set_sve_default_vl(int val)
135 {
136 WRITE_ONCE(__sve_default_vl, val);
137 }
138
139 /* Maximum supported vector length across all CPUs (initially poisoned) */
140 int __ro_after_init sve_max_vl = SVE_VL_MIN;
141 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN;
142
143 /*
144 * Set of available vector lengths,
145 * where length vq encoded as bit __vq_to_bit(vq):
146 */
147 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
148 /* Set of vector lengths present on at least one cpu: */
149 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
150
151 static void __percpu *efi_sve_state;
152
153 #else /* ! CONFIG_ARM64_SVE */
154
155 /* Dummy declaration for code that will be optimised out: */
156 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
157 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
158 extern void __percpu *efi_sve_state;
159
160 #endif /* ! CONFIG_ARM64_SVE */
161
162 DEFINE_PER_CPU(bool, fpsimd_context_busy);
163 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
164
165 static void fpsimd_bind_task_to_cpu(void);
166
__get_cpu_fpsimd_context(void)167 static void __get_cpu_fpsimd_context(void)
168 {
169 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
170
171 WARN_ON(busy);
172 }
173
174 /*
175 * Claim ownership of the CPU FPSIMD context for use by the calling context.
176 *
177 * The caller may freely manipulate the FPSIMD context metadata until
178 * put_cpu_fpsimd_context() is called.
179 *
180 * The double-underscore version must only be called if you know the task
181 * can't be preempted.
182 */
get_cpu_fpsimd_context(void)183 static void get_cpu_fpsimd_context(void)
184 {
185 local_bh_disable();
186 __get_cpu_fpsimd_context();
187 }
188
__put_cpu_fpsimd_context(void)189 static void __put_cpu_fpsimd_context(void)
190 {
191 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
192
193 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
194 }
195
196 /*
197 * Release the CPU FPSIMD context.
198 *
199 * Must be called from a context in which get_cpu_fpsimd_context() was
200 * previously called, with no call to put_cpu_fpsimd_context() in the
201 * meantime.
202 */
put_cpu_fpsimd_context(void)203 static void put_cpu_fpsimd_context(void)
204 {
205 __put_cpu_fpsimd_context();
206 local_bh_enable();
207 }
208
have_cpu_fpsimd_context(void)209 static bool have_cpu_fpsimd_context(void)
210 {
211 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
212 }
213
214 /*
215 * Call __sve_free() directly only if you know task can't be scheduled
216 * or preempted.
217 */
__sve_free(struct task_struct * task)218 static void __sve_free(struct task_struct *task)
219 {
220 kfree(task->thread.sve_state);
221 task->thread.sve_state = NULL;
222 }
223
sve_free(struct task_struct * task)224 static void sve_free(struct task_struct *task)
225 {
226 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
227
228 __sve_free(task);
229 }
230
231 /*
232 * TIF_SVE controls whether a task can use SVE without trapping while
233 * in userspace, and also the way a task's FPSIMD/SVE state is stored
234 * in thread_struct.
235 *
236 * The kernel uses this flag to track whether a user task is actively
237 * using SVE, and therefore whether full SVE register state needs to
238 * be tracked. If not, the cheaper FPSIMD context handling code can
239 * be used instead of the more costly SVE equivalents.
240 *
241 * * TIF_SVE set:
242 *
243 * The task can execute SVE instructions while in userspace without
244 * trapping to the kernel.
245 *
246 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
247 * corresponding Zn), P0-P15 and FFR are encoded in in
248 * task->thread.sve_state, formatted appropriately for vector
249 * length task->thread.sve_vl.
250 *
251 * task->thread.sve_state must point to a valid buffer at least
252 * sve_state_size(task) bytes in size.
253 *
254 * During any syscall, the kernel may optionally clear TIF_SVE and
255 * discard the vector state except for the FPSIMD subset.
256 *
257 * * TIF_SVE clear:
258 *
259 * An attempt by the user task to execute an SVE instruction causes
260 * do_sve_acc() to be called, which does some preparation and then
261 * sets TIF_SVE.
262 *
263 * When stored, FPSIMD registers V0-V31 are encoded in
264 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
265 * logically zero but not stored anywhere; P0-P15 and FFR are not
266 * stored and have unspecified values from userspace's point of
267 * view. For hygiene purposes, the kernel zeroes them on next use,
268 * but userspace is discouraged from relying on this.
269 *
270 * task->thread.sve_state does not need to be non-NULL, valid or any
271 * particular size: it must not be dereferenced.
272 *
273 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
274 * irrespective of whether TIF_SVE is clear or set, since these are
275 * not vector length dependent.
276 */
277
278 /*
279 * Update current's FPSIMD/SVE registers from thread_struct.
280 *
281 * This function should be called only when the FPSIMD/SVE state in
282 * thread_struct is known to be up to date, when preparing to enter
283 * userspace.
284 */
task_fpsimd_load(void)285 static void task_fpsimd_load(void)
286 {
287 WARN_ON(!system_supports_fpsimd());
288 WARN_ON(!have_cpu_fpsimd_context());
289
290 if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE))
291 sve_load_state(sve_pffr(¤t->thread),
292 ¤t->thread.uw.fpsimd_state.fpsr,
293 sve_vq_from_vl(current->thread.sve_vl) - 1);
294 else
295 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
296 }
297
298 /*
299 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
300 * date with respect to the CPU registers.
301 */
fpsimd_save(void)302 static void fpsimd_save(void)
303 {
304 struct fpsimd_last_state_struct const *last =
305 this_cpu_ptr(&fpsimd_last_state);
306 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
307
308 WARN_ON(!system_supports_fpsimd());
309 WARN_ON(!have_cpu_fpsimd_context());
310
311 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
312 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
313 test_thread_flag(TIF_SVE)) {
314 if (WARN_ON(sve_get_vl() != last->sve_vl)) {
315 /*
316 * Can't save the user regs, so current would
317 * re-enter user with corrupt state.
318 * There's no way to recover, so kill it:
319 */
320 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
321 return;
322 }
323
324 sve_save_state((char *)last->sve_state +
325 sve_ffr_offset(last->sve_vl),
326 &last->st->fpsr);
327 } else
328 fpsimd_save_state(last->st);
329 }
330 }
331
332 /*
333 * All vector length selection from userspace comes through here.
334 * We're on a slow path, so some sanity-checks are included.
335 * If things go wrong there's a bug somewhere, but try to fall back to a
336 * safe choice.
337 */
find_supported_vector_length(unsigned int vl)338 static unsigned int find_supported_vector_length(unsigned int vl)
339 {
340 int bit;
341 int max_vl = sve_max_vl;
342
343 if (WARN_ON(!sve_vl_valid(vl)))
344 vl = SVE_VL_MIN;
345
346 if (WARN_ON(!sve_vl_valid(max_vl)))
347 max_vl = SVE_VL_MIN;
348
349 if (vl > max_vl)
350 vl = max_vl;
351
352 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
353 __vq_to_bit(sve_vq_from_vl(vl)));
354 return sve_vl_from_vq(__bit_to_vq(bit));
355 }
356
357 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
358
sve_proc_do_default_vl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)359 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
360 void *buffer, size_t *lenp, loff_t *ppos)
361 {
362 int ret;
363 int vl = get_sve_default_vl();
364 struct ctl_table tmp_table = {
365 .data = &vl,
366 .maxlen = sizeof(vl),
367 };
368
369 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
370 if (ret || !write)
371 return ret;
372
373 /* Writing -1 has the special meaning "set to max": */
374 if (vl == -1)
375 vl = sve_max_vl;
376
377 if (!sve_vl_valid(vl))
378 return -EINVAL;
379
380 set_sve_default_vl(find_supported_vector_length(vl));
381 return 0;
382 }
383
384 static struct ctl_table sve_default_vl_table[] = {
385 {
386 .procname = "sve_default_vector_length",
387 .mode = 0644,
388 .proc_handler = sve_proc_do_default_vl,
389 },
390 { }
391 };
392
sve_sysctl_init(void)393 static int __init sve_sysctl_init(void)
394 {
395 if (system_supports_sve())
396 if (!register_sysctl("abi", sve_default_vl_table))
397 return -EINVAL;
398
399 return 0;
400 }
401
402 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)403 static int __init sve_sysctl_init(void) { return 0; }
404 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
405
406 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
407 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
408
409 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)410 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
411 {
412 u64 a = swab64(x);
413 u64 b = swab64(x >> 64);
414
415 return ((__uint128_t)a << 64) | b;
416 }
417 #else
arm64_cpu_to_le128(__uint128_t x)418 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
419 {
420 return x;
421 }
422 #endif
423
424 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
425
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)426 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
427 unsigned int vq)
428 {
429 unsigned int i;
430 __uint128_t *p;
431
432 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
433 p = (__uint128_t *)ZREG(sst, vq, i);
434 *p = arm64_cpu_to_le128(fst->vregs[i]);
435 }
436 }
437
438 /*
439 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
440 * task->thread.sve_state.
441 *
442 * Task can be a non-runnable task, or current. In the latter case,
443 * the caller must have ownership of the cpu FPSIMD context before calling
444 * this function.
445 * task->thread.sve_state must point to at least sve_state_size(task)
446 * bytes of allocated kernel memory.
447 * task->thread.uw.fpsimd_state must be up to date before calling this
448 * function.
449 */
fpsimd_to_sve(struct task_struct * task)450 static void fpsimd_to_sve(struct task_struct *task)
451 {
452 unsigned int vq;
453 void *sst = task->thread.sve_state;
454 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
455
456 if (!system_supports_sve())
457 return;
458
459 vq = sve_vq_from_vl(task->thread.sve_vl);
460 __fpsimd_to_sve(sst, fst, vq);
461 }
462
463 /*
464 * Transfer the SVE state in task->thread.sve_state to
465 * task->thread.uw.fpsimd_state.
466 *
467 * Task can be a non-runnable task, or current. In the latter case,
468 * the caller must have ownership of the cpu FPSIMD context before calling
469 * this function.
470 * task->thread.sve_state must point to at least sve_state_size(task)
471 * bytes of allocated kernel memory.
472 * task->thread.sve_state must be up to date before calling this function.
473 */
sve_to_fpsimd(struct task_struct * task)474 static void sve_to_fpsimd(struct task_struct *task)
475 {
476 unsigned int vq;
477 void const *sst = task->thread.sve_state;
478 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
479 unsigned int i;
480 __uint128_t const *p;
481
482 if (!system_supports_sve())
483 return;
484
485 vq = sve_vq_from_vl(task->thread.sve_vl);
486 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
487 p = (__uint128_t const *)ZREG(sst, vq, i);
488 fst->vregs[i] = arm64_le128_to_cpu(*p);
489 }
490 }
491
492 #ifdef CONFIG_ARM64_SVE
493
494 /*
495 * Return how many bytes of memory are required to store the full SVE
496 * state for task, given task's currently configured vector length.
497 */
sve_state_size(struct task_struct const * task)498 size_t sve_state_size(struct task_struct const *task)
499 {
500 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
501 }
502
503 /*
504 * Ensure that task->thread.sve_state is allocated and sufficiently large.
505 *
506 * This function should be used only in preparation for replacing
507 * task->thread.sve_state with new data. The memory is always zeroed
508 * here to prevent stale data from showing through: this is done in
509 * the interest of testability and predictability: except in the
510 * do_sve_acc() case, there is no ABI requirement to hide stale data
511 * written previously be task.
512 */
sve_alloc(struct task_struct * task)513 void sve_alloc(struct task_struct *task)
514 {
515 if (task->thread.sve_state) {
516 memset(task->thread.sve_state, 0, sve_state_size(task));
517 return;
518 }
519
520 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
521 task->thread.sve_state =
522 kzalloc(sve_state_size(task), GFP_KERNEL);
523 }
524
525
526 /*
527 * Ensure that task->thread.sve_state is up to date with respect to
528 * the user task, irrespective of when SVE is in use or not.
529 *
530 * This should only be called by ptrace. task must be non-runnable.
531 * task->thread.sve_state must point to at least sve_state_size(task)
532 * bytes of allocated kernel memory.
533 */
fpsimd_sync_to_sve(struct task_struct * task)534 void fpsimd_sync_to_sve(struct task_struct *task)
535 {
536 if (!test_tsk_thread_flag(task, TIF_SVE))
537 fpsimd_to_sve(task);
538 }
539
540 /*
541 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
542 * the user task, irrespective of whether SVE is in use or not.
543 *
544 * This should only be called by ptrace. task must be non-runnable.
545 * task->thread.sve_state must point to at least sve_state_size(task)
546 * bytes of allocated kernel memory.
547 */
sve_sync_to_fpsimd(struct task_struct * task)548 void sve_sync_to_fpsimd(struct task_struct *task)
549 {
550 if (test_tsk_thread_flag(task, TIF_SVE))
551 sve_to_fpsimd(task);
552 }
553
554 /*
555 * Ensure that task->thread.sve_state is up to date with respect to
556 * the task->thread.uw.fpsimd_state.
557 *
558 * This should only be called by ptrace to merge new FPSIMD register
559 * values into a task for which SVE is currently active.
560 * task must be non-runnable.
561 * task->thread.sve_state must point to at least sve_state_size(task)
562 * bytes of allocated kernel memory.
563 * task->thread.uw.fpsimd_state must already have been initialised with
564 * the new FPSIMD register values to be merged in.
565 */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)566 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
567 {
568 unsigned int vq;
569 void *sst = task->thread.sve_state;
570 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
571
572 if (!test_tsk_thread_flag(task, TIF_SVE))
573 return;
574
575 vq = sve_vq_from_vl(task->thread.sve_vl);
576
577 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
578 __fpsimd_to_sve(sst, fst, vq);
579 }
580
sve_set_vector_length(struct task_struct * task,unsigned long vl,unsigned long flags)581 int sve_set_vector_length(struct task_struct *task,
582 unsigned long vl, unsigned long flags)
583 {
584 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
585 PR_SVE_SET_VL_ONEXEC))
586 return -EINVAL;
587
588 if (!sve_vl_valid(vl))
589 return -EINVAL;
590
591 /*
592 * Clamp to the maximum vector length that VL-agnostic SVE code can
593 * work with. A flag may be assigned in the future to allow setting
594 * of larger vector lengths without confusing older software.
595 */
596 if (vl > SVE_VL_ARCH_MAX)
597 vl = SVE_VL_ARCH_MAX;
598
599 vl = find_supported_vector_length(vl);
600
601 if (flags & (PR_SVE_VL_INHERIT |
602 PR_SVE_SET_VL_ONEXEC))
603 task->thread.sve_vl_onexec = vl;
604 else
605 /* Reset VL to system default on next exec: */
606 task->thread.sve_vl_onexec = 0;
607
608 /* Only actually set the VL if not deferred: */
609 if (flags & PR_SVE_SET_VL_ONEXEC)
610 goto out;
611
612 if (vl == task->thread.sve_vl)
613 goto out;
614
615 /*
616 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
617 * write any live register state back to task_struct, and convert to a
618 * non-SVE thread.
619 */
620 if (task == current) {
621 get_cpu_fpsimd_context();
622
623 fpsimd_save();
624 }
625
626 fpsimd_flush_task_state(task);
627 if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
628 sve_to_fpsimd(task);
629
630 if (task == current)
631 put_cpu_fpsimd_context();
632
633 /*
634 * Force reallocation of task SVE state to the correct size
635 * on next use:
636 */
637 sve_free(task);
638
639 task->thread.sve_vl = vl;
640
641 out:
642 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
643 flags & PR_SVE_VL_INHERIT);
644
645 return 0;
646 }
647
648 /*
649 * Encode the current vector length and flags for return.
650 * This is only required for prctl(): ptrace has separate fields
651 *
652 * flags are as for sve_set_vector_length().
653 */
sve_prctl_status(unsigned long flags)654 static int sve_prctl_status(unsigned long flags)
655 {
656 int ret;
657
658 if (flags & PR_SVE_SET_VL_ONEXEC)
659 ret = current->thread.sve_vl_onexec;
660 else
661 ret = current->thread.sve_vl;
662
663 if (test_thread_flag(TIF_SVE_VL_INHERIT))
664 ret |= PR_SVE_VL_INHERIT;
665
666 return ret;
667 }
668
669 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)670 int sve_set_current_vl(unsigned long arg)
671 {
672 unsigned long vl, flags;
673 int ret;
674
675 vl = arg & PR_SVE_VL_LEN_MASK;
676 flags = arg & ~vl;
677
678 if (!system_supports_sve() || is_compat_task())
679 return -EINVAL;
680
681 ret = sve_set_vector_length(current, vl, flags);
682 if (ret)
683 return ret;
684
685 return sve_prctl_status(flags);
686 }
687
688 /* PR_SVE_GET_VL */
sve_get_current_vl(void)689 int sve_get_current_vl(void)
690 {
691 if (!system_supports_sve() || is_compat_task())
692 return -EINVAL;
693
694 return sve_prctl_status(0);
695 }
696
sve_probe_vqs(DECLARE_BITMAP (map,SVE_VQ_MAX))697 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
698 {
699 unsigned int vq, vl;
700 unsigned long zcr;
701
702 bitmap_zero(map, SVE_VQ_MAX);
703
704 zcr = ZCR_ELx_LEN_MASK;
705 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
706
707 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
708 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
709 vl = sve_get_vl();
710 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
711 set_bit(__vq_to_bit(vq), map);
712 }
713 }
714
715 /*
716 * Initialise the set of known supported VQs for the boot CPU.
717 * This is called during kernel boot, before secondary CPUs are brought up.
718 */
sve_init_vq_map(void)719 void __init sve_init_vq_map(void)
720 {
721 sve_probe_vqs(sve_vq_map);
722 bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX);
723 }
724
725 /*
726 * If we haven't committed to the set of supported VQs yet, filter out
727 * those not supported by the current CPU.
728 * This function is called during the bring-up of early secondary CPUs only.
729 */
sve_update_vq_map(void)730 void sve_update_vq_map(void)
731 {
732 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
733
734 sve_probe_vqs(tmp_map);
735 bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX);
736 bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX);
737 }
738
739 /*
740 * Check whether the current CPU supports all VQs in the committed set.
741 * This function is called during the bring-up of late secondary CPUs only.
742 */
sve_verify_vq_map(void)743 int sve_verify_vq_map(void)
744 {
745 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
746 unsigned long b;
747
748 sve_probe_vqs(tmp_map);
749
750 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
751 if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) {
752 pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
753 smp_processor_id());
754 return -EINVAL;
755 }
756
757 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
758 return 0;
759
760 /*
761 * For KVM, it is necessary to ensure that this CPU doesn't
762 * support any vector length that guests may have probed as
763 * unsupported.
764 */
765
766 /* Recover the set of supported VQs: */
767 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
768 /* Find VQs supported that are not globally supported: */
769 bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX);
770
771 /* Find the lowest such VQ, if any: */
772 b = find_last_bit(tmp_map, SVE_VQ_MAX);
773 if (b >= SVE_VQ_MAX)
774 return 0; /* no mismatches */
775
776 /*
777 * Mismatches above sve_max_virtualisable_vl are fine, since
778 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
779 */
780 if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) {
781 pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
782 smp_processor_id());
783 return -EINVAL;
784 }
785
786 return 0;
787 }
788
sve_efi_setup(void)789 static void __init sve_efi_setup(void)
790 {
791 if (!IS_ENABLED(CONFIG_EFI))
792 return;
793
794 /*
795 * alloc_percpu() warns and prints a backtrace if this goes wrong.
796 * This is evidence of a crippled system and we are returning void,
797 * so no attempt is made to handle this situation here.
798 */
799 if (!sve_vl_valid(sve_max_vl))
800 goto fail;
801
802 efi_sve_state = __alloc_percpu(
803 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
804 if (!efi_sve_state)
805 goto fail;
806
807 return;
808
809 fail:
810 panic("Cannot allocate percpu memory for EFI SVE save/restore");
811 }
812
813 /*
814 * Enable SVE for EL1.
815 * Intended for use by the cpufeatures code during CPU boot.
816 */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)817 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
818 {
819 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
820 isb();
821 }
822
823 /*
824 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
825 * vector length.
826 *
827 * Use only if SVE is present.
828 * This function clobbers the SVE vector length.
829 */
read_zcr_features(void)830 u64 read_zcr_features(void)
831 {
832 u64 zcr;
833 unsigned int vq_max;
834
835 /*
836 * Set the maximum possible VL, and write zeroes to all other
837 * bits to see if they stick.
838 */
839 sve_kernel_enable(NULL);
840 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
841
842 zcr = read_sysreg_s(SYS_ZCR_EL1);
843 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
844 vq_max = sve_vq_from_vl(sve_get_vl());
845 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
846
847 return zcr;
848 }
849
sve_setup(void)850 void __init sve_setup(void)
851 {
852 u64 zcr;
853 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
854 unsigned long b;
855
856 if (!system_supports_sve())
857 return;
858
859 /*
860 * The SVE architecture mandates support for 128-bit vectors,
861 * so sve_vq_map must have at least SVE_VQ_MIN set.
862 * If something went wrong, at least try to patch it up:
863 */
864 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
865 set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map);
866
867 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
868 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
869
870 /*
871 * Sanity-check that the max VL we determined through CPU features
872 * corresponds properly to sve_vq_map. If not, do our best:
873 */
874 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
875 sve_max_vl = find_supported_vector_length(sve_max_vl);
876
877 /*
878 * For the default VL, pick the maximum supported value <= 64.
879 * VL == 64 is guaranteed not to grow the signal frame.
880 */
881 set_sve_default_vl(find_supported_vector_length(64));
882
883 bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map,
884 SVE_VQ_MAX);
885
886 b = find_last_bit(tmp_map, SVE_VQ_MAX);
887 if (b >= SVE_VQ_MAX)
888 /* No non-virtualisable VLs found */
889 sve_max_virtualisable_vl = SVE_VQ_MAX;
890 else if (WARN_ON(b == SVE_VQ_MAX - 1))
891 /* No virtualisable VLs? This is architecturally forbidden. */
892 sve_max_virtualisable_vl = SVE_VQ_MIN;
893 else /* b + 1 < SVE_VQ_MAX */
894 sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
895
896 if (sve_max_virtualisable_vl > sve_max_vl)
897 sve_max_virtualisable_vl = sve_max_vl;
898
899 pr_info("SVE: maximum available vector length %u bytes per vector\n",
900 sve_max_vl);
901 pr_info("SVE: default vector length %u bytes per vector\n",
902 get_sve_default_vl());
903
904 /* KVM decides whether to support mismatched systems. Just warn here: */
905 if (sve_max_virtualisable_vl < sve_max_vl)
906 pr_warn("SVE: unvirtualisable vector lengths present\n");
907
908 sve_efi_setup();
909 }
910
911 /*
912 * Called from the put_task_struct() path, which cannot get here
913 * unless dead_task is really dead and not schedulable.
914 */
fpsimd_release_task(struct task_struct * dead_task)915 void fpsimd_release_task(struct task_struct *dead_task)
916 {
917 __sve_free(dead_task);
918 }
919
920 #endif /* CONFIG_ARM64_SVE */
921
922 /*
923 * Trapped SVE access
924 *
925 * Storage is allocated for the full SVE state, the current FPSIMD
926 * register contents are migrated across, and the access trap is
927 * disabled.
928 *
929 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
930 * would have disabled the SVE access trap for userspace during
931 * ret_to_user, making an SVE access trap impossible in that case.
932 */
do_sve_acc(unsigned int esr,struct pt_regs * regs)933 void do_sve_acc(unsigned int esr, struct pt_regs *regs)
934 {
935 /* Even if we chose not to use SVE, the hardware could still trap: */
936 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
937 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
938 return;
939 }
940
941 sve_alloc(current);
942 if (!current->thread.sve_state) {
943 force_sig(SIGKILL);
944 return;
945 }
946
947 get_cpu_fpsimd_context();
948
949 if (test_and_set_thread_flag(TIF_SVE))
950 WARN_ON(1); /* SVE access shouldn't have trapped */
951
952 /*
953 * Convert the FPSIMD state to SVE, zeroing all the state that
954 * is not shared with FPSIMD. If (as is likely) the current
955 * state is live in the registers then do this there and
956 * update our metadata for the current task including
957 * disabling the trap, otherwise update our in-memory copy.
958 */
959 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
960 unsigned long vq_minus_one =
961 sve_vq_from_vl(current->thread.sve_vl) - 1;
962 sve_set_vq(vq_minus_one);
963 sve_flush_live(vq_minus_one);
964 fpsimd_bind_task_to_cpu();
965 } else {
966 fpsimd_to_sve(current);
967 }
968
969 put_cpu_fpsimd_context();
970 }
971
972 /*
973 * Trapped FP/ASIMD access.
974 */
do_fpsimd_acc(unsigned int esr,struct pt_regs * regs)975 void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
976 {
977 /* TODO: implement lazy context saving/restoring */
978 WARN_ON(1);
979 }
980
981 /*
982 * Raise a SIGFPE for the current process.
983 */
do_fpsimd_exc(unsigned int esr,struct pt_regs * regs)984 void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
985 {
986 unsigned int si_code = FPE_FLTUNK;
987
988 if (esr & ESR_ELx_FP_EXC_TFV) {
989 if (esr & FPEXC_IOF)
990 si_code = FPE_FLTINV;
991 else if (esr & FPEXC_DZF)
992 si_code = FPE_FLTDIV;
993 else if (esr & FPEXC_OFF)
994 si_code = FPE_FLTOVF;
995 else if (esr & FPEXC_UFF)
996 si_code = FPE_FLTUND;
997 else if (esr & FPEXC_IXF)
998 si_code = FPE_FLTRES;
999 }
1000
1001 send_sig_fault(SIGFPE, si_code,
1002 (void __user *)instruction_pointer(regs),
1003 current);
1004 }
1005
fpsimd_thread_switch(struct task_struct * next)1006 void fpsimd_thread_switch(struct task_struct *next)
1007 {
1008 bool wrong_task, wrong_cpu;
1009
1010 if (!system_supports_fpsimd())
1011 return;
1012
1013 __get_cpu_fpsimd_context();
1014
1015 /* Save unsaved fpsimd state, if any: */
1016 fpsimd_save();
1017
1018 /*
1019 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1020 * state. For kernel threads, FPSIMD registers are never loaded
1021 * and wrong_task and wrong_cpu will always be true.
1022 */
1023 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1024 &next->thread.uw.fpsimd_state;
1025 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1026
1027 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1028 wrong_task || wrong_cpu);
1029
1030 __put_cpu_fpsimd_context();
1031 }
1032
fpsimd_flush_thread(void)1033 void fpsimd_flush_thread(void)
1034 {
1035 int vl, supported_vl;
1036
1037 if (!system_supports_fpsimd())
1038 return;
1039
1040 get_cpu_fpsimd_context();
1041
1042 fpsimd_flush_task_state(current);
1043 memset(¤t->thread.uw.fpsimd_state, 0,
1044 sizeof(current->thread.uw.fpsimd_state));
1045
1046 if (system_supports_sve()) {
1047 clear_thread_flag(TIF_SVE);
1048 sve_free(current);
1049
1050 /*
1051 * Reset the task vector length as required.
1052 * This is where we ensure that all user tasks have a valid
1053 * vector length configured: no kernel task can become a user
1054 * task without an exec and hence a call to this function.
1055 * By the time the first call to this function is made, all
1056 * early hardware probing is complete, so __sve_default_vl
1057 * should be valid.
1058 * If a bug causes this to go wrong, we make some noise and
1059 * try to fudge thread.sve_vl to a safe value here.
1060 */
1061 vl = current->thread.sve_vl_onexec ?
1062 current->thread.sve_vl_onexec : get_sve_default_vl();
1063
1064 if (WARN_ON(!sve_vl_valid(vl)))
1065 vl = SVE_VL_MIN;
1066
1067 supported_vl = find_supported_vector_length(vl);
1068 if (WARN_ON(supported_vl != vl))
1069 vl = supported_vl;
1070
1071 current->thread.sve_vl = vl;
1072
1073 /*
1074 * If the task is not set to inherit, ensure that the vector
1075 * length will be reset by a subsequent exec:
1076 */
1077 if (!test_thread_flag(TIF_SVE_VL_INHERIT))
1078 current->thread.sve_vl_onexec = 0;
1079 }
1080
1081 put_cpu_fpsimd_context();
1082 }
1083
1084 /*
1085 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1086 * currently held in the registers does in fact belong to 'current'
1087 */
fpsimd_preserve_current_state(void)1088 void fpsimd_preserve_current_state(void)
1089 {
1090 if (!system_supports_fpsimd())
1091 return;
1092
1093 get_cpu_fpsimd_context();
1094 fpsimd_save();
1095 put_cpu_fpsimd_context();
1096 }
1097
1098 /*
1099 * Like fpsimd_preserve_current_state(), but ensure that
1100 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1101 * the signal frame.
1102 */
fpsimd_signal_preserve_current_state(void)1103 void fpsimd_signal_preserve_current_state(void)
1104 {
1105 fpsimd_preserve_current_state();
1106 if (test_thread_flag(TIF_SVE))
1107 sve_to_fpsimd(current);
1108 }
1109
1110 /*
1111 * Associate current's FPSIMD context with this cpu
1112 * The caller must have ownership of the cpu FPSIMD context before calling
1113 * this function.
1114 */
fpsimd_bind_task_to_cpu(void)1115 static void fpsimd_bind_task_to_cpu(void)
1116 {
1117 struct fpsimd_last_state_struct *last =
1118 this_cpu_ptr(&fpsimd_last_state);
1119
1120 WARN_ON(!system_supports_fpsimd());
1121 last->st = ¤t->thread.uw.fpsimd_state;
1122 last->sve_state = current->thread.sve_state;
1123 last->sve_vl = current->thread.sve_vl;
1124 current->thread.fpsimd_cpu = smp_processor_id();
1125
1126 if (system_supports_sve()) {
1127 /* Toggle SVE trapping for userspace if needed */
1128 if (test_thread_flag(TIF_SVE))
1129 sve_user_enable();
1130 else
1131 sve_user_disable();
1132
1133 /* Serialised by exception return to user */
1134 }
1135 }
1136
fpsimd_bind_state_to_cpu(struct user_fpsimd_state * st,void * sve_state,unsigned int sve_vl)1137 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1138 unsigned int sve_vl)
1139 {
1140 struct fpsimd_last_state_struct *last =
1141 this_cpu_ptr(&fpsimd_last_state);
1142
1143 WARN_ON(!system_supports_fpsimd());
1144 WARN_ON(!in_softirq() && !irqs_disabled());
1145
1146 last->st = st;
1147 last->sve_state = sve_state;
1148 last->sve_vl = sve_vl;
1149 }
1150
1151 /*
1152 * Load the userland FPSIMD state of 'current' from memory, but only if the
1153 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1154 * state of 'current'
1155 */
fpsimd_restore_current_state(void)1156 void fpsimd_restore_current_state(void)
1157 {
1158 /*
1159 * For the tasks that were created before we detected the absence of
1160 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1161 * e.g, init. This could be then inherited by the children processes.
1162 * If we later detect that the system doesn't support FP/SIMD,
1163 * we must clear the flag for all the tasks to indicate that the
1164 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1165 * do_notify_resume().
1166 */
1167 if (!system_supports_fpsimd()) {
1168 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1169 return;
1170 }
1171
1172 get_cpu_fpsimd_context();
1173
1174 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1175 task_fpsimd_load();
1176 fpsimd_bind_task_to_cpu();
1177 }
1178
1179 put_cpu_fpsimd_context();
1180 }
1181
1182 /*
1183 * Load an updated userland FPSIMD state for 'current' from memory and set the
1184 * flag that indicates that the FPSIMD register contents are the most recent
1185 * FPSIMD state of 'current'
1186 */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1187 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1188 {
1189 if (WARN_ON(!system_supports_fpsimd()))
1190 return;
1191
1192 get_cpu_fpsimd_context();
1193
1194 current->thread.uw.fpsimd_state = *state;
1195 if (test_thread_flag(TIF_SVE))
1196 fpsimd_to_sve(current);
1197
1198 task_fpsimd_load();
1199 fpsimd_bind_task_to_cpu();
1200
1201 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1202
1203 put_cpu_fpsimd_context();
1204 }
1205
1206 /*
1207 * Invalidate live CPU copies of task t's FPSIMD state
1208 *
1209 * This function may be called with preemption enabled. The barrier()
1210 * ensures that the assignment to fpsimd_cpu is visible to any
1211 * preemption/softirq that could race with set_tsk_thread_flag(), so
1212 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1213 *
1214 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1215 * subsequent code.
1216 */
fpsimd_flush_task_state(struct task_struct * t)1217 void fpsimd_flush_task_state(struct task_struct *t)
1218 {
1219 t->thread.fpsimd_cpu = NR_CPUS;
1220 /*
1221 * If we don't support fpsimd, bail out after we have
1222 * reset the fpsimd_cpu for this task and clear the
1223 * FPSTATE.
1224 */
1225 if (!system_supports_fpsimd())
1226 return;
1227 barrier();
1228 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1229
1230 barrier();
1231 }
1232
1233 /*
1234 * Invalidate any task's FPSIMD state that is present on this cpu.
1235 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1236 * before calling this function.
1237 */
fpsimd_flush_cpu_state(void)1238 static void fpsimd_flush_cpu_state(void)
1239 {
1240 WARN_ON(!system_supports_fpsimd());
1241 __this_cpu_write(fpsimd_last_state.st, NULL);
1242 set_thread_flag(TIF_FOREIGN_FPSTATE);
1243 }
1244
1245 /*
1246 * Save the FPSIMD state to memory and invalidate cpu view.
1247 * This function must be called with preemption disabled.
1248 */
fpsimd_save_and_flush_cpu_state(void)1249 void fpsimd_save_and_flush_cpu_state(void)
1250 {
1251 if (!system_supports_fpsimd())
1252 return;
1253 WARN_ON(preemptible());
1254 __get_cpu_fpsimd_context();
1255 fpsimd_save();
1256 fpsimd_flush_cpu_state();
1257 __put_cpu_fpsimd_context();
1258 }
1259
1260 #ifdef CONFIG_KERNEL_MODE_NEON
1261
1262 /*
1263 * Kernel-side NEON support functions
1264 */
1265
1266 /*
1267 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1268 * context
1269 *
1270 * Must not be called unless may_use_simd() returns true.
1271 * Task context in the FPSIMD registers is saved back to memory as necessary.
1272 *
1273 * A matching call to kernel_neon_end() must be made before returning from the
1274 * calling context.
1275 *
1276 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1277 * called.
1278 */
kernel_neon_begin(void)1279 void kernel_neon_begin(void)
1280 {
1281 if (WARN_ON(!system_supports_fpsimd()))
1282 return;
1283
1284 BUG_ON(!may_use_simd());
1285
1286 get_cpu_fpsimd_context();
1287
1288 /* Save unsaved fpsimd state, if any: */
1289 fpsimd_save();
1290
1291 /* Invalidate any task state remaining in the fpsimd regs: */
1292 fpsimd_flush_cpu_state();
1293 }
1294 EXPORT_SYMBOL(kernel_neon_begin);
1295
1296 /*
1297 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1298 *
1299 * Must be called from a context in which kernel_neon_begin() was previously
1300 * called, with no call to kernel_neon_end() in the meantime.
1301 *
1302 * The caller must not use the FPSIMD registers after this function is called,
1303 * unless kernel_neon_begin() is called again in the meantime.
1304 */
kernel_neon_end(void)1305 void kernel_neon_end(void)
1306 {
1307 if (!system_supports_fpsimd())
1308 return;
1309
1310 put_cpu_fpsimd_context();
1311 }
1312 EXPORT_SYMBOL(kernel_neon_end);
1313
1314 #ifdef CONFIG_EFI
1315
1316 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1317 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1318 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1319
1320 /*
1321 * EFI runtime services support functions
1322 *
1323 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1324 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1325 * is always used rather than being an optional accelerator.
1326 *
1327 * These functions provide the necessary support for ensuring FPSIMD
1328 * save/restore in the contexts from which EFI is used.
1329 *
1330 * Do not use them for any other purpose -- if tempted to do so, you are
1331 * either doing something wrong or you need to propose some refactoring.
1332 */
1333
1334 /*
1335 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1336 */
__efi_fpsimd_begin(void)1337 void __efi_fpsimd_begin(void)
1338 {
1339 if (!system_supports_fpsimd())
1340 return;
1341
1342 WARN_ON(preemptible());
1343
1344 if (may_use_simd()) {
1345 kernel_neon_begin();
1346 } else {
1347 /*
1348 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1349 * preserving:
1350 */
1351 if (system_supports_sve() && likely(efi_sve_state)) {
1352 char *sve_state = this_cpu_ptr(efi_sve_state);
1353
1354 __this_cpu_write(efi_sve_state_used, true);
1355
1356 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1357 &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1358 } else {
1359 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1360 }
1361
1362 __this_cpu_write(efi_fpsimd_state_used, true);
1363 }
1364 }
1365
1366 /*
1367 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1368 */
__efi_fpsimd_end(void)1369 void __efi_fpsimd_end(void)
1370 {
1371 if (!system_supports_fpsimd())
1372 return;
1373
1374 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1375 kernel_neon_end();
1376 } else {
1377 if (system_supports_sve() &&
1378 likely(__this_cpu_read(efi_sve_state_used))) {
1379 char const *sve_state = this_cpu_ptr(efi_sve_state);
1380
1381 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1382 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1383 sve_vq_from_vl(sve_get_vl()) - 1);
1384
1385 __this_cpu_write(efi_sve_state_used, false);
1386 } else {
1387 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1388 }
1389 }
1390 }
1391
1392 #endif /* CONFIG_EFI */
1393
1394 #endif /* CONFIG_KERNEL_MODE_NEON */
1395
1396 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1397 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1398 unsigned long cmd, void *v)
1399 {
1400 switch (cmd) {
1401 case CPU_PM_ENTER:
1402 fpsimd_save_and_flush_cpu_state();
1403 break;
1404 case CPU_PM_EXIT:
1405 break;
1406 case CPU_PM_ENTER_FAILED:
1407 default:
1408 return NOTIFY_DONE;
1409 }
1410 return NOTIFY_OK;
1411 }
1412
1413 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1414 .notifier_call = fpsimd_cpu_pm_notifier,
1415 };
1416
fpsimd_pm_init(void)1417 static void __init fpsimd_pm_init(void)
1418 {
1419 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1420 }
1421
1422 #else
fpsimd_pm_init(void)1423 static inline void fpsimd_pm_init(void) { }
1424 #endif /* CONFIG_CPU_PM */
1425
1426 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)1427 static int fpsimd_cpu_dead(unsigned int cpu)
1428 {
1429 per_cpu(fpsimd_last_state.st, cpu) = NULL;
1430 return 0;
1431 }
1432
fpsimd_hotplug_init(void)1433 static inline void fpsimd_hotplug_init(void)
1434 {
1435 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1436 NULL, fpsimd_cpu_dead);
1437 }
1438
1439 #else
fpsimd_hotplug_init(void)1440 static inline void fpsimd_hotplug_init(void) { }
1441 #endif
1442
1443 /*
1444 * FP/SIMD support code initialisation.
1445 */
fpsimd_init(void)1446 static int __init fpsimd_init(void)
1447 {
1448 if (cpu_have_named_feature(FP)) {
1449 fpsimd_pm_init();
1450 fpsimd_hotplug_init();
1451 } else {
1452 pr_notice("Floating-point is not implemented\n");
1453 }
1454
1455 if (!cpu_have_named_feature(ASIMD))
1456 pr_notice("Advanced SIMD is not implemented\n");
1457
1458 return sve_sysctl_init();
1459 }
1460 core_initcall(fpsimd_init);
1461