1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR 2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39 * These are descriptions of the reasons that can be passed to the
40 * security_locked_down() LSM hook. Placing this array here allows
41 * all security modules to use the same descriptions for auditing
42 * purposes.
43 */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 [LOCKDOWN_NONE] = "none",
46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 [LOCKDOWN_HIBERNATION] = "hibernation",
51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 [LOCKDOWN_IOPORT] = "raw io port access",
53 [LOCKDOWN_MSR] = "raw MSR access",
54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 [LOCKDOWN_DEBUGFS] = "debugfs access",
60 [LOCKDOWN_XMON_WR] = "xmon write access",
61 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
62 [LOCKDOWN_KCORE] = "/proc/kcore access",
63 [LOCKDOWN_KPROBES] = "use of kprobes",
64 [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
65 [LOCKDOWN_PERF] = "unsafe use of perf",
66 [LOCKDOWN_TRACEFS] = "use of tracefs",
67 [LOCKDOWN_XMON_RW] = "xmon read and write access",
68 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
69 };
70
71 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
72 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
73
74 static struct kmem_cache *lsm_file_cache;
75 static struct kmem_cache *lsm_inode_cache;
76
77 char *lsm_names;
78 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
79
80 /* Boot-time LSM user choice */
81 static __initdata const char *chosen_lsm_order;
82 static __initdata const char *chosen_major_lsm;
83
84 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
85
86 /* Ordered list of LSMs to initialize. */
87 static __initdata struct lsm_info **ordered_lsms;
88 static __initdata struct lsm_info *exclusive;
89
90 static __initdata bool debug;
91 #define init_debug(...) \
92 do { \
93 if (debug) \
94 pr_info(__VA_ARGS__); \
95 } while (0)
96
is_enabled(struct lsm_info * lsm)97 static bool __init is_enabled(struct lsm_info *lsm)
98 {
99 if (!lsm->enabled)
100 return false;
101
102 return *lsm->enabled;
103 }
104
105 /* Mark an LSM's enabled flag. */
106 static int lsm_enabled_true __initdata = 1;
107 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)108 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
109 {
110 /*
111 * When an LSM hasn't configured an enable variable, we can use
112 * a hard-coded location for storing the default enabled state.
113 */
114 if (!lsm->enabled) {
115 if (enabled)
116 lsm->enabled = &lsm_enabled_true;
117 else
118 lsm->enabled = &lsm_enabled_false;
119 } else if (lsm->enabled == &lsm_enabled_true) {
120 if (!enabled)
121 lsm->enabled = &lsm_enabled_false;
122 } else if (lsm->enabled == &lsm_enabled_false) {
123 if (enabled)
124 lsm->enabled = &lsm_enabled_true;
125 } else {
126 *lsm->enabled = enabled;
127 }
128 }
129
130 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)131 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
132 {
133 struct lsm_info **check;
134
135 for (check = ordered_lsms; *check; check++)
136 if (*check == lsm)
137 return true;
138
139 return false;
140 }
141
142 /* Append an LSM to the list of ordered LSMs to initialize. */
143 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)144 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
145 {
146 /* Ignore duplicate selections. */
147 if (exists_ordered_lsm(lsm))
148 return;
149
150 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
151 return;
152
153 /* Enable this LSM, if it is not already set. */
154 if (!lsm->enabled)
155 lsm->enabled = &lsm_enabled_true;
156 ordered_lsms[last_lsm++] = lsm;
157
158 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
159 is_enabled(lsm) ? "en" : "dis");
160 }
161
162 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)163 static bool __init lsm_allowed(struct lsm_info *lsm)
164 {
165 /* Skip if the LSM is disabled. */
166 if (!is_enabled(lsm))
167 return false;
168
169 /* Not allowed if another exclusive LSM already initialized. */
170 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
171 init_debug("exclusive disabled: %s\n", lsm->name);
172 return false;
173 }
174
175 return true;
176 }
177
lsm_set_blob_size(int * need,int * lbs)178 static void __init lsm_set_blob_size(int *need, int *lbs)
179 {
180 int offset;
181
182 if (*need > 0) {
183 offset = *lbs;
184 *lbs += *need;
185 *need = offset;
186 }
187 }
188
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)189 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
190 {
191 if (!needed)
192 return;
193
194 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
195 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
196 /*
197 * The inode blob gets an rcu_head in addition to
198 * what the modules might need.
199 */
200 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
201 blob_sizes.lbs_inode = sizeof(struct rcu_head);
202 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
203 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
204 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
205 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
206 }
207
208 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)209 static void __init prepare_lsm(struct lsm_info *lsm)
210 {
211 int enabled = lsm_allowed(lsm);
212
213 /* Record enablement (to handle any following exclusive LSMs). */
214 set_enabled(lsm, enabled);
215
216 /* If enabled, do pre-initialization work. */
217 if (enabled) {
218 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
219 exclusive = lsm;
220 init_debug("exclusive chosen: %s\n", lsm->name);
221 }
222
223 lsm_set_blob_sizes(lsm->blobs);
224 }
225 }
226
227 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)228 static void __init initialize_lsm(struct lsm_info *lsm)
229 {
230 if (is_enabled(lsm)) {
231 int ret;
232
233 init_debug("initializing %s\n", lsm->name);
234 ret = lsm->init();
235 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
236 }
237 }
238
239 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)240 static void __init ordered_lsm_parse(const char *order, const char *origin)
241 {
242 struct lsm_info *lsm;
243 char *sep, *name, *next;
244
245 /* LSM_ORDER_FIRST is always first. */
246 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
247 if (lsm->order == LSM_ORDER_FIRST)
248 append_ordered_lsm(lsm, "first");
249 }
250
251 /* Process "security=", if given. */
252 if (chosen_major_lsm) {
253 struct lsm_info *major;
254
255 /*
256 * To match the original "security=" behavior, this
257 * explicitly does NOT fallback to another Legacy Major
258 * if the selected one was separately disabled: disable
259 * all non-matching Legacy Major LSMs.
260 */
261 for (major = __start_lsm_info; major < __end_lsm_info;
262 major++) {
263 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
264 strcmp(major->name, chosen_major_lsm) != 0) {
265 set_enabled(major, false);
266 init_debug("security=%s disabled: %s\n",
267 chosen_major_lsm, major->name);
268 }
269 }
270 }
271
272 sep = kstrdup(order, GFP_KERNEL);
273 next = sep;
274 /* Walk the list, looking for matching LSMs. */
275 while ((name = strsep(&next, ",")) != NULL) {
276 bool found = false;
277
278 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
279 if (lsm->order == LSM_ORDER_MUTABLE &&
280 strcmp(lsm->name, name) == 0) {
281 append_ordered_lsm(lsm, origin);
282 found = true;
283 }
284 }
285
286 if (!found)
287 init_debug("%s ignored: %s\n", origin, name);
288 }
289
290 /* Process "security=", if given. */
291 if (chosen_major_lsm) {
292 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
293 if (exists_ordered_lsm(lsm))
294 continue;
295 if (strcmp(lsm->name, chosen_major_lsm) == 0)
296 append_ordered_lsm(lsm, "security=");
297 }
298 }
299
300 /* Disable all LSMs not in the ordered list. */
301 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
302 if (exists_ordered_lsm(lsm))
303 continue;
304 set_enabled(lsm, false);
305 init_debug("%s disabled: %s\n", origin, lsm->name);
306 }
307
308 kfree(sep);
309 }
310
311 static void __init lsm_early_cred(struct cred *cred);
312 static void __init lsm_early_task(struct task_struct *task);
313
314 static int lsm_append(const char *new, char **result);
315
ordered_lsm_init(void)316 static void __init ordered_lsm_init(void)
317 {
318 struct lsm_info **lsm;
319
320 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
321 GFP_KERNEL);
322
323 if (chosen_lsm_order) {
324 if (chosen_major_lsm) {
325 pr_info("security= is ignored because it is superseded by lsm=\n");
326 chosen_major_lsm = NULL;
327 }
328 ordered_lsm_parse(chosen_lsm_order, "cmdline");
329 } else
330 ordered_lsm_parse(builtin_lsm_order, "builtin");
331
332 for (lsm = ordered_lsms; *lsm; lsm++)
333 prepare_lsm(*lsm);
334
335 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
336 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
337 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
338 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
339 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
340 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
341
342 /*
343 * Create any kmem_caches needed for blobs
344 */
345 if (blob_sizes.lbs_file)
346 lsm_file_cache = kmem_cache_create("lsm_file_cache",
347 blob_sizes.lbs_file, 0,
348 SLAB_PANIC, NULL);
349 if (blob_sizes.lbs_inode)
350 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
351 blob_sizes.lbs_inode, 0,
352 SLAB_PANIC, NULL);
353
354 lsm_early_cred((struct cred *) current->cred);
355 lsm_early_task(current);
356 for (lsm = ordered_lsms; *lsm; lsm++)
357 initialize_lsm(*lsm);
358
359 kfree(ordered_lsms);
360 }
361
early_security_init(void)362 int __init early_security_init(void)
363 {
364 int i;
365 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
366 struct lsm_info *lsm;
367
368 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
369 i++)
370 INIT_HLIST_HEAD(&list[i]);
371
372 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
373 if (!lsm->enabled)
374 lsm->enabled = &lsm_enabled_true;
375 prepare_lsm(lsm);
376 initialize_lsm(lsm);
377 }
378
379 return 0;
380 }
381
382 /**
383 * security_init - initializes the security framework
384 *
385 * This should be called early in the kernel initialization sequence.
386 */
security_init(void)387 int __init security_init(void)
388 {
389 struct lsm_info *lsm;
390
391 pr_info("Security Framework initializing\n");
392
393 /*
394 * Append the names of the early LSM modules now that kmalloc() is
395 * available
396 */
397 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
398 if (lsm->enabled)
399 lsm_append(lsm->name, &lsm_names);
400 }
401
402 /* Load LSMs in specified order. */
403 ordered_lsm_init();
404
405 return 0;
406 }
407
408 /* Save user chosen LSM */
choose_major_lsm(char * str)409 static int __init choose_major_lsm(char *str)
410 {
411 chosen_major_lsm = str;
412 return 1;
413 }
414 __setup("security=", choose_major_lsm);
415
416 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)417 static int __init choose_lsm_order(char *str)
418 {
419 chosen_lsm_order = str;
420 return 1;
421 }
422 __setup("lsm=", choose_lsm_order);
423
424 /* Enable LSM order debugging. */
enable_debug(char * str)425 static int __init enable_debug(char *str)
426 {
427 debug = true;
428 return 1;
429 }
430 __setup("lsm.debug", enable_debug);
431
match_last_lsm(const char * list,const char * lsm)432 static bool match_last_lsm(const char *list, const char *lsm)
433 {
434 const char *last;
435
436 if (WARN_ON(!list || !lsm))
437 return false;
438 last = strrchr(list, ',');
439 if (last)
440 /* Pass the comma, strcmp() will check for '\0' */
441 last++;
442 else
443 last = list;
444 return !strcmp(last, lsm);
445 }
446
lsm_append(const char * new,char ** result)447 static int lsm_append(const char *new, char **result)
448 {
449 char *cp;
450
451 if (*result == NULL) {
452 *result = kstrdup(new, GFP_KERNEL);
453 if (*result == NULL)
454 return -ENOMEM;
455 } else {
456 /* Check if it is the last registered name */
457 if (match_last_lsm(*result, new))
458 return 0;
459 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
460 if (cp == NULL)
461 return -ENOMEM;
462 kfree(*result);
463 *result = cp;
464 }
465 return 0;
466 }
467
468 /**
469 * security_add_hooks - Add a modules hooks to the hook lists.
470 * @hooks: the hooks to add
471 * @count: the number of hooks to add
472 * @lsm: the name of the security module
473 *
474 * Each LSM has to register its hooks with the infrastructure.
475 */
security_add_hooks(struct security_hook_list * hooks,int count,char * lsm)476 void __init security_add_hooks(struct security_hook_list *hooks, int count,
477 char *lsm)
478 {
479 int i;
480
481 for (i = 0; i < count; i++) {
482 hooks[i].lsm = lsm;
483 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
484 }
485
486 /*
487 * Don't try to append during early_security_init(), we'll come back
488 * and fix this up afterwards.
489 */
490 if (slab_is_available()) {
491 if (lsm_append(lsm, &lsm_names) < 0)
492 panic("%s - Cannot get early memory.\n", __func__);
493 }
494 }
495
call_blocking_lsm_notifier(enum lsm_event event,void * data)496 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
497 {
498 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
499 event, data);
500 }
501 EXPORT_SYMBOL(call_blocking_lsm_notifier);
502
register_blocking_lsm_notifier(struct notifier_block * nb)503 int register_blocking_lsm_notifier(struct notifier_block *nb)
504 {
505 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
506 nb);
507 }
508 EXPORT_SYMBOL(register_blocking_lsm_notifier);
509
unregister_blocking_lsm_notifier(struct notifier_block * nb)510 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
511 {
512 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
513 nb);
514 }
515 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
516
517 /**
518 * lsm_cred_alloc - allocate a composite cred blob
519 * @cred: the cred that needs a blob
520 * @gfp: allocation type
521 *
522 * Allocate the cred blob for all the modules
523 *
524 * Returns 0, or -ENOMEM if memory can't be allocated.
525 */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)526 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
527 {
528 if (blob_sizes.lbs_cred == 0) {
529 cred->security = NULL;
530 return 0;
531 }
532
533 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
534 if (cred->security == NULL)
535 return -ENOMEM;
536 return 0;
537 }
538
539 /**
540 * lsm_early_cred - during initialization allocate a composite cred blob
541 * @cred: the cred that needs a blob
542 *
543 * Allocate the cred blob for all the modules
544 */
lsm_early_cred(struct cred * cred)545 static void __init lsm_early_cred(struct cred *cred)
546 {
547 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
548
549 if (rc)
550 panic("%s: Early cred alloc failed.\n", __func__);
551 }
552
553 /**
554 * lsm_file_alloc - allocate a composite file blob
555 * @file: the file that needs a blob
556 *
557 * Allocate the file blob for all the modules
558 *
559 * Returns 0, or -ENOMEM if memory can't be allocated.
560 */
lsm_file_alloc(struct file * file)561 static int lsm_file_alloc(struct file *file)
562 {
563 if (!lsm_file_cache) {
564 file->f_security = NULL;
565 return 0;
566 }
567
568 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
569 if (file->f_security == NULL)
570 return -ENOMEM;
571 return 0;
572 }
573
574 /**
575 * lsm_inode_alloc - allocate a composite inode blob
576 * @inode: the inode that needs a blob
577 *
578 * Allocate the inode blob for all the modules
579 *
580 * Returns 0, or -ENOMEM if memory can't be allocated.
581 */
lsm_inode_alloc(struct inode * inode)582 int lsm_inode_alloc(struct inode *inode)
583 {
584 if (!lsm_inode_cache) {
585 inode->i_security = NULL;
586 return 0;
587 }
588
589 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
590 if (inode->i_security == NULL)
591 return -ENOMEM;
592 return 0;
593 }
594
595 /**
596 * lsm_task_alloc - allocate a composite task blob
597 * @task: the task that needs a blob
598 *
599 * Allocate the task blob for all the modules
600 *
601 * Returns 0, or -ENOMEM if memory can't be allocated.
602 */
lsm_task_alloc(struct task_struct * task)603 static int lsm_task_alloc(struct task_struct *task)
604 {
605 if (blob_sizes.lbs_task == 0) {
606 task->security = NULL;
607 return 0;
608 }
609
610 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
611 if (task->security == NULL)
612 return -ENOMEM;
613 return 0;
614 }
615
616 /**
617 * lsm_ipc_alloc - allocate a composite ipc blob
618 * @kip: the ipc that needs a blob
619 *
620 * Allocate the ipc blob for all the modules
621 *
622 * Returns 0, or -ENOMEM if memory can't be allocated.
623 */
lsm_ipc_alloc(struct kern_ipc_perm * kip)624 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
625 {
626 if (blob_sizes.lbs_ipc == 0) {
627 kip->security = NULL;
628 return 0;
629 }
630
631 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
632 if (kip->security == NULL)
633 return -ENOMEM;
634 return 0;
635 }
636
637 /**
638 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
639 * @mp: the msg_msg that needs a blob
640 *
641 * Allocate the ipc blob for all the modules
642 *
643 * Returns 0, or -ENOMEM if memory can't be allocated.
644 */
lsm_msg_msg_alloc(struct msg_msg * mp)645 static int lsm_msg_msg_alloc(struct msg_msg *mp)
646 {
647 if (blob_sizes.lbs_msg_msg == 0) {
648 mp->security = NULL;
649 return 0;
650 }
651
652 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
653 if (mp->security == NULL)
654 return -ENOMEM;
655 return 0;
656 }
657
658 /**
659 * lsm_early_task - during initialization allocate a composite task blob
660 * @task: the task that needs a blob
661 *
662 * Allocate the task blob for all the modules
663 */
lsm_early_task(struct task_struct * task)664 static void __init lsm_early_task(struct task_struct *task)
665 {
666 int rc = lsm_task_alloc(task);
667
668 if (rc)
669 panic("%s: Early task alloc failed.\n", __func__);
670 }
671
672 /*
673 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
674 * can be accessed with:
675 *
676 * LSM_RET_DEFAULT(<hook_name>)
677 *
678 * The macros below define static constants for the default value of each
679 * LSM hook.
680 */
681 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
682 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
683 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
684 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
685 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
686 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
687
688 #include <linux/lsm_hook_defs.h>
689 #undef LSM_HOOK
690
691 /*
692 * Hook list operation macros.
693 *
694 * call_void_hook:
695 * This is a hook that does not return a value.
696 *
697 * call_int_hook:
698 * This is a hook that returns a value.
699 */
700
701 #define call_void_hook(FUNC, ...) \
702 do { \
703 struct security_hook_list *P; \
704 \
705 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
706 P->hook.FUNC(__VA_ARGS__); \
707 } while (0)
708
709 #define call_int_hook(FUNC, IRC, ...) ({ \
710 int RC = IRC; \
711 do { \
712 struct security_hook_list *P; \
713 \
714 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
715 RC = P->hook.FUNC(__VA_ARGS__); \
716 if (RC != 0) \
717 break; \
718 } \
719 } while (0); \
720 RC; \
721 })
722
723 /* Security operations */
724
security_binder_set_context_mgr(struct task_struct * mgr)725 int security_binder_set_context_mgr(struct task_struct *mgr)
726 {
727 return call_int_hook(binder_set_context_mgr, 0, mgr);
728 }
729
security_binder_transaction(struct task_struct * from,struct task_struct * to)730 int security_binder_transaction(struct task_struct *from,
731 struct task_struct *to)
732 {
733 return call_int_hook(binder_transaction, 0, from, to);
734 }
735
security_binder_transfer_binder(struct task_struct * from,struct task_struct * to)736 int security_binder_transfer_binder(struct task_struct *from,
737 struct task_struct *to)
738 {
739 return call_int_hook(binder_transfer_binder, 0, from, to);
740 }
741
security_binder_transfer_file(struct task_struct * from,struct task_struct * to,struct file * file)742 int security_binder_transfer_file(struct task_struct *from,
743 struct task_struct *to, struct file *file)
744 {
745 return call_int_hook(binder_transfer_file, 0, from, to, file);
746 }
747
security_ptrace_access_check(struct task_struct * child,unsigned int mode)748 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
749 {
750 return call_int_hook(ptrace_access_check, 0, child, mode);
751 }
752
security_ptrace_traceme(struct task_struct * parent)753 int security_ptrace_traceme(struct task_struct *parent)
754 {
755 return call_int_hook(ptrace_traceme, 0, parent);
756 }
757
security_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)758 int security_capget(struct task_struct *target,
759 kernel_cap_t *effective,
760 kernel_cap_t *inheritable,
761 kernel_cap_t *permitted)
762 {
763 return call_int_hook(capget, 0, target,
764 effective, inheritable, permitted);
765 }
766
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)767 int security_capset(struct cred *new, const struct cred *old,
768 const kernel_cap_t *effective,
769 const kernel_cap_t *inheritable,
770 const kernel_cap_t *permitted)
771 {
772 return call_int_hook(capset, 0, new, old,
773 effective, inheritable, permitted);
774 }
775
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)776 int security_capable(const struct cred *cred,
777 struct user_namespace *ns,
778 int cap,
779 unsigned int opts)
780 {
781 return call_int_hook(capable, 0, cred, ns, cap, opts);
782 }
783
security_quotactl(int cmds,int type,int id,struct super_block * sb)784 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
785 {
786 return call_int_hook(quotactl, 0, cmds, type, id, sb);
787 }
788
security_quota_on(struct dentry * dentry)789 int security_quota_on(struct dentry *dentry)
790 {
791 return call_int_hook(quota_on, 0, dentry);
792 }
793
security_syslog(int type)794 int security_syslog(int type)
795 {
796 return call_int_hook(syslog, 0, type);
797 }
798
security_settime64(const struct timespec64 * ts,const struct timezone * tz)799 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
800 {
801 return call_int_hook(settime, 0, ts, tz);
802 }
803
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)804 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
805 {
806 struct security_hook_list *hp;
807 int cap_sys_admin = 1;
808 int rc;
809
810 /*
811 * The module will respond with a positive value if
812 * it thinks the __vm_enough_memory() call should be
813 * made with the cap_sys_admin set. If all of the modules
814 * agree that it should be set it will. If any module
815 * thinks it should not be set it won't.
816 */
817 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
818 rc = hp->hook.vm_enough_memory(mm, pages);
819 if (rc <= 0) {
820 cap_sys_admin = 0;
821 break;
822 }
823 }
824 return __vm_enough_memory(mm, pages, cap_sys_admin);
825 }
826
security_bprm_creds_for_exec(struct linux_binprm * bprm)827 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
828 {
829 return call_int_hook(bprm_creds_for_exec, 0, bprm);
830 }
831
security_bprm_creds_from_file(struct linux_binprm * bprm,struct file * file)832 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
833 {
834 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
835 }
836
security_bprm_check(struct linux_binprm * bprm)837 int security_bprm_check(struct linux_binprm *bprm)
838 {
839 int ret;
840
841 ret = call_int_hook(bprm_check_security, 0, bprm);
842 if (ret)
843 return ret;
844 return ima_bprm_check(bprm);
845 }
846
security_bprm_committing_creds(struct linux_binprm * bprm)847 void security_bprm_committing_creds(struct linux_binprm *bprm)
848 {
849 call_void_hook(bprm_committing_creds, bprm);
850 }
851
security_bprm_committed_creds(struct linux_binprm * bprm)852 void security_bprm_committed_creds(struct linux_binprm *bprm)
853 {
854 call_void_hook(bprm_committed_creds, bprm);
855 }
856
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)857 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
858 {
859 return call_int_hook(fs_context_dup, 0, fc, src_fc);
860 }
861
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)862 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
863 {
864 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
865 }
866
security_sb_alloc(struct super_block * sb)867 int security_sb_alloc(struct super_block *sb)
868 {
869 return call_int_hook(sb_alloc_security, 0, sb);
870 }
871
security_sb_free(struct super_block * sb)872 void security_sb_free(struct super_block *sb)
873 {
874 call_void_hook(sb_free_security, sb);
875 }
876
security_free_mnt_opts(void ** mnt_opts)877 void security_free_mnt_opts(void **mnt_opts)
878 {
879 if (!*mnt_opts)
880 return;
881 call_void_hook(sb_free_mnt_opts, *mnt_opts);
882 *mnt_opts = NULL;
883 }
884 EXPORT_SYMBOL(security_free_mnt_opts);
885
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)886 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
887 {
888 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
889 }
890 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
891
security_sb_remount(struct super_block * sb,void * mnt_opts)892 int security_sb_remount(struct super_block *sb,
893 void *mnt_opts)
894 {
895 return call_int_hook(sb_remount, 0, sb, mnt_opts);
896 }
897 EXPORT_SYMBOL(security_sb_remount);
898
security_sb_kern_mount(struct super_block * sb)899 int security_sb_kern_mount(struct super_block *sb)
900 {
901 return call_int_hook(sb_kern_mount, 0, sb);
902 }
903
security_sb_show_options(struct seq_file * m,struct super_block * sb)904 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
905 {
906 return call_int_hook(sb_show_options, 0, m, sb);
907 }
908
security_sb_statfs(struct dentry * dentry)909 int security_sb_statfs(struct dentry *dentry)
910 {
911 return call_int_hook(sb_statfs, 0, dentry);
912 }
913
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)914 int security_sb_mount(const char *dev_name, const struct path *path,
915 const char *type, unsigned long flags, void *data)
916 {
917 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
918 }
919
security_sb_umount(struct vfsmount * mnt,int flags)920 int security_sb_umount(struct vfsmount *mnt, int flags)
921 {
922 return call_int_hook(sb_umount, 0, mnt, flags);
923 }
924
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)925 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
926 {
927 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
928 }
929
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)930 int security_sb_set_mnt_opts(struct super_block *sb,
931 void *mnt_opts,
932 unsigned long kern_flags,
933 unsigned long *set_kern_flags)
934 {
935 return call_int_hook(sb_set_mnt_opts,
936 mnt_opts ? -EOPNOTSUPP : 0, sb,
937 mnt_opts, kern_flags, set_kern_flags);
938 }
939 EXPORT_SYMBOL(security_sb_set_mnt_opts);
940
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)941 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
942 struct super_block *newsb,
943 unsigned long kern_flags,
944 unsigned long *set_kern_flags)
945 {
946 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
947 kern_flags, set_kern_flags);
948 }
949 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
950
security_add_mnt_opt(const char * option,const char * val,int len,void ** mnt_opts)951 int security_add_mnt_opt(const char *option, const char *val, int len,
952 void **mnt_opts)
953 {
954 return call_int_hook(sb_add_mnt_opt, -EINVAL,
955 option, val, len, mnt_opts);
956 }
957 EXPORT_SYMBOL(security_add_mnt_opt);
958
security_move_mount(const struct path * from_path,const struct path * to_path)959 int security_move_mount(const struct path *from_path, const struct path *to_path)
960 {
961 return call_int_hook(move_mount, 0, from_path, to_path);
962 }
963
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)964 int security_path_notify(const struct path *path, u64 mask,
965 unsigned int obj_type)
966 {
967 return call_int_hook(path_notify, 0, path, mask, obj_type);
968 }
969
security_inode_alloc(struct inode * inode)970 int security_inode_alloc(struct inode *inode)
971 {
972 int rc = lsm_inode_alloc(inode);
973
974 if (unlikely(rc))
975 return rc;
976 rc = call_int_hook(inode_alloc_security, 0, inode);
977 if (unlikely(rc))
978 security_inode_free(inode);
979 return rc;
980 }
981
inode_free_by_rcu(struct rcu_head * head)982 static void inode_free_by_rcu(struct rcu_head *head)
983 {
984 /*
985 * The rcu head is at the start of the inode blob
986 */
987 kmem_cache_free(lsm_inode_cache, head);
988 }
989
security_inode_free(struct inode * inode)990 void security_inode_free(struct inode *inode)
991 {
992 integrity_inode_free(inode);
993 call_void_hook(inode_free_security, inode);
994 /*
995 * The inode may still be referenced in a path walk and
996 * a call to security_inode_permission() can be made
997 * after inode_free_security() is called. Ideally, the VFS
998 * wouldn't do this, but fixing that is a much harder
999 * job. For now, simply free the i_security via RCU, and
1000 * leave the current inode->i_security pointer intact.
1001 * The inode will be freed after the RCU grace period too.
1002 */
1003 if (inode->i_security)
1004 call_rcu((struct rcu_head *)inode->i_security,
1005 inode_free_by_rcu);
1006 }
1007
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,void ** ctx,u32 * ctxlen)1008 int security_dentry_init_security(struct dentry *dentry, int mode,
1009 const struct qstr *name, void **ctx,
1010 u32 *ctxlen)
1011 {
1012 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1013 name, ctx, ctxlen);
1014 }
1015 EXPORT_SYMBOL(security_dentry_init_security);
1016
security_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)1017 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1018 struct qstr *name,
1019 const struct cred *old, struct cred *new)
1020 {
1021 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1022 name, old, new);
1023 }
1024 EXPORT_SYMBOL(security_dentry_create_files_as);
1025
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1026 int security_inode_init_security(struct inode *inode, struct inode *dir,
1027 const struct qstr *qstr,
1028 const initxattrs initxattrs, void *fs_data)
1029 {
1030 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1031 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1032 int ret;
1033
1034 if (unlikely(IS_PRIVATE(inode)))
1035 return 0;
1036
1037 if (!initxattrs)
1038 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1039 dir, qstr, NULL, NULL, NULL);
1040 memset(new_xattrs, 0, sizeof(new_xattrs));
1041 lsm_xattr = new_xattrs;
1042 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1043 &lsm_xattr->name,
1044 &lsm_xattr->value,
1045 &lsm_xattr->value_len);
1046 if (ret)
1047 goto out;
1048
1049 evm_xattr = lsm_xattr + 1;
1050 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1051 if (ret)
1052 goto out;
1053 ret = initxattrs(inode, new_xattrs, fs_data);
1054 out:
1055 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1056 kfree(xattr->value);
1057 return (ret == -EOPNOTSUPP) ? 0 : ret;
1058 }
1059 EXPORT_SYMBOL(security_inode_init_security);
1060
security_old_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const char ** name,void ** value,size_t * len)1061 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1062 const struct qstr *qstr, const char **name,
1063 void **value, size_t *len)
1064 {
1065 if (unlikely(IS_PRIVATE(inode)))
1066 return -EOPNOTSUPP;
1067 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1068 qstr, name, value, len);
1069 }
1070 EXPORT_SYMBOL(security_old_inode_init_security);
1071
1072 #ifdef CONFIG_SECURITY_PATH
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1073 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1074 unsigned int dev)
1075 {
1076 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1077 return 0;
1078 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1079 }
1080 EXPORT_SYMBOL(security_path_mknod);
1081
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1082 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1083 {
1084 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1085 return 0;
1086 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1087 }
1088 EXPORT_SYMBOL(security_path_mkdir);
1089
security_path_rmdir(const struct path * dir,struct dentry * dentry)1090 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1091 {
1092 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1093 return 0;
1094 return call_int_hook(path_rmdir, 0, dir, dentry);
1095 }
1096
security_path_unlink(const struct path * dir,struct dentry * dentry)1097 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1098 {
1099 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1100 return 0;
1101 return call_int_hook(path_unlink, 0, dir, dentry);
1102 }
1103 EXPORT_SYMBOL(security_path_unlink);
1104
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1105 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1106 const char *old_name)
1107 {
1108 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1109 return 0;
1110 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1111 }
1112
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1113 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1114 struct dentry *new_dentry)
1115 {
1116 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1117 return 0;
1118 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1119 }
1120
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)1121 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1122 const struct path *new_dir, struct dentry *new_dentry,
1123 unsigned int flags)
1124 {
1125 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1126 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1127 return 0;
1128
1129 if (flags & RENAME_EXCHANGE) {
1130 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1131 old_dir, old_dentry);
1132 if (err)
1133 return err;
1134 }
1135
1136 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1137 new_dentry);
1138 }
1139 EXPORT_SYMBOL(security_path_rename);
1140
security_path_truncate(const struct path * path)1141 int security_path_truncate(const struct path *path)
1142 {
1143 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1144 return 0;
1145 return call_int_hook(path_truncate, 0, path);
1146 }
1147
security_path_chmod(const struct path * path,umode_t mode)1148 int security_path_chmod(const struct path *path, umode_t mode)
1149 {
1150 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1151 return 0;
1152 return call_int_hook(path_chmod, 0, path, mode);
1153 }
1154
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)1155 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1156 {
1157 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1158 return 0;
1159 return call_int_hook(path_chown, 0, path, uid, gid);
1160 }
1161
security_path_chroot(const struct path * path)1162 int security_path_chroot(const struct path *path)
1163 {
1164 return call_int_hook(path_chroot, 0, path);
1165 }
1166 #endif
1167
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)1168 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1169 {
1170 if (unlikely(IS_PRIVATE(dir)))
1171 return 0;
1172 return call_int_hook(inode_create, 0, dir, dentry, mode);
1173 }
1174 EXPORT_SYMBOL_GPL(security_inode_create);
1175
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)1176 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1177 struct dentry *new_dentry)
1178 {
1179 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1180 return 0;
1181 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1182 }
1183
security_inode_unlink(struct inode * dir,struct dentry * dentry)1184 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1185 {
1186 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1187 return 0;
1188 return call_int_hook(inode_unlink, 0, dir, dentry);
1189 }
1190
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)1191 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1192 const char *old_name)
1193 {
1194 if (unlikely(IS_PRIVATE(dir)))
1195 return 0;
1196 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1197 }
1198
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1199 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1200 {
1201 if (unlikely(IS_PRIVATE(dir)))
1202 return 0;
1203 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1204 }
1205 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1206
security_inode_rmdir(struct inode * dir,struct dentry * dentry)1207 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1208 {
1209 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210 return 0;
1211 return call_int_hook(inode_rmdir, 0, dir, dentry);
1212 }
1213
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1214 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1215 {
1216 if (unlikely(IS_PRIVATE(dir)))
1217 return 0;
1218 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1219 }
1220
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1221 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1222 struct inode *new_dir, struct dentry *new_dentry,
1223 unsigned int flags)
1224 {
1225 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1226 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1227 return 0;
1228
1229 if (flags & RENAME_EXCHANGE) {
1230 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1231 old_dir, old_dentry);
1232 if (err)
1233 return err;
1234 }
1235
1236 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1237 new_dir, new_dentry);
1238 }
1239
security_inode_readlink(struct dentry * dentry)1240 int security_inode_readlink(struct dentry *dentry)
1241 {
1242 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1243 return 0;
1244 return call_int_hook(inode_readlink, 0, dentry);
1245 }
1246
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)1247 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1248 bool rcu)
1249 {
1250 if (unlikely(IS_PRIVATE(inode)))
1251 return 0;
1252 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1253 }
1254
security_inode_permission(struct inode * inode,int mask)1255 int security_inode_permission(struct inode *inode, int mask)
1256 {
1257 if (unlikely(IS_PRIVATE(inode)))
1258 return 0;
1259 return call_int_hook(inode_permission, 0, inode, mask);
1260 }
1261
security_inode_setattr(struct dentry * dentry,struct iattr * attr)1262 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1263 {
1264 int ret;
1265
1266 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1267 return 0;
1268 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1269 if (ret)
1270 return ret;
1271 return evm_inode_setattr(dentry, attr);
1272 }
1273 EXPORT_SYMBOL_GPL(security_inode_setattr);
1274
security_inode_getattr(const struct path * path)1275 int security_inode_getattr(const struct path *path)
1276 {
1277 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1278 return 0;
1279 return call_int_hook(inode_getattr, 0, path);
1280 }
1281
security_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1282 int security_inode_setxattr(struct dentry *dentry, const char *name,
1283 const void *value, size_t size, int flags)
1284 {
1285 int ret;
1286
1287 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1288 return 0;
1289 /*
1290 * SELinux and Smack integrate the cap call,
1291 * so assume that all LSMs supplying this call do so.
1292 */
1293 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1294 flags);
1295
1296 if (ret == 1)
1297 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1298 if (ret)
1299 return ret;
1300 ret = ima_inode_setxattr(dentry, name, value, size);
1301 if (ret)
1302 return ret;
1303 return evm_inode_setxattr(dentry, name, value, size);
1304 }
1305
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1306 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1307 const void *value, size_t size, int flags)
1308 {
1309 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1310 return;
1311 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1312 evm_inode_post_setxattr(dentry, name, value, size);
1313 }
1314
security_inode_getxattr(struct dentry * dentry,const char * name)1315 int security_inode_getxattr(struct dentry *dentry, const char *name)
1316 {
1317 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1318 return 0;
1319 return call_int_hook(inode_getxattr, 0, dentry, name);
1320 }
1321
security_inode_listxattr(struct dentry * dentry)1322 int security_inode_listxattr(struct dentry *dentry)
1323 {
1324 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1325 return 0;
1326 return call_int_hook(inode_listxattr, 0, dentry);
1327 }
1328
security_inode_removexattr(struct dentry * dentry,const char * name)1329 int security_inode_removexattr(struct dentry *dentry, const char *name)
1330 {
1331 int ret;
1332
1333 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1334 return 0;
1335 /*
1336 * SELinux and Smack integrate the cap call,
1337 * so assume that all LSMs supplying this call do so.
1338 */
1339 ret = call_int_hook(inode_removexattr, 1, dentry, name);
1340 if (ret == 1)
1341 ret = cap_inode_removexattr(dentry, name);
1342 if (ret)
1343 return ret;
1344 ret = ima_inode_removexattr(dentry, name);
1345 if (ret)
1346 return ret;
1347 return evm_inode_removexattr(dentry, name);
1348 }
1349
security_inode_need_killpriv(struct dentry * dentry)1350 int security_inode_need_killpriv(struct dentry *dentry)
1351 {
1352 return call_int_hook(inode_need_killpriv, 0, dentry);
1353 }
1354
security_inode_killpriv(struct dentry * dentry)1355 int security_inode_killpriv(struct dentry *dentry)
1356 {
1357 return call_int_hook(inode_killpriv, 0, dentry);
1358 }
1359
security_inode_getsecurity(struct inode * inode,const char * name,void ** buffer,bool alloc)1360 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1361 {
1362 struct security_hook_list *hp;
1363 int rc;
1364
1365 if (unlikely(IS_PRIVATE(inode)))
1366 return LSM_RET_DEFAULT(inode_getsecurity);
1367 /*
1368 * Only one module will provide an attribute with a given name.
1369 */
1370 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1371 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1372 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1373 return rc;
1374 }
1375 return LSM_RET_DEFAULT(inode_getsecurity);
1376 }
1377
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)1378 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1379 {
1380 struct security_hook_list *hp;
1381 int rc;
1382
1383 if (unlikely(IS_PRIVATE(inode)))
1384 return LSM_RET_DEFAULT(inode_setsecurity);
1385 /*
1386 * Only one module will provide an attribute with a given name.
1387 */
1388 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1389 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1390 flags);
1391 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1392 return rc;
1393 }
1394 return LSM_RET_DEFAULT(inode_setsecurity);
1395 }
1396
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)1397 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1398 {
1399 if (unlikely(IS_PRIVATE(inode)))
1400 return 0;
1401 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1402 }
1403 EXPORT_SYMBOL(security_inode_listsecurity);
1404
security_inode_getsecid(struct inode * inode,u32 * secid)1405 void security_inode_getsecid(struct inode *inode, u32 *secid)
1406 {
1407 call_void_hook(inode_getsecid, inode, secid);
1408 }
1409
security_inode_copy_up(struct dentry * src,struct cred ** new)1410 int security_inode_copy_up(struct dentry *src, struct cred **new)
1411 {
1412 return call_int_hook(inode_copy_up, 0, src, new);
1413 }
1414 EXPORT_SYMBOL(security_inode_copy_up);
1415
security_inode_copy_up_xattr(const char * name)1416 int security_inode_copy_up_xattr(const char *name)
1417 {
1418 struct security_hook_list *hp;
1419 int rc;
1420
1421 /*
1422 * The implementation can return 0 (accept the xattr), 1 (discard the
1423 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1424 * any other error code incase of an error.
1425 */
1426 hlist_for_each_entry(hp,
1427 &security_hook_heads.inode_copy_up_xattr, list) {
1428 rc = hp->hook.inode_copy_up_xattr(name);
1429 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1430 return rc;
1431 }
1432
1433 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1434 }
1435 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1436
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)1437 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1438 struct kernfs_node *kn)
1439 {
1440 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1441 }
1442
security_file_permission(struct file * file,int mask)1443 int security_file_permission(struct file *file, int mask)
1444 {
1445 int ret;
1446
1447 ret = call_int_hook(file_permission, 0, file, mask);
1448 if (ret)
1449 return ret;
1450
1451 return fsnotify_perm(file, mask);
1452 }
1453
security_file_alloc(struct file * file)1454 int security_file_alloc(struct file *file)
1455 {
1456 int rc = lsm_file_alloc(file);
1457
1458 if (rc)
1459 return rc;
1460 rc = call_int_hook(file_alloc_security, 0, file);
1461 if (unlikely(rc))
1462 security_file_free(file);
1463 return rc;
1464 }
1465
security_file_free(struct file * file)1466 void security_file_free(struct file *file)
1467 {
1468 void *blob;
1469
1470 call_void_hook(file_free_security, file);
1471
1472 blob = file->f_security;
1473 if (blob) {
1474 file->f_security = NULL;
1475 kmem_cache_free(lsm_file_cache, blob);
1476 }
1477 }
1478
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1479 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1480 {
1481 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1482 }
1483 EXPORT_SYMBOL_GPL(security_file_ioctl);
1484
mmap_prot(struct file * file,unsigned long prot)1485 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1486 {
1487 /*
1488 * Does we have PROT_READ and does the application expect
1489 * it to imply PROT_EXEC? If not, nothing to talk about...
1490 */
1491 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1492 return prot;
1493 if (!(current->personality & READ_IMPLIES_EXEC))
1494 return prot;
1495 /*
1496 * if that's an anonymous mapping, let it.
1497 */
1498 if (!file)
1499 return prot | PROT_EXEC;
1500 /*
1501 * ditto if it's not on noexec mount, except that on !MMU we need
1502 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1503 */
1504 if (!path_noexec(&file->f_path)) {
1505 #ifndef CONFIG_MMU
1506 if (file->f_op->mmap_capabilities) {
1507 unsigned caps = file->f_op->mmap_capabilities(file);
1508 if (!(caps & NOMMU_MAP_EXEC))
1509 return prot;
1510 }
1511 #endif
1512 return prot | PROT_EXEC;
1513 }
1514 /* anything on noexec mount won't get PROT_EXEC */
1515 return prot;
1516 }
1517
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)1518 int security_mmap_file(struct file *file, unsigned long prot,
1519 unsigned long flags)
1520 {
1521 int ret;
1522 ret = call_int_hook(mmap_file, 0, file, prot,
1523 mmap_prot(file, prot), flags);
1524 if (ret)
1525 return ret;
1526 return ima_file_mmap(file, prot);
1527 }
1528
security_mmap_addr(unsigned long addr)1529 int security_mmap_addr(unsigned long addr)
1530 {
1531 return call_int_hook(mmap_addr, 0, addr);
1532 }
1533
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)1534 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1535 unsigned long prot)
1536 {
1537 int ret;
1538
1539 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1540 if (ret)
1541 return ret;
1542 return ima_file_mprotect(vma, prot);
1543 }
1544
security_file_lock(struct file * file,unsigned int cmd)1545 int security_file_lock(struct file *file, unsigned int cmd)
1546 {
1547 return call_int_hook(file_lock, 0, file, cmd);
1548 }
1549
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1550 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1551 {
1552 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1553 }
1554
security_file_set_fowner(struct file * file)1555 void security_file_set_fowner(struct file *file)
1556 {
1557 call_void_hook(file_set_fowner, file);
1558 }
1559
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)1560 int security_file_send_sigiotask(struct task_struct *tsk,
1561 struct fown_struct *fown, int sig)
1562 {
1563 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1564 }
1565
security_file_receive(struct file * file)1566 int security_file_receive(struct file *file)
1567 {
1568 return call_int_hook(file_receive, 0, file);
1569 }
1570
security_file_open(struct file * file)1571 int security_file_open(struct file *file)
1572 {
1573 int ret;
1574
1575 ret = call_int_hook(file_open, 0, file);
1576 if (ret)
1577 return ret;
1578
1579 return fsnotify_perm(file, MAY_OPEN);
1580 }
1581
security_task_alloc(struct task_struct * task,unsigned long clone_flags)1582 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1583 {
1584 int rc = lsm_task_alloc(task);
1585
1586 if (rc)
1587 return rc;
1588 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1589 if (unlikely(rc))
1590 security_task_free(task);
1591 return rc;
1592 }
1593
security_task_free(struct task_struct * task)1594 void security_task_free(struct task_struct *task)
1595 {
1596 call_void_hook(task_free, task);
1597
1598 kfree(task->security);
1599 task->security = NULL;
1600 }
1601
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)1602 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1603 {
1604 int rc = lsm_cred_alloc(cred, gfp);
1605
1606 if (rc)
1607 return rc;
1608
1609 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1610 if (unlikely(rc))
1611 security_cred_free(cred);
1612 return rc;
1613 }
1614
security_cred_free(struct cred * cred)1615 void security_cred_free(struct cred *cred)
1616 {
1617 /*
1618 * There is a failure case in prepare_creds() that
1619 * may result in a call here with ->security being NULL.
1620 */
1621 if (unlikely(cred->security == NULL))
1622 return;
1623
1624 call_void_hook(cred_free, cred);
1625
1626 kfree(cred->security);
1627 cred->security = NULL;
1628 }
1629
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)1630 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1631 {
1632 int rc = lsm_cred_alloc(new, gfp);
1633
1634 if (rc)
1635 return rc;
1636
1637 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1638 if (unlikely(rc))
1639 security_cred_free(new);
1640 return rc;
1641 }
1642
security_transfer_creds(struct cred * new,const struct cred * old)1643 void security_transfer_creds(struct cred *new, const struct cred *old)
1644 {
1645 call_void_hook(cred_transfer, new, old);
1646 }
1647
security_cred_getsecid(const struct cred * c,u32 * secid)1648 void security_cred_getsecid(const struct cred *c, u32 *secid)
1649 {
1650 *secid = 0;
1651 call_void_hook(cred_getsecid, c, secid);
1652 }
1653 EXPORT_SYMBOL(security_cred_getsecid);
1654
security_kernel_act_as(struct cred * new,u32 secid)1655 int security_kernel_act_as(struct cred *new, u32 secid)
1656 {
1657 return call_int_hook(kernel_act_as, 0, new, secid);
1658 }
1659
security_kernel_create_files_as(struct cred * new,struct inode * inode)1660 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1661 {
1662 return call_int_hook(kernel_create_files_as, 0, new, inode);
1663 }
1664
security_kernel_module_request(char * kmod_name)1665 int security_kernel_module_request(char *kmod_name)
1666 {
1667 int ret;
1668
1669 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1670 if (ret)
1671 return ret;
1672 return integrity_kernel_module_request(kmod_name);
1673 }
1674
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)1675 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1676 bool contents)
1677 {
1678 int ret;
1679
1680 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1681 if (ret)
1682 return ret;
1683 return ima_read_file(file, id, contents);
1684 }
1685 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1686
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)1687 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1688 enum kernel_read_file_id id)
1689 {
1690 int ret;
1691
1692 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1693 if (ret)
1694 return ret;
1695 return ima_post_read_file(file, buf, size, id);
1696 }
1697 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1698
security_kernel_load_data(enum kernel_load_data_id id,bool contents)1699 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1700 {
1701 int ret;
1702
1703 ret = call_int_hook(kernel_load_data, 0, id, contents);
1704 if (ret)
1705 return ret;
1706 return ima_load_data(id, contents);
1707 }
1708 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1709
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)1710 int security_kernel_post_load_data(char *buf, loff_t size,
1711 enum kernel_load_data_id id,
1712 char *description)
1713 {
1714 int ret;
1715
1716 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1717 description);
1718 if (ret)
1719 return ret;
1720 return ima_post_load_data(buf, size, id, description);
1721 }
1722 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1723
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1724 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1725 int flags)
1726 {
1727 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1728 }
1729
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)1730 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1731 int flags)
1732 {
1733 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1734 }
1735
security_task_setpgid(struct task_struct * p,pid_t pgid)1736 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1737 {
1738 return call_int_hook(task_setpgid, 0, p, pgid);
1739 }
1740
security_task_getpgid(struct task_struct * p)1741 int security_task_getpgid(struct task_struct *p)
1742 {
1743 return call_int_hook(task_getpgid, 0, p);
1744 }
1745
security_task_getsid(struct task_struct * p)1746 int security_task_getsid(struct task_struct *p)
1747 {
1748 return call_int_hook(task_getsid, 0, p);
1749 }
1750
security_task_getsecid(struct task_struct * p,u32 * secid)1751 void security_task_getsecid(struct task_struct *p, u32 *secid)
1752 {
1753 *secid = 0;
1754 call_void_hook(task_getsecid, p, secid);
1755 }
1756 EXPORT_SYMBOL(security_task_getsecid);
1757
security_task_setnice(struct task_struct * p,int nice)1758 int security_task_setnice(struct task_struct *p, int nice)
1759 {
1760 return call_int_hook(task_setnice, 0, p, nice);
1761 }
1762
security_task_setioprio(struct task_struct * p,int ioprio)1763 int security_task_setioprio(struct task_struct *p, int ioprio)
1764 {
1765 return call_int_hook(task_setioprio, 0, p, ioprio);
1766 }
1767
security_task_getioprio(struct task_struct * p)1768 int security_task_getioprio(struct task_struct *p)
1769 {
1770 return call_int_hook(task_getioprio, 0, p);
1771 }
1772
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)1773 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1774 unsigned int flags)
1775 {
1776 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1777 }
1778
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)1779 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1780 struct rlimit *new_rlim)
1781 {
1782 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1783 }
1784
security_task_setscheduler(struct task_struct * p)1785 int security_task_setscheduler(struct task_struct *p)
1786 {
1787 return call_int_hook(task_setscheduler, 0, p);
1788 }
1789
security_task_getscheduler(struct task_struct * p)1790 int security_task_getscheduler(struct task_struct *p)
1791 {
1792 return call_int_hook(task_getscheduler, 0, p);
1793 }
1794
security_task_movememory(struct task_struct * p)1795 int security_task_movememory(struct task_struct *p)
1796 {
1797 return call_int_hook(task_movememory, 0, p);
1798 }
1799
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)1800 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1801 int sig, const struct cred *cred)
1802 {
1803 return call_int_hook(task_kill, 0, p, info, sig, cred);
1804 }
1805
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1806 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1807 unsigned long arg4, unsigned long arg5)
1808 {
1809 int thisrc;
1810 int rc = LSM_RET_DEFAULT(task_prctl);
1811 struct security_hook_list *hp;
1812
1813 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1814 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1815 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1816 rc = thisrc;
1817 if (thisrc != 0)
1818 break;
1819 }
1820 }
1821 return rc;
1822 }
1823
security_task_to_inode(struct task_struct * p,struct inode * inode)1824 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1825 {
1826 call_void_hook(task_to_inode, p, inode);
1827 }
1828
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)1829 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1830 {
1831 return call_int_hook(ipc_permission, 0, ipcp, flag);
1832 }
1833
security_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)1834 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1835 {
1836 *secid = 0;
1837 call_void_hook(ipc_getsecid, ipcp, secid);
1838 }
1839
security_msg_msg_alloc(struct msg_msg * msg)1840 int security_msg_msg_alloc(struct msg_msg *msg)
1841 {
1842 int rc = lsm_msg_msg_alloc(msg);
1843
1844 if (unlikely(rc))
1845 return rc;
1846 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1847 if (unlikely(rc))
1848 security_msg_msg_free(msg);
1849 return rc;
1850 }
1851
security_msg_msg_free(struct msg_msg * msg)1852 void security_msg_msg_free(struct msg_msg *msg)
1853 {
1854 call_void_hook(msg_msg_free_security, msg);
1855 kfree(msg->security);
1856 msg->security = NULL;
1857 }
1858
security_msg_queue_alloc(struct kern_ipc_perm * msq)1859 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1860 {
1861 int rc = lsm_ipc_alloc(msq);
1862
1863 if (unlikely(rc))
1864 return rc;
1865 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1866 if (unlikely(rc))
1867 security_msg_queue_free(msq);
1868 return rc;
1869 }
1870
security_msg_queue_free(struct kern_ipc_perm * msq)1871 void security_msg_queue_free(struct kern_ipc_perm *msq)
1872 {
1873 call_void_hook(msg_queue_free_security, msq);
1874 kfree(msq->security);
1875 msq->security = NULL;
1876 }
1877
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)1878 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1879 {
1880 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1881 }
1882
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)1883 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1884 {
1885 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1886 }
1887
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)1888 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1889 struct msg_msg *msg, int msqflg)
1890 {
1891 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1892 }
1893
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)1894 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1895 struct task_struct *target, long type, int mode)
1896 {
1897 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1898 }
1899
security_shm_alloc(struct kern_ipc_perm * shp)1900 int security_shm_alloc(struct kern_ipc_perm *shp)
1901 {
1902 int rc = lsm_ipc_alloc(shp);
1903
1904 if (unlikely(rc))
1905 return rc;
1906 rc = call_int_hook(shm_alloc_security, 0, shp);
1907 if (unlikely(rc))
1908 security_shm_free(shp);
1909 return rc;
1910 }
1911
security_shm_free(struct kern_ipc_perm * shp)1912 void security_shm_free(struct kern_ipc_perm *shp)
1913 {
1914 call_void_hook(shm_free_security, shp);
1915 kfree(shp->security);
1916 shp->security = NULL;
1917 }
1918
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)1919 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1920 {
1921 return call_int_hook(shm_associate, 0, shp, shmflg);
1922 }
1923
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)1924 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1925 {
1926 return call_int_hook(shm_shmctl, 0, shp, cmd);
1927 }
1928
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)1929 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1930 {
1931 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1932 }
1933
security_sem_alloc(struct kern_ipc_perm * sma)1934 int security_sem_alloc(struct kern_ipc_perm *sma)
1935 {
1936 int rc = lsm_ipc_alloc(sma);
1937
1938 if (unlikely(rc))
1939 return rc;
1940 rc = call_int_hook(sem_alloc_security, 0, sma);
1941 if (unlikely(rc))
1942 security_sem_free(sma);
1943 return rc;
1944 }
1945
security_sem_free(struct kern_ipc_perm * sma)1946 void security_sem_free(struct kern_ipc_perm *sma)
1947 {
1948 call_void_hook(sem_free_security, sma);
1949 kfree(sma->security);
1950 sma->security = NULL;
1951 }
1952
security_sem_associate(struct kern_ipc_perm * sma,int semflg)1953 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1954 {
1955 return call_int_hook(sem_associate, 0, sma, semflg);
1956 }
1957
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)1958 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1959 {
1960 return call_int_hook(sem_semctl, 0, sma, cmd);
1961 }
1962
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)1963 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1964 unsigned nsops, int alter)
1965 {
1966 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1967 }
1968
security_d_instantiate(struct dentry * dentry,struct inode * inode)1969 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1970 {
1971 if (unlikely(inode && IS_PRIVATE(inode)))
1972 return;
1973 call_void_hook(d_instantiate, dentry, inode);
1974 }
1975 EXPORT_SYMBOL(security_d_instantiate);
1976
security_getprocattr(struct task_struct * p,const char * lsm,char * name,char ** value)1977 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1978 char **value)
1979 {
1980 struct security_hook_list *hp;
1981
1982 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1983 if (lsm != NULL && strcmp(lsm, hp->lsm))
1984 continue;
1985 return hp->hook.getprocattr(p, name, value);
1986 }
1987 return LSM_RET_DEFAULT(getprocattr);
1988 }
1989
security_setprocattr(const char * lsm,const char * name,void * value,size_t size)1990 int security_setprocattr(const char *lsm, const char *name, void *value,
1991 size_t size)
1992 {
1993 struct security_hook_list *hp;
1994
1995 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1996 if (lsm != NULL && strcmp(lsm, hp->lsm))
1997 continue;
1998 return hp->hook.setprocattr(name, value, size);
1999 }
2000 return LSM_RET_DEFAULT(setprocattr);
2001 }
2002
security_netlink_send(struct sock * sk,struct sk_buff * skb)2003 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2004 {
2005 return call_int_hook(netlink_send, 0, sk, skb);
2006 }
2007
security_ismaclabel(const char * name)2008 int security_ismaclabel(const char *name)
2009 {
2010 return call_int_hook(ismaclabel, 0, name);
2011 }
2012 EXPORT_SYMBOL(security_ismaclabel);
2013
security_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)2014 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2015 {
2016 struct security_hook_list *hp;
2017 int rc;
2018
2019 /*
2020 * Currently, only one LSM can implement secid_to_secctx (i.e this
2021 * LSM hook is not "stackable").
2022 */
2023 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2024 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2025 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2026 return rc;
2027 }
2028
2029 return LSM_RET_DEFAULT(secid_to_secctx);
2030 }
2031 EXPORT_SYMBOL(security_secid_to_secctx);
2032
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)2033 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2034 {
2035 *secid = 0;
2036 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2037 }
2038 EXPORT_SYMBOL(security_secctx_to_secid);
2039
security_release_secctx(char * secdata,u32 seclen)2040 void security_release_secctx(char *secdata, u32 seclen)
2041 {
2042 call_void_hook(release_secctx, secdata, seclen);
2043 }
2044 EXPORT_SYMBOL(security_release_secctx);
2045
security_inode_invalidate_secctx(struct inode * inode)2046 void security_inode_invalidate_secctx(struct inode *inode)
2047 {
2048 call_void_hook(inode_invalidate_secctx, inode);
2049 }
2050 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2051
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)2052 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2053 {
2054 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2055 }
2056 EXPORT_SYMBOL(security_inode_notifysecctx);
2057
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)2058 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2059 {
2060 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2061 }
2062 EXPORT_SYMBOL(security_inode_setsecctx);
2063
security_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)2064 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2065 {
2066 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2067 }
2068 EXPORT_SYMBOL(security_inode_getsecctx);
2069
2070 #ifdef CONFIG_WATCH_QUEUE
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)2071 int security_post_notification(const struct cred *w_cred,
2072 const struct cred *cred,
2073 struct watch_notification *n)
2074 {
2075 return call_int_hook(post_notification, 0, w_cred, cred, n);
2076 }
2077 #endif /* CONFIG_WATCH_QUEUE */
2078
2079 #ifdef CONFIG_KEY_NOTIFICATIONS
security_watch_key(struct key * key)2080 int security_watch_key(struct key *key)
2081 {
2082 return call_int_hook(watch_key, 0, key);
2083 }
2084 #endif
2085
2086 #ifdef CONFIG_SECURITY_NETWORK
2087
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)2088 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2089 {
2090 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2091 }
2092 EXPORT_SYMBOL(security_unix_stream_connect);
2093
security_unix_may_send(struct socket * sock,struct socket * other)2094 int security_unix_may_send(struct socket *sock, struct socket *other)
2095 {
2096 return call_int_hook(unix_may_send, 0, sock, other);
2097 }
2098 EXPORT_SYMBOL(security_unix_may_send);
2099
security_socket_create(int family,int type,int protocol,int kern)2100 int security_socket_create(int family, int type, int protocol, int kern)
2101 {
2102 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2103 }
2104
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)2105 int security_socket_post_create(struct socket *sock, int family,
2106 int type, int protocol, int kern)
2107 {
2108 return call_int_hook(socket_post_create, 0, sock, family, type,
2109 protocol, kern);
2110 }
2111
security_socket_socketpair(struct socket * socka,struct socket * sockb)2112 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2113 {
2114 return call_int_hook(socket_socketpair, 0, socka, sockb);
2115 }
2116 EXPORT_SYMBOL(security_socket_socketpair);
2117
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)2118 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2119 {
2120 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2121 }
2122
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)2123 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2124 {
2125 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2126 }
2127
security_socket_listen(struct socket * sock,int backlog)2128 int security_socket_listen(struct socket *sock, int backlog)
2129 {
2130 return call_int_hook(socket_listen, 0, sock, backlog);
2131 }
2132
security_socket_accept(struct socket * sock,struct socket * newsock)2133 int security_socket_accept(struct socket *sock, struct socket *newsock)
2134 {
2135 return call_int_hook(socket_accept, 0, sock, newsock);
2136 }
2137
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)2138 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2139 {
2140 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2141 }
2142
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)2143 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2144 int size, int flags)
2145 {
2146 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2147 }
2148
security_socket_getsockname(struct socket * sock)2149 int security_socket_getsockname(struct socket *sock)
2150 {
2151 return call_int_hook(socket_getsockname, 0, sock);
2152 }
2153
security_socket_getpeername(struct socket * sock)2154 int security_socket_getpeername(struct socket *sock)
2155 {
2156 return call_int_hook(socket_getpeername, 0, sock);
2157 }
2158
security_socket_getsockopt(struct socket * sock,int level,int optname)2159 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2160 {
2161 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2162 }
2163
security_socket_setsockopt(struct socket * sock,int level,int optname)2164 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2165 {
2166 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2167 }
2168
security_socket_shutdown(struct socket * sock,int how)2169 int security_socket_shutdown(struct socket *sock, int how)
2170 {
2171 return call_int_hook(socket_shutdown, 0, sock, how);
2172 }
2173
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)2174 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2175 {
2176 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2177 }
2178 EXPORT_SYMBOL(security_sock_rcv_skb);
2179
security_socket_getpeersec_stream(struct socket * sock,char __user * optval,int __user * optlen,unsigned len)2180 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2181 int __user *optlen, unsigned len)
2182 {
2183 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2184 optval, optlen, len);
2185 }
2186
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)2187 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2188 {
2189 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2190 skb, secid);
2191 }
2192 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2193
security_sk_alloc(struct sock * sk,int family,gfp_t priority)2194 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2195 {
2196 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2197 }
2198
security_sk_free(struct sock * sk)2199 void security_sk_free(struct sock *sk)
2200 {
2201 call_void_hook(sk_free_security, sk);
2202 }
2203
security_sk_clone(const struct sock * sk,struct sock * newsk)2204 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2205 {
2206 call_void_hook(sk_clone_security, sk, newsk);
2207 }
2208 EXPORT_SYMBOL(security_sk_clone);
2209
security_sk_classify_flow(struct sock * sk,struct flowi * fl)2210 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2211 {
2212 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2213 }
2214 EXPORT_SYMBOL(security_sk_classify_flow);
2215
security_req_classify_flow(const struct request_sock * req,struct flowi * fl)2216 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2217 {
2218 call_void_hook(req_classify_flow, req, fl);
2219 }
2220 EXPORT_SYMBOL(security_req_classify_flow);
2221
security_sock_graft(struct sock * sk,struct socket * parent)2222 void security_sock_graft(struct sock *sk, struct socket *parent)
2223 {
2224 call_void_hook(sock_graft, sk, parent);
2225 }
2226 EXPORT_SYMBOL(security_sock_graft);
2227
security_inet_conn_request(struct sock * sk,struct sk_buff * skb,struct request_sock * req)2228 int security_inet_conn_request(struct sock *sk,
2229 struct sk_buff *skb, struct request_sock *req)
2230 {
2231 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2232 }
2233 EXPORT_SYMBOL(security_inet_conn_request);
2234
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)2235 void security_inet_csk_clone(struct sock *newsk,
2236 const struct request_sock *req)
2237 {
2238 call_void_hook(inet_csk_clone, newsk, req);
2239 }
2240
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)2241 void security_inet_conn_established(struct sock *sk,
2242 struct sk_buff *skb)
2243 {
2244 call_void_hook(inet_conn_established, sk, skb);
2245 }
2246 EXPORT_SYMBOL(security_inet_conn_established);
2247
security_secmark_relabel_packet(u32 secid)2248 int security_secmark_relabel_packet(u32 secid)
2249 {
2250 return call_int_hook(secmark_relabel_packet, 0, secid);
2251 }
2252 EXPORT_SYMBOL(security_secmark_relabel_packet);
2253
security_secmark_refcount_inc(void)2254 void security_secmark_refcount_inc(void)
2255 {
2256 call_void_hook(secmark_refcount_inc);
2257 }
2258 EXPORT_SYMBOL(security_secmark_refcount_inc);
2259
security_secmark_refcount_dec(void)2260 void security_secmark_refcount_dec(void)
2261 {
2262 call_void_hook(secmark_refcount_dec);
2263 }
2264 EXPORT_SYMBOL(security_secmark_refcount_dec);
2265
security_tun_dev_alloc_security(void ** security)2266 int security_tun_dev_alloc_security(void **security)
2267 {
2268 return call_int_hook(tun_dev_alloc_security, 0, security);
2269 }
2270 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2271
security_tun_dev_free_security(void * security)2272 void security_tun_dev_free_security(void *security)
2273 {
2274 call_void_hook(tun_dev_free_security, security);
2275 }
2276 EXPORT_SYMBOL(security_tun_dev_free_security);
2277
security_tun_dev_create(void)2278 int security_tun_dev_create(void)
2279 {
2280 return call_int_hook(tun_dev_create, 0);
2281 }
2282 EXPORT_SYMBOL(security_tun_dev_create);
2283
security_tun_dev_attach_queue(void * security)2284 int security_tun_dev_attach_queue(void *security)
2285 {
2286 return call_int_hook(tun_dev_attach_queue, 0, security);
2287 }
2288 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2289
security_tun_dev_attach(struct sock * sk,void * security)2290 int security_tun_dev_attach(struct sock *sk, void *security)
2291 {
2292 return call_int_hook(tun_dev_attach, 0, sk, security);
2293 }
2294 EXPORT_SYMBOL(security_tun_dev_attach);
2295
security_tun_dev_open(void * security)2296 int security_tun_dev_open(void *security)
2297 {
2298 return call_int_hook(tun_dev_open, 0, security);
2299 }
2300 EXPORT_SYMBOL(security_tun_dev_open);
2301
security_sctp_assoc_request(struct sctp_endpoint * ep,struct sk_buff * skb)2302 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2303 {
2304 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2305 }
2306 EXPORT_SYMBOL(security_sctp_assoc_request);
2307
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)2308 int security_sctp_bind_connect(struct sock *sk, int optname,
2309 struct sockaddr *address, int addrlen)
2310 {
2311 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2312 address, addrlen);
2313 }
2314 EXPORT_SYMBOL(security_sctp_bind_connect);
2315
security_sctp_sk_clone(struct sctp_endpoint * ep,struct sock * sk,struct sock * newsk)2316 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2317 struct sock *newsk)
2318 {
2319 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2320 }
2321 EXPORT_SYMBOL(security_sctp_sk_clone);
2322
2323 #endif /* CONFIG_SECURITY_NETWORK */
2324
2325 #ifdef CONFIG_SECURITY_INFINIBAND
2326
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)2327 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2328 {
2329 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2330 }
2331 EXPORT_SYMBOL(security_ib_pkey_access);
2332
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)2333 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2334 {
2335 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2336 }
2337 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2338
security_ib_alloc_security(void ** sec)2339 int security_ib_alloc_security(void **sec)
2340 {
2341 return call_int_hook(ib_alloc_security, 0, sec);
2342 }
2343 EXPORT_SYMBOL(security_ib_alloc_security);
2344
security_ib_free_security(void * sec)2345 void security_ib_free_security(void *sec)
2346 {
2347 call_void_hook(ib_free_security, sec);
2348 }
2349 EXPORT_SYMBOL(security_ib_free_security);
2350 #endif /* CONFIG_SECURITY_INFINIBAND */
2351
2352 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2353
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)2354 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2355 struct xfrm_user_sec_ctx *sec_ctx,
2356 gfp_t gfp)
2357 {
2358 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2359 }
2360 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2361
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)2362 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2363 struct xfrm_sec_ctx **new_ctxp)
2364 {
2365 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2366 }
2367
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)2368 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2369 {
2370 call_void_hook(xfrm_policy_free_security, ctx);
2371 }
2372 EXPORT_SYMBOL(security_xfrm_policy_free);
2373
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)2374 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2375 {
2376 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2377 }
2378
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)2379 int security_xfrm_state_alloc(struct xfrm_state *x,
2380 struct xfrm_user_sec_ctx *sec_ctx)
2381 {
2382 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2383 }
2384 EXPORT_SYMBOL(security_xfrm_state_alloc);
2385
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)2386 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2387 struct xfrm_sec_ctx *polsec, u32 secid)
2388 {
2389 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2390 }
2391
security_xfrm_state_delete(struct xfrm_state * x)2392 int security_xfrm_state_delete(struct xfrm_state *x)
2393 {
2394 return call_int_hook(xfrm_state_delete_security, 0, x);
2395 }
2396 EXPORT_SYMBOL(security_xfrm_state_delete);
2397
security_xfrm_state_free(struct xfrm_state * x)2398 void security_xfrm_state_free(struct xfrm_state *x)
2399 {
2400 call_void_hook(xfrm_state_free_security, x);
2401 }
2402
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid,u8 dir)2403 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2404 {
2405 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2406 }
2407
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi * fl)2408 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2409 struct xfrm_policy *xp,
2410 const struct flowi *fl)
2411 {
2412 struct security_hook_list *hp;
2413 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2414
2415 /*
2416 * Since this function is expected to return 0 or 1, the judgment
2417 * becomes difficult if multiple LSMs supply this call. Fortunately,
2418 * we can use the first LSM's judgment because currently only SELinux
2419 * supplies this call.
2420 *
2421 * For speed optimization, we explicitly break the loop rather than
2422 * using the macro
2423 */
2424 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2425 list) {
2426 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2427 break;
2428 }
2429 return rc;
2430 }
2431
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)2432 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2433 {
2434 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2435 }
2436
security_skb_classify_flow(struct sk_buff * skb,struct flowi * fl)2437 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2438 {
2439 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2440 0);
2441
2442 BUG_ON(rc);
2443 }
2444 EXPORT_SYMBOL(security_skb_classify_flow);
2445
2446 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2447
2448 #ifdef CONFIG_KEYS
2449
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)2450 int security_key_alloc(struct key *key, const struct cred *cred,
2451 unsigned long flags)
2452 {
2453 return call_int_hook(key_alloc, 0, key, cred, flags);
2454 }
2455
security_key_free(struct key * key)2456 void security_key_free(struct key *key)
2457 {
2458 call_void_hook(key_free, key);
2459 }
2460
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)2461 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2462 enum key_need_perm need_perm)
2463 {
2464 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2465 }
2466
security_key_getsecurity(struct key * key,char ** _buffer)2467 int security_key_getsecurity(struct key *key, char **_buffer)
2468 {
2469 *_buffer = NULL;
2470 return call_int_hook(key_getsecurity, 0, key, _buffer);
2471 }
2472
2473 #endif /* CONFIG_KEYS */
2474
2475 #ifdef CONFIG_AUDIT
2476
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule)2477 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2478 {
2479 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2480 }
2481
security_audit_rule_known(struct audit_krule * krule)2482 int security_audit_rule_known(struct audit_krule *krule)
2483 {
2484 return call_int_hook(audit_rule_known, 0, krule);
2485 }
2486
security_audit_rule_free(void * lsmrule)2487 void security_audit_rule_free(void *lsmrule)
2488 {
2489 call_void_hook(audit_rule_free, lsmrule);
2490 }
2491
security_audit_rule_match(u32 secid,u32 field,u32 op,void * lsmrule)2492 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2493 {
2494 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2495 }
2496 #endif /* CONFIG_AUDIT */
2497
2498 #ifdef CONFIG_BPF_SYSCALL
security_bpf(int cmd,union bpf_attr * attr,unsigned int size)2499 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2500 {
2501 return call_int_hook(bpf, 0, cmd, attr, size);
2502 }
security_bpf_map(struct bpf_map * map,fmode_t fmode)2503 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2504 {
2505 return call_int_hook(bpf_map, 0, map, fmode);
2506 }
security_bpf_prog(struct bpf_prog * prog)2507 int security_bpf_prog(struct bpf_prog *prog)
2508 {
2509 return call_int_hook(bpf_prog, 0, prog);
2510 }
security_bpf_map_alloc(struct bpf_map * map)2511 int security_bpf_map_alloc(struct bpf_map *map)
2512 {
2513 return call_int_hook(bpf_map_alloc_security, 0, map);
2514 }
security_bpf_prog_alloc(struct bpf_prog_aux * aux)2515 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2516 {
2517 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2518 }
security_bpf_map_free(struct bpf_map * map)2519 void security_bpf_map_free(struct bpf_map *map)
2520 {
2521 call_void_hook(bpf_map_free_security, map);
2522 }
security_bpf_prog_free(struct bpf_prog_aux * aux)2523 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2524 {
2525 call_void_hook(bpf_prog_free_security, aux);
2526 }
2527 #endif /* CONFIG_BPF_SYSCALL */
2528
security_locked_down(enum lockdown_reason what)2529 int security_locked_down(enum lockdown_reason what)
2530 {
2531 return call_int_hook(locked_down, 0, what);
2532 }
2533 EXPORT_SYMBOL(security_locked_down);
2534
2535 #ifdef CONFIG_PERF_EVENTS
security_perf_event_open(struct perf_event_attr * attr,int type)2536 int security_perf_event_open(struct perf_event_attr *attr, int type)
2537 {
2538 return call_int_hook(perf_event_open, 0, attr, type);
2539 }
2540
security_perf_event_alloc(struct perf_event * event)2541 int security_perf_event_alloc(struct perf_event *event)
2542 {
2543 return call_int_hook(perf_event_alloc, 0, event);
2544 }
2545
security_perf_event_free(struct perf_event * event)2546 void security_perf_event_free(struct perf_event *event)
2547 {
2548 call_void_hook(perf_event_free, event);
2549 }
2550
security_perf_event_read(struct perf_event * event)2551 int security_perf_event_read(struct perf_event *event)
2552 {
2553 return call_int_hook(perf_event_read, 0, event);
2554 }
2555
security_perf_event_write(struct perf_event * event)2556 int security_perf_event_write(struct perf_event *event)
2557 {
2558 return call_int_hook(perf_event_write, 0, event);
2559 }
2560 #endif /* CONFIG_PERF_EVENTS */
2561