1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2019 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
get_cfg80211_regdom(void)137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139 return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
get_wiphy_regdom(struct wiphy * wiphy)142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144 return rcu_dereference_rtnl(wiphy->regd);
145 }
146
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149 switch (dfs_region) {
150 case NL80211_DFS_UNSET:
151 return "unset";
152 case NL80211_DFS_FCC:
153 return "FCC";
154 case NL80211_DFS_ETSI:
155 return "ETSI";
156 case NL80211_DFS_JP:
157 return "JP";
158 }
159 return "Unknown";
160 }
161
reg_get_dfs_region(struct wiphy * wiphy)162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164 const struct ieee80211_regdomain *regd = NULL;
165 const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167 regd = get_cfg80211_regdom();
168 if (!wiphy)
169 goto out;
170
171 wiphy_regd = get_wiphy_regdom(wiphy);
172 if (!wiphy_regd)
173 goto out;
174
175 if (wiphy_regd->dfs_region == regd->dfs_region)
176 goto out;
177
178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 dev_name(&wiphy->dev),
180 reg_dfs_region_str(wiphy_regd->dfs_region),
181 reg_dfs_region_str(regd->dfs_region));
182
183 out:
184 return regd->dfs_region;
185 }
186
rcu_free_regdom(const struct ieee80211_regdomain * r)187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189 if (!r)
190 return;
191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193
get_last_request(void)194 static struct regulatory_request *get_last_request(void)
195 {
196 return rcu_dereference_rtnl(last_request);
197 }
198
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209
210 struct reg_beacon {
211 struct list_head list;
212 struct ieee80211_channel chan;
213 };
214
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223 .n_reg_rules = 8,
224 .alpha2 = "00",
225 .reg_rules = {
226 /* IEEE 802.11b/g, channels 1..11 */
227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 /* IEEE 802.11b/g, channels 12..13. */
229 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 /* IEEE 802.11 channel 14 - Only JP enables
232 * this and for 802.11b only */
233 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_NO_OFDM),
236 /* IEEE 802.11a, channel 36..48 */
237 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238 NL80211_RRF_NO_IR |
239 NL80211_RRF_AUTO_BW),
240
241 /* IEEE 802.11a, channel 52..64 - DFS required */
242 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 NL80211_RRF_NO_IR |
244 NL80211_RRF_AUTO_BW |
245 NL80211_RRF_DFS),
246
247 /* IEEE 802.11a, channel 100..144 - DFS required */
248 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 NL80211_RRF_NO_IR |
250 NL80211_RRF_DFS),
251
252 /* IEEE 802.11a, channel 149..165 */
253 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 NL80211_RRF_NO_IR),
255
256 /* IEEE 802.11ad (60GHz), channels 1..3 */
257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 }
259 };
260
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 &world_regdom;
264
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
reg_free_request(struct regulatory_request * request)272 static void reg_free_request(struct regulatory_request *request)
273 {
274 if (request == &core_request_world)
275 return;
276
277 if (request != get_last_request())
278 kfree(request);
279 }
280
reg_free_last_request(void)281 static void reg_free_last_request(void)
282 {
283 struct regulatory_request *lr = get_last_request();
284
285 if (lr != &core_request_world && lr)
286 kfree_rcu(lr, rcu_head);
287 }
288
reg_update_last_request(struct regulatory_request * request)289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291 struct regulatory_request *lr;
292
293 lr = get_last_request();
294 if (lr == request)
295 return;
296
297 reg_free_last_request();
298 rcu_assign_pointer(last_request, request);
299 }
300
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)301 static void reset_regdomains(bool full_reset,
302 const struct ieee80211_regdomain *new_regdom)
303 {
304 const struct ieee80211_regdomain *r;
305
306 ASSERT_RTNL();
307
308 r = get_cfg80211_regdom();
309
310 /* avoid freeing static information or freeing something twice */
311 if (r == cfg80211_world_regdom)
312 r = NULL;
313 if (cfg80211_world_regdom == &world_regdom)
314 cfg80211_world_regdom = NULL;
315 if (r == &world_regdom)
316 r = NULL;
317
318 rcu_free_regdom(r);
319 rcu_free_regdom(cfg80211_world_regdom);
320
321 cfg80211_world_regdom = &world_regdom;
322 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324 if (!full_reset)
325 return;
326
327 reg_update_last_request(&core_request_world);
328 }
329
330 /*
331 * Dynamic world regulatory domain requested by the wireless
332 * core upon initialization
333 */
update_world_regdomain(const struct ieee80211_regdomain * rd)334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336 struct regulatory_request *lr;
337
338 lr = get_last_request();
339
340 WARN_ON(!lr);
341
342 reset_regdomains(false, rd);
343
344 cfg80211_world_regdom = rd;
345 }
346
is_world_regdom(const char * alpha2)347 bool is_world_regdom(const char *alpha2)
348 {
349 if (!alpha2)
350 return false;
351 return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353
is_alpha2_set(const char * alpha2)354 static bool is_alpha2_set(const char *alpha2)
355 {
356 if (!alpha2)
357 return false;
358 return alpha2[0] && alpha2[1];
359 }
360
is_unknown_alpha2(const char * alpha2)361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363 if (!alpha2)
364 return false;
365 /*
366 * Special case where regulatory domain was built by driver
367 * but a specific alpha2 cannot be determined
368 */
369 return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371
is_intersected_alpha2(const char * alpha2)372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374 if (!alpha2)
375 return false;
376 /*
377 * Special case where regulatory domain is the
378 * result of an intersection between two regulatory domain
379 * structures
380 */
381 return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383
is_an_alpha2(const char * alpha2)384 static bool is_an_alpha2(const char *alpha2)
385 {
386 if (!alpha2)
387 return false;
388 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390
alpha2_equal(const char * alpha2_x,const char * alpha2_y)391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393 if (!alpha2_x || !alpha2_y)
394 return false;
395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397
regdom_changes(const char * alpha2)398 static bool regdom_changes(const char *alpha2)
399 {
400 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402 if (!r)
403 return true;
404 return !alpha2_equal(r->alpha2, alpha2);
405 }
406
407 /*
408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410 * has ever been issued.
411 */
is_user_regdom_saved(void)412 static bool is_user_regdom_saved(void)
413 {
414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 return false;
416
417 /* This would indicate a mistake on the design */
418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 "Unexpected user alpha2: %c%c\n",
420 user_alpha2[0], user_alpha2[1]))
421 return false;
422
423 return true;
424 }
425
426 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429 struct ieee80211_regdomain *regd;
430 unsigned int i;
431
432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433 GFP_KERNEL);
434 if (!regd)
435 return ERR_PTR(-ENOMEM);
436
437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439 for (i = 0; i < src_regd->n_reg_rules; i++)
440 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
441 sizeof(struct ieee80211_reg_rule));
442
443 return regd;
444 }
445
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448 ASSERT_RTNL();
449
450 if (!IS_ERR(cfg80211_user_regdom))
451 kfree(cfg80211_user_regdom);
452 cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454
455 struct reg_regdb_apply_request {
456 struct list_head list;
457 const struct ieee80211_regdomain *regdom;
458 };
459
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
reg_regdb_apply(struct work_struct * work)463 static void reg_regdb_apply(struct work_struct *work)
464 {
465 struct reg_regdb_apply_request *request;
466
467 rtnl_lock();
468
469 mutex_lock(®_regdb_apply_mutex);
470 while (!list_empty(®_regdb_apply_list)) {
471 request = list_first_entry(®_regdb_apply_list,
472 struct reg_regdb_apply_request,
473 list);
474 list_del(&request->list);
475
476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 kfree(request);
478 }
479 mutex_unlock(®_regdb_apply_mutex);
480
481 rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
reg_schedule_apply(const struct ieee80211_regdomain * regdom)486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488 struct reg_regdb_apply_request *request;
489
490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491 if (!request) {
492 kfree(regdom);
493 return -ENOMEM;
494 }
495
496 request->regdom = regdom;
497
498 mutex_lock(®_regdb_apply_mutex);
499 list_add_tail(&request->list, ®_regdb_apply_list);
500 mutex_unlock(®_regdb_apply_mutex);
501
502 schedule_work(®_regdb_work);
503 return 0;
504 }
505
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509
510 static u32 reg_crda_timeouts;
511
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514
crda_timeout_work(struct work_struct * work)515 static void crda_timeout_work(struct work_struct *work)
516 {
517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518 rtnl_lock();
519 reg_crda_timeouts++;
520 restore_regulatory_settings(true, false);
521 rtnl_unlock();
522 }
523
cancel_crda_timeout(void)524 static void cancel_crda_timeout(void)
525 {
526 cancel_delayed_work(&crda_timeout);
527 }
528
cancel_crda_timeout_sync(void)529 static void cancel_crda_timeout_sync(void)
530 {
531 cancel_delayed_work_sync(&crda_timeout);
532 }
533
reset_crda_timeouts(void)534 static void reset_crda_timeouts(void)
535 {
536 reg_crda_timeouts = 0;
537 }
538
539 /*
540 * This lets us keep regulatory code which is updated on a regulatory
541 * basis in userspace.
542 */
call_crda(const char * alpha2)543 static int call_crda(const char *alpha2)
544 {
545 char country[12];
546 char *env[] = { country, NULL };
547 int ret;
548
549 snprintf(country, sizeof(country), "COUNTRY=%c%c",
550 alpha2[0], alpha2[1]);
551
552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554 return -EINVAL;
555 }
556
557 if (!is_world_regdom((char *) alpha2))
558 pr_debug("Calling CRDA for country: %c%c\n",
559 alpha2[0], alpha2[1]);
560 else
561 pr_debug("Calling CRDA to update world regulatory domain\n");
562
563 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
564 if (ret)
565 return ret;
566
567 queue_delayed_work(system_power_efficient_wq,
568 &crda_timeout, msecs_to_jiffies(3142));
569 return 0;
570 }
571 #else
cancel_crda_timeout(void)572 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)573 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)574 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)575 static inline int call_crda(const char *alpha2)
576 {
577 return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583
584 struct fwdb_country {
585 u8 alpha2[2];
586 __be16 coll_ptr;
587 /* this struct cannot be extended */
588 } __packed __aligned(4);
589
590 struct fwdb_collection {
591 u8 len;
592 u8 n_rules;
593 u8 dfs_region;
594 /* no optional data yet */
595 /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597
598 enum fwdb_flags {
599 FWDB_FLAG_NO_OFDM = BIT(0),
600 FWDB_FLAG_NO_OUTDOOR = BIT(1),
601 FWDB_FLAG_DFS = BIT(2),
602 FWDB_FLAG_NO_IR = BIT(3),
603 FWDB_FLAG_AUTO_BW = BIT(4),
604 };
605
606 struct fwdb_wmm_ac {
607 u8 ecw;
608 u8 aifsn;
609 __be16 cot;
610 } __packed;
611
612 struct fwdb_wmm_rule {
613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616
617 struct fwdb_rule {
618 u8 len;
619 u8 flags;
620 __be16 max_eirp;
621 __be32 start, end, max_bw;
622 /* start of optional data */
623 __be16 cac_timeout;
624 __be16 wmm_ptr;
625 } __packed __aligned(4);
626
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629
630 struct fwdb_header {
631 __be32 magic;
632 __be32 version;
633 struct fwdb_country country[];
634 } __packed __aligned(4);
635
ecw2cw(int ecw)636 static int ecw2cw(int ecw)
637 {
638 return (1 << ecw) - 1;
639 }
640
valid_wmm(struct fwdb_wmm_rule * rule)641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644 int i;
645
646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649 u8 aifsn = ac[i].aifsn;
650
651 if (cw_min >= cw_max)
652 return false;
653
654 if (aifsn < 1)
655 return false;
656 }
657
658 return true;
659 }
660
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664
665 if ((u8 *)rule + sizeof(rule->len) > data + size)
666 return false;
667
668 /* mandatory fields */
669 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670 return false;
671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673 struct fwdb_wmm_rule *wmm;
674
675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676 return false;
677
678 wmm = (void *)(data + wmm_ptr);
679
680 if (!valid_wmm(wmm))
681 return false;
682 }
683 return true;
684 }
685
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)686 static bool valid_country(const u8 *data, unsigned int size,
687 const struct fwdb_country *country)
688 {
689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690 struct fwdb_collection *coll = (void *)(data + ptr);
691 __be16 *rules_ptr;
692 unsigned int i;
693
694 /* make sure we can read len/n_rules */
695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696 return false;
697
698 /* make sure base struct and all rules fit */
699 if ((u8 *)coll + ALIGN(coll->len, 2) +
700 (coll->n_rules * 2) > data + size)
701 return false;
702
703 /* mandatory fields must exist */
704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705 return false;
706
707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708
709 for (i = 0; i < coll->n_rules; i++) {
710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711
712 if (!valid_rule(data, size, rule_ptr))
713 return false;
714 }
715
716 return true;
717 }
718
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721
load_keys_from_buffer(const u8 * p,unsigned int buflen)722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724 const u8 *end = p + buflen;
725 size_t plen;
726 key_ref_t key;
727
728 while (p < end) {
729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 * than 256 bytes in size.
731 */
732 if (end - p < 4)
733 goto dodgy_cert;
734 if (p[0] != 0x30 &&
735 p[1] != 0x82)
736 goto dodgy_cert;
737 plen = (p[2] << 8) | p[3];
738 plen += 4;
739 if (plen > end - p)
740 goto dodgy_cert;
741
742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743 "asymmetric", NULL, p, plen,
744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745 KEY_USR_VIEW | KEY_USR_READ),
746 KEY_ALLOC_NOT_IN_QUOTA |
747 KEY_ALLOC_BUILT_IN |
748 KEY_ALLOC_BYPASS_RESTRICTION);
749 if (IS_ERR(key)) {
750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751 PTR_ERR(key));
752 } else {
753 pr_notice("Loaded X.509 cert '%s'\n",
754 key_ref_to_ptr(key)->description);
755 key_ref_put(key);
756 }
757 p += plen;
758 }
759
760 return;
761
762 dodgy_cert:
763 pr_err("Problem parsing in-kernel X.509 certificate list\n");
764 }
765
load_builtin_regdb_keys(void)766 static int __init load_builtin_regdb_keys(void)
767 {
768 builtin_regdb_keys =
769 keyring_alloc(".builtin_regdb_keys",
770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774 if (IS_ERR(builtin_regdb_keys))
775 return PTR_ERR(builtin_regdb_keys);
776
777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
786
787 return 0;
788 }
789
regdb_has_valid_signature(const u8 * data,unsigned int size)790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
791 {
792 const struct firmware *sig;
793 bool result;
794
795 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
796 return false;
797
798 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799 builtin_regdb_keys,
800 VERIFYING_UNSPECIFIED_SIGNATURE,
801 NULL, NULL) == 0;
802
803 release_firmware(sig);
804
805 return result;
806 }
807
free_regdb_keyring(void)808 static void free_regdb_keyring(void)
809 {
810 key_put(builtin_regdb_keys);
811 }
812 #else
load_builtin_regdb_keys(void)813 static int load_builtin_regdb_keys(void)
814 {
815 return 0;
816 }
817
regdb_has_valid_signature(const u8 * data,unsigned int size)818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
819 {
820 return true;
821 }
822
free_regdb_keyring(void)823 static void free_regdb_keyring(void)
824 {
825 }
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
827
valid_regdb(const u8 * data,unsigned int size)828 static bool valid_regdb(const u8 *data, unsigned int size)
829 {
830 const struct fwdb_header *hdr = (void *)data;
831 const struct fwdb_country *country;
832
833 if (size < sizeof(*hdr))
834 return false;
835
836 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837 return false;
838
839 if (hdr->version != cpu_to_be32(FWDB_VERSION))
840 return false;
841
842 if (!regdb_has_valid_signature(data, size))
843 return false;
844
845 country = &hdr->country[0];
846 while ((u8 *)(country + 1) <= data + size) {
847 if (!country->coll_ptr)
848 break;
849 if (!valid_country(data, size, country))
850 return false;
851 country++;
852 }
853
854 return true;
855 }
856
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)857 static void set_wmm_rule(const struct fwdb_header *db,
858 const struct fwdb_country *country,
859 const struct fwdb_rule *rule,
860 struct ieee80211_reg_rule *rrule)
861 {
862 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863 struct fwdb_wmm_rule *wmm;
864 unsigned int i, wmm_ptr;
865
866 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867 wmm = (void *)((u8 *)db + wmm_ptr);
868
869 if (!valid_wmm(wmm)) {
870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872 country->alpha2[0], country->alpha2[1]);
873 return;
874 }
875
876 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
877 wmm_rule->client[i].cw_min =
878 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
879 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
881 wmm_rule->client[i].cot =
882 1000 * be16_to_cpu(wmm->client[i].cot);
883 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
887 }
888
889 rrule->has_wmm = true;
890 }
891
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)892 static int __regdb_query_wmm(const struct fwdb_header *db,
893 const struct fwdb_country *country, int freq,
894 struct ieee80211_reg_rule *rrule)
895 {
896 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898 int i;
899
900 for (i = 0; i < coll->n_rules; i++) {
901 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
903 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
904
905 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
906 continue;
907
908 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910 set_wmm_rule(db, country, rule, rrule);
911 return 0;
912 }
913 }
914
915 return -ENODATA;
916 }
917
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
919 {
920 const struct fwdb_header *hdr = regdb;
921 const struct fwdb_country *country;
922
923 if (!regdb)
924 return -ENODATA;
925
926 if (IS_ERR(regdb))
927 return PTR_ERR(regdb);
928
929 country = &hdr->country[0];
930 while (country->coll_ptr) {
931 if (alpha2_equal(alpha2, country->alpha2))
932 return __regdb_query_wmm(regdb, country, freq, rule);
933
934 country++;
935 }
936
937 return -ENODATA;
938 }
939 EXPORT_SYMBOL(reg_query_regdb_wmm);
940
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)941 static int regdb_query_country(const struct fwdb_header *db,
942 const struct fwdb_country *country)
943 {
944 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946 struct ieee80211_regdomain *regdom;
947 unsigned int i;
948
949 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950 GFP_KERNEL);
951 if (!regdom)
952 return -ENOMEM;
953
954 regdom->n_reg_rules = coll->n_rules;
955 regdom->alpha2[0] = country->alpha2[0];
956 regdom->alpha2[1] = country->alpha2[1];
957 regdom->dfs_region = coll->dfs_region;
958
959 for (i = 0; i < regdom->n_reg_rules; i++) {
960 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
964
965 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
968
969 rrule->power_rule.max_antenna_gain = 0;
970 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
971
972 rrule->flags = 0;
973 if (rule->flags & FWDB_FLAG_NO_OFDM)
974 rrule->flags |= NL80211_RRF_NO_OFDM;
975 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977 if (rule->flags & FWDB_FLAG_DFS)
978 rrule->flags |= NL80211_RRF_DFS;
979 if (rule->flags & FWDB_FLAG_NO_IR)
980 rrule->flags |= NL80211_RRF_NO_IR;
981 if (rule->flags & FWDB_FLAG_AUTO_BW)
982 rrule->flags |= NL80211_RRF_AUTO_BW;
983
984 rrule->dfs_cac_ms = 0;
985
986 /* handle optional data */
987 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988 rrule->dfs_cac_ms =
989 1000 * be16_to_cpu(rule->cac_timeout);
990 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991 set_wmm_rule(db, country, rule, rrule);
992 }
993
994 return reg_schedule_apply(regdom);
995 }
996
query_regdb(const char * alpha2)997 static int query_regdb(const char *alpha2)
998 {
999 const struct fwdb_header *hdr = regdb;
1000 const struct fwdb_country *country;
1001
1002 ASSERT_RTNL();
1003
1004 if (IS_ERR(regdb))
1005 return PTR_ERR(regdb);
1006
1007 country = &hdr->country[0];
1008 while (country->coll_ptr) {
1009 if (alpha2_equal(alpha2, country->alpha2))
1010 return regdb_query_country(regdb, country);
1011 country++;
1012 }
1013
1014 return -ENODATA;
1015 }
1016
regdb_fw_cb(const struct firmware * fw,void * context)1017 static void regdb_fw_cb(const struct firmware *fw, void *context)
1018 {
1019 int set_error = 0;
1020 bool restore = true;
1021 void *db;
1022
1023 if (!fw) {
1024 pr_info("failed to load regulatory.db\n");
1025 set_error = -ENODATA;
1026 } else if (!valid_regdb(fw->data, fw->size)) {
1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028 set_error = -EINVAL;
1029 }
1030
1031 rtnl_lock();
1032 if (regdb && !IS_ERR(regdb)) {
1033 /* negative case - a bug
1034 * positive case - can happen due to race in case of multiple cb's in
1035 * queue, due to usage of asynchronous callback
1036 *
1037 * Either case, just restore and free new db.
1038 */
1039 } else if (set_error) {
1040 regdb = ERR_PTR(set_error);
1041 } else if (fw) {
1042 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043 if (db) {
1044 regdb = db;
1045 restore = context && query_regdb(context);
1046 } else {
1047 restore = true;
1048 }
1049 }
1050
1051 if (restore)
1052 restore_regulatory_settings(true, false);
1053
1054 rtnl_unlock();
1055
1056 kfree(context);
1057
1058 release_firmware(fw);
1059 }
1060
query_regdb_file(const char * alpha2)1061 static int query_regdb_file(const char *alpha2)
1062 {
1063 ASSERT_RTNL();
1064
1065 if (regdb)
1066 return query_regdb(alpha2);
1067
1068 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069 if (!alpha2)
1070 return -ENOMEM;
1071
1072 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073 ®_pdev->dev, GFP_KERNEL,
1074 (void *)alpha2, regdb_fw_cb);
1075 }
1076
reg_reload_regdb(void)1077 int reg_reload_regdb(void)
1078 {
1079 const struct firmware *fw;
1080 void *db;
1081 int err;
1082
1083 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1084 if (err)
1085 return err;
1086
1087 if (!valid_regdb(fw->data, fw->size)) {
1088 err = -ENODATA;
1089 goto out;
1090 }
1091
1092 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093 if (!db) {
1094 err = -ENOMEM;
1095 goto out;
1096 }
1097
1098 rtnl_lock();
1099 if (!IS_ERR_OR_NULL(regdb))
1100 kfree(regdb);
1101 regdb = db;
1102 rtnl_unlock();
1103
1104 out:
1105 release_firmware(fw);
1106 return err;
1107 }
1108
reg_query_database(struct regulatory_request * request)1109 static bool reg_query_database(struct regulatory_request *request)
1110 {
1111 if (query_regdb_file(request->alpha2) == 0)
1112 return true;
1113
1114 if (call_crda(request->alpha2) == 0)
1115 return true;
1116
1117 return false;
1118 }
1119
reg_is_valid_request(const char * alpha2)1120 bool reg_is_valid_request(const char *alpha2)
1121 {
1122 struct regulatory_request *lr = get_last_request();
1123
1124 if (!lr || lr->processed)
1125 return false;
1126
1127 return alpha2_equal(lr->alpha2, alpha2);
1128 }
1129
reg_get_regdomain(struct wiphy * wiphy)1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1131 {
1132 struct regulatory_request *lr = get_last_request();
1133
1134 /*
1135 * Follow the driver's regulatory domain, if present, unless a country
1136 * IE has been processed or a user wants to help complaince further
1137 */
1138 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140 wiphy->regd)
1141 return get_wiphy_regdom(wiphy);
1142
1143 return get_cfg80211_regdom();
1144 }
1145
1146 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148 const struct ieee80211_reg_rule *rule)
1149 {
1150 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151 const struct ieee80211_freq_range *freq_range_tmp;
1152 const struct ieee80211_reg_rule *tmp;
1153 u32 start_freq, end_freq, idx, no;
1154
1155 for (idx = 0; idx < rd->n_reg_rules; idx++)
1156 if (rule == &rd->reg_rules[idx])
1157 break;
1158
1159 if (idx == rd->n_reg_rules)
1160 return 0;
1161
1162 /* get start_freq */
1163 no = idx;
1164
1165 while (no) {
1166 tmp = &rd->reg_rules[--no];
1167 freq_range_tmp = &tmp->freq_range;
1168
1169 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170 break;
1171
1172 freq_range = freq_range_tmp;
1173 }
1174
1175 start_freq = freq_range->start_freq_khz;
1176
1177 /* get end_freq */
1178 freq_range = &rule->freq_range;
1179 no = idx;
1180
1181 while (no < rd->n_reg_rules - 1) {
1182 tmp = &rd->reg_rules[++no];
1183 freq_range_tmp = &tmp->freq_range;
1184
1185 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186 break;
1187
1188 freq_range = freq_range_tmp;
1189 }
1190
1191 end_freq = freq_range->end_freq_khz;
1192
1193 return end_freq - start_freq;
1194 }
1195
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197 const struct ieee80211_reg_rule *rule)
1198 {
1199 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1200
1201 if (rule->flags & NL80211_RRF_NO_160MHZ)
1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203 if (rule->flags & NL80211_RRF_NO_80MHZ)
1204 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1205
1206 /*
1207 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208 * are not allowed.
1209 */
1210 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211 rule->flags & NL80211_RRF_NO_HT40PLUS)
1212 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1213
1214 return bw;
1215 }
1216
1217 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1219 {
1220 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221 u32 freq_diff;
1222
1223 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224 return false;
1225
1226 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227 return false;
1228
1229 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1230
1231 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232 freq_range->max_bandwidth_khz > freq_diff)
1233 return false;
1234
1235 return true;
1236 }
1237
is_valid_rd(const struct ieee80211_regdomain * rd)1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1239 {
1240 const struct ieee80211_reg_rule *reg_rule = NULL;
1241 unsigned int i;
1242
1243 if (!rd->n_reg_rules)
1244 return false;
1245
1246 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247 return false;
1248
1249 for (i = 0; i < rd->n_reg_rules; i++) {
1250 reg_rule = &rd->reg_rules[i];
1251 if (!is_valid_reg_rule(reg_rule))
1252 return false;
1253 }
1254
1255 return true;
1256 }
1257
1258 /**
1259 * freq_in_rule_band - tells us if a frequency is in a frequency band
1260 * @freq_range: frequency rule we want to query
1261 * @freq_khz: frequency we are inquiring about
1262 *
1263 * This lets us know if a specific frequency rule is or is not relevant to
1264 * a specific frequency's band. Bands are device specific and artificial
1265 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266 * however it is safe for now to assume that a frequency rule should not be
1267 * part of a frequency's band if the start freq or end freq are off by more
1268 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1269 * 60 GHz band.
1270 * This resolution can be lowered and should be considered as we add
1271 * regulatory rule support for other "bands".
1272 **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274 u32 freq_khz)
1275 {
1276 #define ONE_GHZ_IN_KHZ 1000000
1277 /*
1278 * From 802.11ad: directional multi-gigabit (DMG):
1279 * Pertaining to operation in a frequency band containing a channel
1280 * with the Channel starting frequency above 45 GHz.
1281 */
1282 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1283 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1284 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285 return true;
1286 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287 return true;
1288 return false;
1289 #undef ONE_GHZ_IN_KHZ
1290 }
1291
1292 /*
1293 * Later on we can perhaps use the more restrictive DFS
1294 * region but we don't have information for that yet so
1295 * for now simply disallow conflicts.
1296 */
1297 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299 const enum nl80211_dfs_regions dfs_region2)
1300 {
1301 if (dfs_region1 != dfs_region2)
1302 return NL80211_DFS_UNSET;
1303 return dfs_region1;
1304 }
1305
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307 const struct ieee80211_wmm_ac *wmm_ac2,
1308 struct ieee80211_wmm_ac *intersect)
1309 {
1310 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1314 }
1315
1316 /*
1317 * Helper for regdom_intersect(), this does the real
1318 * mathematical intersection fun
1319 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321 const struct ieee80211_regdomain *rd2,
1322 const struct ieee80211_reg_rule *rule1,
1323 const struct ieee80211_reg_rule *rule2,
1324 struct ieee80211_reg_rule *intersected_rule)
1325 {
1326 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327 struct ieee80211_freq_range *freq_range;
1328 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329 struct ieee80211_power_rule *power_rule;
1330 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331 struct ieee80211_wmm_rule *wmm_rule;
1332 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1333
1334 freq_range1 = &rule1->freq_range;
1335 freq_range2 = &rule2->freq_range;
1336 freq_range = &intersected_rule->freq_range;
1337
1338 power_rule1 = &rule1->power_rule;
1339 power_rule2 = &rule2->power_rule;
1340 power_rule = &intersected_rule->power_rule;
1341
1342 wmm_rule1 = &rule1->wmm_rule;
1343 wmm_rule2 = &rule2->wmm_rule;
1344 wmm_rule = &intersected_rule->wmm_rule;
1345
1346 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347 freq_range2->start_freq_khz);
1348 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349 freq_range2->end_freq_khz);
1350
1351 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1353
1354 if (rule1->flags & NL80211_RRF_AUTO_BW)
1355 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356 if (rule2->flags & NL80211_RRF_AUTO_BW)
1357 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1358
1359 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1360
1361 intersected_rule->flags = rule1->flags | rule2->flags;
1362
1363 /*
1364 * In case NL80211_RRF_AUTO_BW requested for both rules
1365 * set AUTO_BW in intersected rule also. Next we will
1366 * calculate BW correctly in handle_channel function.
1367 * In other case remove AUTO_BW flag while we calculate
1368 * maximum bandwidth correctly and auto calculation is
1369 * not required.
1370 */
1371 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372 (rule2->flags & NL80211_RRF_AUTO_BW))
1373 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374 else
1375 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1376
1377 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378 if (freq_range->max_bandwidth_khz > freq_diff)
1379 freq_range->max_bandwidth_khz = freq_diff;
1380
1381 power_rule->max_eirp = min(power_rule1->max_eirp,
1382 power_rule2->max_eirp);
1383 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384 power_rule2->max_antenna_gain);
1385
1386 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387 rule2->dfs_cac_ms);
1388
1389 if (rule1->has_wmm && rule2->has_wmm) {
1390 u8 ac;
1391
1392 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394 &wmm_rule2->client[ac],
1395 &wmm_rule->client[ac]);
1396 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397 &wmm_rule2->ap[ac],
1398 &wmm_rule->ap[ac]);
1399 }
1400
1401 intersected_rule->has_wmm = true;
1402 } else if (rule1->has_wmm) {
1403 *wmm_rule = *wmm_rule1;
1404 intersected_rule->has_wmm = true;
1405 } else if (rule2->has_wmm) {
1406 *wmm_rule = *wmm_rule2;
1407 intersected_rule->has_wmm = true;
1408 } else {
1409 intersected_rule->has_wmm = false;
1410 }
1411
1412 if (!is_valid_reg_rule(intersected_rule))
1413 return -EINVAL;
1414
1415 return 0;
1416 }
1417
1418 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1419 static bool rule_contains(struct ieee80211_reg_rule *r1,
1420 struct ieee80211_reg_rule *r2)
1421 {
1422 /* for simplicity, currently consider only same flags */
1423 if (r1->flags != r2->flags)
1424 return false;
1425
1426 /* verify r1 is more restrictive */
1427 if ((r1->power_rule.max_antenna_gain >
1428 r2->power_rule.max_antenna_gain) ||
1429 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430 return false;
1431
1432 /* make sure r2's range is contained within r1 */
1433 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435 return false;
1436
1437 /* and finally verify that r1.max_bw >= r2.max_bw */
1438 if (r1->freq_range.max_bandwidth_khz <
1439 r2->freq_range.max_bandwidth_khz)
1440 return false;
1441
1442 return true;
1443 }
1444
1445 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1446 static void add_rule(struct ieee80211_reg_rule *rule,
1447 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1448 {
1449 struct ieee80211_reg_rule *tmp_rule;
1450 int i;
1451
1452 for (i = 0; i < *n_rules; i++) {
1453 tmp_rule = ®_rules[i];
1454 /* rule is already contained - do nothing */
1455 if (rule_contains(tmp_rule, rule))
1456 return;
1457
1458 /* extend rule if possible */
1459 if (rule_contains(rule, tmp_rule)) {
1460 memcpy(tmp_rule, rule, sizeof(*rule));
1461 return;
1462 }
1463 }
1464
1465 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1466 (*n_rules)++;
1467 }
1468
1469 /**
1470 * regdom_intersect - do the intersection between two regulatory domains
1471 * @rd1: first regulatory domain
1472 * @rd2: second regulatory domain
1473 *
1474 * Use this function to get the intersection between two regulatory domains.
1475 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476 * as no one single alpha2 can represent this regulatory domain.
1477 *
1478 * Returns a pointer to the regulatory domain structure which will hold the
1479 * resulting intersection of rules between rd1 and rd2. We will
1480 * kzalloc() this structure for you.
1481 */
1482 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1483 regdom_intersect(const struct ieee80211_regdomain *rd1,
1484 const struct ieee80211_regdomain *rd2)
1485 {
1486 int r;
1487 unsigned int x, y;
1488 unsigned int num_rules = 0;
1489 const struct ieee80211_reg_rule *rule1, *rule2;
1490 struct ieee80211_reg_rule intersected_rule;
1491 struct ieee80211_regdomain *rd;
1492
1493 if (!rd1 || !rd2)
1494 return NULL;
1495
1496 /*
1497 * First we get a count of the rules we'll need, then we actually
1498 * build them. This is to so we can malloc() and free() a
1499 * regdomain once. The reason we use reg_rules_intersect() here
1500 * is it will return -EINVAL if the rule computed makes no sense.
1501 * All rules that do check out OK are valid.
1502 */
1503
1504 for (x = 0; x < rd1->n_reg_rules; x++) {
1505 rule1 = &rd1->reg_rules[x];
1506 for (y = 0; y < rd2->n_reg_rules; y++) {
1507 rule2 = &rd2->reg_rules[y];
1508 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509 &intersected_rule))
1510 num_rules++;
1511 }
1512 }
1513
1514 if (!num_rules)
1515 return NULL;
1516
1517 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1518 if (!rd)
1519 return NULL;
1520
1521 for (x = 0; x < rd1->n_reg_rules; x++) {
1522 rule1 = &rd1->reg_rules[x];
1523 for (y = 0; y < rd2->n_reg_rules; y++) {
1524 rule2 = &rd2->reg_rules[y];
1525 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526 &intersected_rule);
1527 /*
1528 * No need to memset here the intersected rule here as
1529 * we're not using the stack anymore
1530 */
1531 if (r)
1532 continue;
1533
1534 add_rule(&intersected_rule, rd->reg_rules,
1535 &rd->n_reg_rules);
1536 }
1537 }
1538
1539 rd->alpha2[0] = '9';
1540 rd->alpha2[1] = '8';
1541 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542 rd2->dfs_region);
1543
1544 return rd;
1545 }
1546
1547 /*
1548 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549 * want to just have the channel structure use these
1550 */
map_regdom_flags(u32 rd_flags)1551 static u32 map_regdom_flags(u32 rd_flags)
1552 {
1553 u32 channel_flags = 0;
1554 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555 channel_flags |= IEEE80211_CHAN_NO_IR;
1556 if (rd_flags & NL80211_RRF_DFS)
1557 channel_flags |= IEEE80211_CHAN_RADAR;
1558 if (rd_flags & NL80211_RRF_NO_OFDM)
1559 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568 if (rd_flags & NL80211_RRF_NO_80MHZ)
1569 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570 if (rd_flags & NL80211_RRF_NO_160MHZ)
1571 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1572 if (rd_flags & NL80211_RRF_NO_HE)
1573 channel_flags |= IEEE80211_CHAN_NO_HE;
1574 return channel_flags;
1575 }
1576
1577 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1578 freq_reg_info_regd(u32 center_freq,
1579 const struct ieee80211_regdomain *regd, u32 bw)
1580 {
1581 int i;
1582 bool band_rule_found = false;
1583 bool bw_fits = false;
1584
1585 if (!regd)
1586 return ERR_PTR(-EINVAL);
1587
1588 for (i = 0; i < regd->n_reg_rules; i++) {
1589 const struct ieee80211_reg_rule *rr;
1590 const struct ieee80211_freq_range *fr = NULL;
1591
1592 rr = ®d->reg_rules[i];
1593 fr = &rr->freq_range;
1594
1595 /*
1596 * We only need to know if one frequency rule was
1597 * in center_freq's band, that's enough, so let's
1598 * not overwrite it once found
1599 */
1600 if (!band_rule_found)
1601 band_rule_found = freq_in_rule_band(fr, center_freq);
1602
1603 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1604
1605 if (band_rule_found && bw_fits)
1606 return rr;
1607 }
1608
1609 if (!band_rule_found)
1610 return ERR_PTR(-ERANGE);
1611
1612 return ERR_PTR(-EINVAL);
1613 }
1614
1615 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1616 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1617 {
1618 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1619 const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1620 const struct ieee80211_reg_rule *reg_rule;
1621 int i = ARRAY_SIZE(bws) - 1;
1622 u32 bw;
1623
1624 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1625 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1626 if (!IS_ERR(reg_rule))
1627 return reg_rule;
1628 }
1629
1630 return reg_rule;
1631 }
1632
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1633 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1634 u32 center_freq)
1635 {
1636 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1637
1638 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1639 }
1640 EXPORT_SYMBOL(freq_reg_info);
1641
reg_initiator_name(enum nl80211_reg_initiator initiator)1642 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1643 {
1644 switch (initiator) {
1645 case NL80211_REGDOM_SET_BY_CORE:
1646 return "core";
1647 case NL80211_REGDOM_SET_BY_USER:
1648 return "user";
1649 case NL80211_REGDOM_SET_BY_DRIVER:
1650 return "driver";
1651 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1652 return "country element";
1653 default:
1654 WARN_ON(1);
1655 return "bug";
1656 }
1657 }
1658 EXPORT_SYMBOL(reg_initiator_name);
1659
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1660 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1661 const struct ieee80211_reg_rule *reg_rule,
1662 const struct ieee80211_channel *chan)
1663 {
1664 const struct ieee80211_freq_range *freq_range = NULL;
1665 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1666 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1667
1668 freq_range = ®_rule->freq_range;
1669
1670 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1671 center_freq_khz = ieee80211_channel_to_khz(chan);
1672 /* Check if auto calculation requested */
1673 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1674 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1675
1676 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1677 if (!cfg80211_does_bw_fit_range(freq_range,
1678 center_freq_khz,
1679 MHZ_TO_KHZ(10)))
1680 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1681 if (!cfg80211_does_bw_fit_range(freq_range,
1682 center_freq_khz,
1683 MHZ_TO_KHZ(20)))
1684 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1685
1686 if (is_s1g) {
1687 /* S1G is strict about non overlapping channels. We can
1688 * calculate which bandwidth is allowed per channel by finding
1689 * the largest bandwidth which cleanly divides the freq_range.
1690 */
1691 int edge_offset;
1692 int ch_bw = max_bandwidth_khz;
1693
1694 while (ch_bw) {
1695 edge_offset = (center_freq_khz - ch_bw / 2) -
1696 freq_range->start_freq_khz;
1697 if (edge_offset % ch_bw == 0) {
1698 switch (KHZ_TO_MHZ(ch_bw)) {
1699 case 1:
1700 bw_flags |= IEEE80211_CHAN_1MHZ;
1701 break;
1702 case 2:
1703 bw_flags |= IEEE80211_CHAN_2MHZ;
1704 break;
1705 case 4:
1706 bw_flags |= IEEE80211_CHAN_4MHZ;
1707 break;
1708 case 8:
1709 bw_flags |= IEEE80211_CHAN_8MHZ;
1710 break;
1711 case 16:
1712 bw_flags |= IEEE80211_CHAN_16MHZ;
1713 break;
1714 default:
1715 /* If we got here, no bandwidths fit on
1716 * this frequency, ie. band edge.
1717 */
1718 bw_flags |= IEEE80211_CHAN_DISABLED;
1719 break;
1720 }
1721 break;
1722 }
1723 ch_bw /= 2;
1724 }
1725 } else {
1726 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1727 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1728 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1729 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1730 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1731 bw_flags |= IEEE80211_CHAN_NO_HT40;
1732 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1733 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1734 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1735 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1736 }
1737 return bw_flags;
1738 }
1739
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1740 static void handle_channel_single_rule(struct wiphy *wiphy,
1741 enum nl80211_reg_initiator initiator,
1742 struct ieee80211_channel *chan,
1743 u32 flags,
1744 struct regulatory_request *lr,
1745 struct wiphy *request_wiphy,
1746 const struct ieee80211_reg_rule *reg_rule)
1747 {
1748 u32 bw_flags = 0;
1749 const struct ieee80211_power_rule *power_rule = NULL;
1750 const struct ieee80211_regdomain *regd;
1751
1752 regd = reg_get_regdomain(wiphy);
1753
1754 power_rule = ®_rule->power_rule;
1755 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1756
1757 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1758 request_wiphy && request_wiphy == wiphy &&
1759 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1760 /*
1761 * This guarantees the driver's requested regulatory domain
1762 * will always be used as a base for further regulatory
1763 * settings
1764 */
1765 chan->flags = chan->orig_flags =
1766 map_regdom_flags(reg_rule->flags) | bw_flags;
1767 chan->max_antenna_gain = chan->orig_mag =
1768 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1769 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1770 (int) MBM_TO_DBM(power_rule->max_eirp);
1771
1772 if (chan->flags & IEEE80211_CHAN_RADAR) {
1773 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1774 if (reg_rule->dfs_cac_ms)
1775 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1776 }
1777
1778 return;
1779 }
1780
1781 chan->dfs_state = NL80211_DFS_USABLE;
1782 chan->dfs_state_entered = jiffies;
1783
1784 chan->beacon_found = false;
1785 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1786 chan->max_antenna_gain =
1787 min_t(int, chan->orig_mag,
1788 MBI_TO_DBI(power_rule->max_antenna_gain));
1789 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1790
1791 if (chan->flags & IEEE80211_CHAN_RADAR) {
1792 if (reg_rule->dfs_cac_ms)
1793 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1794 else
1795 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1796 }
1797
1798 if (chan->orig_mpwr) {
1799 /*
1800 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1801 * will always follow the passed country IE power settings.
1802 */
1803 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1804 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1805 chan->max_power = chan->max_reg_power;
1806 else
1807 chan->max_power = min(chan->orig_mpwr,
1808 chan->max_reg_power);
1809 } else
1810 chan->max_power = chan->max_reg_power;
1811 }
1812
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1813 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1814 enum nl80211_reg_initiator initiator,
1815 struct ieee80211_channel *chan,
1816 u32 flags,
1817 struct regulatory_request *lr,
1818 struct wiphy *request_wiphy,
1819 const struct ieee80211_reg_rule *rrule1,
1820 const struct ieee80211_reg_rule *rrule2,
1821 struct ieee80211_freq_range *comb_range)
1822 {
1823 u32 bw_flags1 = 0;
1824 u32 bw_flags2 = 0;
1825 const struct ieee80211_power_rule *power_rule1 = NULL;
1826 const struct ieee80211_power_rule *power_rule2 = NULL;
1827 const struct ieee80211_regdomain *regd;
1828
1829 regd = reg_get_regdomain(wiphy);
1830
1831 power_rule1 = &rrule1->power_rule;
1832 power_rule2 = &rrule2->power_rule;
1833 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1834 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1835
1836 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1837 request_wiphy && request_wiphy == wiphy &&
1838 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1839 /* This guarantees the driver's requested regulatory domain
1840 * will always be used as a base for further regulatory
1841 * settings
1842 */
1843 chan->flags =
1844 map_regdom_flags(rrule1->flags) |
1845 map_regdom_flags(rrule2->flags) |
1846 bw_flags1 |
1847 bw_flags2;
1848 chan->orig_flags = chan->flags;
1849 chan->max_antenna_gain =
1850 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1851 MBI_TO_DBI(power_rule2->max_antenna_gain));
1852 chan->orig_mag = chan->max_antenna_gain;
1853 chan->max_reg_power =
1854 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1855 MBM_TO_DBM(power_rule2->max_eirp));
1856 chan->max_power = chan->max_reg_power;
1857 chan->orig_mpwr = chan->max_reg_power;
1858
1859 if (chan->flags & IEEE80211_CHAN_RADAR) {
1860 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1861 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1862 chan->dfs_cac_ms = max_t(unsigned int,
1863 rrule1->dfs_cac_ms,
1864 rrule2->dfs_cac_ms);
1865 }
1866
1867 return;
1868 }
1869
1870 chan->dfs_state = NL80211_DFS_USABLE;
1871 chan->dfs_state_entered = jiffies;
1872
1873 chan->beacon_found = false;
1874 chan->flags = flags | bw_flags1 | bw_flags2 |
1875 map_regdom_flags(rrule1->flags) |
1876 map_regdom_flags(rrule2->flags);
1877
1878 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1879 * (otherwise no adj. rule case), recheck therefore
1880 */
1881 if (cfg80211_does_bw_fit_range(comb_range,
1882 ieee80211_channel_to_khz(chan),
1883 MHZ_TO_KHZ(10)))
1884 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1885 if (cfg80211_does_bw_fit_range(comb_range,
1886 ieee80211_channel_to_khz(chan),
1887 MHZ_TO_KHZ(20)))
1888 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1889
1890 chan->max_antenna_gain =
1891 min_t(int, chan->orig_mag,
1892 min_t(int,
1893 MBI_TO_DBI(power_rule1->max_antenna_gain),
1894 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1895 chan->max_reg_power = min_t(int,
1896 MBM_TO_DBM(power_rule1->max_eirp),
1897 MBM_TO_DBM(power_rule2->max_eirp));
1898
1899 if (chan->flags & IEEE80211_CHAN_RADAR) {
1900 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1901 chan->dfs_cac_ms = max_t(unsigned int,
1902 rrule1->dfs_cac_ms,
1903 rrule2->dfs_cac_ms);
1904 else
1905 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1906 }
1907
1908 if (chan->orig_mpwr) {
1909 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1910 * will always follow the passed country IE power settings.
1911 */
1912 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1913 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1914 chan->max_power = chan->max_reg_power;
1915 else
1916 chan->max_power = min(chan->orig_mpwr,
1917 chan->max_reg_power);
1918 } else {
1919 chan->max_power = chan->max_reg_power;
1920 }
1921 }
1922
1923 /* Note that right now we assume the desired channel bandwidth
1924 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1925 * per channel, the primary and the extension channel).
1926 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1927 static void handle_channel(struct wiphy *wiphy,
1928 enum nl80211_reg_initiator initiator,
1929 struct ieee80211_channel *chan)
1930 {
1931 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1932 struct regulatory_request *lr = get_last_request();
1933 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1934 const struct ieee80211_reg_rule *rrule = NULL;
1935 const struct ieee80211_reg_rule *rrule1 = NULL;
1936 const struct ieee80211_reg_rule *rrule2 = NULL;
1937
1938 u32 flags = chan->orig_flags;
1939
1940 rrule = freq_reg_info(wiphy, orig_chan_freq);
1941 if (IS_ERR(rrule)) {
1942 /* check for adjacent match, therefore get rules for
1943 * chan - 20 MHz and chan + 20 MHz and test
1944 * if reg rules are adjacent
1945 */
1946 rrule1 = freq_reg_info(wiphy,
1947 orig_chan_freq - MHZ_TO_KHZ(20));
1948 rrule2 = freq_reg_info(wiphy,
1949 orig_chan_freq + MHZ_TO_KHZ(20));
1950 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1951 struct ieee80211_freq_range comb_range;
1952
1953 if (rrule1->freq_range.end_freq_khz !=
1954 rrule2->freq_range.start_freq_khz)
1955 goto disable_chan;
1956
1957 comb_range.start_freq_khz =
1958 rrule1->freq_range.start_freq_khz;
1959 comb_range.end_freq_khz =
1960 rrule2->freq_range.end_freq_khz;
1961 comb_range.max_bandwidth_khz =
1962 min_t(u32,
1963 rrule1->freq_range.max_bandwidth_khz,
1964 rrule2->freq_range.max_bandwidth_khz);
1965
1966 if (!cfg80211_does_bw_fit_range(&comb_range,
1967 orig_chan_freq,
1968 MHZ_TO_KHZ(20)))
1969 goto disable_chan;
1970
1971 handle_channel_adjacent_rules(wiphy, initiator, chan,
1972 flags, lr, request_wiphy,
1973 rrule1, rrule2,
1974 &comb_range);
1975 return;
1976 }
1977
1978 disable_chan:
1979 /* We will disable all channels that do not match our
1980 * received regulatory rule unless the hint is coming
1981 * from a Country IE and the Country IE had no information
1982 * about a band. The IEEE 802.11 spec allows for an AP
1983 * to send only a subset of the regulatory rules allowed,
1984 * so an AP in the US that only supports 2.4 GHz may only send
1985 * a country IE with information for the 2.4 GHz band
1986 * while 5 GHz is still supported.
1987 */
1988 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1989 PTR_ERR(rrule) == -ERANGE)
1990 return;
1991
1992 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1993 request_wiphy && request_wiphy == wiphy &&
1994 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1995 pr_debug("Disabling freq %d.%03d MHz for good\n",
1996 chan->center_freq, chan->freq_offset);
1997 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1998 chan->flags = chan->orig_flags;
1999 } else {
2000 pr_debug("Disabling freq %d.%03d MHz\n",
2001 chan->center_freq, chan->freq_offset);
2002 chan->flags |= IEEE80211_CHAN_DISABLED;
2003 }
2004 return;
2005 }
2006
2007 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2008 request_wiphy, rrule);
2009 }
2010
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2011 static void handle_band(struct wiphy *wiphy,
2012 enum nl80211_reg_initiator initiator,
2013 struct ieee80211_supported_band *sband)
2014 {
2015 unsigned int i;
2016
2017 if (!sband)
2018 return;
2019
2020 for (i = 0; i < sband->n_channels; i++)
2021 handle_channel(wiphy, initiator, &sband->channels[i]);
2022 }
2023
reg_request_cell_base(struct regulatory_request * request)2024 static bool reg_request_cell_base(struct regulatory_request *request)
2025 {
2026 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2027 return false;
2028 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2029 }
2030
reg_last_request_cell_base(void)2031 bool reg_last_request_cell_base(void)
2032 {
2033 return reg_request_cell_base(get_last_request());
2034 }
2035
2036 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2037 /* Core specific check */
2038 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2039 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2040 {
2041 struct regulatory_request *lr = get_last_request();
2042
2043 if (!reg_num_devs_support_basehint)
2044 return REG_REQ_IGNORE;
2045
2046 if (reg_request_cell_base(lr) &&
2047 !regdom_changes(pending_request->alpha2))
2048 return REG_REQ_ALREADY_SET;
2049
2050 return REG_REQ_OK;
2051 }
2052
2053 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2054 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2055 {
2056 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2057 }
2058 #else
2059 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2060 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2061 {
2062 return REG_REQ_IGNORE;
2063 }
2064
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2065 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2066 {
2067 return true;
2068 }
2069 #endif
2070
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2071 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2072 {
2073 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2074 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2075 return true;
2076 return false;
2077 }
2078
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2079 static bool ignore_reg_update(struct wiphy *wiphy,
2080 enum nl80211_reg_initiator initiator)
2081 {
2082 struct regulatory_request *lr = get_last_request();
2083
2084 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2085 return true;
2086
2087 if (!lr) {
2088 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2089 reg_initiator_name(initiator));
2090 return true;
2091 }
2092
2093 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2094 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2095 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2096 reg_initiator_name(initiator));
2097 return true;
2098 }
2099
2100 /*
2101 * wiphy->regd will be set once the device has its own
2102 * desired regulatory domain set
2103 */
2104 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2105 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2106 !is_world_regdom(lr->alpha2)) {
2107 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2108 reg_initiator_name(initiator));
2109 return true;
2110 }
2111
2112 if (reg_request_cell_base(lr))
2113 return reg_dev_ignore_cell_hint(wiphy);
2114
2115 return false;
2116 }
2117
reg_is_world_roaming(struct wiphy * wiphy)2118 static bool reg_is_world_roaming(struct wiphy *wiphy)
2119 {
2120 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2121 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2122 struct regulatory_request *lr = get_last_request();
2123
2124 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2125 return true;
2126
2127 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2128 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2129 return true;
2130
2131 return false;
2132 }
2133
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2134 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2135 struct reg_beacon *reg_beacon)
2136 {
2137 struct ieee80211_supported_band *sband;
2138 struct ieee80211_channel *chan;
2139 bool channel_changed = false;
2140 struct ieee80211_channel chan_before;
2141
2142 sband = wiphy->bands[reg_beacon->chan.band];
2143 chan = &sband->channels[chan_idx];
2144
2145 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2146 return;
2147
2148 if (chan->beacon_found)
2149 return;
2150
2151 chan->beacon_found = true;
2152
2153 if (!reg_is_world_roaming(wiphy))
2154 return;
2155
2156 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2157 return;
2158
2159 chan_before = *chan;
2160
2161 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2162 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2163 channel_changed = true;
2164 }
2165
2166 if (channel_changed)
2167 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2168 }
2169
2170 /*
2171 * Called when a scan on a wiphy finds a beacon on
2172 * new channel
2173 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2174 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2175 struct reg_beacon *reg_beacon)
2176 {
2177 unsigned int i;
2178 struct ieee80211_supported_band *sband;
2179
2180 if (!wiphy->bands[reg_beacon->chan.band])
2181 return;
2182
2183 sband = wiphy->bands[reg_beacon->chan.band];
2184
2185 for (i = 0; i < sband->n_channels; i++)
2186 handle_reg_beacon(wiphy, i, reg_beacon);
2187 }
2188
2189 /*
2190 * Called upon reg changes or a new wiphy is added
2191 */
wiphy_update_beacon_reg(struct wiphy * wiphy)2192 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2193 {
2194 unsigned int i;
2195 struct ieee80211_supported_band *sband;
2196 struct reg_beacon *reg_beacon;
2197
2198 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2199 if (!wiphy->bands[reg_beacon->chan.band])
2200 continue;
2201 sband = wiphy->bands[reg_beacon->chan.band];
2202 for (i = 0; i < sband->n_channels; i++)
2203 handle_reg_beacon(wiphy, i, reg_beacon);
2204 }
2205 }
2206
2207 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2208 static void reg_process_beacons(struct wiphy *wiphy)
2209 {
2210 /*
2211 * Means we are just firing up cfg80211, so no beacons would
2212 * have been processed yet.
2213 */
2214 if (!last_request)
2215 return;
2216 wiphy_update_beacon_reg(wiphy);
2217 }
2218
is_ht40_allowed(struct ieee80211_channel * chan)2219 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2220 {
2221 if (!chan)
2222 return false;
2223 if (chan->flags & IEEE80211_CHAN_DISABLED)
2224 return false;
2225 /* This would happen when regulatory rules disallow HT40 completely */
2226 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2227 return false;
2228 return true;
2229 }
2230
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2231 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2232 struct ieee80211_channel *channel)
2233 {
2234 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2235 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2236 const struct ieee80211_regdomain *regd;
2237 unsigned int i;
2238 u32 flags;
2239
2240 if (!is_ht40_allowed(channel)) {
2241 channel->flags |= IEEE80211_CHAN_NO_HT40;
2242 return;
2243 }
2244
2245 /*
2246 * We need to ensure the extension channels exist to
2247 * be able to use HT40- or HT40+, this finds them (or not)
2248 */
2249 for (i = 0; i < sband->n_channels; i++) {
2250 struct ieee80211_channel *c = &sband->channels[i];
2251
2252 if (c->center_freq == (channel->center_freq - 20))
2253 channel_before = c;
2254 if (c->center_freq == (channel->center_freq + 20))
2255 channel_after = c;
2256 }
2257
2258 flags = 0;
2259 regd = get_wiphy_regdom(wiphy);
2260 if (regd) {
2261 const struct ieee80211_reg_rule *reg_rule =
2262 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2263 regd, MHZ_TO_KHZ(20));
2264
2265 if (!IS_ERR(reg_rule))
2266 flags = reg_rule->flags;
2267 }
2268
2269 /*
2270 * Please note that this assumes target bandwidth is 20 MHz,
2271 * if that ever changes we also need to change the below logic
2272 * to include that as well.
2273 */
2274 if (!is_ht40_allowed(channel_before) ||
2275 flags & NL80211_RRF_NO_HT40MINUS)
2276 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2277 else
2278 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2279
2280 if (!is_ht40_allowed(channel_after) ||
2281 flags & NL80211_RRF_NO_HT40PLUS)
2282 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2283 else
2284 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2285 }
2286
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2287 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2288 struct ieee80211_supported_band *sband)
2289 {
2290 unsigned int i;
2291
2292 if (!sband)
2293 return;
2294
2295 for (i = 0; i < sband->n_channels; i++)
2296 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2297 }
2298
reg_process_ht_flags(struct wiphy * wiphy)2299 static void reg_process_ht_flags(struct wiphy *wiphy)
2300 {
2301 enum nl80211_band band;
2302
2303 if (!wiphy)
2304 return;
2305
2306 for (band = 0; band < NUM_NL80211_BANDS; band++)
2307 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2308 }
2309
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2310 static void reg_call_notifier(struct wiphy *wiphy,
2311 struct regulatory_request *request)
2312 {
2313 if (wiphy->reg_notifier)
2314 wiphy->reg_notifier(wiphy, request);
2315 }
2316
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2317 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2318 {
2319 struct cfg80211_chan_def chandef = {};
2320 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2321 enum nl80211_iftype iftype;
2322
2323 wdev_lock(wdev);
2324 iftype = wdev->iftype;
2325
2326 /* make sure the interface is active */
2327 if (!wdev->netdev || !netif_running(wdev->netdev))
2328 goto wdev_inactive_unlock;
2329
2330 switch (iftype) {
2331 case NL80211_IFTYPE_AP:
2332 case NL80211_IFTYPE_P2P_GO:
2333 if (!wdev->beacon_interval)
2334 goto wdev_inactive_unlock;
2335 chandef = wdev->chandef;
2336 break;
2337 case NL80211_IFTYPE_ADHOC:
2338 if (!wdev->ssid_len)
2339 goto wdev_inactive_unlock;
2340 chandef = wdev->chandef;
2341 break;
2342 case NL80211_IFTYPE_STATION:
2343 case NL80211_IFTYPE_P2P_CLIENT:
2344 if (!wdev->current_bss ||
2345 !wdev->current_bss->pub.channel)
2346 goto wdev_inactive_unlock;
2347
2348 if (!rdev->ops->get_channel ||
2349 rdev_get_channel(rdev, wdev, &chandef))
2350 cfg80211_chandef_create(&chandef,
2351 wdev->current_bss->pub.channel,
2352 NL80211_CHAN_NO_HT);
2353 break;
2354 case NL80211_IFTYPE_MONITOR:
2355 case NL80211_IFTYPE_AP_VLAN:
2356 case NL80211_IFTYPE_P2P_DEVICE:
2357 /* no enforcement required */
2358 break;
2359 default:
2360 /* others not implemented for now */
2361 WARN_ON(1);
2362 break;
2363 }
2364
2365 wdev_unlock(wdev);
2366
2367 switch (iftype) {
2368 case NL80211_IFTYPE_AP:
2369 case NL80211_IFTYPE_P2P_GO:
2370 case NL80211_IFTYPE_ADHOC:
2371 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2372 case NL80211_IFTYPE_STATION:
2373 case NL80211_IFTYPE_P2P_CLIENT:
2374 return cfg80211_chandef_usable(wiphy, &chandef,
2375 IEEE80211_CHAN_DISABLED);
2376 default:
2377 break;
2378 }
2379
2380 return true;
2381
2382 wdev_inactive_unlock:
2383 wdev_unlock(wdev);
2384 return true;
2385 }
2386
reg_leave_invalid_chans(struct wiphy * wiphy)2387 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2388 {
2389 struct wireless_dev *wdev;
2390 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2391
2392 ASSERT_RTNL();
2393
2394 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2395 if (!reg_wdev_chan_valid(wiphy, wdev))
2396 cfg80211_leave(rdev, wdev);
2397 }
2398
reg_check_chans_work(struct work_struct * work)2399 static void reg_check_chans_work(struct work_struct *work)
2400 {
2401 struct cfg80211_registered_device *rdev;
2402
2403 pr_debug("Verifying active interfaces after reg change\n");
2404 rtnl_lock();
2405
2406 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2407 if (!(rdev->wiphy.regulatory_flags &
2408 REGULATORY_IGNORE_STALE_KICKOFF))
2409 reg_leave_invalid_chans(&rdev->wiphy);
2410
2411 rtnl_unlock();
2412 }
2413
reg_check_channels(void)2414 static void reg_check_channels(void)
2415 {
2416 /*
2417 * Give usermode a chance to do something nicer (move to another
2418 * channel, orderly disconnection), before forcing a disconnection.
2419 */
2420 mod_delayed_work(system_power_efficient_wq,
2421 ®_check_chans,
2422 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2423 }
2424
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2425 static void wiphy_update_regulatory(struct wiphy *wiphy,
2426 enum nl80211_reg_initiator initiator)
2427 {
2428 enum nl80211_band band;
2429 struct regulatory_request *lr = get_last_request();
2430
2431 if (ignore_reg_update(wiphy, initiator)) {
2432 /*
2433 * Regulatory updates set by CORE are ignored for custom
2434 * regulatory cards. Let us notify the changes to the driver,
2435 * as some drivers used this to restore its orig_* reg domain.
2436 */
2437 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2438 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2439 !(wiphy->regulatory_flags &
2440 REGULATORY_WIPHY_SELF_MANAGED))
2441 reg_call_notifier(wiphy, lr);
2442 return;
2443 }
2444
2445 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2446
2447 for (band = 0; band < NUM_NL80211_BANDS; band++)
2448 handle_band(wiphy, initiator, wiphy->bands[band]);
2449
2450 reg_process_beacons(wiphy);
2451 reg_process_ht_flags(wiphy);
2452 reg_call_notifier(wiphy, lr);
2453 }
2454
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2455 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2456 {
2457 struct cfg80211_registered_device *rdev;
2458 struct wiphy *wiphy;
2459
2460 ASSERT_RTNL();
2461
2462 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2463 wiphy = &rdev->wiphy;
2464 wiphy_update_regulatory(wiphy, initiator);
2465 }
2466
2467 reg_check_channels();
2468 }
2469
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2470 static void handle_channel_custom(struct wiphy *wiphy,
2471 struct ieee80211_channel *chan,
2472 const struct ieee80211_regdomain *regd,
2473 u32 min_bw)
2474 {
2475 u32 bw_flags = 0;
2476 const struct ieee80211_reg_rule *reg_rule = NULL;
2477 const struct ieee80211_power_rule *power_rule = NULL;
2478 u32 bw, center_freq_khz;
2479
2480 center_freq_khz = ieee80211_channel_to_khz(chan);
2481 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2482 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2483 if (!IS_ERR(reg_rule))
2484 break;
2485 }
2486
2487 if (IS_ERR_OR_NULL(reg_rule)) {
2488 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2489 chan->center_freq, chan->freq_offset);
2490 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2491 chan->flags |= IEEE80211_CHAN_DISABLED;
2492 } else {
2493 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2494 chan->flags = chan->orig_flags;
2495 }
2496 return;
2497 }
2498
2499 power_rule = ®_rule->power_rule;
2500 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2501
2502 chan->dfs_state_entered = jiffies;
2503 chan->dfs_state = NL80211_DFS_USABLE;
2504
2505 chan->beacon_found = false;
2506
2507 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2508 chan->flags = chan->orig_flags | bw_flags |
2509 map_regdom_flags(reg_rule->flags);
2510 else
2511 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2512
2513 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2514 chan->max_reg_power = chan->max_power =
2515 (int) MBM_TO_DBM(power_rule->max_eirp);
2516
2517 if (chan->flags & IEEE80211_CHAN_RADAR) {
2518 if (reg_rule->dfs_cac_ms)
2519 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2520 else
2521 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2522 }
2523
2524 chan->max_power = chan->max_reg_power;
2525 }
2526
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2527 static void handle_band_custom(struct wiphy *wiphy,
2528 struct ieee80211_supported_band *sband,
2529 const struct ieee80211_regdomain *regd)
2530 {
2531 unsigned int i;
2532
2533 if (!sband)
2534 return;
2535
2536 /*
2537 * We currently assume that you always want at least 20 MHz,
2538 * otherwise channel 12 might get enabled if this rule is
2539 * compatible to US, which permits 2402 - 2472 MHz.
2540 */
2541 for (i = 0; i < sband->n_channels; i++)
2542 handle_channel_custom(wiphy, &sband->channels[i], regd,
2543 MHZ_TO_KHZ(20));
2544 }
2545
2546 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2547 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2548 const struct ieee80211_regdomain *regd)
2549 {
2550 enum nl80211_band band;
2551 unsigned int bands_set = 0;
2552
2553 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2554 "wiphy should have REGULATORY_CUSTOM_REG\n");
2555 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2556
2557 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2558 if (!wiphy->bands[band])
2559 continue;
2560 handle_band_custom(wiphy, wiphy->bands[band], regd);
2561 bands_set++;
2562 }
2563
2564 /*
2565 * no point in calling this if it won't have any effect
2566 * on your device's supported bands.
2567 */
2568 WARN_ON(!bands_set);
2569 }
2570 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2571
reg_set_request_processed(void)2572 static void reg_set_request_processed(void)
2573 {
2574 bool need_more_processing = false;
2575 struct regulatory_request *lr = get_last_request();
2576
2577 lr->processed = true;
2578
2579 spin_lock(®_requests_lock);
2580 if (!list_empty(®_requests_list))
2581 need_more_processing = true;
2582 spin_unlock(®_requests_lock);
2583
2584 cancel_crda_timeout();
2585
2586 if (need_more_processing)
2587 schedule_work(®_work);
2588 }
2589
2590 /**
2591 * reg_process_hint_core - process core regulatory requests
2592 * @core_request: a pending core regulatory request
2593 *
2594 * The wireless subsystem can use this function to process
2595 * a regulatory request issued by the regulatory core.
2596 */
2597 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2598 reg_process_hint_core(struct regulatory_request *core_request)
2599 {
2600 if (reg_query_database(core_request)) {
2601 core_request->intersect = false;
2602 core_request->processed = false;
2603 reg_update_last_request(core_request);
2604 return REG_REQ_OK;
2605 }
2606
2607 return REG_REQ_IGNORE;
2608 }
2609
2610 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2611 __reg_process_hint_user(struct regulatory_request *user_request)
2612 {
2613 struct regulatory_request *lr = get_last_request();
2614
2615 if (reg_request_cell_base(user_request))
2616 return reg_ignore_cell_hint(user_request);
2617
2618 if (reg_request_cell_base(lr))
2619 return REG_REQ_IGNORE;
2620
2621 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2622 return REG_REQ_INTERSECT;
2623 /*
2624 * If the user knows better the user should set the regdom
2625 * to their country before the IE is picked up
2626 */
2627 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2628 lr->intersect)
2629 return REG_REQ_IGNORE;
2630 /*
2631 * Process user requests only after previous user/driver/core
2632 * requests have been processed
2633 */
2634 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2635 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2636 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2637 regdom_changes(lr->alpha2))
2638 return REG_REQ_IGNORE;
2639
2640 if (!regdom_changes(user_request->alpha2))
2641 return REG_REQ_ALREADY_SET;
2642
2643 return REG_REQ_OK;
2644 }
2645
2646 /**
2647 * reg_process_hint_user - process user regulatory requests
2648 * @user_request: a pending user regulatory request
2649 *
2650 * The wireless subsystem can use this function to process
2651 * a regulatory request initiated by userspace.
2652 */
2653 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2654 reg_process_hint_user(struct regulatory_request *user_request)
2655 {
2656 enum reg_request_treatment treatment;
2657
2658 treatment = __reg_process_hint_user(user_request);
2659 if (treatment == REG_REQ_IGNORE ||
2660 treatment == REG_REQ_ALREADY_SET)
2661 return REG_REQ_IGNORE;
2662
2663 user_request->intersect = treatment == REG_REQ_INTERSECT;
2664 user_request->processed = false;
2665
2666 if (reg_query_database(user_request)) {
2667 reg_update_last_request(user_request);
2668 user_alpha2[0] = user_request->alpha2[0];
2669 user_alpha2[1] = user_request->alpha2[1];
2670 return REG_REQ_OK;
2671 }
2672
2673 return REG_REQ_IGNORE;
2674 }
2675
2676 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2677 __reg_process_hint_driver(struct regulatory_request *driver_request)
2678 {
2679 struct regulatory_request *lr = get_last_request();
2680
2681 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2682 if (regdom_changes(driver_request->alpha2))
2683 return REG_REQ_OK;
2684 return REG_REQ_ALREADY_SET;
2685 }
2686
2687 /*
2688 * This would happen if you unplug and plug your card
2689 * back in or if you add a new device for which the previously
2690 * loaded card also agrees on the regulatory domain.
2691 */
2692 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2693 !regdom_changes(driver_request->alpha2))
2694 return REG_REQ_ALREADY_SET;
2695
2696 return REG_REQ_INTERSECT;
2697 }
2698
2699 /**
2700 * reg_process_hint_driver - process driver regulatory requests
2701 * @wiphy: the wireless device for the regulatory request
2702 * @driver_request: a pending driver regulatory request
2703 *
2704 * The wireless subsystem can use this function to process
2705 * a regulatory request issued by an 802.11 driver.
2706 *
2707 * Returns one of the different reg request treatment values.
2708 */
2709 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2710 reg_process_hint_driver(struct wiphy *wiphy,
2711 struct regulatory_request *driver_request)
2712 {
2713 const struct ieee80211_regdomain *regd, *tmp;
2714 enum reg_request_treatment treatment;
2715
2716 treatment = __reg_process_hint_driver(driver_request);
2717
2718 switch (treatment) {
2719 case REG_REQ_OK:
2720 break;
2721 case REG_REQ_IGNORE:
2722 return REG_REQ_IGNORE;
2723 case REG_REQ_INTERSECT:
2724 case REG_REQ_ALREADY_SET:
2725 regd = reg_copy_regd(get_cfg80211_regdom());
2726 if (IS_ERR(regd))
2727 return REG_REQ_IGNORE;
2728
2729 tmp = get_wiphy_regdom(wiphy);
2730 rcu_assign_pointer(wiphy->regd, regd);
2731 rcu_free_regdom(tmp);
2732 }
2733
2734
2735 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2736 driver_request->processed = false;
2737
2738 /*
2739 * Since CRDA will not be called in this case as we already
2740 * have applied the requested regulatory domain before we just
2741 * inform userspace we have processed the request
2742 */
2743 if (treatment == REG_REQ_ALREADY_SET) {
2744 nl80211_send_reg_change_event(driver_request);
2745 reg_update_last_request(driver_request);
2746 reg_set_request_processed();
2747 return REG_REQ_ALREADY_SET;
2748 }
2749
2750 if (reg_query_database(driver_request)) {
2751 reg_update_last_request(driver_request);
2752 return REG_REQ_OK;
2753 }
2754
2755 return REG_REQ_IGNORE;
2756 }
2757
2758 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2759 __reg_process_hint_country_ie(struct wiphy *wiphy,
2760 struct regulatory_request *country_ie_request)
2761 {
2762 struct wiphy *last_wiphy = NULL;
2763 struct regulatory_request *lr = get_last_request();
2764
2765 if (reg_request_cell_base(lr)) {
2766 /* Trust a Cell base station over the AP's country IE */
2767 if (regdom_changes(country_ie_request->alpha2))
2768 return REG_REQ_IGNORE;
2769 return REG_REQ_ALREADY_SET;
2770 } else {
2771 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2772 return REG_REQ_IGNORE;
2773 }
2774
2775 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2776 return -EINVAL;
2777
2778 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2779 return REG_REQ_OK;
2780
2781 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2782
2783 if (last_wiphy != wiphy) {
2784 /*
2785 * Two cards with two APs claiming different
2786 * Country IE alpha2s. We could
2787 * intersect them, but that seems unlikely
2788 * to be correct. Reject second one for now.
2789 */
2790 if (regdom_changes(country_ie_request->alpha2))
2791 return REG_REQ_IGNORE;
2792 return REG_REQ_ALREADY_SET;
2793 }
2794
2795 if (regdom_changes(country_ie_request->alpha2))
2796 return REG_REQ_OK;
2797 return REG_REQ_ALREADY_SET;
2798 }
2799
2800 /**
2801 * reg_process_hint_country_ie - process regulatory requests from country IEs
2802 * @wiphy: the wireless device for the regulatory request
2803 * @country_ie_request: a regulatory request from a country IE
2804 *
2805 * The wireless subsystem can use this function to process
2806 * a regulatory request issued by a country Information Element.
2807 *
2808 * Returns one of the different reg request treatment values.
2809 */
2810 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2811 reg_process_hint_country_ie(struct wiphy *wiphy,
2812 struct regulatory_request *country_ie_request)
2813 {
2814 enum reg_request_treatment treatment;
2815
2816 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2817
2818 switch (treatment) {
2819 case REG_REQ_OK:
2820 break;
2821 case REG_REQ_IGNORE:
2822 return REG_REQ_IGNORE;
2823 case REG_REQ_ALREADY_SET:
2824 reg_free_request(country_ie_request);
2825 return REG_REQ_ALREADY_SET;
2826 case REG_REQ_INTERSECT:
2827 /*
2828 * This doesn't happen yet, not sure we
2829 * ever want to support it for this case.
2830 */
2831 WARN_ONCE(1, "Unexpected intersection for country elements");
2832 return REG_REQ_IGNORE;
2833 }
2834
2835 country_ie_request->intersect = false;
2836 country_ie_request->processed = false;
2837
2838 if (reg_query_database(country_ie_request)) {
2839 reg_update_last_request(country_ie_request);
2840 return REG_REQ_OK;
2841 }
2842
2843 return REG_REQ_IGNORE;
2844 }
2845
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2846 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2847 {
2848 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2849 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2850 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2851 bool dfs_domain_same;
2852
2853 rcu_read_lock();
2854
2855 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2856 wiphy1_regd = rcu_dereference(wiphy1->regd);
2857 if (!wiphy1_regd)
2858 wiphy1_regd = cfg80211_regd;
2859
2860 wiphy2_regd = rcu_dereference(wiphy2->regd);
2861 if (!wiphy2_regd)
2862 wiphy2_regd = cfg80211_regd;
2863
2864 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2865
2866 rcu_read_unlock();
2867
2868 return dfs_domain_same;
2869 }
2870
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2871 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2872 struct ieee80211_channel *src_chan)
2873 {
2874 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2875 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2876 return;
2877
2878 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2879 src_chan->flags & IEEE80211_CHAN_DISABLED)
2880 return;
2881
2882 if (src_chan->center_freq == dst_chan->center_freq &&
2883 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2884 dst_chan->dfs_state = src_chan->dfs_state;
2885 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2886 }
2887 }
2888
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2889 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2890 struct wiphy *src_wiphy)
2891 {
2892 struct ieee80211_supported_band *src_sband, *dst_sband;
2893 struct ieee80211_channel *src_chan, *dst_chan;
2894 int i, j, band;
2895
2896 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2897 return;
2898
2899 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2900 dst_sband = dst_wiphy->bands[band];
2901 src_sband = src_wiphy->bands[band];
2902 if (!dst_sband || !src_sband)
2903 continue;
2904
2905 for (i = 0; i < dst_sband->n_channels; i++) {
2906 dst_chan = &dst_sband->channels[i];
2907 for (j = 0; j < src_sband->n_channels; j++) {
2908 src_chan = &src_sband->channels[j];
2909 reg_copy_dfs_chan_state(dst_chan, src_chan);
2910 }
2911 }
2912 }
2913 }
2914
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)2915 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2916 {
2917 struct cfg80211_registered_device *rdev;
2918
2919 ASSERT_RTNL();
2920
2921 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2922 if (wiphy == &rdev->wiphy)
2923 continue;
2924 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2925 }
2926 }
2927
2928 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)2929 static void reg_process_hint(struct regulatory_request *reg_request)
2930 {
2931 struct wiphy *wiphy = NULL;
2932 enum reg_request_treatment treatment;
2933 enum nl80211_reg_initiator initiator = reg_request->initiator;
2934
2935 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2936 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2937
2938 switch (initiator) {
2939 case NL80211_REGDOM_SET_BY_CORE:
2940 treatment = reg_process_hint_core(reg_request);
2941 break;
2942 case NL80211_REGDOM_SET_BY_USER:
2943 treatment = reg_process_hint_user(reg_request);
2944 break;
2945 case NL80211_REGDOM_SET_BY_DRIVER:
2946 if (!wiphy)
2947 goto out_free;
2948 treatment = reg_process_hint_driver(wiphy, reg_request);
2949 break;
2950 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2951 if (!wiphy)
2952 goto out_free;
2953 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2954 break;
2955 default:
2956 WARN(1, "invalid initiator %d\n", initiator);
2957 goto out_free;
2958 }
2959
2960 if (treatment == REG_REQ_IGNORE)
2961 goto out_free;
2962
2963 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2964 "unexpected treatment value %d\n", treatment);
2965
2966 /* This is required so that the orig_* parameters are saved.
2967 * NOTE: treatment must be set for any case that reaches here!
2968 */
2969 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2970 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2971 wiphy_update_regulatory(wiphy, initiator);
2972 wiphy_all_share_dfs_chan_state(wiphy);
2973 reg_check_channels();
2974 }
2975
2976 return;
2977
2978 out_free:
2979 reg_free_request(reg_request);
2980 }
2981
notify_self_managed_wiphys(struct regulatory_request * request)2982 static void notify_self_managed_wiphys(struct regulatory_request *request)
2983 {
2984 struct cfg80211_registered_device *rdev;
2985 struct wiphy *wiphy;
2986
2987 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2988 wiphy = &rdev->wiphy;
2989 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2990 request->initiator == NL80211_REGDOM_SET_BY_USER)
2991 reg_call_notifier(wiphy, request);
2992 }
2993 }
2994
2995 /*
2996 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2997 * Regulatory hints come on a first come first serve basis and we
2998 * must process each one atomically.
2999 */
reg_process_pending_hints(void)3000 static void reg_process_pending_hints(void)
3001 {
3002 struct regulatory_request *reg_request, *lr;
3003
3004 lr = get_last_request();
3005
3006 /* When last_request->processed becomes true this will be rescheduled */
3007 if (lr && !lr->processed) {
3008 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3009 return;
3010 }
3011
3012 spin_lock(®_requests_lock);
3013
3014 if (list_empty(®_requests_list)) {
3015 spin_unlock(®_requests_lock);
3016 return;
3017 }
3018
3019 reg_request = list_first_entry(®_requests_list,
3020 struct regulatory_request,
3021 list);
3022 list_del_init(®_request->list);
3023
3024 spin_unlock(®_requests_lock);
3025
3026 notify_self_managed_wiphys(reg_request);
3027
3028 reg_process_hint(reg_request);
3029
3030 lr = get_last_request();
3031
3032 spin_lock(®_requests_lock);
3033 if (!list_empty(®_requests_list) && lr && lr->processed)
3034 schedule_work(®_work);
3035 spin_unlock(®_requests_lock);
3036 }
3037
3038 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3039 static void reg_process_pending_beacon_hints(void)
3040 {
3041 struct cfg80211_registered_device *rdev;
3042 struct reg_beacon *pending_beacon, *tmp;
3043
3044 /* This goes through the _pending_ beacon list */
3045 spin_lock_bh(®_pending_beacons_lock);
3046
3047 list_for_each_entry_safe(pending_beacon, tmp,
3048 ®_pending_beacons, list) {
3049 list_del_init(&pending_beacon->list);
3050
3051 /* Applies the beacon hint to current wiphys */
3052 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3053 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3054
3055 /* Remembers the beacon hint for new wiphys or reg changes */
3056 list_add_tail(&pending_beacon->list, ®_beacon_list);
3057 }
3058
3059 spin_unlock_bh(®_pending_beacons_lock);
3060 }
3061
reg_process_self_managed_hints(void)3062 static void reg_process_self_managed_hints(void)
3063 {
3064 struct cfg80211_registered_device *rdev;
3065 struct wiphy *wiphy;
3066 const struct ieee80211_regdomain *tmp;
3067 const struct ieee80211_regdomain *regd;
3068 enum nl80211_band band;
3069 struct regulatory_request request = {};
3070
3071 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3072 wiphy = &rdev->wiphy;
3073
3074 spin_lock(®_requests_lock);
3075 regd = rdev->requested_regd;
3076 rdev->requested_regd = NULL;
3077 spin_unlock(®_requests_lock);
3078
3079 if (regd == NULL)
3080 continue;
3081
3082 tmp = get_wiphy_regdom(wiphy);
3083 rcu_assign_pointer(wiphy->regd, regd);
3084 rcu_free_regdom(tmp);
3085
3086 for (band = 0; band < NUM_NL80211_BANDS; band++)
3087 handle_band_custom(wiphy, wiphy->bands[band], regd);
3088
3089 reg_process_ht_flags(wiphy);
3090
3091 request.wiphy_idx = get_wiphy_idx(wiphy);
3092 request.alpha2[0] = regd->alpha2[0];
3093 request.alpha2[1] = regd->alpha2[1];
3094 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3095
3096 nl80211_send_wiphy_reg_change_event(&request);
3097 }
3098
3099 reg_check_channels();
3100 }
3101
reg_todo(struct work_struct * work)3102 static void reg_todo(struct work_struct *work)
3103 {
3104 rtnl_lock();
3105 reg_process_pending_hints();
3106 reg_process_pending_beacon_hints();
3107 reg_process_self_managed_hints();
3108 rtnl_unlock();
3109 }
3110
queue_regulatory_request(struct regulatory_request * request)3111 static void queue_regulatory_request(struct regulatory_request *request)
3112 {
3113 request->alpha2[0] = toupper(request->alpha2[0]);
3114 request->alpha2[1] = toupper(request->alpha2[1]);
3115
3116 spin_lock(®_requests_lock);
3117 list_add_tail(&request->list, ®_requests_list);
3118 spin_unlock(®_requests_lock);
3119
3120 schedule_work(®_work);
3121 }
3122
3123 /*
3124 * Core regulatory hint -- happens during cfg80211_init()
3125 * and when we restore regulatory settings.
3126 */
regulatory_hint_core(const char * alpha2)3127 static int regulatory_hint_core(const char *alpha2)
3128 {
3129 struct regulatory_request *request;
3130
3131 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3132 if (!request)
3133 return -ENOMEM;
3134
3135 request->alpha2[0] = alpha2[0];
3136 request->alpha2[1] = alpha2[1];
3137 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3138 request->wiphy_idx = WIPHY_IDX_INVALID;
3139
3140 queue_regulatory_request(request);
3141
3142 return 0;
3143 }
3144
3145 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3146 int regulatory_hint_user(const char *alpha2,
3147 enum nl80211_user_reg_hint_type user_reg_hint_type)
3148 {
3149 struct regulatory_request *request;
3150
3151 if (WARN_ON(!alpha2))
3152 return -EINVAL;
3153
3154 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3155 return -EINVAL;
3156
3157 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3158 if (!request)
3159 return -ENOMEM;
3160
3161 request->wiphy_idx = WIPHY_IDX_INVALID;
3162 request->alpha2[0] = alpha2[0];
3163 request->alpha2[1] = alpha2[1];
3164 request->initiator = NL80211_REGDOM_SET_BY_USER;
3165 request->user_reg_hint_type = user_reg_hint_type;
3166
3167 /* Allow calling CRDA again */
3168 reset_crda_timeouts();
3169
3170 queue_regulatory_request(request);
3171
3172 return 0;
3173 }
3174
regulatory_hint_indoor(bool is_indoor,u32 portid)3175 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3176 {
3177 spin_lock(®_indoor_lock);
3178
3179 /* It is possible that more than one user space process is trying to
3180 * configure the indoor setting. To handle such cases, clear the indoor
3181 * setting in case that some process does not think that the device
3182 * is operating in an indoor environment. In addition, if a user space
3183 * process indicates that it is controlling the indoor setting, save its
3184 * portid, i.e., make it the owner.
3185 */
3186 reg_is_indoor = is_indoor;
3187 if (reg_is_indoor) {
3188 if (!reg_is_indoor_portid)
3189 reg_is_indoor_portid = portid;
3190 } else {
3191 reg_is_indoor_portid = 0;
3192 }
3193
3194 spin_unlock(®_indoor_lock);
3195
3196 if (!is_indoor)
3197 reg_check_channels();
3198
3199 return 0;
3200 }
3201
regulatory_netlink_notify(u32 portid)3202 void regulatory_netlink_notify(u32 portid)
3203 {
3204 spin_lock(®_indoor_lock);
3205
3206 if (reg_is_indoor_portid != portid) {
3207 spin_unlock(®_indoor_lock);
3208 return;
3209 }
3210
3211 reg_is_indoor = false;
3212 reg_is_indoor_portid = 0;
3213
3214 spin_unlock(®_indoor_lock);
3215
3216 reg_check_channels();
3217 }
3218
3219 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3220 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3221 {
3222 struct regulatory_request *request;
3223
3224 if (WARN_ON(!alpha2 || !wiphy))
3225 return -EINVAL;
3226
3227 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3228
3229 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3230 if (!request)
3231 return -ENOMEM;
3232
3233 request->wiphy_idx = get_wiphy_idx(wiphy);
3234
3235 request->alpha2[0] = alpha2[0];
3236 request->alpha2[1] = alpha2[1];
3237 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3238
3239 /* Allow calling CRDA again */
3240 reset_crda_timeouts();
3241
3242 queue_regulatory_request(request);
3243
3244 return 0;
3245 }
3246 EXPORT_SYMBOL(regulatory_hint);
3247
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3248 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3249 const u8 *country_ie, u8 country_ie_len)
3250 {
3251 char alpha2[2];
3252 enum environment_cap env = ENVIRON_ANY;
3253 struct regulatory_request *request = NULL, *lr;
3254
3255 /* IE len must be evenly divisible by 2 */
3256 if (country_ie_len & 0x01)
3257 return;
3258
3259 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3260 return;
3261
3262 request = kzalloc(sizeof(*request), GFP_KERNEL);
3263 if (!request)
3264 return;
3265
3266 alpha2[0] = country_ie[0];
3267 alpha2[1] = country_ie[1];
3268
3269 if (country_ie[2] == 'I')
3270 env = ENVIRON_INDOOR;
3271 else if (country_ie[2] == 'O')
3272 env = ENVIRON_OUTDOOR;
3273
3274 rcu_read_lock();
3275 lr = get_last_request();
3276
3277 if (unlikely(!lr))
3278 goto out;
3279
3280 /*
3281 * We will run this only upon a successful connection on cfg80211.
3282 * We leave conflict resolution to the workqueue, where can hold
3283 * the RTNL.
3284 */
3285 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3286 lr->wiphy_idx != WIPHY_IDX_INVALID)
3287 goto out;
3288
3289 request->wiphy_idx = get_wiphy_idx(wiphy);
3290 request->alpha2[0] = alpha2[0];
3291 request->alpha2[1] = alpha2[1];
3292 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3293 request->country_ie_env = env;
3294
3295 /* Allow calling CRDA again */
3296 reset_crda_timeouts();
3297
3298 queue_regulatory_request(request);
3299 request = NULL;
3300 out:
3301 kfree(request);
3302 rcu_read_unlock();
3303 }
3304
restore_alpha2(char * alpha2,bool reset_user)3305 static void restore_alpha2(char *alpha2, bool reset_user)
3306 {
3307 /* indicates there is no alpha2 to consider for restoration */
3308 alpha2[0] = '9';
3309 alpha2[1] = '7';
3310
3311 /* The user setting has precedence over the module parameter */
3312 if (is_user_regdom_saved()) {
3313 /* Unless we're asked to ignore it and reset it */
3314 if (reset_user) {
3315 pr_debug("Restoring regulatory settings including user preference\n");
3316 user_alpha2[0] = '9';
3317 user_alpha2[1] = '7';
3318
3319 /*
3320 * If we're ignoring user settings, we still need to
3321 * check the module parameter to ensure we put things
3322 * back as they were for a full restore.
3323 */
3324 if (!is_world_regdom(ieee80211_regdom)) {
3325 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3326 ieee80211_regdom[0], ieee80211_regdom[1]);
3327 alpha2[0] = ieee80211_regdom[0];
3328 alpha2[1] = ieee80211_regdom[1];
3329 }
3330 } else {
3331 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3332 user_alpha2[0], user_alpha2[1]);
3333 alpha2[0] = user_alpha2[0];
3334 alpha2[1] = user_alpha2[1];
3335 }
3336 } else if (!is_world_regdom(ieee80211_regdom)) {
3337 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3338 ieee80211_regdom[0], ieee80211_regdom[1]);
3339 alpha2[0] = ieee80211_regdom[0];
3340 alpha2[1] = ieee80211_regdom[1];
3341 } else
3342 pr_debug("Restoring regulatory settings\n");
3343 }
3344
restore_custom_reg_settings(struct wiphy * wiphy)3345 static void restore_custom_reg_settings(struct wiphy *wiphy)
3346 {
3347 struct ieee80211_supported_band *sband;
3348 enum nl80211_band band;
3349 struct ieee80211_channel *chan;
3350 int i;
3351
3352 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3353 sband = wiphy->bands[band];
3354 if (!sband)
3355 continue;
3356 for (i = 0; i < sband->n_channels; i++) {
3357 chan = &sband->channels[i];
3358 chan->flags = chan->orig_flags;
3359 chan->max_antenna_gain = chan->orig_mag;
3360 chan->max_power = chan->orig_mpwr;
3361 chan->beacon_found = false;
3362 }
3363 }
3364 }
3365
3366 /*
3367 * Restoring regulatory settings involves ingoring any
3368 * possibly stale country IE information and user regulatory
3369 * settings if so desired, this includes any beacon hints
3370 * learned as we could have traveled outside to another country
3371 * after disconnection. To restore regulatory settings we do
3372 * exactly what we did at bootup:
3373 *
3374 * - send a core regulatory hint
3375 * - send a user regulatory hint if applicable
3376 *
3377 * Device drivers that send a regulatory hint for a specific country
3378 * keep their own regulatory domain on wiphy->regd so that does
3379 * not need to be remembered.
3380 */
restore_regulatory_settings(bool reset_user,bool cached)3381 static void restore_regulatory_settings(bool reset_user, bool cached)
3382 {
3383 char alpha2[2];
3384 char world_alpha2[2];
3385 struct reg_beacon *reg_beacon, *btmp;
3386 LIST_HEAD(tmp_reg_req_list);
3387 struct cfg80211_registered_device *rdev;
3388
3389 ASSERT_RTNL();
3390
3391 /*
3392 * Clear the indoor setting in case that it is not controlled by user
3393 * space, as otherwise there is no guarantee that the device is still
3394 * operating in an indoor environment.
3395 */
3396 spin_lock(®_indoor_lock);
3397 if (reg_is_indoor && !reg_is_indoor_portid) {
3398 reg_is_indoor = false;
3399 reg_check_channels();
3400 }
3401 spin_unlock(®_indoor_lock);
3402
3403 reset_regdomains(true, &world_regdom);
3404 restore_alpha2(alpha2, reset_user);
3405
3406 /*
3407 * If there's any pending requests we simply
3408 * stash them to a temporary pending queue and
3409 * add then after we've restored regulatory
3410 * settings.
3411 */
3412 spin_lock(®_requests_lock);
3413 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3414 spin_unlock(®_requests_lock);
3415
3416 /* Clear beacon hints */
3417 spin_lock_bh(®_pending_beacons_lock);
3418 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3419 list_del(®_beacon->list);
3420 kfree(reg_beacon);
3421 }
3422 spin_unlock_bh(®_pending_beacons_lock);
3423
3424 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3425 list_del(®_beacon->list);
3426 kfree(reg_beacon);
3427 }
3428
3429 /* First restore to the basic regulatory settings */
3430 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3431 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3432
3433 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3434 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3435 continue;
3436 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3437 restore_custom_reg_settings(&rdev->wiphy);
3438 }
3439
3440 if (cached && (!is_an_alpha2(alpha2) ||
3441 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3442 reset_regdomains(false, cfg80211_world_regdom);
3443 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3444 print_regdomain(get_cfg80211_regdom());
3445 nl80211_send_reg_change_event(&core_request_world);
3446 reg_set_request_processed();
3447
3448 if (is_an_alpha2(alpha2) &&
3449 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3450 struct regulatory_request *ureq;
3451
3452 spin_lock(®_requests_lock);
3453 ureq = list_last_entry(®_requests_list,
3454 struct regulatory_request,
3455 list);
3456 list_del(&ureq->list);
3457 spin_unlock(®_requests_lock);
3458
3459 notify_self_managed_wiphys(ureq);
3460 reg_update_last_request(ureq);
3461 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3462 REGD_SOURCE_CACHED);
3463 }
3464 } else {
3465 regulatory_hint_core(world_alpha2);
3466
3467 /*
3468 * This restores the ieee80211_regdom module parameter
3469 * preference or the last user requested regulatory
3470 * settings, user regulatory settings takes precedence.
3471 */
3472 if (is_an_alpha2(alpha2))
3473 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3474 }
3475
3476 spin_lock(®_requests_lock);
3477 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3478 spin_unlock(®_requests_lock);
3479
3480 pr_debug("Kicking the queue\n");
3481
3482 schedule_work(®_work);
3483 }
3484
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3485 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3486 {
3487 struct cfg80211_registered_device *rdev;
3488 struct wireless_dev *wdev;
3489
3490 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3491 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3492 wdev_lock(wdev);
3493 if (!(wdev->wiphy->regulatory_flags & flag)) {
3494 wdev_unlock(wdev);
3495 return false;
3496 }
3497 wdev_unlock(wdev);
3498 }
3499 }
3500
3501 return true;
3502 }
3503
regulatory_hint_disconnect(void)3504 void regulatory_hint_disconnect(void)
3505 {
3506 /* Restore of regulatory settings is not required when wiphy(s)
3507 * ignore IE from connected access point but clearance of beacon hints
3508 * is required when wiphy(s) supports beacon hints.
3509 */
3510 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3511 struct reg_beacon *reg_beacon, *btmp;
3512
3513 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3514 return;
3515
3516 spin_lock_bh(®_pending_beacons_lock);
3517 list_for_each_entry_safe(reg_beacon, btmp,
3518 ®_pending_beacons, list) {
3519 list_del(®_beacon->list);
3520 kfree(reg_beacon);
3521 }
3522 spin_unlock_bh(®_pending_beacons_lock);
3523
3524 list_for_each_entry_safe(reg_beacon, btmp,
3525 ®_beacon_list, list) {
3526 list_del(®_beacon->list);
3527 kfree(reg_beacon);
3528 }
3529
3530 return;
3531 }
3532
3533 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3534 restore_regulatory_settings(false, true);
3535 }
3536
freq_is_chan_12_13_14(u32 freq)3537 static bool freq_is_chan_12_13_14(u32 freq)
3538 {
3539 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3540 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3541 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3542 return true;
3543 return false;
3544 }
3545
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3546 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3547 {
3548 struct reg_beacon *pending_beacon;
3549
3550 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3551 if (ieee80211_channel_equal(beacon_chan,
3552 &pending_beacon->chan))
3553 return true;
3554 return false;
3555 }
3556
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3557 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3558 struct ieee80211_channel *beacon_chan,
3559 gfp_t gfp)
3560 {
3561 struct reg_beacon *reg_beacon;
3562 bool processing;
3563
3564 if (beacon_chan->beacon_found ||
3565 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3566 (beacon_chan->band == NL80211_BAND_2GHZ &&
3567 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3568 return 0;
3569
3570 spin_lock_bh(®_pending_beacons_lock);
3571 processing = pending_reg_beacon(beacon_chan);
3572 spin_unlock_bh(®_pending_beacons_lock);
3573
3574 if (processing)
3575 return 0;
3576
3577 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3578 if (!reg_beacon)
3579 return -ENOMEM;
3580
3581 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3582 beacon_chan->center_freq, beacon_chan->freq_offset,
3583 ieee80211_freq_khz_to_channel(
3584 ieee80211_channel_to_khz(beacon_chan)),
3585 wiphy_name(wiphy));
3586
3587 memcpy(®_beacon->chan, beacon_chan,
3588 sizeof(struct ieee80211_channel));
3589
3590 /*
3591 * Since we can be called from BH or and non-BH context
3592 * we must use spin_lock_bh()
3593 */
3594 spin_lock_bh(®_pending_beacons_lock);
3595 list_add_tail(®_beacon->list, ®_pending_beacons);
3596 spin_unlock_bh(®_pending_beacons_lock);
3597
3598 schedule_work(®_work);
3599
3600 return 0;
3601 }
3602
print_rd_rules(const struct ieee80211_regdomain * rd)3603 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3604 {
3605 unsigned int i;
3606 const struct ieee80211_reg_rule *reg_rule = NULL;
3607 const struct ieee80211_freq_range *freq_range = NULL;
3608 const struct ieee80211_power_rule *power_rule = NULL;
3609 char bw[32], cac_time[32];
3610
3611 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3612
3613 for (i = 0; i < rd->n_reg_rules; i++) {
3614 reg_rule = &rd->reg_rules[i];
3615 freq_range = ®_rule->freq_range;
3616 power_rule = ®_rule->power_rule;
3617
3618 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3619 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3620 freq_range->max_bandwidth_khz,
3621 reg_get_max_bandwidth(rd, reg_rule));
3622 else
3623 snprintf(bw, sizeof(bw), "%d KHz",
3624 freq_range->max_bandwidth_khz);
3625
3626 if (reg_rule->flags & NL80211_RRF_DFS)
3627 scnprintf(cac_time, sizeof(cac_time), "%u s",
3628 reg_rule->dfs_cac_ms/1000);
3629 else
3630 scnprintf(cac_time, sizeof(cac_time), "N/A");
3631
3632
3633 /*
3634 * There may not be documentation for max antenna gain
3635 * in certain regions
3636 */
3637 if (power_rule->max_antenna_gain)
3638 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3639 freq_range->start_freq_khz,
3640 freq_range->end_freq_khz,
3641 bw,
3642 power_rule->max_antenna_gain,
3643 power_rule->max_eirp,
3644 cac_time);
3645 else
3646 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3647 freq_range->start_freq_khz,
3648 freq_range->end_freq_khz,
3649 bw,
3650 power_rule->max_eirp,
3651 cac_time);
3652 }
3653 }
3654
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3655 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3656 {
3657 switch (dfs_region) {
3658 case NL80211_DFS_UNSET:
3659 case NL80211_DFS_FCC:
3660 case NL80211_DFS_ETSI:
3661 case NL80211_DFS_JP:
3662 return true;
3663 default:
3664 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3665 return false;
3666 }
3667 }
3668
print_regdomain(const struct ieee80211_regdomain * rd)3669 static void print_regdomain(const struct ieee80211_regdomain *rd)
3670 {
3671 struct regulatory_request *lr = get_last_request();
3672
3673 if (is_intersected_alpha2(rd->alpha2)) {
3674 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3675 struct cfg80211_registered_device *rdev;
3676 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3677 if (rdev) {
3678 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3679 rdev->country_ie_alpha2[0],
3680 rdev->country_ie_alpha2[1]);
3681 } else
3682 pr_debug("Current regulatory domain intersected:\n");
3683 } else
3684 pr_debug("Current regulatory domain intersected:\n");
3685 } else if (is_world_regdom(rd->alpha2)) {
3686 pr_debug("World regulatory domain updated:\n");
3687 } else {
3688 if (is_unknown_alpha2(rd->alpha2))
3689 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3690 else {
3691 if (reg_request_cell_base(lr))
3692 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3693 rd->alpha2[0], rd->alpha2[1]);
3694 else
3695 pr_debug("Regulatory domain changed to country: %c%c\n",
3696 rd->alpha2[0], rd->alpha2[1]);
3697 }
3698 }
3699
3700 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3701 print_rd_rules(rd);
3702 }
3703
print_regdomain_info(const struct ieee80211_regdomain * rd)3704 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3705 {
3706 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3707 print_rd_rules(rd);
3708 }
3709
reg_set_rd_core(const struct ieee80211_regdomain * rd)3710 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3711 {
3712 if (!is_world_regdom(rd->alpha2))
3713 return -EINVAL;
3714 update_world_regdomain(rd);
3715 return 0;
3716 }
3717
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3718 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3719 struct regulatory_request *user_request)
3720 {
3721 const struct ieee80211_regdomain *intersected_rd = NULL;
3722
3723 if (!regdom_changes(rd->alpha2))
3724 return -EALREADY;
3725
3726 if (!is_valid_rd(rd)) {
3727 pr_err("Invalid regulatory domain detected: %c%c\n",
3728 rd->alpha2[0], rd->alpha2[1]);
3729 print_regdomain_info(rd);
3730 return -EINVAL;
3731 }
3732
3733 if (!user_request->intersect) {
3734 reset_regdomains(false, rd);
3735 return 0;
3736 }
3737
3738 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3739 if (!intersected_rd)
3740 return -EINVAL;
3741
3742 kfree(rd);
3743 rd = NULL;
3744 reset_regdomains(false, intersected_rd);
3745
3746 return 0;
3747 }
3748
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3749 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3750 struct regulatory_request *driver_request)
3751 {
3752 const struct ieee80211_regdomain *regd;
3753 const struct ieee80211_regdomain *intersected_rd = NULL;
3754 const struct ieee80211_regdomain *tmp;
3755 struct wiphy *request_wiphy;
3756
3757 if (is_world_regdom(rd->alpha2))
3758 return -EINVAL;
3759
3760 if (!regdom_changes(rd->alpha2))
3761 return -EALREADY;
3762
3763 if (!is_valid_rd(rd)) {
3764 pr_err("Invalid regulatory domain detected: %c%c\n",
3765 rd->alpha2[0], rd->alpha2[1]);
3766 print_regdomain_info(rd);
3767 return -EINVAL;
3768 }
3769
3770 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3771 if (!request_wiphy)
3772 return -ENODEV;
3773
3774 if (!driver_request->intersect) {
3775 if (request_wiphy->regd)
3776 return -EALREADY;
3777
3778 regd = reg_copy_regd(rd);
3779 if (IS_ERR(regd))
3780 return PTR_ERR(regd);
3781
3782 rcu_assign_pointer(request_wiphy->regd, regd);
3783 reset_regdomains(false, rd);
3784 return 0;
3785 }
3786
3787 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3788 if (!intersected_rd)
3789 return -EINVAL;
3790
3791 /*
3792 * We can trash what CRDA provided now.
3793 * However if a driver requested this specific regulatory
3794 * domain we keep it for its private use
3795 */
3796 tmp = get_wiphy_regdom(request_wiphy);
3797 rcu_assign_pointer(request_wiphy->regd, rd);
3798 rcu_free_regdom(tmp);
3799
3800 rd = NULL;
3801
3802 reset_regdomains(false, intersected_rd);
3803
3804 return 0;
3805 }
3806
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3807 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3808 struct regulatory_request *country_ie_request)
3809 {
3810 struct wiphy *request_wiphy;
3811
3812 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3813 !is_unknown_alpha2(rd->alpha2))
3814 return -EINVAL;
3815
3816 /*
3817 * Lets only bother proceeding on the same alpha2 if the current
3818 * rd is non static (it means CRDA was present and was used last)
3819 * and the pending request came in from a country IE
3820 */
3821
3822 if (!is_valid_rd(rd)) {
3823 pr_err("Invalid regulatory domain detected: %c%c\n",
3824 rd->alpha2[0], rd->alpha2[1]);
3825 print_regdomain_info(rd);
3826 return -EINVAL;
3827 }
3828
3829 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3830 if (!request_wiphy)
3831 return -ENODEV;
3832
3833 if (country_ie_request->intersect)
3834 return -EINVAL;
3835
3836 reset_regdomains(false, rd);
3837 return 0;
3838 }
3839
3840 /*
3841 * Use this call to set the current regulatory domain. Conflicts with
3842 * multiple drivers can be ironed out later. Caller must've already
3843 * kmalloc'd the rd structure.
3844 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3845 int set_regdom(const struct ieee80211_regdomain *rd,
3846 enum ieee80211_regd_source regd_src)
3847 {
3848 struct regulatory_request *lr;
3849 bool user_reset = false;
3850 int r;
3851
3852 if (IS_ERR_OR_NULL(rd))
3853 return -ENODATA;
3854
3855 if (!reg_is_valid_request(rd->alpha2)) {
3856 kfree(rd);
3857 return -EINVAL;
3858 }
3859
3860 if (regd_src == REGD_SOURCE_CRDA)
3861 reset_crda_timeouts();
3862
3863 lr = get_last_request();
3864
3865 /* Note that this doesn't update the wiphys, this is done below */
3866 switch (lr->initiator) {
3867 case NL80211_REGDOM_SET_BY_CORE:
3868 r = reg_set_rd_core(rd);
3869 break;
3870 case NL80211_REGDOM_SET_BY_USER:
3871 cfg80211_save_user_regdom(rd);
3872 r = reg_set_rd_user(rd, lr);
3873 user_reset = true;
3874 break;
3875 case NL80211_REGDOM_SET_BY_DRIVER:
3876 r = reg_set_rd_driver(rd, lr);
3877 break;
3878 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3879 r = reg_set_rd_country_ie(rd, lr);
3880 break;
3881 default:
3882 WARN(1, "invalid initiator %d\n", lr->initiator);
3883 kfree(rd);
3884 return -EINVAL;
3885 }
3886
3887 if (r) {
3888 switch (r) {
3889 case -EALREADY:
3890 reg_set_request_processed();
3891 break;
3892 default:
3893 /* Back to world regulatory in case of errors */
3894 restore_regulatory_settings(user_reset, false);
3895 }
3896
3897 kfree(rd);
3898 return r;
3899 }
3900
3901 /* This would make this whole thing pointless */
3902 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3903 return -EINVAL;
3904
3905 /* update all wiphys now with the new established regulatory domain */
3906 update_all_wiphy_regulatory(lr->initiator);
3907
3908 print_regdomain(get_cfg80211_regdom());
3909
3910 nl80211_send_reg_change_event(lr);
3911
3912 reg_set_request_processed();
3913
3914 return 0;
3915 }
3916
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3917 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3918 struct ieee80211_regdomain *rd)
3919 {
3920 const struct ieee80211_regdomain *regd;
3921 const struct ieee80211_regdomain *prev_regd;
3922 struct cfg80211_registered_device *rdev;
3923
3924 if (WARN_ON(!wiphy || !rd))
3925 return -EINVAL;
3926
3927 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3928 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3929 return -EPERM;
3930
3931 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3932 print_regdomain_info(rd);
3933 return -EINVAL;
3934 }
3935
3936 regd = reg_copy_regd(rd);
3937 if (IS_ERR(regd))
3938 return PTR_ERR(regd);
3939
3940 rdev = wiphy_to_rdev(wiphy);
3941
3942 spin_lock(®_requests_lock);
3943 prev_regd = rdev->requested_regd;
3944 rdev->requested_regd = regd;
3945 spin_unlock(®_requests_lock);
3946
3947 kfree(prev_regd);
3948 return 0;
3949 }
3950
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3951 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3952 struct ieee80211_regdomain *rd)
3953 {
3954 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3955
3956 if (ret)
3957 return ret;
3958
3959 schedule_work(®_work);
3960 return 0;
3961 }
3962 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3963
regulatory_set_wiphy_regd_sync_rtnl(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3964 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3965 struct ieee80211_regdomain *rd)
3966 {
3967 int ret;
3968
3969 ASSERT_RTNL();
3970
3971 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3972 if (ret)
3973 return ret;
3974
3975 /* process the request immediately */
3976 reg_process_self_managed_hints();
3977 return 0;
3978 }
3979 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3980
wiphy_regulatory_register(struct wiphy * wiphy)3981 void wiphy_regulatory_register(struct wiphy *wiphy)
3982 {
3983 struct regulatory_request *lr = get_last_request();
3984
3985 /* self-managed devices ignore beacon hints and country IE */
3986 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3987 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3988 REGULATORY_COUNTRY_IE_IGNORE;
3989
3990 /*
3991 * The last request may have been received before this
3992 * registration call. Call the driver notifier if
3993 * initiator is USER.
3994 */
3995 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3996 reg_call_notifier(wiphy, lr);
3997 }
3998
3999 if (!reg_dev_ignore_cell_hint(wiphy))
4000 reg_num_devs_support_basehint++;
4001
4002 wiphy_update_regulatory(wiphy, lr->initiator);
4003 wiphy_all_share_dfs_chan_state(wiphy);
4004 }
4005
wiphy_regulatory_deregister(struct wiphy * wiphy)4006 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4007 {
4008 struct wiphy *request_wiphy = NULL;
4009 struct regulatory_request *lr;
4010
4011 lr = get_last_request();
4012
4013 if (!reg_dev_ignore_cell_hint(wiphy))
4014 reg_num_devs_support_basehint--;
4015
4016 rcu_free_regdom(get_wiphy_regdom(wiphy));
4017 RCU_INIT_POINTER(wiphy->regd, NULL);
4018
4019 if (lr)
4020 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4021
4022 if (!request_wiphy || request_wiphy != wiphy)
4023 return;
4024
4025 lr->wiphy_idx = WIPHY_IDX_INVALID;
4026 lr->country_ie_env = ENVIRON_ANY;
4027 }
4028
4029 /*
4030 * See FCC notices for UNII band definitions
4031 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4032 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4033 */
cfg80211_get_unii(int freq)4034 int cfg80211_get_unii(int freq)
4035 {
4036 /* UNII-1 */
4037 if (freq >= 5150 && freq <= 5250)
4038 return 0;
4039
4040 /* UNII-2A */
4041 if (freq > 5250 && freq <= 5350)
4042 return 1;
4043
4044 /* UNII-2B */
4045 if (freq > 5350 && freq <= 5470)
4046 return 2;
4047
4048 /* UNII-2C */
4049 if (freq > 5470 && freq <= 5725)
4050 return 3;
4051
4052 /* UNII-3 */
4053 if (freq > 5725 && freq <= 5825)
4054 return 4;
4055
4056 /* UNII-5 */
4057 if (freq > 5925 && freq <= 6425)
4058 return 5;
4059
4060 /* UNII-6 */
4061 if (freq > 6425 && freq <= 6525)
4062 return 6;
4063
4064 /* UNII-7 */
4065 if (freq > 6525 && freq <= 6875)
4066 return 7;
4067
4068 /* UNII-8 */
4069 if (freq > 6875 && freq <= 7125)
4070 return 8;
4071
4072 return -EINVAL;
4073 }
4074
regulatory_indoor_allowed(void)4075 bool regulatory_indoor_allowed(void)
4076 {
4077 return reg_is_indoor;
4078 }
4079
regulatory_pre_cac_allowed(struct wiphy * wiphy)4080 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4081 {
4082 const struct ieee80211_regdomain *regd = NULL;
4083 const struct ieee80211_regdomain *wiphy_regd = NULL;
4084 bool pre_cac_allowed = false;
4085
4086 rcu_read_lock();
4087
4088 regd = rcu_dereference(cfg80211_regdomain);
4089 wiphy_regd = rcu_dereference(wiphy->regd);
4090 if (!wiphy_regd) {
4091 if (regd->dfs_region == NL80211_DFS_ETSI)
4092 pre_cac_allowed = true;
4093
4094 rcu_read_unlock();
4095
4096 return pre_cac_allowed;
4097 }
4098
4099 if (regd->dfs_region == wiphy_regd->dfs_region &&
4100 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4101 pre_cac_allowed = true;
4102
4103 rcu_read_unlock();
4104
4105 return pre_cac_allowed;
4106 }
4107 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4108
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4109 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4110 {
4111 struct wireless_dev *wdev;
4112 /* If we finished CAC or received radar, we should end any
4113 * CAC running on the same channels.
4114 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4115 * either all channels are available - those the CAC_FINISHED
4116 * event has effected another wdev state, or there is a channel
4117 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4118 * event has effected another wdev state.
4119 * In both cases we should end the CAC on the wdev.
4120 */
4121 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4122 if (wdev->cac_started &&
4123 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4124 rdev_end_cac(rdev, wdev->netdev);
4125 }
4126 }
4127
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4128 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4129 struct cfg80211_chan_def *chandef,
4130 enum nl80211_dfs_state dfs_state,
4131 enum nl80211_radar_event event)
4132 {
4133 struct cfg80211_registered_device *rdev;
4134
4135 ASSERT_RTNL();
4136
4137 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4138 return;
4139
4140 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4141 if (wiphy == &rdev->wiphy)
4142 continue;
4143
4144 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4145 continue;
4146
4147 if (!ieee80211_get_channel(&rdev->wiphy,
4148 chandef->chan->center_freq))
4149 continue;
4150
4151 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4152
4153 if (event == NL80211_RADAR_DETECTED ||
4154 event == NL80211_RADAR_CAC_FINISHED) {
4155 cfg80211_sched_dfs_chan_update(rdev);
4156 cfg80211_check_and_end_cac(rdev);
4157 }
4158
4159 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4160 }
4161 }
4162
regulatory_init_db(void)4163 static int __init regulatory_init_db(void)
4164 {
4165 int err;
4166
4167 /*
4168 * It's possible that - due to other bugs/issues - cfg80211
4169 * never called regulatory_init() below, or that it failed;
4170 * in that case, don't try to do any further work here as
4171 * it's doomed to lead to crashes.
4172 */
4173 if (IS_ERR_OR_NULL(reg_pdev))
4174 return -EINVAL;
4175
4176 err = load_builtin_regdb_keys();
4177 if (err)
4178 return err;
4179
4180 /* We always try to get an update for the static regdomain */
4181 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4182 if (err) {
4183 if (err == -ENOMEM) {
4184 platform_device_unregister(reg_pdev);
4185 return err;
4186 }
4187 /*
4188 * N.B. kobject_uevent_env() can fail mainly for when we're out
4189 * memory which is handled and propagated appropriately above
4190 * but it can also fail during a netlink_broadcast() or during
4191 * early boot for call_usermodehelper(). For now treat these
4192 * errors as non-fatal.
4193 */
4194 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4195 }
4196
4197 /*
4198 * Finally, if the user set the module parameter treat it
4199 * as a user hint.
4200 */
4201 if (!is_world_regdom(ieee80211_regdom))
4202 regulatory_hint_user(ieee80211_regdom,
4203 NL80211_USER_REG_HINT_USER);
4204
4205 return 0;
4206 }
4207 #ifndef MODULE
4208 late_initcall(regulatory_init_db);
4209 #endif
4210
regulatory_init(void)4211 int __init regulatory_init(void)
4212 {
4213 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4214 if (IS_ERR(reg_pdev))
4215 return PTR_ERR(reg_pdev);
4216
4217 spin_lock_init(®_requests_lock);
4218 spin_lock_init(®_pending_beacons_lock);
4219 spin_lock_init(®_indoor_lock);
4220
4221 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4222
4223 user_alpha2[0] = '9';
4224 user_alpha2[1] = '7';
4225
4226 #ifdef MODULE
4227 return regulatory_init_db();
4228 #else
4229 return 0;
4230 #endif
4231 }
4232
regulatory_exit(void)4233 void regulatory_exit(void)
4234 {
4235 struct regulatory_request *reg_request, *tmp;
4236 struct reg_beacon *reg_beacon, *btmp;
4237
4238 cancel_work_sync(®_work);
4239 cancel_crda_timeout_sync();
4240 cancel_delayed_work_sync(®_check_chans);
4241
4242 /* Lock to suppress warnings */
4243 rtnl_lock();
4244 reset_regdomains(true, NULL);
4245 rtnl_unlock();
4246
4247 dev_set_uevent_suppress(®_pdev->dev, true);
4248
4249 platform_device_unregister(reg_pdev);
4250
4251 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4252 list_del(®_beacon->list);
4253 kfree(reg_beacon);
4254 }
4255
4256 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4257 list_del(®_beacon->list);
4258 kfree(reg_beacon);
4259 }
4260
4261 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4262 list_del(®_request->list);
4263 kfree(reg_request);
4264 }
4265
4266 if (!IS_ERR_OR_NULL(regdb))
4267 kfree(regdb);
4268 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4269 kfree(cfg80211_user_regdom);
4270
4271 free_regdb_keyring();
4272 }
4273