1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/regmap.h>
15 #include <linux/slab.h>
16 #include <linux/time.h>
17 #include <sound/core.h>
18 #include <sound/dmaengine_pcm.h>
19 #include <sound/pcm_params.h>
20 #include <linux/mfd/syscon.h>
21 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
22
23 #include "fsl_sai.h"
24 #include "imx-pcm.h"
25
26 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
27 FSL_SAI_CSR_FEIE)
28
29 static const unsigned int fsl_sai_rates[] = {
30 8000, 11025, 12000, 16000, 22050,
31 24000, 32000, 44100, 48000, 64000,
32 88200, 96000, 176400, 192000
33 };
34
35 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
36 .count = ARRAY_SIZE(fsl_sai_rates),
37 .list = fsl_sai_rates,
38 };
39
40 /**
41 * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
42 *
43 * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
44 * or Receiver's for both streams. This function is used to check if clocks of
45 * the stream's are synced by the opposite stream.
46 *
47 * @sai: SAI context
48 * @dir: stream direction
49 */
fsl_sai_dir_is_synced(struct fsl_sai * sai,int dir)50 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
51 {
52 int adir = (dir == TX) ? RX : TX;
53
54 /* current dir in async mode while opposite dir in sync mode */
55 return !sai->synchronous[dir] && sai->synchronous[adir];
56 }
57
fsl_sai_isr(int irq,void * devid)58 static irqreturn_t fsl_sai_isr(int irq, void *devid)
59 {
60 struct fsl_sai *sai = (struct fsl_sai *)devid;
61 unsigned int ofs = sai->soc_data->reg_offset;
62 struct device *dev = &sai->pdev->dev;
63 u32 flags, xcsr, mask;
64 bool irq_none = true;
65
66 /*
67 * Both IRQ status bits and IRQ mask bits are in the xCSR but
68 * different shifts. And we here create a mask only for those
69 * IRQs that we activated.
70 */
71 mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
72
73 /* Tx IRQ */
74 regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
75 flags = xcsr & mask;
76
77 if (flags)
78 irq_none = false;
79 else
80 goto irq_rx;
81
82 if (flags & FSL_SAI_CSR_WSF)
83 dev_dbg(dev, "isr: Start of Tx word detected\n");
84
85 if (flags & FSL_SAI_CSR_SEF)
86 dev_dbg(dev, "isr: Tx Frame sync error detected\n");
87
88 if (flags & FSL_SAI_CSR_FEF) {
89 dev_dbg(dev, "isr: Transmit underrun detected\n");
90 /* FIFO reset for safety */
91 xcsr |= FSL_SAI_CSR_FR;
92 }
93
94 if (flags & FSL_SAI_CSR_FWF)
95 dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
96
97 if (flags & FSL_SAI_CSR_FRF)
98 dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
99
100 flags &= FSL_SAI_CSR_xF_W_MASK;
101 xcsr &= ~FSL_SAI_CSR_xF_MASK;
102
103 if (flags)
104 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
105
106 irq_rx:
107 /* Rx IRQ */
108 regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
109 flags = xcsr & mask;
110
111 if (flags)
112 irq_none = false;
113 else
114 goto out;
115
116 if (flags & FSL_SAI_CSR_WSF)
117 dev_dbg(dev, "isr: Start of Rx word detected\n");
118
119 if (flags & FSL_SAI_CSR_SEF)
120 dev_dbg(dev, "isr: Rx Frame sync error detected\n");
121
122 if (flags & FSL_SAI_CSR_FEF) {
123 dev_dbg(dev, "isr: Receive overflow detected\n");
124 /* FIFO reset for safety */
125 xcsr |= FSL_SAI_CSR_FR;
126 }
127
128 if (flags & FSL_SAI_CSR_FWF)
129 dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
130
131 if (flags & FSL_SAI_CSR_FRF)
132 dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
133
134 flags &= FSL_SAI_CSR_xF_W_MASK;
135 xcsr &= ~FSL_SAI_CSR_xF_MASK;
136
137 if (flags)
138 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
139
140 out:
141 if (irq_none)
142 return IRQ_NONE;
143 else
144 return IRQ_HANDLED;
145 }
146
fsl_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)147 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
148 u32 rx_mask, int slots, int slot_width)
149 {
150 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
151
152 sai->slots = slots;
153 sai->slot_width = slot_width;
154
155 return 0;
156 }
157
fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai * dai,unsigned int ratio)158 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
159 unsigned int ratio)
160 {
161 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
162
163 sai->bclk_ratio = ratio;
164
165 return 0;
166 }
167
fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int fsl_dir)168 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
169 int clk_id, unsigned int freq, int fsl_dir)
170 {
171 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
172 unsigned int ofs = sai->soc_data->reg_offset;
173 bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
174 u32 val_cr2 = 0;
175
176 switch (clk_id) {
177 case FSL_SAI_CLK_BUS:
178 val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
179 break;
180 case FSL_SAI_CLK_MAST1:
181 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
182 break;
183 case FSL_SAI_CLK_MAST2:
184 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
185 break;
186 case FSL_SAI_CLK_MAST3:
187 val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
188 break;
189 default:
190 return -EINVAL;
191 }
192
193 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
194 FSL_SAI_CR2_MSEL_MASK, val_cr2);
195
196 return 0;
197 }
198
fsl_sai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)199 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
200 int clk_id, unsigned int freq, int dir)
201 {
202 int ret;
203
204 if (dir == SND_SOC_CLOCK_IN)
205 return 0;
206
207 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
208 FSL_FMT_TRANSMITTER);
209 if (ret) {
210 dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
211 return ret;
212 }
213
214 ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
215 FSL_FMT_RECEIVER);
216 if (ret)
217 dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
218
219 return ret;
220 }
221
fsl_sai_set_dai_fmt_tr(struct snd_soc_dai * cpu_dai,unsigned int fmt,int fsl_dir)222 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
223 unsigned int fmt, int fsl_dir)
224 {
225 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
226 unsigned int ofs = sai->soc_data->reg_offset;
227 bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
228 u32 val_cr2 = 0, val_cr4 = 0;
229
230 if (!sai->is_lsb_first)
231 val_cr4 |= FSL_SAI_CR4_MF;
232
233 /* DAI mode */
234 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
235 case SND_SOC_DAIFMT_I2S:
236 /*
237 * Frame low, 1clk before data, one word length for frame sync,
238 * frame sync starts one serial clock cycle earlier,
239 * that is, together with the last bit of the previous
240 * data word.
241 */
242 val_cr2 |= FSL_SAI_CR2_BCP;
243 val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
244 break;
245 case SND_SOC_DAIFMT_LEFT_J:
246 /*
247 * Frame high, one word length for frame sync,
248 * frame sync asserts with the first bit of the frame.
249 */
250 val_cr2 |= FSL_SAI_CR2_BCP;
251 break;
252 case SND_SOC_DAIFMT_DSP_A:
253 /*
254 * Frame high, 1clk before data, one bit for frame sync,
255 * frame sync starts one serial clock cycle earlier,
256 * that is, together with the last bit of the previous
257 * data word.
258 */
259 val_cr2 |= FSL_SAI_CR2_BCP;
260 val_cr4 |= FSL_SAI_CR4_FSE;
261 sai->is_dsp_mode = true;
262 break;
263 case SND_SOC_DAIFMT_DSP_B:
264 /*
265 * Frame high, one bit for frame sync,
266 * frame sync asserts with the first bit of the frame.
267 */
268 val_cr2 |= FSL_SAI_CR2_BCP;
269 sai->is_dsp_mode = true;
270 break;
271 case SND_SOC_DAIFMT_RIGHT_J:
272 /* To be done */
273 default:
274 return -EINVAL;
275 }
276
277 /* DAI clock inversion */
278 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
279 case SND_SOC_DAIFMT_IB_IF:
280 /* Invert both clocks */
281 val_cr2 ^= FSL_SAI_CR2_BCP;
282 val_cr4 ^= FSL_SAI_CR4_FSP;
283 break;
284 case SND_SOC_DAIFMT_IB_NF:
285 /* Invert bit clock */
286 val_cr2 ^= FSL_SAI_CR2_BCP;
287 break;
288 case SND_SOC_DAIFMT_NB_IF:
289 /* Invert frame clock */
290 val_cr4 ^= FSL_SAI_CR4_FSP;
291 break;
292 case SND_SOC_DAIFMT_NB_NF:
293 /* Nothing to do for both normal cases */
294 break;
295 default:
296 return -EINVAL;
297 }
298
299 /* DAI clock master masks */
300 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
301 case SND_SOC_DAIFMT_CBS_CFS:
302 val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
303 val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
304 sai->is_slave_mode = false;
305 break;
306 case SND_SOC_DAIFMT_CBM_CFM:
307 sai->is_slave_mode = true;
308 break;
309 case SND_SOC_DAIFMT_CBS_CFM:
310 val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
311 sai->is_slave_mode = false;
312 break;
313 case SND_SOC_DAIFMT_CBM_CFS:
314 val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
315 sai->is_slave_mode = true;
316 break;
317 default:
318 return -EINVAL;
319 }
320
321 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
322 FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
323 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
324 FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
325 FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
326
327 return 0;
328 }
329
fsl_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)330 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
331 {
332 int ret;
333
334 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_TRANSMITTER);
335 if (ret) {
336 dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
337 return ret;
338 }
339
340 ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_RECEIVER);
341 if (ret)
342 dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
343
344 return ret;
345 }
346
fsl_sai_set_bclk(struct snd_soc_dai * dai,bool tx,u32 freq)347 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
348 {
349 struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
350 unsigned int ofs = sai->soc_data->reg_offset;
351 unsigned long clk_rate;
352 u32 savediv = 0, ratio, savesub = freq;
353 int adir = tx ? RX : TX;
354 int dir = tx ? TX : RX;
355 u32 id;
356 int ret = 0;
357
358 /* Don't apply to slave mode */
359 if (sai->is_slave_mode)
360 return 0;
361
362 for (id = 0; id < FSL_SAI_MCLK_MAX; id++) {
363 clk_rate = clk_get_rate(sai->mclk_clk[id]);
364 if (!clk_rate)
365 continue;
366
367 ratio = clk_rate / freq;
368
369 ret = clk_rate - ratio * freq;
370
371 /*
372 * Drop the source that can not be
373 * divided into the required rate.
374 */
375 if (ret != 0 && clk_rate / ret < 1000)
376 continue;
377
378 dev_dbg(dai->dev,
379 "ratio %d for freq %dHz based on clock %ldHz\n",
380 ratio, freq, clk_rate);
381
382 if (ratio % 2 == 0 && ratio >= 2 && ratio <= 512)
383 ratio /= 2;
384 else
385 continue;
386
387 if (ret < savesub) {
388 savediv = ratio;
389 sai->mclk_id[tx] = id;
390 savesub = ret;
391 }
392
393 if (ret == 0)
394 break;
395 }
396
397 if (savediv == 0) {
398 dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
399 tx ? 'T' : 'R', freq);
400 return -EINVAL;
401 }
402
403 /*
404 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
405 * set TCR2 register for playback.
406 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
407 * and capture.
408 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
409 * and capture.
410 * 4) For Tx and Rx are both Synchronous with another SAI, we just
411 * ignore it.
412 */
413 if (fsl_sai_dir_is_synced(sai, adir)) {
414 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(!tx, ofs),
415 FSL_SAI_CR2_MSEL_MASK,
416 FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
417 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(!tx, ofs),
418 FSL_SAI_CR2_DIV_MASK, savediv - 1);
419 } else if (!sai->synchronous[dir]) {
420 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
421 FSL_SAI_CR2_MSEL_MASK,
422 FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
423 regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
424 FSL_SAI_CR2_DIV_MASK, savediv - 1);
425 }
426
427 dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
428 sai->mclk_id[tx], savediv, savesub);
429
430 return 0;
431 }
432
fsl_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)433 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
434 struct snd_pcm_hw_params *params,
435 struct snd_soc_dai *cpu_dai)
436 {
437 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
438 unsigned int ofs = sai->soc_data->reg_offset;
439 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
440 unsigned int channels = params_channels(params);
441 u32 word_width = params_width(params);
442 u32 val_cr4 = 0, val_cr5 = 0;
443 u32 slots = (channels == 1) ? 2 : channels;
444 u32 slot_width = word_width;
445 int adir = tx ? RX : TX;
446 u32 pins;
447 int ret;
448
449 if (sai->slots)
450 slots = sai->slots;
451
452 if (sai->slot_width)
453 slot_width = sai->slot_width;
454
455 pins = DIV_ROUND_UP(channels, slots);
456
457 if (!sai->is_slave_mode) {
458 if (sai->bclk_ratio)
459 ret = fsl_sai_set_bclk(cpu_dai, tx,
460 sai->bclk_ratio *
461 params_rate(params));
462 else
463 ret = fsl_sai_set_bclk(cpu_dai, tx,
464 slots * slot_width *
465 params_rate(params));
466 if (ret)
467 return ret;
468
469 /* Do not enable the clock if it is already enabled */
470 if (!(sai->mclk_streams & BIT(substream->stream))) {
471 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
472 if (ret)
473 return ret;
474
475 sai->mclk_streams |= BIT(substream->stream);
476 }
477 }
478
479 if (!sai->is_dsp_mode)
480 val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
481
482 val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
483 val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
484
485 if (sai->is_lsb_first)
486 val_cr5 |= FSL_SAI_CR5_FBT(0);
487 else
488 val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
489
490 val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
491
492 /* Set to output mode to avoid tri-stated data pins */
493 if (tx)
494 val_cr4 |= FSL_SAI_CR4_CHMOD;
495
496 /*
497 * For SAI master mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
498 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
499 * RCR5(TCR5) for playback(capture), or there will be sync error.
500 */
501
502 if (!sai->is_slave_mode && fsl_sai_dir_is_synced(sai, adir)) {
503 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
504 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
505 FSL_SAI_CR4_CHMOD_MASK,
506 val_cr4);
507 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
508 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
509 FSL_SAI_CR5_FBT_MASK, val_cr5);
510 }
511
512 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
513 FSL_SAI_CR3_TRCE_MASK,
514 FSL_SAI_CR3_TRCE((1 << pins) - 1));
515 regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
516 FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
517 FSL_SAI_CR4_CHMOD_MASK,
518 val_cr4);
519 regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
520 FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
521 FSL_SAI_CR5_FBT_MASK, val_cr5);
522 regmap_write(sai->regmap, FSL_SAI_xMR(tx),
523 ~0UL - ((1 << min(channels, slots)) - 1));
524
525 return 0;
526 }
527
fsl_sai_hw_free(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)528 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
529 struct snd_soc_dai *cpu_dai)
530 {
531 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
532 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
533 unsigned int ofs = sai->soc_data->reg_offset;
534
535 regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
536 FSL_SAI_CR3_TRCE_MASK, 0);
537
538 if (!sai->is_slave_mode &&
539 sai->mclk_streams & BIT(substream->stream)) {
540 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
541 sai->mclk_streams &= ~BIT(substream->stream);
542 }
543
544 return 0;
545 }
546
fsl_sai_config_disable(struct fsl_sai * sai,int dir)547 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
548 {
549 unsigned int ofs = sai->soc_data->reg_offset;
550 bool tx = dir == TX;
551 u32 xcsr, count = 100;
552
553 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
554 FSL_SAI_CSR_TERE, 0);
555
556 /* TERE will remain set till the end of current frame */
557 do {
558 udelay(10);
559 regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
560 } while (--count && xcsr & FSL_SAI_CSR_TERE);
561
562 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
563 FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
564
565 /*
566 * For sai master mode, after several open/close sai,
567 * there will be no frame clock, and can't recover
568 * anymore. Add software reset to fix this issue.
569 * This is a hardware bug, and will be fix in the
570 * next sai version.
571 */
572 if (!sai->is_slave_mode) {
573 /* Software Reset */
574 regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
575 /* Clear SR bit to finish the reset */
576 regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
577 }
578 }
579
fsl_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)580 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
581 struct snd_soc_dai *cpu_dai)
582 {
583 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
584 unsigned int ofs = sai->soc_data->reg_offset;
585
586 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
587 int adir = tx ? RX : TX;
588 int dir = tx ? TX : RX;
589 u32 xcsr;
590
591 /*
592 * Asynchronous mode: Clear SYNC for both Tx and Rx.
593 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
594 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
595 */
596 regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
597 sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
598 regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
599 sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
600
601 /*
602 * It is recommended that the transmitter is the last enabled
603 * and the first disabled.
604 */
605 switch (cmd) {
606 case SNDRV_PCM_TRIGGER_START:
607 case SNDRV_PCM_TRIGGER_RESUME:
608 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
609 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
610 FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
611
612 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
613 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
614 /*
615 * Enable the opposite direction for synchronous mode
616 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
617 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
618 *
619 * RM recommends to enable RE after TE for case 1 and to enable
620 * TE after RE for case 2, but we here may not always guarantee
621 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
622 * TE after RE, which is against what RM recommends but should
623 * be safe to do, judging by years of testing results.
624 */
625 if (fsl_sai_dir_is_synced(sai, adir))
626 regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
627 FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
628
629 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
630 FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
631 break;
632 case SNDRV_PCM_TRIGGER_STOP:
633 case SNDRV_PCM_TRIGGER_SUSPEND:
634 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
635 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
636 FSL_SAI_CSR_FRDE, 0);
637 regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
638 FSL_SAI_CSR_xIE_MASK, 0);
639
640 /* Check if the opposite FRDE is also disabled */
641 regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
642
643 /*
644 * If opposite stream provides clocks for synchronous mode and
645 * it is inactive, disable it before disabling the current one
646 */
647 if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
648 fsl_sai_config_disable(sai, adir);
649
650 /*
651 * Disable current stream if either of:
652 * 1. current stream doesn't provide clocks for synchronous mode
653 * 2. current stream provides clocks for synchronous mode but no
654 * more stream is active.
655 */
656 if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
657 fsl_sai_config_disable(sai, dir);
658
659 break;
660 default:
661 return -EINVAL;
662 }
663
664 return 0;
665 }
666
fsl_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)667 static int fsl_sai_startup(struct snd_pcm_substream *substream,
668 struct snd_soc_dai *cpu_dai)
669 {
670 struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
671 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
672 int ret;
673
674 /*
675 * EDMA controller needs period size to be a multiple of
676 * tx/rx maxburst
677 */
678 if (sai->soc_data->use_edma)
679 snd_pcm_hw_constraint_step(substream->runtime, 0,
680 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
681 tx ? sai->dma_params_tx.maxburst :
682 sai->dma_params_rx.maxburst);
683
684 ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
685 SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
686
687 return ret;
688 }
689
690 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
691 .set_bclk_ratio = fsl_sai_set_dai_bclk_ratio,
692 .set_sysclk = fsl_sai_set_dai_sysclk,
693 .set_fmt = fsl_sai_set_dai_fmt,
694 .set_tdm_slot = fsl_sai_set_dai_tdm_slot,
695 .hw_params = fsl_sai_hw_params,
696 .hw_free = fsl_sai_hw_free,
697 .trigger = fsl_sai_trigger,
698 .startup = fsl_sai_startup,
699 };
700
fsl_sai_dai_probe(struct snd_soc_dai * cpu_dai)701 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
702 {
703 struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
704 unsigned int ofs = sai->soc_data->reg_offset;
705
706 /* Software Reset for both Tx and Rx */
707 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
708 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
709 /* Clear SR bit to finish the reset */
710 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
711 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
712
713 regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
714 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
715 sai->soc_data->fifo_depth - FSL_SAI_MAXBURST_TX);
716 regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
717 FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
718 FSL_SAI_MAXBURST_RX - 1);
719
720 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
721 &sai->dma_params_rx);
722
723 snd_soc_dai_set_drvdata(cpu_dai, sai);
724
725 return 0;
726 }
727
728 static struct snd_soc_dai_driver fsl_sai_dai_template = {
729 .probe = fsl_sai_dai_probe,
730 .playback = {
731 .stream_name = "CPU-Playback",
732 .channels_min = 1,
733 .channels_max = 32,
734 .rate_min = 8000,
735 .rate_max = 192000,
736 .rates = SNDRV_PCM_RATE_KNOT,
737 .formats = FSL_SAI_FORMATS,
738 },
739 .capture = {
740 .stream_name = "CPU-Capture",
741 .channels_min = 1,
742 .channels_max = 32,
743 .rate_min = 8000,
744 .rate_max = 192000,
745 .rates = SNDRV_PCM_RATE_KNOT,
746 .formats = FSL_SAI_FORMATS,
747 },
748 .ops = &fsl_sai_pcm_dai_ops,
749 };
750
751 static const struct snd_soc_component_driver fsl_component = {
752 .name = "fsl-sai",
753 };
754
755 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
756 {FSL_SAI_TCR1(0), 0},
757 {FSL_SAI_TCR2(0), 0},
758 {FSL_SAI_TCR3(0), 0},
759 {FSL_SAI_TCR4(0), 0},
760 {FSL_SAI_TCR5(0), 0},
761 {FSL_SAI_TDR0, 0},
762 {FSL_SAI_TDR1, 0},
763 {FSL_SAI_TDR2, 0},
764 {FSL_SAI_TDR3, 0},
765 {FSL_SAI_TDR4, 0},
766 {FSL_SAI_TDR5, 0},
767 {FSL_SAI_TDR6, 0},
768 {FSL_SAI_TDR7, 0},
769 {FSL_SAI_TMR, 0},
770 {FSL_SAI_RCR1(0), 0},
771 {FSL_SAI_RCR2(0), 0},
772 {FSL_SAI_RCR3(0), 0},
773 {FSL_SAI_RCR4(0), 0},
774 {FSL_SAI_RCR5(0), 0},
775 {FSL_SAI_RMR, 0},
776 };
777
778 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
779 {FSL_SAI_TCR1(8), 0},
780 {FSL_SAI_TCR2(8), 0},
781 {FSL_SAI_TCR3(8), 0},
782 {FSL_SAI_TCR4(8), 0},
783 {FSL_SAI_TCR5(8), 0},
784 {FSL_SAI_TDR0, 0},
785 {FSL_SAI_TDR1, 0},
786 {FSL_SAI_TDR2, 0},
787 {FSL_SAI_TDR3, 0},
788 {FSL_SAI_TDR4, 0},
789 {FSL_SAI_TDR5, 0},
790 {FSL_SAI_TDR6, 0},
791 {FSL_SAI_TDR7, 0},
792 {FSL_SAI_TMR, 0},
793 {FSL_SAI_RCR1(8), 0},
794 {FSL_SAI_RCR2(8), 0},
795 {FSL_SAI_RCR3(8), 0},
796 {FSL_SAI_RCR4(8), 0},
797 {FSL_SAI_RCR5(8), 0},
798 {FSL_SAI_RMR, 0},
799 {FSL_SAI_MCTL, 0},
800 {FSL_SAI_MDIV, 0},
801 };
802
fsl_sai_readable_reg(struct device * dev,unsigned int reg)803 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
804 {
805 struct fsl_sai *sai = dev_get_drvdata(dev);
806 unsigned int ofs = sai->soc_data->reg_offset;
807
808 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
809 return true;
810
811 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
812 return true;
813
814 switch (reg) {
815 case FSL_SAI_TFR0:
816 case FSL_SAI_TFR1:
817 case FSL_SAI_TFR2:
818 case FSL_SAI_TFR3:
819 case FSL_SAI_TFR4:
820 case FSL_SAI_TFR5:
821 case FSL_SAI_TFR6:
822 case FSL_SAI_TFR7:
823 case FSL_SAI_TMR:
824 case FSL_SAI_RDR0:
825 case FSL_SAI_RDR1:
826 case FSL_SAI_RDR2:
827 case FSL_SAI_RDR3:
828 case FSL_SAI_RDR4:
829 case FSL_SAI_RDR5:
830 case FSL_SAI_RDR6:
831 case FSL_SAI_RDR7:
832 case FSL_SAI_RFR0:
833 case FSL_SAI_RFR1:
834 case FSL_SAI_RFR2:
835 case FSL_SAI_RFR3:
836 case FSL_SAI_RFR4:
837 case FSL_SAI_RFR5:
838 case FSL_SAI_RFR6:
839 case FSL_SAI_RFR7:
840 case FSL_SAI_RMR:
841 case FSL_SAI_MCTL:
842 case FSL_SAI_MDIV:
843 case FSL_SAI_VERID:
844 case FSL_SAI_PARAM:
845 case FSL_SAI_TTCTN:
846 case FSL_SAI_RTCTN:
847 case FSL_SAI_TTCTL:
848 case FSL_SAI_TBCTN:
849 case FSL_SAI_TTCAP:
850 case FSL_SAI_RTCTL:
851 case FSL_SAI_RBCTN:
852 case FSL_SAI_RTCAP:
853 return true;
854 default:
855 return false;
856 }
857 }
858
fsl_sai_volatile_reg(struct device * dev,unsigned int reg)859 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
860 {
861 struct fsl_sai *sai = dev_get_drvdata(dev);
862 unsigned int ofs = sai->soc_data->reg_offset;
863
864 if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
865 return true;
866
867 /* Set VERID and PARAM be volatile for reading value in probe */
868 if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
869 return true;
870
871 switch (reg) {
872 case FSL_SAI_TFR0:
873 case FSL_SAI_TFR1:
874 case FSL_SAI_TFR2:
875 case FSL_SAI_TFR3:
876 case FSL_SAI_TFR4:
877 case FSL_SAI_TFR5:
878 case FSL_SAI_TFR6:
879 case FSL_SAI_TFR7:
880 case FSL_SAI_RFR0:
881 case FSL_SAI_RFR1:
882 case FSL_SAI_RFR2:
883 case FSL_SAI_RFR3:
884 case FSL_SAI_RFR4:
885 case FSL_SAI_RFR5:
886 case FSL_SAI_RFR6:
887 case FSL_SAI_RFR7:
888 case FSL_SAI_RDR0:
889 case FSL_SAI_RDR1:
890 case FSL_SAI_RDR2:
891 case FSL_SAI_RDR3:
892 case FSL_SAI_RDR4:
893 case FSL_SAI_RDR5:
894 case FSL_SAI_RDR6:
895 case FSL_SAI_RDR7:
896 return true;
897 default:
898 return false;
899 }
900 }
901
fsl_sai_writeable_reg(struct device * dev,unsigned int reg)902 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
903 {
904 struct fsl_sai *sai = dev_get_drvdata(dev);
905 unsigned int ofs = sai->soc_data->reg_offset;
906
907 if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
908 return true;
909
910 if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
911 return true;
912
913 switch (reg) {
914 case FSL_SAI_TDR0:
915 case FSL_SAI_TDR1:
916 case FSL_SAI_TDR2:
917 case FSL_SAI_TDR3:
918 case FSL_SAI_TDR4:
919 case FSL_SAI_TDR5:
920 case FSL_SAI_TDR6:
921 case FSL_SAI_TDR7:
922 case FSL_SAI_TMR:
923 case FSL_SAI_RMR:
924 case FSL_SAI_MCTL:
925 case FSL_SAI_MDIV:
926 case FSL_SAI_TTCTL:
927 case FSL_SAI_RTCTL:
928 return true;
929 default:
930 return false;
931 }
932 }
933
934 static struct regmap_config fsl_sai_regmap_config = {
935 .reg_bits = 32,
936 .reg_stride = 4,
937 .val_bits = 32,
938 .fast_io = true,
939
940 .max_register = FSL_SAI_RMR,
941 .reg_defaults = fsl_sai_reg_defaults_ofs0,
942 .num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
943 .readable_reg = fsl_sai_readable_reg,
944 .volatile_reg = fsl_sai_volatile_reg,
945 .writeable_reg = fsl_sai_writeable_reg,
946 .cache_type = REGCACHE_FLAT,
947 };
948
fsl_sai_check_version(struct device * dev)949 static int fsl_sai_check_version(struct device *dev)
950 {
951 struct fsl_sai *sai = dev_get_drvdata(dev);
952 unsigned char ofs = sai->soc_data->reg_offset;
953 unsigned int val;
954 int ret;
955
956 if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
957 return 0;
958
959 ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
960 if (ret < 0)
961 return ret;
962
963 dev_dbg(dev, "VERID: 0x%016X\n", val);
964
965 sai->verid.major = (val & FSL_SAI_VERID_MAJOR_MASK) >>
966 FSL_SAI_VERID_MAJOR_SHIFT;
967 sai->verid.minor = (val & FSL_SAI_VERID_MINOR_MASK) >>
968 FSL_SAI_VERID_MINOR_SHIFT;
969 sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
970
971 ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
972 if (ret < 0)
973 return ret;
974
975 dev_dbg(dev, "PARAM: 0x%016X\n", val);
976
977 /* Max slots per frame, power of 2 */
978 sai->param.slot_num = 1 <<
979 ((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
980
981 /* Words per fifo, power of 2 */
982 sai->param.fifo_depth = 1 <<
983 ((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
984
985 /* Number of datalines implemented */
986 sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
987
988 return 0;
989 }
990
fsl_sai_probe(struct platform_device * pdev)991 static int fsl_sai_probe(struct platform_device *pdev)
992 {
993 struct device_node *np = pdev->dev.of_node;
994 struct fsl_sai *sai;
995 struct regmap *gpr;
996 struct resource *res;
997 void __iomem *base;
998 char tmp[8];
999 int irq, ret, i;
1000 int index;
1001
1002 sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1003 if (!sai)
1004 return -ENOMEM;
1005
1006 sai->pdev = pdev;
1007 sai->soc_data = of_device_get_match_data(&pdev->dev);
1008
1009 sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1010
1011 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1012 base = devm_ioremap_resource(&pdev->dev, res);
1013 if (IS_ERR(base))
1014 return PTR_ERR(base);
1015
1016 if (sai->soc_data->reg_offset == 8) {
1017 fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1018 fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1019 fsl_sai_regmap_config.num_reg_defaults =
1020 ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1021 }
1022
1023 sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
1024 "bus", base, &fsl_sai_regmap_config);
1025
1026 /* Compatible with old DTB cases */
1027 if (IS_ERR(sai->regmap) && PTR_ERR(sai->regmap) != -EPROBE_DEFER)
1028 sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
1029 "sai", base, &fsl_sai_regmap_config);
1030 if (IS_ERR(sai->regmap)) {
1031 dev_err(&pdev->dev, "regmap init failed\n");
1032 return PTR_ERR(sai->regmap);
1033 }
1034
1035 /* No error out for old DTB cases but only mark the clock NULL */
1036 sai->bus_clk = devm_clk_get(&pdev->dev, "bus");
1037 if (IS_ERR(sai->bus_clk)) {
1038 dev_err(&pdev->dev, "failed to get bus clock: %ld\n",
1039 PTR_ERR(sai->bus_clk));
1040 sai->bus_clk = NULL;
1041 }
1042
1043 sai->mclk_clk[0] = sai->bus_clk;
1044 for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1045 sprintf(tmp, "mclk%d", i);
1046 sai->mclk_clk[i] = devm_clk_get(&pdev->dev, tmp);
1047 if (IS_ERR(sai->mclk_clk[i])) {
1048 dev_err(&pdev->dev, "failed to get mclk%d clock: %ld\n",
1049 i + 1, PTR_ERR(sai->mclk_clk[i]));
1050 sai->mclk_clk[i] = NULL;
1051 }
1052 }
1053
1054 irq = platform_get_irq(pdev, 0);
1055 if (irq < 0)
1056 return irq;
1057
1058 ret = devm_request_irq(&pdev->dev, irq, fsl_sai_isr, IRQF_SHARED,
1059 np->name, sai);
1060 if (ret) {
1061 dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
1062 return ret;
1063 }
1064
1065 memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1066 sizeof(fsl_sai_dai_template));
1067
1068 /* Sync Tx with Rx as default by following old DT binding */
1069 sai->synchronous[RX] = true;
1070 sai->synchronous[TX] = false;
1071 sai->cpu_dai_drv.symmetric_rates = 1;
1072 sai->cpu_dai_drv.symmetric_channels = 1;
1073 sai->cpu_dai_drv.symmetric_samplebits = 1;
1074
1075 if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
1076 of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1077 /* error out if both synchronous and asynchronous are present */
1078 dev_err(&pdev->dev, "invalid binding for synchronous mode\n");
1079 return -EINVAL;
1080 }
1081
1082 if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
1083 /* Sync Rx with Tx */
1084 sai->synchronous[RX] = false;
1085 sai->synchronous[TX] = true;
1086 } else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1087 /* Discard all settings for asynchronous mode */
1088 sai->synchronous[RX] = false;
1089 sai->synchronous[TX] = false;
1090 sai->cpu_dai_drv.symmetric_rates = 0;
1091 sai->cpu_dai_drv.symmetric_channels = 0;
1092 sai->cpu_dai_drv.symmetric_samplebits = 0;
1093 }
1094
1095 if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1096 of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1097 gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1098 if (IS_ERR(gpr)) {
1099 dev_err(&pdev->dev, "cannot find iomuxc registers\n");
1100 return PTR_ERR(gpr);
1101 }
1102
1103 index = of_alias_get_id(np, "sai");
1104 if (index < 0)
1105 return index;
1106
1107 regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1108 MCLK_DIR(index));
1109 }
1110
1111 sai->dma_params_rx.addr = res->start + FSL_SAI_RDR0;
1112 sai->dma_params_tx.addr = res->start + FSL_SAI_TDR0;
1113 sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
1114 sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;
1115
1116 platform_set_drvdata(pdev, sai);
1117
1118 /* Get sai version */
1119 ret = fsl_sai_check_version(&pdev->dev);
1120 if (ret < 0)
1121 dev_warn(&pdev->dev, "Error reading SAI version: %d\n", ret);
1122
1123 /* Select MCLK direction */
1124 if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1125 sai->verid.major >= 3 && sai->verid.minor >= 1) {
1126 regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1127 FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1128 }
1129
1130 pm_runtime_enable(&pdev->dev);
1131 regcache_cache_only(sai->regmap, true);
1132
1133 ret = devm_snd_soc_register_component(&pdev->dev, &fsl_component,
1134 &sai->cpu_dai_drv, 1);
1135 if (ret)
1136 goto err_pm_disable;
1137
1138 if (sai->soc_data->use_imx_pcm) {
1139 ret = imx_pcm_dma_init(pdev, IMX_SAI_DMABUF_SIZE);
1140 if (ret)
1141 goto err_pm_disable;
1142 } else {
1143 ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
1144 if (ret)
1145 goto err_pm_disable;
1146 }
1147
1148 return ret;
1149
1150 err_pm_disable:
1151 pm_runtime_disable(&pdev->dev);
1152
1153 return ret;
1154 }
1155
fsl_sai_remove(struct platform_device * pdev)1156 static int fsl_sai_remove(struct platform_device *pdev)
1157 {
1158 pm_runtime_disable(&pdev->dev);
1159
1160 return 0;
1161 }
1162
1163 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1164 .use_imx_pcm = false,
1165 .use_edma = false,
1166 .fifo_depth = 32,
1167 .reg_offset = 0,
1168 };
1169
1170 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1171 .use_imx_pcm = true,
1172 .use_edma = false,
1173 .fifo_depth = 32,
1174 .reg_offset = 0,
1175 };
1176
1177 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1178 .use_imx_pcm = true,
1179 .use_edma = false,
1180 .fifo_depth = 16,
1181 .reg_offset = 8,
1182 };
1183
1184 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1185 .use_imx_pcm = true,
1186 .use_edma = false,
1187 .fifo_depth = 128,
1188 .reg_offset = 8,
1189 };
1190
1191 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1192 .use_imx_pcm = true,
1193 .use_edma = true,
1194 .fifo_depth = 64,
1195 .reg_offset = 0,
1196 };
1197
1198 static const struct of_device_id fsl_sai_ids[] = {
1199 { .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1200 { .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1201 { .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1202 { .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1203 { .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1204 { .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1205 { /* sentinel */ }
1206 };
1207 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1208
1209 #ifdef CONFIG_PM
fsl_sai_runtime_suspend(struct device * dev)1210 static int fsl_sai_runtime_suspend(struct device *dev)
1211 {
1212 struct fsl_sai *sai = dev_get_drvdata(dev);
1213
1214 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1215 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1216
1217 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1218 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1219
1220 clk_disable_unprepare(sai->bus_clk);
1221
1222 regcache_cache_only(sai->regmap, true);
1223
1224 return 0;
1225 }
1226
fsl_sai_runtime_resume(struct device * dev)1227 static int fsl_sai_runtime_resume(struct device *dev)
1228 {
1229 struct fsl_sai *sai = dev_get_drvdata(dev);
1230 unsigned int ofs = sai->soc_data->reg_offset;
1231 int ret;
1232
1233 ret = clk_prepare_enable(sai->bus_clk);
1234 if (ret) {
1235 dev_err(dev, "failed to enable bus clock: %d\n", ret);
1236 return ret;
1237 }
1238
1239 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1240 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1241 if (ret)
1242 goto disable_bus_clk;
1243 }
1244
1245 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1246 ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1247 if (ret)
1248 goto disable_tx_clk;
1249 }
1250
1251 regcache_cache_only(sai->regmap, false);
1252 regcache_mark_dirty(sai->regmap);
1253 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1254 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1255 usleep_range(1000, 2000);
1256 regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1257 regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1258
1259 ret = regcache_sync(sai->regmap);
1260 if (ret)
1261 goto disable_rx_clk;
1262
1263 return 0;
1264
1265 disable_rx_clk:
1266 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1267 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1268 disable_tx_clk:
1269 if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1270 clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1271 disable_bus_clk:
1272 clk_disable_unprepare(sai->bus_clk);
1273
1274 return ret;
1275 }
1276 #endif /* CONFIG_PM */
1277
1278 static const struct dev_pm_ops fsl_sai_pm_ops = {
1279 SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1280 fsl_sai_runtime_resume, NULL)
1281 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1282 pm_runtime_force_resume)
1283 };
1284
1285 static struct platform_driver fsl_sai_driver = {
1286 .probe = fsl_sai_probe,
1287 .remove = fsl_sai_remove,
1288 .driver = {
1289 .name = "fsl-sai",
1290 .pm = &fsl_sai_pm_ops,
1291 .of_match_table = fsl_sai_ids,
1292 },
1293 };
1294 module_platform_driver(fsl_sai_driver);
1295
1296 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1297 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1298 MODULE_ALIAS("platform:fsl-sai");
1299 MODULE_LICENSE("GPL");
1300