1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2015-2018 Linaro Limited.
4 *
5 * Author: Tor Jeremiassen <tor@ti.com>
6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7 */
8
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include <opencsd/ocsd_if_types.h>
17 #include <stdlib.h>
18
19 #include "auxtrace.h"
20 #include "color.h"
21 #include "cs-etm.h"
22 #include "cs-etm-decoder/cs-etm-decoder.h"
23 #include "debug.h"
24 #include "dso.h"
25 #include "evlist.h"
26 #include "intlist.h"
27 #include "machine.h"
28 #include "map.h"
29 #include "perf.h"
30 #include "session.h"
31 #include "map_symbol.h"
32 #include "branch.h"
33 #include "symbol.h"
34 #include "tool.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include <tools/libc_compat.h>
38 #include "util/synthetic-events.h"
39
40 #define MAX_TIMESTAMP (~0ULL)
41
42 struct cs_etm_auxtrace {
43 struct auxtrace auxtrace;
44 struct auxtrace_queues queues;
45 struct auxtrace_heap heap;
46 struct itrace_synth_opts synth_opts;
47 struct perf_session *session;
48 struct machine *machine;
49 struct thread *unknown_thread;
50
51 u8 timeless_decoding;
52 u8 snapshot_mode;
53 u8 data_queued;
54 u8 sample_branches;
55 u8 sample_instructions;
56
57 int num_cpu;
58 u32 auxtrace_type;
59 u64 branches_sample_type;
60 u64 branches_id;
61 u64 instructions_sample_type;
62 u64 instructions_sample_period;
63 u64 instructions_id;
64 u64 **metadata;
65 u64 kernel_start;
66 unsigned int pmu_type;
67 };
68
69 struct cs_etm_traceid_queue {
70 u8 trace_chan_id;
71 pid_t pid, tid;
72 u64 period_instructions;
73 size_t last_branch_pos;
74 union perf_event *event_buf;
75 struct thread *thread;
76 struct branch_stack *last_branch;
77 struct branch_stack *last_branch_rb;
78 struct cs_etm_packet *prev_packet;
79 struct cs_etm_packet *packet;
80 struct cs_etm_packet_queue packet_queue;
81 };
82
83 struct cs_etm_queue {
84 struct cs_etm_auxtrace *etm;
85 struct cs_etm_decoder *decoder;
86 struct auxtrace_buffer *buffer;
87 unsigned int queue_nr;
88 u8 pending_timestamp;
89 u64 offset;
90 const unsigned char *buf;
91 size_t buf_len, buf_used;
92 /* Conversion between traceID and index in traceid_queues array */
93 struct intlist *traceid_queues_list;
94 struct cs_etm_traceid_queue **traceid_queues;
95 };
96
97 /* RB tree for quick conversion between traceID and metadata pointers */
98 static struct intlist *traceid_list;
99
100 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
101 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
102 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
103 pid_t tid);
104 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
105 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
106
107 /* PTMs ETMIDR [11:8] set to b0011 */
108 #define ETMIDR_PTM_VERSION 0x00000300
109
110 /*
111 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
112 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply
113 * encode the etm queue number as the upper 16 bit and the channel as
114 * the lower 16 bit.
115 */
116 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
117 (queue_nr << 16 | trace_chan_id)
118 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
119 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
120
cs_etm__get_v7_protocol_version(u32 etmidr)121 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
122 {
123 etmidr &= ETMIDR_PTM_VERSION;
124
125 if (etmidr == ETMIDR_PTM_VERSION)
126 return CS_ETM_PROTO_PTM;
127
128 return CS_ETM_PROTO_ETMV3;
129 }
130
cs_etm__get_magic(u8 trace_chan_id,u64 * magic)131 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
132 {
133 struct int_node *inode;
134 u64 *metadata;
135
136 inode = intlist__find(traceid_list, trace_chan_id);
137 if (!inode)
138 return -EINVAL;
139
140 metadata = inode->priv;
141 *magic = metadata[CS_ETM_MAGIC];
142 return 0;
143 }
144
cs_etm__get_cpu(u8 trace_chan_id,int * cpu)145 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
146 {
147 struct int_node *inode;
148 u64 *metadata;
149
150 inode = intlist__find(traceid_list, trace_chan_id);
151 if (!inode)
152 return -EINVAL;
153
154 metadata = inode->priv;
155 *cpu = (int)metadata[CS_ETM_CPU];
156 return 0;
157 }
158
cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue * etmq,u8 trace_chan_id)159 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
160 u8 trace_chan_id)
161 {
162 /*
163 * Wnen a timestamp packet is encountered the backend code
164 * is stopped so that the front end has time to process packets
165 * that were accumulated in the traceID queue. Since there can
166 * be more than one channel per cs_etm_queue, we need to specify
167 * what traceID queue needs servicing.
168 */
169 etmq->pending_timestamp = trace_chan_id;
170 }
171
cs_etm__etmq_get_timestamp(struct cs_etm_queue * etmq,u8 * trace_chan_id)172 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
173 u8 *trace_chan_id)
174 {
175 struct cs_etm_packet_queue *packet_queue;
176
177 if (!etmq->pending_timestamp)
178 return 0;
179
180 if (trace_chan_id)
181 *trace_chan_id = etmq->pending_timestamp;
182
183 packet_queue = cs_etm__etmq_get_packet_queue(etmq,
184 etmq->pending_timestamp);
185 if (!packet_queue)
186 return 0;
187
188 /* Acknowledge pending status */
189 etmq->pending_timestamp = 0;
190
191 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
192 return packet_queue->timestamp;
193 }
194
cs_etm__clear_packet_queue(struct cs_etm_packet_queue * queue)195 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
196 {
197 int i;
198
199 queue->head = 0;
200 queue->tail = 0;
201 queue->packet_count = 0;
202 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
203 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
204 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
205 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
206 queue->packet_buffer[i].instr_count = 0;
207 queue->packet_buffer[i].last_instr_taken_branch = false;
208 queue->packet_buffer[i].last_instr_size = 0;
209 queue->packet_buffer[i].last_instr_type = 0;
210 queue->packet_buffer[i].last_instr_subtype = 0;
211 queue->packet_buffer[i].last_instr_cond = 0;
212 queue->packet_buffer[i].flags = 0;
213 queue->packet_buffer[i].exception_number = UINT32_MAX;
214 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
215 queue->packet_buffer[i].cpu = INT_MIN;
216 }
217 }
218
cs_etm__clear_all_packet_queues(struct cs_etm_queue * etmq)219 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
220 {
221 int idx;
222 struct int_node *inode;
223 struct cs_etm_traceid_queue *tidq;
224 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
225
226 intlist__for_each_entry(inode, traceid_queues_list) {
227 idx = (int)(intptr_t)inode->priv;
228 tidq = etmq->traceid_queues[idx];
229 cs_etm__clear_packet_queue(&tidq->packet_queue);
230 }
231 }
232
cs_etm__init_traceid_queue(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq,u8 trace_chan_id)233 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
234 struct cs_etm_traceid_queue *tidq,
235 u8 trace_chan_id)
236 {
237 int rc = -ENOMEM;
238 struct auxtrace_queue *queue;
239 struct cs_etm_auxtrace *etm = etmq->etm;
240
241 cs_etm__clear_packet_queue(&tidq->packet_queue);
242
243 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
244 tidq->tid = queue->tid;
245 tidq->pid = -1;
246 tidq->trace_chan_id = trace_chan_id;
247
248 tidq->packet = zalloc(sizeof(struct cs_etm_packet));
249 if (!tidq->packet)
250 goto out;
251
252 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
253 if (!tidq->prev_packet)
254 goto out_free;
255
256 if (etm->synth_opts.last_branch) {
257 size_t sz = sizeof(struct branch_stack);
258
259 sz += etm->synth_opts.last_branch_sz *
260 sizeof(struct branch_entry);
261 tidq->last_branch = zalloc(sz);
262 if (!tidq->last_branch)
263 goto out_free;
264 tidq->last_branch_rb = zalloc(sz);
265 if (!tidq->last_branch_rb)
266 goto out_free;
267 }
268
269 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
270 if (!tidq->event_buf)
271 goto out_free;
272
273 return 0;
274
275 out_free:
276 zfree(&tidq->last_branch_rb);
277 zfree(&tidq->last_branch);
278 zfree(&tidq->prev_packet);
279 zfree(&tidq->packet);
280 out:
281 return rc;
282 }
283
284 static struct cs_etm_traceid_queue
cs_etm__etmq_get_traceid_queue(struct cs_etm_queue * etmq,u8 trace_chan_id)285 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
286 {
287 int idx;
288 struct int_node *inode;
289 struct intlist *traceid_queues_list;
290 struct cs_etm_traceid_queue *tidq, **traceid_queues;
291 struct cs_etm_auxtrace *etm = etmq->etm;
292
293 if (etm->timeless_decoding)
294 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
295
296 traceid_queues_list = etmq->traceid_queues_list;
297
298 /*
299 * Check if the traceid_queue exist for this traceID by looking
300 * in the queue list.
301 */
302 inode = intlist__find(traceid_queues_list, trace_chan_id);
303 if (inode) {
304 idx = (int)(intptr_t)inode->priv;
305 return etmq->traceid_queues[idx];
306 }
307
308 /* We couldn't find a traceid_queue for this traceID, allocate one */
309 tidq = malloc(sizeof(*tidq));
310 if (!tidq)
311 return NULL;
312
313 memset(tidq, 0, sizeof(*tidq));
314
315 /* Get a valid index for the new traceid_queue */
316 idx = intlist__nr_entries(traceid_queues_list);
317 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
318 inode = intlist__findnew(traceid_queues_list, trace_chan_id);
319 if (!inode)
320 goto out_free;
321
322 /* Associate this traceID with this index */
323 inode->priv = (void *)(intptr_t)idx;
324
325 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
326 goto out_free;
327
328 /* Grow the traceid_queues array by one unit */
329 traceid_queues = etmq->traceid_queues;
330 traceid_queues = reallocarray(traceid_queues,
331 idx + 1,
332 sizeof(*traceid_queues));
333
334 /*
335 * On failure reallocarray() returns NULL and the original block of
336 * memory is left untouched.
337 */
338 if (!traceid_queues)
339 goto out_free;
340
341 traceid_queues[idx] = tidq;
342 etmq->traceid_queues = traceid_queues;
343
344 return etmq->traceid_queues[idx];
345
346 out_free:
347 /*
348 * Function intlist__remove() removes the inode from the list
349 * and delete the memory associated to it.
350 */
351 intlist__remove(traceid_queues_list, inode);
352 free(tidq);
353
354 return NULL;
355 }
356
357 struct cs_etm_packet_queue
cs_etm__etmq_get_packet_queue(struct cs_etm_queue * etmq,u8 trace_chan_id)358 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
359 {
360 struct cs_etm_traceid_queue *tidq;
361
362 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
363 if (tidq)
364 return &tidq->packet_queue;
365
366 return NULL;
367 }
368
cs_etm__packet_swap(struct cs_etm_auxtrace * etm,struct cs_etm_traceid_queue * tidq)369 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
370 struct cs_etm_traceid_queue *tidq)
371 {
372 struct cs_etm_packet *tmp;
373
374 if (etm->sample_branches || etm->synth_opts.last_branch ||
375 etm->sample_instructions) {
376 /*
377 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
378 * the next incoming packet.
379 */
380 tmp = tidq->packet;
381 tidq->packet = tidq->prev_packet;
382 tidq->prev_packet = tmp;
383 }
384 }
385
cs_etm__packet_dump(const char * pkt_string)386 static void cs_etm__packet_dump(const char *pkt_string)
387 {
388 const char *color = PERF_COLOR_BLUE;
389 int len = strlen(pkt_string);
390
391 if (len && (pkt_string[len-1] == '\n'))
392 color_fprintf(stdout, color, " %s", pkt_string);
393 else
394 color_fprintf(stdout, color, " %s\n", pkt_string);
395
396 fflush(stdout);
397 }
398
cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params * t_params,struct cs_etm_auxtrace * etm,int idx,u32 etmidr)399 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
400 struct cs_etm_auxtrace *etm, int idx,
401 u32 etmidr)
402 {
403 u64 **metadata = etm->metadata;
404
405 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
406 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
407 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
408 }
409
cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params * t_params,struct cs_etm_auxtrace * etm,int idx)410 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
411 struct cs_etm_auxtrace *etm, int idx)
412 {
413 u64 **metadata = etm->metadata;
414
415 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
416 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
417 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
418 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
419 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
420 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
421 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
422 }
423
cs_etm__init_trace_params(struct cs_etm_trace_params * t_params,struct cs_etm_auxtrace * etm)424 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
425 struct cs_etm_auxtrace *etm)
426 {
427 int i;
428 u32 etmidr;
429 u64 architecture;
430
431 for (i = 0; i < etm->num_cpu; i++) {
432 architecture = etm->metadata[i][CS_ETM_MAGIC];
433
434 switch (architecture) {
435 case __perf_cs_etmv3_magic:
436 etmidr = etm->metadata[i][CS_ETM_ETMIDR];
437 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
438 break;
439 case __perf_cs_etmv4_magic:
440 cs_etm__set_trace_param_etmv4(t_params, etm, i);
441 break;
442 default:
443 return -EINVAL;
444 }
445 }
446
447 return 0;
448 }
449
cs_etm__init_decoder_params(struct cs_etm_decoder_params * d_params,struct cs_etm_queue * etmq,enum cs_etm_decoder_operation mode)450 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
451 struct cs_etm_queue *etmq,
452 enum cs_etm_decoder_operation mode)
453 {
454 int ret = -EINVAL;
455
456 if (!(mode < CS_ETM_OPERATION_MAX))
457 goto out;
458
459 d_params->packet_printer = cs_etm__packet_dump;
460 d_params->operation = mode;
461 d_params->data = etmq;
462 d_params->formatted = true;
463 d_params->fsyncs = false;
464 d_params->hsyncs = false;
465 d_params->frame_aligned = true;
466
467 ret = 0;
468 out:
469 return ret;
470 }
471
cs_etm__dump_event(struct cs_etm_auxtrace * etm,struct auxtrace_buffer * buffer)472 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
473 struct auxtrace_buffer *buffer)
474 {
475 int ret;
476 const char *color = PERF_COLOR_BLUE;
477 struct cs_etm_decoder_params d_params;
478 struct cs_etm_trace_params *t_params;
479 struct cs_etm_decoder *decoder;
480 size_t buffer_used = 0;
481
482 fprintf(stdout, "\n");
483 color_fprintf(stdout, color,
484 ". ... CoreSight ETM Trace data: size %zu bytes\n",
485 buffer->size);
486
487 /* Use metadata to fill in trace parameters for trace decoder */
488 t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
489
490 if (!t_params)
491 return;
492
493 if (cs_etm__init_trace_params(t_params, etm))
494 goto out_free;
495
496 /* Set decoder parameters to simply print the trace packets */
497 if (cs_etm__init_decoder_params(&d_params, NULL,
498 CS_ETM_OPERATION_PRINT))
499 goto out_free;
500
501 decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
502
503 if (!decoder)
504 goto out_free;
505 do {
506 size_t consumed;
507
508 ret = cs_etm_decoder__process_data_block(
509 decoder, buffer->offset,
510 &((u8 *)buffer->data)[buffer_used],
511 buffer->size - buffer_used, &consumed);
512 if (ret)
513 break;
514
515 buffer_used += consumed;
516 } while (buffer_used < buffer->size);
517
518 cs_etm_decoder__free(decoder);
519
520 out_free:
521 zfree(&t_params);
522 }
523
cs_etm__flush_events(struct perf_session * session,struct perf_tool * tool)524 static int cs_etm__flush_events(struct perf_session *session,
525 struct perf_tool *tool)
526 {
527 int ret;
528 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
529 struct cs_etm_auxtrace,
530 auxtrace);
531 if (dump_trace)
532 return 0;
533
534 if (!tool->ordered_events)
535 return -EINVAL;
536
537 ret = cs_etm__update_queues(etm);
538
539 if (ret < 0)
540 return ret;
541
542 if (etm->timeless_decoding)
543 return cs_etm__process_timeless_queues(etm, -1);
544
545 return cs_etm__process_queues(etm);
546 }
547
cs_etm__free_traceid_queues(struct cs_etm_queue * etmq)548 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
549 {
550 int idx;
551 uintptr_t priv;
552 struct int_node *inode, *tmp;
553 struct cs_etm_traceid_queue *tidq;
554 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
555
556 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
557 priv = (uintptr_t)inode->priv;
558 idx = priv;
559
560 /* Free this traceid_queue from the array */
561 tidq = etmq->traceid_queues[idx];
562 thread__zput(tidq->thread);
563 zfree(&tidq->event_buf);
564 zfree(&tidq->last_branch);
565 zfree(&tidq->last_branch_rb);
566 zfree(&tidq->prev_packet);
567 zfree(&tidq->packet);
568 zfree(&tidq);
569
570 /*
571 * Function intlist__remove() removes the inode from the list
572 * and delete the memory associated to it.
573 */
574 intlist__remove(traceid_queues_list, inode);
575 }
576
577 /* Then the RB tree itself */
578 intlist__delete(traceid_queues_list);
579 etmq->traceid_queues_list = NULL;
580
581 /* finally free the traceid_queues array */
582 zfree(&etmq->traceid_queues);
583 }
584
cs_etm__free_queue(void * priv)585 static void cs_etm__free_queue(void *priv)
586 {
587 struct cs_etm_queue *etmq = priv;
588
589 if (!etmq)
590 return;
591
592 cs_etm_decoder__free(etmq->decoder);
593 cs_etm__free_traceid_queues(etmq);
594 free(etmq);
595 }
596
cs_etm__free_events(struct perf_session * session)597 static void cs_etm__free_events(struct perf_session *session)
598 {
599 unsigned int i;
600 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
601 struct cs_etm_auxtrace,
602 auxtrace);
603 struct auxtrace_queues *queues = &aux->queues;
604
605 for (i = 0; i < queues->nr_queues; i++) {
606 cs_etm__free_queue(queues->queue_array[i].priv);
607 queues->queue_array[i].priv = NULL;
608 }
609
610 auxtrace_queues__free(queues);
611 }
612
cs_etm__free(struct perf_session * session)613 static void cs_etm__free(struct perf_session *session)
614 {
615 int i;
616 struct int_node *inode, *tmp;
617 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
618 struct cs_etm_auxtrace,
619 auxtrace);
620 cs_etm__free_events(session);
621 session->auxtrace = NULL;
622
623 /* First remove all traceID/metadata nodes for the RB tree */
624 intlist__for_each_entry_safe(inode, tmp, traceid_list)
625 intlist__remove(traceid_list, inode);
626 /* Then the RB tree itself */
627 intlist__delete(traceid_list);
628
629 for (i = 0; i < aux->num_cpu; i++)
630 zfree(&aux->metadata[i]);
631
632 thread__zput(aux->unknown_thread);
633 zfree(&aux->metadata);
634 zfree(&aux);
635 }
636
cs_etm__evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)637 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
638 struct evsel *evsel)
639 {
640 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
641 struct cs_etm_auxtrace,
642 auxtrace);
643
644 return evsel->core.attr.type == aux->pmu_type;
645 }
646
cs_etm__cpu_mode(struct cs_etm_queue * etmq,u64 address)647 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
648 {
649 struct machine *machine;
650
651 machine = etmq->etm->machine;
652
653 if (address >= etmq->etm->kernel_start) {
654 if (machine__is_host(machine))
655 return PERF_RECORD_MISC_KERNEL;
656 else
657 return PERF_RECORD_MISC_GUEST_KERNEL;
658 } else {
659 if (machine__is_host(machine))
660 return PERF_RECORD_MISC_USER;
661 else if (perf_guest)
662 return PERF_RECORD_MISC_GUEST_USER;
663 else
664 return PERF_RECORD_MISC_HYPERVISOR;
665 }
666 }
667
cs_etm__mem_access(struct cs_etm_queue * etmq,u8 trace_chan_id,u64 address,size_t size,u8 * buffer)668 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
669 u64 address, size_t size, u8 *buffer)
670 {
671 u8 cpumode;
672 u64 offset;
673 int len;
674 struct thread *thread;
675 struct machine *machine;
676 struct addr_location al;
677 struct cs_etm_traceid_queue *tidq;
678
679 if (!etmq)
680 return 0;
681
682 machine = etmq->etm->machine;
683 cpumode = cs_etm__cpu_mode(etmq, address);
684 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
685 if (!tidq)
686 return 0;
687
688 thread = tidq->thread;
689 if (!thread) {
690 if (cpumode != PERF_RECORD_MISC_KERNEL)
691 return 0;
692 thread = etmq->etm->unknown_thread;
693 }
694
695 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
696 return 0;
697
698 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
699 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
700 return 0;
701
702 offset = al.map->map_ip(al.map, address);
703
704 map__load(al.map);
705
706 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
707
708 if (len <= 0)
709 return 0;
710
711 return len;
712 }
713
cs_etm__alloc_queue(struct cs_etm_auxtrace * etm)714 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
715 {
716 struct cs_etm_decoder_params d_params;
717 struct cs_etm_trace_params *t_params = NULL;
718 struct cs_etm_queue *etmq;
719
720 etmq = zalloc(sizeof(*etmq));
721 if (!etmq)
722 return NULL;
723
724 etmq->traceid_queues_list = intlist__new(NULL);
725 if (!etmq->traceid_queues_list)
726 goto out_free;
727
728 /* Use metadata to fill in trace parameters for trace decoder */
729 t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
730
731 if (!t_params)
732 goto out_free;
733
734 if (cs_etm__init_trace_params(t_params, etm))
735 goto out_free;
736
737 /* Set decoder parameters to decode trace packets */
738 if (cs_etm__init_decoder_params(&d_params, etmq,
739 CS_ETM_OPERATION_DECODE))
740 goto out_free;
741
742 etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
743
744 if (!etmq->decoder)
745 goto out_free;
746
747 /*
748 * Register a function to handle all memory accesses required by
749 * the trace decoder library.
750 */
751 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
752 0x0L, ((u64) -1L),
753 cs_etm__mem_access))
754 goto out_free_decoder;
755
756 zfree(&t_params);
757 return etmq;
758
759 out_free_decoder:
760 cs_etm_decoder__free(etmq->decoder);
761 out_free:
762 intlist__delete(etmq->traceid_queues_list);
763 free(etmq);
764
765 return NULL;
766 }
767
cs_etm__setup_queue(struct cs_etm_auxtrace * etm,struct auxtrace_queue * queue,unsigned int queue_nr)768 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
769 struct auxtrace_queue *queue,
770 unsigned int queue_nr)
771 {
772 int ret = 0;
773 unsigned int cs_queue_nr;
774 u8 trace_chan_id;
775 u64 timestamp;
776 struct cs_etm_queue *etmq = queue->priv;
777
778 if (list_empty(&queue->head) || etmq)
779 goto out;
780
781 etmq = cs_etm__alloc_queue(etm);
782
783 if (!etmq) {
784 ret = -ENOMEM;
785 goto out;
786 }
787
788 queue->priv = etmq;
789 etmq->etm = etm;
790 etmq->queue_nr = queue_nr;
791 etmq->offset = 0;
792
793 if (etm->timeless_decoding)
794 goto out;
795
796 /*
797 * We are under a CPU-wide trace scenario. As such we need to know
798 * when the code that generated the traces started to execute so that
799 * it can be correlated with execution on other CPUs. So we get a
800 * handle on the beginning of traces and decode until we find a
801 * timestamp. The timestamp is then added to the auxtrace min heap
802 * in order to know what nibble (of all the etmqs) to decode first.
803 */
804 while (1) {
805 /*
806 * Fetch an aux_buffer from this etmq. Bail if no more
807 * blocks or an error has been encountered.
808 */
809 ret = cs_etm__get_data_block(etmq);
810 if (ret <= 0)
811 goto out;
812
813 /*
814 * Run decoder on the trace block. The decoder will stop when
815 * encountering a timestamp, a full packet queue or the end of
816 * trace for that block.
817 */
818 ret = cs_etm__decode_data_block(etmq);
819 if (ret)
820 goto out;
821
822 /*
823 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
824 * the timestamp calculation for us.
825 */
826 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
827
828 /* We found a timestamp, no need to continue. */
829 if (timestamp)
830 break;
831
832 /*
833 * We didn't find a timestamp so empty all the traceid packet
834 * queues before looking for another timestamp packet, either
835 * in the current data block or a new one. Packets that were
836 * just decoded are useless since no timestamp has been
837 * associated with them. As such simply discard them.
838 */
839 cs_etm__clear_all_packet_queues(etmq);
840 }
841
842 /*
843 * We have a timestamp. Add it to the min heap to reflect when
844 * instructions conveyed by the range packets of this traceID queue
845 * started to execute. Once the same has been done for all the traceID
846 * queues of each etmq, redenring and decoding can start in
847 * chronological order.
848 *
849 * Note that packets decoded above are still in the traceID's packet
850 * queue and will be processed in cs_etm__process_queues().
851 */
852 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
853 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
854 out:
855 return ret;
856 }
857
cs_etm__setup_queues(struct cs_etm_auxtrace * etm)858 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
859 {
860 unsigned int i;
861 int ret;
862
863 if (!etm->kernel_start)
864 etm->kernel_start = machine__kernel_start(etm->machine);
865
866 for (i = 0; i < etm->queues.nr_queues; i++) {
867 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
868 if (ret)
869 return ret;
870 }
871
872 return 0;
873 }
874
cs_etm__update_queues(struct cs_etm_auxtrace * etm)875 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
876 {
877 if (etm->queues.new_data) {
878 etm->queues.new_data = false;
879 return cs_etm__setup_queues(etm);
880 }
881
882 return 0;
883 }
884
885 static inline
cs_etm__copy_last_branch_rb(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)886 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
887 struct cs_etm_traceid_queue *tidq)
888 {
889 struct branch_stack *bs_src = tidq->last_branch_rb;
890 struct branch_stack *bs_dst = tidq->last_branch;
891 size_t nr = 0;
892
893 /*
894 * Set the number of records before early exit: ->nr is used to
895 * determine how many branches to copy from ->entries.
896 */
897 bs_dst->nr = bs_src->nr;
898
899 /*
900 * Early exit when there is nothing to copy.
901 */
902 if (!bs_src->nr)
903 return;
904
905 /*
906 * As bs_src->entries is a circular buffer, we need to copy from it in
907 * two steps. First, copy the branches from the most recently inserted
908 * branch ->last_branch_pos until the end of bs_src->entries buffer.
909 */
910 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
911 memcpy(&bs_dst->entries[0],
912 &bs_src->entries[tidq->last_branch_pos],
913 sizeof(struct branch_entry) * nr);
914
915 /*
916 * If we wrapped around at least once, the branches from the beginning
917 * of the bs_src->entries buffer and until the ->last_branch_pos element
918 * are older valid branches: copy them over. The total number of
919 * branches copied over will be equal to the number of branches asked by
920 * the user in last_branch_sz.
921 */
922 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
923 memcpy(&bs_dst->entries[nr],
924 &bs_src->entries[0],
925 sizeof(struct branch_entry) * tidq->last_branch_pos);
926 }
927 }
928
929 static inline
cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue * tidq)930 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
931 {
932 tidq->last_branch_pos = 0;
933 tidq->last_branch_rb->nr = 0;
934 }
935
cs_etm__t32_instr_size(struct cs_etm_queue * etmq,u8 trace_chan_id,u64 addr)936 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
937 u8 trace_chan_id, u64 addr)
938 {
939 u8 instrBytes[2];
940
941 cs_etm__mem_access(etmq, trace_chan_id, addr,
942 ARRAY_SIZE(instrBytes), instrBytes);
943 /*
944 * T32 instruction size is indicated by bits[15:11] of the first
945 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
946 * denote a 32-bit instruction.
947 */
948 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
949 }
950
cs_etm__first_executed_instr(struct cs_etm_packet * packet)951 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
952 {
953 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
954 if (packet->sample_type == CS_ETM_DISCONTINUITY)
955 return 0;
956
957 return packet->start_addr;
958 }
959
960 static inline
cs_etm__last_executed_instr(const struct cs_etm_packet * packet)961 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
962 {
963 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
964 if (packet->sample_type == CS_ETM_DISCONTINUITY)
965 return 0;
966
967 return packet->end_addr - packet->last_instr_size;
968 }
969
cs_etm__instr_addr(struct cs_etm_queue * etmq,u64 trace_chan_id,const struct cs_etm_packet * packet,u64 offset)970 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
971 u64 trace_chan_id,
972 const struct cs_etm_packet *packet,
973 u64 offset)
974 {
975 if (packet->isa == CS_ETM_ISA_T32) {
976 u64 addr = packet->start_addr;
977
978 while (offset) {
979 addr += cs_etm__t32_instr_size(etmq,
980 trace_chan_id, addr);
981 offset--;
982 }
983 return addr;
984 }
985
986 /* Assume a 4 byte instruction size (A32/A64) */
987 return packet->start_addr + offset * 4;
988 }
989
cs_etm__update_last_branch_rb(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)990 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
991 struct cs_etm_traceid_queue *tidq)
992 {
993 struct branch_stack *bs = tidq->last_branch_rb;
994 struct branch_entry *be;
995
996 /*
997 * The branches are recorded in a circular buffer in reverse
998 * chronological order: we start recording from the last element of the
999 * buffer down. After writing the first element of the stack, move the
1000 * insert position back to the end of the buffer.
1001 */
1002 if (!tidq->last_branch_pos)
1003 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1004
1005 tidq->last_branch_pos -= 1;
1006
1007 be = &bs->entries[tidq->last_branch_pos];
1008 be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1009 be->to = cs_etm__first_executed_instr(tidq->packet);
1010 /* No support for mispredict */
1011 be->flags.mispred = 0;
1012 be->flags.predicted = 1;
1013
1014 /*
1015 * Increment bs->nr until reaching the number of last branches asked by
1016 * the user on the command line.
1017 */
1018 if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1019 bs->nr += 1;
1020 }
1021
cs_etm__inject_event(union perf_event * event,struct perf_sample * sample,u64 type)1022 static int cs_etm__inject_event(union perf_event *event,
1023 struct perf_sample *sample, u64 type)
1024 {
1025 event->header.size = perf_event__sample_event_size(sample, type, 0);
1026 return perf_event__synthesize_sample(event, type, 0, sample);
1027 }
1028
1029
1030 static int
cs_etm__get_trace(struct cs_etm_queue * etmq)1031 cs_etm__get_trace(struct cs_etm_queue *etmq)
1032 {
1033 struct auxtrace_buffer *aux_buffer = etmq->buffer;
1034 struct auxtrace_buffer *old_buffer = aux_buffer;
1035 struct auxtrace_queue *queue;
1036
1037 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1038
1039 aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1040
1041 /* If no more data, drop the previous auxtrace_buffer and return */
1042 if (!aux_buffer) {
1043 if (old_buffer)
1044 auxtrace_buffer__drop_data(old_buffer);
1045 etmq->buf_len = 0;
1046 return 0;
1047 }
1048
1049 etmq->buffer = aux_buffer;
1050
1051 /* If the aux_buffer doesn't have data associated, try to load it */
1052 if (!aux_buffer->data) {
1053 /* get the file desc associated with the perf data file */
1054 int fd = perf_data__fd(etmq->etm->session->data);
1055
1056 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1057 if (!aux_buffer->data)
1058 return -ENOMEM;
1059 }
1060
1061 /* If valid, drop the previous buffer */
1062 if (old_buffer)
1063 auxtrace_buffer__drop_data(old_buffer);
1064
1065 etmq->buf_used = 0;
1066 etmq->buf_len = aux_buffer->size;
1067 etmq->buf = aux_buffer->data;
1068
1069 return etmq->buf_len;
1070 }
1071
cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace * etm,struct cs_etm_traceid_queue * tidq)1072 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1073 struct cs_etm_traceid_queue *tidq)
1074 {
1075 if ((!tidq->thread) && (tidq->tid != -1))
1076 tidq->thread = machine__find_thread(etm->machine, -1,
1077 tidq->tid);
1078
1079 if (tidq->thread)
1080 tidq->pid = tidq->thread->pid_;
1081 }
1082
cs_etm__etmq_set_tid(struct cs_etm_queue * etmq,pid_t tid,u8 trace_chan_id)1083 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1084 pid_t tid, u8 trace_chan_id)
1085 {
1086 int cpu, err = -EINVAL;
1087 struct cs_etm_auxtrace *etm = etmq->etm;
1088 struct cs_etm_traceid_queue *tidq;
1089
1090 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1091 if (!tidq)
1092 return err;
1093
1094 if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1095 return err;
1096
1097 err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1098 if (err)
1099 return err;
1100
1101 tidq->tid = tid;
1102 thread__zput(tidq->thread);
1103
1104 cs_etm__set_pid_tid_cpu(etm, tidq);
1105 return 0;
1106 }
1107
cs_etm__etmq_is_timeless(struct cs_etm_queue * etmq)1108 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1109 {
1110 return !!etmq->etm->timeless_decoding;
1111 }
1112
cs_etm__copy_insn(struct cs_etm_queue * etmq,u64 trace_chan_id,const struct cs_etm_packet * packet,struct perf_sample * sample)1113 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1114 u64 trace_chan_id,
1115 const struct cs_etm_packet *packet,
1116 struct perf_sample *sample)
1117 {
1118 /*
1119 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1120 * packet, so directly bail out with 'insn_len' = 0.
1121 */
1122 if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1123 sample->insn_len = 0;
1124 return;
1125 }
1126
1127 /*
1128 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1129 * cs_etm__t32_instr_size().
1130 */
1131 if (packet->isa == CS_ETM_ISA_T32)
1132 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1133 sample->ip);
1134 /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1135 else
1136 sample->insn_len = 4;
1137
1138 cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1139 sample->insn_len, (void *)sample->insn);
1140 }
1141
cs_etm__synth_instruction_sample(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq,u64 addr,u64 period)1142 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1143 struct cs_etm_traceid_queue *tidq,
1144 u64 addr, u64 period)
1145 {
1146 int ret = 0;
1147 struct cs_etm_auxtrace *etm = etmq->etm;
1148 union perf_event *event = tidq->event_buf;
1149 struct perf_sample sample = {.ip = 0,};
1150
1151 event->sample.header.type = PERF_RECORD_SAMPLE;
1152 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1153 event->sample.header.size = sizeof(struct perf_event_header);
1154
1155 sample.ip = addr;
1156 sample.pid = tidq->pid;
1157 sample.tid = tidq->tid;
1158 sample.id = etmq->etm->instructions_id;
1159 sample.stream_id = etmq->etm->instructions_id;
1160 sample.period = period;
1161 sample.cpu = tidq->packet->cpu;
1162 sample.flags = tidq->prev_packet->flags;
1163 sample.cpumode = event->sample.header.misc;
1164
1165 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1166
1167 if (etm->synth_opts.last_branch)
1168 sample.branch_stack = tidq->last_branch;
1169
1170 if (etm->synth_opts.inject) {
1171 ret = cs_etm__inject_event(event, &sample,
1172 etm->instructions_sample_type);
1173 if (ret)
1174 return ret;
1175 }
1176
1177 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1178
1179 if (ret)
1180 pr_err(
1181 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1182 ret);
1183
1184 return ret;
1185 }
1186
1187 /*
1188 * The cs etm packet encodes an instruction range between a branch target
1189 * and the next taken branch. Generate sample accordingly.
1190 */
cs_etm__synth_branch_sample(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)1191 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1192 struct cs_etm_traceid_queue *tidq)
1193 {
1194 int ret = 0;
1195 struct cs_etm_auxtrace *etm = etmq->etm;
1196 struct perf_sample sample = {.ip = 0,};
1197 union perf_event *event = tidq->event_buf;
1198 struct dummy_branch_stack {
1199 u64 nr;
1200 u64 hw_idx;
1201 struct branch_entry entries;
1202 } dummy_bs;
1203 u64 ip;
1204
1205 ip = cs_etm__last_executed_instr(tidq->prev_packet);
1206
1207 event->sample.header.type = PERF_RECORD_SAMPLE;
1208 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1209 event->sample.header.size = sizeof(struct perf_event_header);
1210
1211 sample.ip = ip;
1212 sample.pid = tidq->pid;
1213 sample.tid = tidq->tid;
1214 sample.addr = cs_etm__first_executed_instr(tidq->packet);
1215 sample.id = etmq->etm->branches_id;
1216 sample.stream_id = etmq->etm->branches_id;
1217 sample.period = 1;
1218 sample.cpu = tidq->packet->cpu;
1219 sample.flags = tidq->prev_packet->flags;
1220 sample.cpumode = event->sample.header.misc;
1221
1222 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1223 &sample);
1224
1225 /*
1226 * perf report cannot handle events without a branch stack
1227 */
1228 if (etm->synth_opts.last_branch) {
1229 dummy_bs = (struct dummy_branch_stack){
1230 .nr = 1,
1231 .hw_idx = -1ULL,
1232 .entries = {
1233 .from = sample.ip,
1234 .to = sample.addr,
1235 },
1236 };
1237 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1238 }
1239
1240 if (etm->synth_opts.inject) {
1241 ret = cs_etm__inject_event(event, &sample,
1242 etm->branches_sample_type);
1243 if (ret)
1244 return ret;
1245 }
1246
1247 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1248
1249 if (ret)
1250 pr_err(
1251 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1252 ret);
1253
1254 return ret;
1255 }
1256
1257 struct cs_etm_synth {
1258 struct perf_tool dummy_tool;
1259 struct perf_session *session;
1260 };
1261
cs_etm__event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)1262 static int cs_etm__event_synth(struct perf_tool *tool,
1263 union perf_event *event,
1264 struct perf_sample *sample __maybe_unused,
1265 struct machine *machine __maybe_unused)
1266 {
1267 struct cs_etm_synth *cs_etm_synth =
1268 container_of(tool, struct cs_etm_synth, dummy_tool);
1269
1270 return perf_session__deliver_synth_event(cs_etm_synth->session,
1271 event, NULL);
1272 }
1273
cs_etm__synth_event(struct perf_session * session,struct perf_event_attr * attr,u64 id)1274 static int cs_etm__synth_event(struct perf_session *session,
1275 struct perf_event_attr *attr, u64 id)
1276 {
1277 struct cs_etm_synth cs_etm_synth;
1278
1279 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1280 cs_etm_synth.session = session;
1281
1282 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1283 &id, cs_etm__event_synth);
1284 }
1285
cs_etm__synth_events(struct cs_etm_auxtrace * etm,struct perf_session * session)1286 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1287 struct perf_session *session)
1288 {
1289 struct evlist *evlist = session->evlist;
1290 struct evsel *evsel;
1291 struct perf_event_attr attr;
1292 bool found = false;
1293 u64 id;
1294 int err;
1295
1296 evlist__for_each_entry(evlist, evsel) {
1297 if (evsel->core.attr.type == etm->pmu_type) {
1298 found = true;
1299 break;
1300 }
1301 }
1302
1303 if (!found) {
1304 pr_debug("No selected events with CoreSight Trace data\n");
1305 return 0;
1306 }
1307
1308 memset(&attr, 0, sizeof(struct perf_event_attr));
1309 attr.size = sizeof(struct perf_event_attr);
1310 attr.type = PERF_TYPE_HARDWARE;
1311 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1312 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1313 PERF_SAMPLE_PERIOD;
1314 if (etm->timeless_decoding)
1315 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1316 else
1317 attr.sample_type |= PERF_SAMPLE_TIME;
1318
1319 attr.exclude_user = evsel->core.attr.exclude_user;
1320 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1321 attr.exclude_hv = evsel->core.attr.exclude_hv;
1322 attr.exclude_host = evsel->core.attr.exclude_host;
1323 attr.exclude_guest = evsel->core.attr.exclude_guest;
1324 attr.sample_id_all = evsel->core.attr.sample_id_all;
1325 attr.read_format = evsel->core.attr.read_format;
1326
1327 /* create new id val to be a fixed offset from evsel id */
1328 id = evsel->core.id[0] + 1000000000;
1329
1330 if (!id)
1331 id = 1;
1332
1333 if (etm->synth_opts.branches) {
1334 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1335 attr.sample_period = 1;
1336 attr.sample_type |= PERF_SAMPLE_ADDR;
1337 err = cs_etm__synth_event(session, &attr, id);
1338 if (err)
1339 return err;
1340 etm->sample_branches = true;
1341 etm->branches_sample_type = attr.sample_type;
1342 etm->branches_id = id;
1343 id += 1;
1344 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1345 }
1346
1347 if (etm->synth_opts.last_branch) {
1348 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1349 /*
1350 * We don't use the hardware index, but the sample generation
1351 * code uses the new format branch_stack with this field,
1352 * so the event attributes must indicate that it's present.
1353 */
1354 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1355 }
1356
1357 if (etm->synth_opts.instructions) {
1358 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1359 attr.sample_period = etm->synth_opts.period;
1360 etm->instructions_sample_period = attr.sample_period;
1361 err = cs_etm__synth_event(session, &attr, id);
1362 if (err)
1363 return err;
1364 etm->sample_instructions = true;
1365 etm->instructions_sample_type = attr.sample_type;
1366 etm->instructions_id = id;
1367 id += 1;
1368 }
1369
1370 return 0;
1371 }
1372
cs_etm__sample(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)1373 static int cs_etm__sample(struct cs_etm_queue *etmq,
1374 struct cs_etm_traceid_queue *tidq)
1375 {
1376 struct cs_etm_auxtrace *etm = etmq->etm;
1377 int ret;
1378 u8 trace_chan_id = tidq->trace_chan_id;
1379 u64 instrs_prev;
1380
1381 /* Get instructions remainder from previous packet */
1382 instrs_prev = tidq->period_instructions;
1383
1384 tidq->period_instructions += tidq->packet->instr_count;
1385
1386 /*
1387 * Record a branch when the last instruction in
1388 * PREV_PACKET is a branch.
1389 */
1390 if (etm->synth_opts.last_branch &&
1391 tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1392 tidq->prev_packet->last_instr_taken_branch)
1393 cs_etm__update_last_branch_rb(etmq, tidq);
1394
1395 if (etm->sample_instructions &&
1396 tidq->period_instructions >= etm->instructions_sample_period) {
1397 /*
1398 * Emit instruction sample periodically
1399 * TODO: allow period to be defined in cycles and clock time
1400 */
1401
1402 /*
1403 * Below diagram demonstrates the instruction samples
1404 * generation flows:
1405 *
1406 * Instrs Instrs Instrs Instrs
1407 * Sample(n) Sample(n+1) Sample(n+2) Sample(n+3)
1408 * | | | |
1409 * V V V V
1410 * --------------------------------------------------
1411 * ^ ^
1412 * | |
1413 * Period Period
1414 * instructions(Pi) instructions(Pi')
1415 *
1416 * | |
1417 * \---------------- -----------------/
1418 * V
1419 * tidq->packet->instr_count
1420 *
1421 * Instrs Sample(n...) are the synthesised samples occurring
1422 * every etm->instructions_sample_period instructions - as
1423 * defined on the perf command line. Sample(n) is being the
1424 * last sample before the current etm packet, n+1 to n+3
1425 * samples are generated from the current etm packet.
1426 *
1427 * tidq->packet->instr_count represents the number of
1428 * instructions in the current etm packet.
1429 *
1430 * Period instructions (Pi) contains the the number of
1431 * instructions executed after the sample point(n) from the
1432 * previous etm packet. This will always be less than
1433 * etm->instructions_sample_period.
1434 *
1435 * When generate new samples, it combines with two parts
1436 * instructions, one is the tail of the old packet and another
1437 * is the head of the new coming packet, to generate
1438 * sample(n+1); sample(n+2) and sample(n+3) consume the
1439 * instructions with sample period. After sample(n+3), the rest
1440 * instructions will be used by later packet and it is assigned
1441 * to tidq->period_instructions for next round calculation.
1442 */
1443
1444 /*
1445 * Get the initial offset into the current packet instructions;
1446 * entry conditions ensure that instrs_prev is less than
1447 * etm->instructions_sample_period.
1448 */
1449 u64 offset = etm->instructions_sample_period - instrs_prev;
1450 u64 addr;
1451
1452 /* Prepare last branches for instruction sample */
1453 if (etm->synth_opts.last_branch)
1454 cs_etm__copy_last_branch_rb(etmq, tidq);
1455
1456 while (tidq->period_instructions >=
1457 etm->instructions_sample_period) {
1458 /*
1459 * Calculate the address of the sampled instruction (-1
1460 * as sample is reported as though instruction has just
1461 * been executed, but PC has not advanced to next
1462 * instruction)
1463 */
1464 addr = cs_etm__instr_addr(etmq, trace_chan_id,
1465 tidq->packet, offset - 1);
1466 ret = cs_etm__synth_instruction_sample(
1467 etmq, tidq, addr,
1468 etm->instructions_sample_period);
1469 if (ret)
1470 return ret;
1471
1472 offset += etm->instructions_sample_period;
1473 tidq->period_instructions -=
1474 etm->instructions_sample_period;
1475 }
1476 }
1477
1478 if (etm->sample_branches) {
1479 bool generate_sample = false;
1480
1481 /* Generate sample for tracing on packet */
1482 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1483 generate_sample = true;
1484
1485 /* Generate sample for branch taken packet */
1486 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1487 tidq->prev_packet->last_instr_taken_branch)
1488 generate_sample = true;
1489
1490 if (generate_sample) {
1491 ret = cs_etm__synth_branch_sample(etmq, tidq);
1492 if (ret)
1493 return ret;
1494 }
1495 }
1496
1497 cs_etm__packet_swap(etm, tidq);
1498
1499 return 0;
1500 }
1501
cs_etm__exception(struct cs_etm_traceid_queue * tidq)1502 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1503 {
1504 /*
1505 * When the exception packet is inserted, whether the last instruction
1506 * in previous range packet is taken branch or not, we need to force
1507 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures
1508 * to generate branch sample for the instruction range before the
1509 * exception is trapped to kernel or before the exception returning.
1510 *
1511 * The exception packet includes the dummy address values, so don't
1512 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful
1513 * for generating instruction and branch samples.
1514 */
1515 if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1516 tidq->prev_packet->last_instr_taken_branch = true;
1517
1518 return 0;
1519 }
1520
cs_etm__flush(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)1521 static int cs_etm__flush(struct cs_etm_queue *etmq,
1522 struct cs_etm_traceid_queue *tidq)
1523 {
1524 int err = 0;
1525 struct cs_etm_auxtrace *etm = etmq->etm;
1526
1527 /* Handle start tracing packet */
1528 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1529 goto swap_packet;
1530
1531 if (etmq->etm->synth_opts.last_branch &&
1532 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1533 u64 addr;
1534
1535 /* Prepare last branches for instruction sample */
1536 cs_etm__copy_last_branch_rb(etmq, tidq);
1537
1538 /*
1539 * Generate a last branch event for the branches left in the
1540 * circular buffer at the end of the trace.
1541 *
1542 * Use the address of the end of the last reported execution
1543 * range
1544 */
1545 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1546
1547 err = cs_etm__synth_instruction_sample(
1548 etmq, tidq, addr,
1549 tidq->period_instructions);
1550 if (err)
1551 return err;
1552
1553 tidq->period_instructions = 0;
1554
1555 }
1556
1557 if (etm->sample_branches &&
1558 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1559 err = cs_etm__synth_branch_sample(etmq, tidq);
1560 if (err)
1561 return err;
1562 }
1563
1564 swap_packet:
1565 cs_etm__packet_swap(etm, tidq);
1566
1567 /* Reset last branches after flush the trace */
1568 if (etm->synth_opts.last_branch)
1569 cs_etm__reset_last_branch_rb(tidq);
1570
1571 return err;
1572 }
1573
cs_etm__end_block(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)1574 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1575 struct cs_etm_traceid_queue *tidq)
1576 {
1577 int err;
1578
1579 /*
1580 * It has no new packet coming and 'etmq->packet' contains the stale
1581 * packet which was set at the previous time with packets swapping;
1582 * so skip to generate branch sample to avoid stale packet.
1583 *
1584 * For this case only flush branch stack and generate a last branch
1585 * event for the branches left in the circular buffer at the end of
1586 * the trace.
1587 */
1588 if (etmq->etm->synth_opts.last_branch &&
1589 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1590 u64 addr;
1591
1592 /* Prepare last branches for instruction sample */
1593 cs_etm__copy_last_branch_rb(etmq, tidq);
1594
1595 /*
1596 * Use the address of the end of the last reported execution
1597 * range.
1598 */
1599 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1600
1601 err = cs_etm__synth_instruction_sample(
1602 etmq, tidq, addr,
1603 tidq->period_instructions);
1604 if (err)
1605 return err;
1606
1607 tidq->period_instructions = 0;
1608 }
1609
1610 return 0;
1611 }
1612 /*
1613 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1614 * if need be.
1615 * Returns: < 0 if error
1616 * = 0 if no more auxtrace_buffer to read
1617 * > 0 if the current buffer isn't empty yet
1618 */
cs_etm__get_data_block(struct cs_etm_queue * etmq)1619 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1620 {
1621 int ret;
1622
1623 if (!etmq->buf_len) {
1624 ret = cs_etm__get_trace(etmq);
1625 if (ret <= 0)
1626 return ret;
1627 /*
1628 * We cannot assume consecutive blocks in the data file
1629 * are contiguous, reset the decoder to force re-sync.
1630 */
1631 ret = cs_etm_decoder__reset(etmq->decoder);
1632 if (ret)
1633 return ret;
1634 }
1635
1636 return etmq->buf_len;
1637 }
1638
cs_etm__is_svc_instr(struct cs_etm_queue * etmq,u8 trace_chan_id,struct cs_etm_packet * packet,u64 end_addr)1639 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1640 struct cs_etm_packet *packet,
1641 u64 end_addr)
1642 {
1643 /* Initialise to keep compiler happy */
1644 u16 instr16 = 0;
1645 u32 instr32 = 0;
1646 u64 addr;
1647
1648 switch (packet->isa) {
1649 case CS_ETM_ISA_T32:
1650 /*
1651 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1652 *
1653 * b'15 b'8
1654 * +-----------------+--------+
1655 * | 1 1 0 1 1 1 1 1 | imm8 |
1656 * +-----------------+--------+
1657 *
1658 * According to the specifiction, it only defines SVC for T32
1659 * with 16 bits instruction and has no definition for 32bits;
1660 * so below only read 2 bytes as instruction size for T32.
1661 */
1662 addr = end_addr - 2;
1663 cs_etm__mem_access(etmq, trace_chan_id, addr,
1664 sizeof(instr16), (u8 *)&instr16);
1665 if ((instr16 & 0xFF00) == 0xDF00)
1666 return true;
1667
1668 break;
1669 case CS_ETM_ISA_A32:
1670 /*
1671 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1672 *
1673 * b'31 b'28 b'27 b'24
1674 * +---------+---------+-------------------------+
1675 * | !1111 | 1 1 1 1 | imm24 |
1676 * +---------+---------+-------------------------+
1677 */
1678 addr = end_addr - 4;
1679 cs_etm__mem_access(etmq, trace_chan_id, addr,
1680 sizeof(instr32), (u8 *)&instr32);
1681 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1682 (instr32 & 0xF0000000) != 0xF0000000)
1683 return true;
1684
1685 break;
1686 case CS_ETM_ISA_A64:
1687 /*
1688 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1689 *
1690 * b'31 b'21 b'4 b'0
1691 * +-----------------------+---------+-----------+
1692 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 |
1693 * +-----------------------+---------+-----------+
1694 */
1695 addr = end_addr - 4;
1696 cs_etm__mem_access(etmq, trace_chan_id, addr,
1697 sizeof(instr32), (u8 *)&instr32);
1698 if ((instr32 & 0xFFE0001F) == 0xd4000001)
1699 return true;
1700
1701 break;
1702 case CS_ETM_ISA_UNKNOWN:
1703 default:
1704 break;
1705 }
1706
1707 return false;
1708 }
1709
cs_etm__is_syscall(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq,u64 magic)1710 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1711 struct cs_etm_traceid_queue *tidq, u64 magic)
1712 {
1713 u8 trace_chan_id = tidq->trace_chan_id;
1714 struct cs_etm_packet *packet = tidq->packet;
1715 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1716
1717 if (magic == __perf_cs_etmv3_magic)
1718 if (packet->exception_number == CS_ETMV3_EXC_SVC)
1719 return true;
1720
1721 /*
1722 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1723 * HVC cases; need to check if it's SVC instruction based on
1724 * packet address.
1725 */
1726 if (magic == __perf_cs_etmv4_magic) {
1727 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1728 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1729 prev_packet->end_addr))
1730 return true;
1731 }
1732
1733 return false;
1734 }
1735
cs_etm__is_async_exception(struct cs_etm_traceid_queue * tidq,u64 magic)1736 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1737 u64 magic)
1738 {
1739 struct cs_etm_packet *packet = tidq->packet;
1740
1741 if (magic == __perf_cs_etmv3_magic)
1742 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1743 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1744 packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1745 packet->exception_number == CS_ETMV3_EXC_IRQ ||
1746 packet->exception_number == CS_ETMV3_EXC_FIQ)
1747 return true;
1748
1749 if (magic == __perf_cs_etmv4_magic)
1750 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1751 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1752 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1753 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1754 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1755 packet->exception_number == CS_ETMV4_EXC_IRQ ||
1756 packet->exception_number == CS_ETMV4_EXC_FIQ)
1757 return true;
1758
1759 return false;
1760 }
1761
cs_etm__is_sync_exception(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq,u64 magic)1762 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1763 struct cs_etm_traceid_queue *tidq,
1764 u64 magic)
1765 {
1766 u8 trace_chan_id = tidq->trace_chan_id;
1767 struct cs_etm_packet *packet = tidq->packet;
1768 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1769
1770 if (magic == __perf_cs_etmv3_magic)
1771 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1772 packet->exception_number == CS_ETMV3_EXC_HYP ||
1773 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1774 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1775 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1776 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1777 packet->exception_number == CS_ETMV3_EXC_GENERIC)
1778 return true;
1779
1780 if (magic == __perf_cs_etmv4_magic) {
1781 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1782 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1783 packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1784 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1785 return true;
1786
1787 /*
1788 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1789 * (SMC, HVC) are taken as sync exceptions.
1790 */
1791 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1792 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1793 prev_packet->end_addr))
1794 return true;
1795
1796 /*
1797 * ETMv4 has 5 bits for exception number; if the numbers
1798 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1799 * they are implementation defined exceptions.
1800 *
1801 * For this case, simply take it as sync exception.
1802 */
1803 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1804 packet->exception_number <= CS_ETMV4_EXC_END)
1805 return true;
1806 }
1807
1808 return false;
1809 }
1810
cs_etm__set_sample_flags(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)1811 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1812 struct cs_etm_traceid_queue *tidq)
1813 {
1814 struct cs_etm_packet *packet = tidq->packet;
1815 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1816 u8 trace_chan_id = tidq->trace_chan_id;
1817 u64 magic;
1818 int ret;
1819
1820 switch (packet->sample_type) {
1821 case CS_ETM_RANGE:
1822 /*
1823 * Immediate branch instruction without neither link nor
1824 * return flag, it's normal branch instruction within
1825 * the function.
1826 */
1827 if (packet->last_instr_type == OCSD_INSTR_BR &&
1828 packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1829 packet->flags = PERF_IP_FLAG_BRANCH;
1830
1831 if (packet->last_instr_cond)
1832 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1833 }
1834
1835 /*
1836 * Immediate branch instruction with link (e.g. BL), this is
1837 * branch instruction for function call.
1838 */
1839 if (packet->last_instr_type == OCSD_INSTR_BR &&
1840 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1841 packet->flags = PERF_IP_FLAG_BRANCH |
1842 PERF_IP_FLAG_CALL;
1843
1844 /*
1845 * Indirect branch instruction with link (e.g. BLR), this is
1846 * branch instruction for function call.
1847 */
1848 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1849 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1850 packet->flags = PERF_IP_FLAG_BRANCH |
1851 PERF_IP_FLAG_CALL;
1852
1853 /*
1854 * Indirect branch instruction with subtype of
1855 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1856 * function return for A32/T32.
1857 */
1858 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1859 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1860 packet->flags = PERF_IP_FLAG_BRANCH |
1861 PERF_IP_FLAG_RETURN;
1862
1863 /*
1864 * Indirect branch instruction without link (e.g. BR), usually
1865 * this is used for function return, especially for functions
1866 * within dynamic link lib.
1867 */
1868 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1869 packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1870 packet->flags = PERF_IP_FLAG_BRANCH |
1871 PERF_IP_FLAG_RETURN;
1872
1873 /* Return instruction for function return. */
1874 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1875 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1876 packet->flags = PERF_IP_FLAG_BRANCH |
1877 PERF_IP_FLAG_RETURN;
1878
1879 /*
1880 * Decoder might insert a discontinuity in the middle of
1881 * instruction packets, fixup prev_packet with flag
1882 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1883 */
1884 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1885 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1886 PERF_IP_FLAG_TRACE_BEGIN;
1887
1888 /*
1889 * If the previous packet is an exception return packet
1890 * and the return address just follows SVC instuction,
1891 * it needs to calibrate the previous packet sample flags
1892 * as PERF_IP_FLAG_SYSCALLRET.
1893 */
1894 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1895 PERF_IP_FLAG_RETURN |
1896 PERF_IP_FLAG_INTERRUPT) &&
1897 cs_etm__is_svc_instr(etmq, trace_chan_id,
1898 packet, packet->start_addr))
1899 prev_packet->flags = PERF_IP_FLAG_BRANCH |
1900 PERF_IP_FLAG_RETURN |
1901 PERF_IP_FLAG_SYSCALLRET;
1902 break;
1903 case CS_ETM_DISCONTINUITY:
1904 /*
1905 * The trace is discontinuous, if the previous packet is
1906 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1907 * for previous packet.
1908 */
1909 if (prev_packet->sample_type == CS_ETM_RANGE)
1910 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1911 PERF_IP_FLAG_TRACE_END;
1912 break;
1913 case CS_ETM_EXCEPTION:
1914 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1915 if (ret)
1916 return ret;
1917
1918 /* The exception is for system call. */
1919 if (cs_etm__is_syscall(etmq, tidq, magic))
1920 packet->flags = PERF_IP_FLAG_BRANCH |
1921 PERF_IP_FLAG_CALL |
1922 PERF_IP_FLAG_SYSCALLRET;
1923 /*
1924 * The exceptions are triggered by external signals from bus,
1925 * interrupt controller, debug module, PE reset or halt.
1926 */
1927 else if (cs_etm__is_async_exception(tidq, magic))
1928 packet->flags = PERF_IP_FLAG_BRANCH |
1929 PERF_IP_FLAG_CALL |
1930 PERF_IP_FLAG_ASYNC |
1931 PERF_IP_FLAG_INTERRUPT;
1932 /*
1933 * Otherwise, exception is caused by trap, instruction &
1934 * data fault, or alignment errors.
1935 */
1936 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1937 packet->flags = PERF_IP_FLAG_BRANCH |
1938 PERF_IP_FLAG_CALL |
1939 PERF_IP_FLAG_INTERRUPT;
1940
1941 /*
1942 * When the exception packet is inserted, since exception
1943 * packet is not used standalone for generating samples
1944 * and it's affiliation to the previous instruction range
1945 * packet; so set previous range packet flags to tell perf
1946 * it is an exception taken branch.
1947 */
1948 if (prev_packet->sample_type == CS_ETM_RANGE)
1949 prev_packet->flags = packet->flags;
1950 break;
1951 case CS_ETM_EXCEPTION_RET:
1952 /*
1953 * When the exception return packet is inserted, since
1954 * exception return packet is not used standalone for
1955 * generating samples and it's affiliation to the previous
1956 * instruction range packet; so set previous range packet
1957 * flags to tell perf it is an exception return branch.
1958 *
1959 * The exception return can be for either system call or
1960 * other exception types; unfortunately the packet doesn't
1961 * contain exception type related info so we cannot decide
1962 * the exception type purely based on exception return packet.
1963 * If we record the exception number from exception packet and
1964 * reuse it for excpetion return packet, this is not reliable
1965 * due the trace can be discontinuity or the interrupt can
1966 * be nested, thus the recorded exception number cannot be
1967 * used for exception return packet for these two cases.
1968 *
1969 * For exception return packet, we only need to distinguish the
1970 * packet is for system call or for other types. Thus the
1971 * decision can be deferred when receive the next packet which
1972 * contains the return address, based on the return address we
1973 * can read out the previous instruction and check if it's a
1974 * system call instruction and then calibrate the sample flag
1975 * as needed.
1976 */
1977 if (prev_packet->sample_type == CS_ETM_RANGE)
1978 prev_packet->flags = PERF_IP_FLAG_BRANCH |
1979 PERF_IP_FLAG_RETURN |
1980 PERF_IP_FLAG_INTERRUPT;
1981 break;
1982 case CS_ETM_EMPTY:
1983 default:
1984 break;
1985 }
1986
1987 return 0;
1988 }
1989
cs_etm__decode_data_block(struct cs_etm_queue * etmq)1990 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1991 {
1992 int ret = 0;
1993 size_t processed = 0;
1994
1995 /*
1996 * Packets are decoded and added to the decoder's packet queue
1997 * until the decoder packet processing callback has requested that
1998 * processing stops or there is nothing left in the buffer. Normal
1999 * operations that stop processing are a timestamp packet or a full
2000 * decoder buffer queue.
2001 */
2002 ret = cs_etm_decoder__process_data_block(etmq->decoder,
2003 etmq->offset,
2004 &etmq->buf[etmq->buf_used],
2005 etmq->buf_len,
2006 &processed);
2007 if (ret)
2008 goto out;
2009
2010 etmq->offset += processed;
2011 etmq->buf_used += processed;
2012 etmq->buf_len -= processed;
2013
2014 out:
2015 return ret;
2016 }
2017
cs_etm__process_traceid_queue(struct cs_etm_queue * etmq,struct cs_etm_traceid_queue * tidq)2018 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2019 struct cs_etm_traceid_queue *tidq)
2020 {
2021 int ret;
2022 struct cs_etm_packet_queue *packet_queue;
2023
2024 packet_queue = &tidq->packet_queue;
2025
2026 /* Process each packet in this chunk */
2027 while (1) {
2028 ret = cs_etm_decoder__get_packet(packet_queue,
2029 tidq->packet);
2030 if (ret <= 0)
2031 /*
2032 * Stop processing this chunk on
2033 * end of data or error
2034 */
2035 break;
2036
2037 /*
2038 * Since packet addresses are swapped in packet
2039 * handling within below switch() statements,
2040 * thus setting sample flags must be called
2041 * prior to switch() statement to use address
2042 * information before packets swapping.
2043 */
2044 ret = cs_etm__set_sample_flags(etmq, tidq);
2045 if (ret < 0)
2046 break;
2047
2048 switch (tidq->packet->sample_type) {
2049 case CS_ETM_RANGE:
2050 /*
2051 * If the packet contains an instruction
2052 * range, generate instruction sequence
2053 * events.
2054 */
2055 cs_etm__sample(etmq, tidq);
2056 break;
2057 case CS_ETM_EXCEPTION:
2058 case CS_ETM_EXCEPTION_RET:
2059 /*
2060 * If the exception packet is coming,
2061 * make sure the previous instruction
2062 * range packet to be handled properly.
2063 */
2064 cs_etm__exception(tidq);
2065 break;
2066 case CS_ETM_DISCONTINUITY:
2067 /*
2068 * Discontinuity in trace, flush
2069 * previous branch stack
2070 */
2071 cs_etm__flush(etmq, tidq);
2072 break;
2073 case CS_ETM_EMPTY:
2074 /*
2075 * Should not receive empty packet,
2076 * report error.
2077 */
2078 pr_err("CS ETM Trace: empty packet\n");
2079 return -EINVAL;
2080 default:
2081 break;
2082 }
2083 }
2084
2085 return ret;
2086 }
2087
cs_etm__clear_all_traceid_queues(struct cs_etm_queue * etmq)2088 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2089 {
2090 int idx;
2091 struct int_node *inode;
2092 struct cs_etm_traceid_queue *tidq;
2093 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2094
2095 intlist__for_each_entry(inode, traceid_queues_list) {
2096 idx = (int)(intptr_t)inode->priv;
2097 tidq = etmq->traceid_queues[idx];
2098
2099 /* Ignore return value */
2100 cs_etm__process_traceid_queue(etmq, tidq);
2101
2102 /*
2103 * Generate an instruction sample with the remaining
2104 * branchstack entries.
2105 */
2106 cs_etm__flush(etmq, tidq);
2107 }
2108 }
2109
cs_etm__run_decoder(struct cs_etm_queue * etmq)2110 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2111 {
2112 int err = 0;
2113 struct cs_etm_traceid_queue *tidq;
2114
2115 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2116 if (!tidq)
2117 return -EINVAL;
2118
2119 /* Go through each buffer in the queue and decode them one by one */
2120 while (1) {
2121 err = cs_etm__get_data_block(etmq);
2122 if (err <= 0)
2123 return err;
2124
2125 /* Run trace decoder until buffer consumed or end of trace */
2126 do {
2127 err = cs_etm__decode_data_block(etmq);
2128 if (err)
2129 return err;
2130
2131 /*
2132 * Process each packet in this chunk, nothing to do if
2133 * an error occurs other than hoping the next one will
2134 * be better.
2135 */
2136 err = cs_etm__process_traceid_queue(etmq, tidq);
2137
2138 } while (etmq->buf_len);
2139
2140 if (err == 0)
2141 /* Flush any remaining branch stack entries */
2142 err = cs_etm__end_block(etmq, tidq);
2143 }
2144
2145 return err;
2146 }
2147
cs_etm__process_timeless_queues(struct cs_etm_auxtrace * etm,pid_t tid)2148 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2149 pid_t tid)
2150 {
2151 unsigned int i;
2152 struct auxtrace_queues *queues = &etm->queues;
2153
2154 for (i = 0; i < queues->nr_queues; i++) {
2155 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2156 struct cs_etm_queue *etmq = queue->priv;
2157 struct cs_etm_traceid_queue *tidq;
2158
2159 if (!etmq)
2160 continue;
2161
2162 tidq = cs_etm__etmq_get_traceid_queue(etmq,
2163 CS_ETM_PER_THREAD_TRACEID);
2164
2165 if (!tidq)
2166 continue;
2167
2168 if ((tid == -1) || (tidq->tid == tid)) {
2169 cs_etm__set_pid_tid_cpu(etm, tidq);
2170 cs_etm__run_decoder(etmq);
2171 }
2172 }
2173
2174 return 0;
2175 }
2176
cs_etm__process_queues(struct cs_etm_auxtrace * etm)2177 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2178 {
2179 int ret = 0;
2180 unsigned int cs_queue_nr, queue_nr;
2181 u8 trace_chan_id;
2182 u64 timestamp;
2183 struct auxtrace_queue *queue;
2184 struct cs_etm_queue *etmq;
2185 struct cs_etm_traceid_queue *tidq;
2186
2187 while (1) {
2188 if (!etm->heap.heap_cnt)
2189 goto out;
2190
2191 /* Take the entry at the top of the min heap */
2192 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2193 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2194 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2195 queue = &etm->queues.queue_array[queue_nr];
2196 etmq = queue->priv;
2197
2198 /*
2199 * Remove the top entry from the heap since we are about
2200 * to process it.
2201 */
2202 auxtrace_heap__pop(&etm->heap);
2203
2204 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2205 if (!tidq) {
2206 /*
2207 * No traceID queue has been allocated for this traceID,
2208 * which means something somewhere went very wrong. No
2209 * other choice than simply exit.
2210 */
2211 ret = -EINVAL;
2212 goto out;
2213 }
2214
2215 /*
2216 * Packets associated with this timestamp are already in
2217 * the etmq's traceID queue, so process them.
2218 */
2219 ret = cs_etm__process_traceid_queue(etmq, tidq);
2220 if (ret < 0)
2221 goto out;
2222
2223 /*
2224 * Packets for this timestamp have been processed, time to
2225 * move on to the next timestamp, fetching a new auxtrace_buffer
2226 * if need be.
2227 */
2228 refetch:
2229 ret = cs_etm__get_data_block(etmq);
2230 if (ret < 0)
2231 goto out;
2232
2233 /*
2234 * No more auxtrace_buffers to process in this etmq, simply
2235 * move on to another entry in the auxtrace_heap.
2236 */
2237 if (!ret)
2238 continue;
2239
2240 ret = cs_etm__decode_data_block(etmq);
2241 if (ret)
2242 goto out;
2243
2244 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2245
2246 if (!timestamp) {
2247 /*
2248 * Function cs_etm__decode_data_block() returns when
2249 * there is no more traces to decode in the current
2250 * auxtrace_buffer OR when a timestamp has been
2251 * encountered on any of the traceID queues. Since we
2252 * did not get a timestamp, there is no more traces to
2253 * process in this auxtrace_buffer. As such empty and
2254 * flush all traceID queues.
2255 */
2256 cs_etm__clear_all_traceid_queues(etmq);
2257
2258 /* Fetch another auxtrace_buffer for this etmq */
2259 goto refetch;
2260 }
2261
2262 /*
2263 * Add to the min heap the timestamp for packets that have
2264 * just been decoded. They will be processed and synthesized
2265 * during the next call to cs_etm__process_traceid_queue() for
2266 * this queue/traceID.
2267 */
2268 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2269 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2270 }
2271
2272 out:
2273 return ret;
2274 }
2275
cs_etm__process_itrace_start(struct cs_etm_auxtrace * etm,union perf_event * event)2276 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2277 union perf_event *event)
2278 {
2279 struct thread *th;
2280
2281 if (etm->timeless_decoding)
2282 return 0;
2283
2284 /*
2285 * Add the tid/pid to the log so that we can get a match when
2286 * we get a contextID from the decoder.
2287 */
2288 th = machine__findnew_thread(etm->machine,
2289 event->itrace_start.pid,
2290 event->itrace_start.tid);
2291 if (!th)
2292 return -ENOMEM;
2293
2294 thread__put(th);
2295
2296 return 0;
2297 }
2298
cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace * etm,union perf_event * event)2299 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2300 union perf_event *event)
2301 {
2302 struct thread *th;
2303 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2304
2305 /*
2306 * Context switch in per-thread mode are irrelevant since perf
2307 * will start/stop tracing as the process is scheduled.
2308 */
2309 if (etm->timeless_decoding)
2310 return 0;
2311
2312 /*
2313 * SWITCH_IN events carry the next process to be switched out while
2314 * SWITCH_OUT events carry the process to be switched in. As such
2315 * we don't care about IN events.
2316 */
2317 if (!out)
2318 return 0;
2319
2320 /*
2321 * Add the tid/pid to the log so that we can get a match when
2322 * we get a contextID from the decoder.
2323 */
2324 th = machine__findnew_thread(etm->machine,
2325 event->context_switch.next_prev_pid,
2326 event->context_switch.next_prev_tid);
2327 if (!th)
2328 return -ENOMEM;
2329
2330 thread__put(th);
2331
2332 return 0;
2333 }
2334
cs_etm__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)2335 static int cs_etm__process_event(struct perf_session *session,
2336 union perf_event *event,
2337 struct perf_sample *sample,
2338 struct perf_tool *tool)
2339 {
2340 int err = 0;
2341 u64 timestamp;
2342 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2343 struct cs_etm_auxtrace,
2344 auxtrace);
2345
2346 if (dump_trace)
2347 return 0;
2348
2349 if (!tool->ordered_events) {
2350 pr_err("CoreSight ETM Trace requires ordered events\n");
2351 return -EINVAL;
2352 }
2353
2354 if (sample->time && (sample->time != (u64) -1))
2355 timestamp = sample->time;
2356 else
2357 timestamp = 0;
2358
2359 if (timestamp || etm->timeless_decoding) {
2360 err = cs_etm__update_queues(etm);
2361 if (err)
2362 return err;
2363 }
2364
2365 if (etm->timeless_decoding &&
2366 event->header.type == PERF_RECORD_EXIT)
2367 return cs_etm__process_timeless_queues(etm,
2368 event->fork.tid);
2369
2370 if (event->header.type == PERF_RECORD_ITRACE_START)
2371 return cs_etm__process_itrace_start(etm, event);
2372 else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2373 return cs_etm__process_switch_cpu_wide(etm, event);
2374
2375 if (!etm->timeless_decoding &&
2376 event->header.type == PERF_RECORD_AUX)
2377 return cs_etm__process_queues(etm);
2378
2379 return 0;
2380 }
2381
cs_etm__process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)2382 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2383 union perf_event *event,
2384 struct perf_tool *tool __maybe_unused)
2385 {
2386 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2387 struct cs_etm_auxtrace,
2388 auxtrace);
2389 if (!etm->data_queued) {
2390 struct auxtrace_buffer *buffer;
2391 off_t data_offset;
2392 int fd = perf_data__fd(session->data);
2393 bool is_pipe = perf_data__is_pipe(session->data);
2394 int err;
2395
2396 if (is_pipe)
2397 data_offset = 0;
2398 else {
2399 data_offset = lseek(fd, 0, SEEK_CUR);
2400 if (data_offset == -1)
2401 return -errno;
2402 }
2403
2404 err = auxtrace_queues__add_event(&etm->queues, session,
2405 event, data_offset, &buffer);
2406 if (err)
2407 return err;
2408
2409 if (dump_trace)
2410 if (auxtrace_buffer__get_data(buffer, fd)) {
2411 cs_etm__dump_event(etm, buffer);
2412 auxtrace_buffer__put_data(buffer);
2413 }
2414 }
2415
2416 return 0;
2417 }
2418
cs_etm__is_timeless_decoding(struct cs_etm_auxtrace * etm)2419 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2420 {
2421 struct evsel *evsel;
2422 struct evlist *evlist = etm->session->evlist;
2423 bool timeless_decoding = true;
2424
2425 /*
2426 * Circle through the list of event and complain if we find one
2427 * with the time bit set.
2428 */
2429 evlist__for_each_entry(evlist, evsel) {
2430 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2431 timeless_decoding = false;
2432 }
2433
2434 return timeless_decoding;
2435 }
2436
2437 static const char * const cs_etm_global_header_fmts[] = {
2438 [CS_HEADER_VERSION_0] = " Header version %llx\n",
2439 [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n",
2440 [CS_ETM_SNAPSHOT] = " Snapshot %llx\n",
2441 };
2442
2443 static const char * const cs_etm_priv_fmts[] = {
2444 [CS_ETM_MAGIC] = " Magic number %llx\n",
2445 [CS_ETM_CPU] = " CPU %lld\n",
2446 [CS_ETM_ETMCR] = " ETMCR %llx\n",
2447 [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n",
2448 [CS_ETM_ETMCCER] = " ETMCCER %llx\n",
2449 [CS_ETM_ETMIDR] = " ETMIDR %llx\n",
2450 };
2451
2452 static const char * const cs_etmv4_priv_fmts[] = {
2453 [CS_ETM_MAGIC] = " Magic number %llx\n",
2454 [CS_ETM_CPU] = " CPU %lld\n",
2455 [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n",
2456 [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n",
2457 [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n",
2458 [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n",
2459 [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n",
2460 [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n",
2461 [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n",
2462 };
2463
cs_etm__print_auxtrace_info(__u64 * val,int num)2464 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2465 {
2466 int i, j, cpu = 0;
2467
2468 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2469 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2470
2471 for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2472 if (val[i] == __perf_cs_etmv3_magic)
2473 for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2474 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2475 else if (val[i] == __perf_cs_etmv4_magic)
2476 for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2477 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2478 else
2479 /* failure.. return */
2480 return;
2481 }
2482 }
2483
cs_etm__process_auxtrace_info(union perf_event * event,struct perf_session * session)2484 int cs_etm__process_auxtrace_info(union perf_event *event,
2485 struct perf_session *session)
2486 {
2487 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2488 struct cs_etm_auxtrace *etm = NULL;
2489 struct int_node *inode;
2490 unsigned int pmu_type;
2491 int event_header_size = sizeof(struct perf_event_header);
2492 int info_header_size;
2493 int total_size = auxtrace_info->header.size;
2494 int priv_size = 0;
2495 int num_cpu;
2496 int err = 0, idx = -1;
2497 int i, j, k;
2498 u64 *ptr, *hdr = NULL;
2499 u64 **metadata = NULL;
2500
2501 /*
2502 * sizeof(auxtrace_info_event::type) +
2503 * sizeof(auxtrace_info_event::reserved) == 8
2504 */
2505 info_header_size = 8;
2506
2507 if (total_size < (event_header_size + info_header_size))
2508 return -EINVAL;
2509
2510 priv_size = total_size - event_header_size - info_header_size;
2511
2512 /* First the global part */
2513 ptr = (u64 *) auxtrace_info->priv;
2514
2515 /* Look for version '0' of the header */
2516 if (ptr[0] != 0)
2517 return -EINVAL;
2518
2519 hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2520 if (!hdr)
2521 return -ENOMEM;
2522
2523 /* Extract header information - see cs-etm.h for format */
2524 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2525 hdr[i] = ptr[i];
2526 num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2527 pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2528 0xffffffff);
2529
2530 /*
2531 * Create an RB tree for traceID-metadata tuple. Since the conversion
2532 * has to be made for each packet that gets decoded, optimizing access
2533 * in anything other than a sequential array is worth doing.
2534 */
2535 traceid_list = intlist__new(NULL);
2536 if (!traceid_list) {
2537 err = -ENOMEM;
2538 goto err_free_hdr;
2539 }
2540
2541 metadata = zalloc(sizeof(*metadata) * num_cpu);
2542 if (!metadata) {
2543 err = -ENOMEM;
2544 goto err_free_traceid_list;
2545 }
2546
2547 /*
2548 * The metadata is stored in the auxtrace_info section and encodes
2549 * the configuration of the ARM embedded trace macrocell which is
2550 * required by the trace decoder to properly decode the trace due
2551 * to its highly compressed nature.
2552 */
2553 for (j = 0; j < num_cpu; j++) {
2554 if (ptr[i] == __perf_cs_etmv3_magic) {
2555 metadata[j] = zalloc(sizeof(*metadata[j]) *
2556 CS_ETM_PRIV_MAX);
2557 if (!metadata[j]) {
2558 err = -ENOMEM;
2559 goto err_free_metadata;
2560 }
2561 for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2562 metadata[j][k] = ptr[i + k];
2563
2564 /* The traceID is our handle */
2565 idx = metadata[j][CS_ETM_ETMTRACEIDR];
2566 i += CS_ETM_PRIV_MAX;
2567 } else if (ptr[i] == __perf_cs_etmv4_magic) {
2568 metadata[j] = zalloc(sizeof(*metadata[j]) *
2569 CS_ETMV4_PRIV_MAX);
2570 if (!metadata[j]) {
2571 err = -ENOMEM;
2572 goto err_free_metadata;
2573 }
2574 for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2575 metadata[j][k] = ptr[i + k];
2576
2577 /* The traceID is our handle */
2578 idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2579 i += CS_ETMV4_PRIV_MAX;
2580 }
2581
2582 /* Get an RB node for this CPU */
2583 inode = intlist__findnew(traceid_list, idx);
2584
2585 /* Something went wrong, no need to continue */
2586 if (!inode) {
2587 err = -ENOMEM;
2588 goto err_free_metadata;
2589 }
2590
2591 /*
2592 * The node for that CPU should not be taken.
2593 * Back out if that's the case.
2594 */
2595 if (inode->priv) {
2596 err = -EINVAL;
2597 goto err_free_metadata;
2598 }
2599 /* All good, associate the traceID with the metadata pointer */
2600 inode->priv = metadata[j];
2601 }
2602
2603 /*
2604 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2605 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2606 * global metadata, and each cpu's metadata respectively.
2607 * The following tests if the correct number of double words was
2608 * present in the auxtrace info section.
2609 */
2610 if (i * 8 != priv_size) {
2611 err = -EINVAL;
2612 goto err_free_metadata;
2613 }
2614
2615 etm = zalloc(sizeof(*etm));
2616
2617 if (!etm) {
2618 err = -ENOMEM;
2619 goto err_free_metadata;
2620 }
2621
2622 err = auxtrace_queues__init(&etm->queues);
2623 if (err)
2624 goto err_free_etm;
2625
2626 etm->session = session;
2627 etm->machine = &session->machines.host;
2628
2629 etm->num_cpu = num_cpu;
2630 etm->pmu_type = pmu_type;
2631 etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2632 etm->metadata = metadata;
2633 etm->auxtrace_type = auxtrace_info->type;
2634 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2635
2636 etm->auxtrace.process_event = cs_etm__process_event;
2637 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2638 etm->auxtrace.flush_events = cs_etm__flush_events;
2639 etm->auxtrace.free_events = cs_etm__free_events;
2640 etm->auxtrace.free = cs_etm__free;
2641 etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
2642 session->auxtrace = &etm->auxtrace;
2643
2644 etm->unknown_thread = thread__new(999999999, 999999999);
2645 if (!etm->unknown_thread) {
2646 err = -ENOMEM;
2647 goto err_free_queues;
2648 }
2649
2650 /*
2651 * Initialize list node so that at thread__zput() we can avoid
2652 * segmentation fault at list_del_init().
2653 */
2654 INIT_LIST_HEAD(&etm->unknown_thread->node);
2655
2656 err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2657 if (err)
2658 goto err_delete_thread;
2659
2660 if (thread__init_maps(etm->unknown_thread, etm->machine)) {
2661 err = -ENOMEM;
2662 goto err_delete_thread;
2663 }
2664
2665 if (dump_trace) {
2666 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2667 return 0;
2668 }
2669
2670 if (session->itrace_synth_opts->set) {
2671 etm->synth_opts = *session->itrace_synth_opts;
2672 } else {
2673 itrace_synth_opts__set_default(&etm->synth_opts,
2674 session->itrace_synth_opts->default_no_sample);
2675 etm->synth_opts.callchain = false;
2676 }
2677
2678 err = cs_etm__synth_events(etm, session);
2679 if (err)
2680 goto err_delete_thread;
2681
2682 err = auxtrace_queues__process_index(&etm->queues, session);
2683 if (err)
2684 goto err_delete_thread;
2685
2686 etm->data_queued = etm->queues.populated;
2687
2688 return 0;
2689
2690 err_delete_thread:
2691 thread__zput(etm->unknown_thread);
2692 err_free_queues:
2693 auxtrace_queues__free(&etm->queues);
2694 session->auxtrace = NULL;
2695 err_free_etm:
2696 zfree(&etm);
2697 err_free_metadata:
2698 /* No need to check @metadata[j], free(NULL) is supported */
2699 for (j = 0; j < num_cpu; j++)
2700 zfree(&metadata[j]);
2701 zfree(&metadata);
2702 err_free_traceid_list:
2703 intlist__delete(traceid_list);
2704 err_free_hdr:
2705 zfree(&hdr);
2706
2707 return err;
2708 }
2709