1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 .name = "AF_VSOCK",
120 .owner = THIS_MODULE,
121 .obj_size = sizeof(struct vsock_sock),
122 };
123
124 /* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
126 */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128
129 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142
143 /**** UTILS ****/
144
145 /* Each bound VSocket is stored in the bind hash table and each connected
146 * VSocket is stored in the connected hash table.
147 *
148 * Unbound sockets are all put on the same list attached to the end of the hash
149 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151 * represents the list that addr hashes to).
152 *
153 * Specifically, we initialize the vsock_bind_table array to a size of
154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
157 * mods with VSOCK_HASH_SIZE to ensure this.
158 */
159 #define MAX_PORT_RETRIES 24
160
161 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
164
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst) \
167 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst) \
169 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk) \
171 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179
180 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183 struct sock *sk = sk_vsock(vsk);
184 struct sockaddr_vm local_addr;
185
186 if (vsock_addr_bound(&vsk->local_addr))
187 return 0;
188 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 return __vsock_bind(sk, &local_addr);
190 }
191
vsock_init_tables(void)192 static void vsock_init_tables(void)
193 {
194 int i;
195
196 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 INIT_LIST_HEAD(&vsock_bind_table[i]);
198
199 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)203 static void __vsock_insert_bound(struct list_head *list,
204 struct vsock_sock *vsk)
205 {
206 sock_hold(&vsk->sk);
207 list_add(&vsk->bound_table, list);
208 }
209
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)210 static void __vsock_insert_connected(struct list_head *list,
211 struct vsock_sock *vsk)
212 {
213 sock_hold(&vsk->sk);
214 list_add(&vsk->connected_table, list);
215 }
216
__vsock_remove_bound(struct vsock_sock * vsk)217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 list_del_init(&vsk->bound_table);
220 sock_put(&vsk->sk);
221 }
222
__vsock_remove_connected(struct vsock_sock * vsk)223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 list_del_init(&vsk->connected_table);
226 sock_put(&vsk->sk);
227 }
228
__vsock_find_bound_socket(struct sockaddr_vm * addr)229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 struct vsock_sock *vsk;
232
233 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 return sk_vsock(vsk);
236
237 if (addr->svm_port == vsk->local_addr.svm_port &&
238 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 addr->svm_cid == VMADDR_CID_ANY))
240 return sk_vsock(vsk);
241 }
242
243 return NULL;
244 }
245
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 struct sockaddr_vm *dst)
248 {
249 struct vsock_sock *vsk;
250
251 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 connected_table) {
253 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 dst->svm_port == vsk->local_addr.svm_port) {
255 return sk_vsock(vsk);
256 }
257 }
258
259 return NULL;
260 }
261
vsock_insert_unbound(struct vsock_sock * vsk)262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264 spin_lock_bh(&vsock_table_lock);
265 __vsock_insert_bound(vsock_unbound_sockets, vsk);
266 spin_unlock_bh(&vsock_table_lock);
267 }
268
vsock_insert_connected(struct vsock_sock * vsk)269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271 struct list_head *list = vsock_connected_sockets(
272 &vsk->remote_addr, &vsk->local_addr);
273
274 spin_lock_bh(&vsock_table_lock);
275 __vsock_insert_connected(list, vsk);
276 spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279
vsock_remove_bound(struct vsock_sock * vsk)280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282 spin_lock_bh(&vsock_table_lock);
283 if (__vsock_in_bound_table(vsk))
284 __vsock_remove_bound(vsk);
285 spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288
vsock_remove_connected(struct vsock_sock * vsk)289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_connected_table(vsk))
293 __vsock_remove_connected(vsk);
294 spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297
vsock_find_bound_socket(struct sockaddr_vm * addr)298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300 struct sock *sk;
301
302 spin_lock_bh(&vsock_table_lock);
303 sk = __vsock_find_bound_socket(addr);
304 if (sk)
305 sock_hold(sk);
306
307 spin_unlock_bh(&vsock_table_lock);
308
309 return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 struct sockaddr_vm *dst)
315 {
316 struct sock *sk;
317
318 spin_lock_bh(&vsock_table_lock);
319 sk = __vsock_find_connected_socket(src, dst);
320 if (sk)
321 sock_hold(sk);
322
323 spin_unlock_bh(&vsock_table_lock);
324
325 return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328
vsock_remove_sock(struct vsock_sock * vsk)329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331 vsock_remove_bound(vsk);
332 vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335
vsock_for_each_connected_socket(void (* fn)(struct sock * sk))336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
337 {
338 int i;
339
340 spin_lock_bh(&vsock_table_lock);
341
342 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343 struct vsock_sock *vsk;
344 list_for_each_entry(vsk, &vsock_connected_table[i],
345 connected_table)
346 fn(sk_vsock(vsk));
347 }
348
349 spin_unlock_bh(&vsock_table_lock);
350 }
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
352
vsock_add_pending(struct sock * listener,struct sock * pending)353 void vsock_add_pending(struct sock *listener, struct sock *pending)
354 {
355 struct vsock_sock *vlistener;
356 struct vsock_sock *vpending;
357
358 vlistener = vsock_sk(listener);
359 vpending = vsock_sk(pending);
360
361 sock_hold(pending);
362 sock_hold(listener);
363 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
364 }
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
366
vsock_remove_pending(struct sock * listener,struct sock * pending)367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
368 {
369 struct vsock_sock *vpending = vsock_sk(pending);
370
371 list_del_init(&vpending->pending_links);
372 sock_put(listener);
373 sock_put(pending);
374 }
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
376
vsock_enqueue_accept(struct sock * listener,struct sock * connected)377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
378 {
379 struct vsock_sock *vlistener;
380 struct vsock_sock *vconnected;
381
382 vlistener = vsock_sk(listener);
383 vconnected = vsock_sk(connected);
384
385 sock_hold(connected);
386 sock_hold(listener);
387 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
388 }
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
390
vsock_use_local_transport(unsigned int remote_cid)391 static bool vsock_use_local_transport(unsigned int remote_cid)
392 {
393 if (!transport_local)
394 return false;
395
396 if (remote_cid == VMADDR_CID_LOCAL)
397 return true;
398
399 if (transport_g2h) {
400 return remote_cid == transport_g2h->get_local_cid();
401 } else {
402 return remote_cid == VMADDR_CID_HOST;
403 }
404 }
405
vsock_deassign_transport(struct vsock_sock * vsk)406 static void vsock_deassign_transport(struct vsock_sock *vsk)
407 {
408 if (!vsk->transport)
409 return;
410
411 vsk->transport->destruct(vsk);
412 module_put(vsk->transport->module);
413 vsk->transport = NULL;
414 }
415
416 /* Assign a transport to a socket and call the .init transport callback.
417 *
418 * Note: for stream socket this must be called when vsk->remote_addr is set
419 * (e.g. during the connect() or when a connection request on a listener
420 * socket is received).
421 * The vsk->remote_addr is used to decide which transport to use:
422 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423 * g2h is not loaded, will use local transport;
424 * - remote CID <= VMADDR_CID_HOST will use guest->host transport;
425 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
426 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)427 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
428 {
429 const struct vsock_transport *new_transport;
430 struct sock *sk = sk_vsock(vsk);
431 unsigned int remote_cid = vsk->remote_addr.svm_cid;
432 int ret;
433
434 switch (sk->sk_type) {
435 case SOCK_DGRAM:
436 new_transport = transport_dgram;
437 break;
438 case SOCK_STREAM:
439 if (vsock_use_local_transport(remote_cid))
440 new_transport = transport_local;
441 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g)
442 new_transport = transport_g2h;
443 else
444 new_transport = transport_h2g;
445 break;
446 default:
447 return -ESOCKTNOSUPPORT;
448 }
449
450 if (vsk->transport) {
451 if (vsk->transport == new_transport)
452 return 0;
453
454 /* transport->release() must be called with sock lock acquired.
455 * This path can only be taken during vsock_stream_connect(),
456 * where we have already held the sock lock.
457 * In the other cases, this function is called on a new socket
458 * which is not assigned to any transport.
459 */
460 vsk->transport->release(vsk);
461 vsock_deassign_transport(vsk);
462 }
463
464 /* We increase the module refcnt to prevent the transport unloading
465 * while there are open sockets assigned to it.
466 */
467 if (!new_transport || !try_module_get(new_transport->module))
468 return -ENODEV;
469
470 ret = new_transport->init(vsk, psk);
471 if (ret) {
472 module_put(new_transport->module);
473 return ret;
474 }
475
476 vsk->transport = new_transport;
477
478 return 0;
479 }
480 EXPORT_SYMBOL_GPL(vsock_assign_transport);
481
vsock_find_cid(unsigned int cid)482 bool vsock_find_cid(unsigned int cid)
483 {
484 if (transport_g2h && cid == transport_g2h->get_local_cid())
485 return true;
486
487 if (transport_h2g && cid == VMADDR_CID_HOST)
488 return true;
489
490 if (transport_local && cid == VMADDR_CID_LOCAL)
491 return true;
492
493 return false;
494 }
495 EXPORT_SYMBOL_GPL(vsock_find_cid);
496
vsock_dequeue_accept(struct sock * listener)497 static struct sock *vsock_dequeue_accept(struct sock *listener)
498 {
499 struct vsock_sock *vlistener;
500 struct vsock_sock *vconnected;
501
502 vlistener = vsock_sk(listener);
503
504 if (list_empty(&vlistener->accept_queue))
505 return NULL;
506
507 vconnected = list_entry(vlistener->accept_queue.next,
508 struct vsock_sock, accept_queue);
509
510 list_del_init(&vconnected->accept_queue);
511 sock_put(listener);
512 /* The caller will need a reference on the connected socket so we let
513 * it call sock_put().
514 */
515
516 return sk_vsock(vconnected);
517 }
518
vsock_is_accept_queue_empty(struct sock * sk)519 static bool vsock_is_accept_queue_empty(struct sock *sk)
520 {
521 struct vsock_sock *vsk = vsock_sk(sk);
522 return list_empty(&vsk->accept_queue);
523 }
524
vsock_is_pending(struct sock * sk)525 static bool vsock_is_pending(struct sock *sk)
526 {
527 struct vsock_sock *vsk = vsock_sk(sk);
528 return !list_empty(&vsk->pending_links);
529 }
530
vsock_send_shutdown(struct sock * sk,int mode)531 static int vsock_send_shutdown(struct sock *sk, int mode)
532 {
533 struct vsock_sock *vsk = vsock_sk(sk);
534
535 if (!vsk->transport)
536 return -ENODEV;
537
538 return vsk->transport->shutdown(vsk, mode);
539 }
540
vsock_pending_work(struct work_struct * work)541 static void vsock_pending_work(struct work_struct *work)
542 {
543 struct sock *sk;
544 struct sock *listener;
545 struct vsock_sock *vsk;
546 bool cleanup;
547
548 vsk = container_of(work, struct vsock_sock, pending_work.work);
549 sk = sk_vsock(vsk);
550 listener = vsk->listener;
551 cleanup = true;
552
553 lock_sock(listener);
554 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
555
556 if (vsock_is_pending(sk)) {
557 vsock_remove_pending(listener, sk);
558
559 sk_acceptq_removed(listener);
560 } else if (!vsk->rejected) {
561 /* We are not on the pending list and accept() did not reject
562 * us, so we must have been accepted by our user process. We
563 * just need to drop our references to the sockets and be on
564 * our way.
565 */
566 cleanup = false;
567 goto out;
568 }
569
570 /* We need to remove ourself from the global connected sockets list so
571 * incoming packets can't find this socket, and to reduce the reference
572 * count.
573 */
574 vsock_remove_connected(vsk);
575
576 sk->sk_state = TCP_CLOSE;
577
578 out:
579 release_sock(sk);
580 release_sock(listener);
581 if (cleanup)
582 sock_put(sk);
583
584 sock_put(sk);
585 sock_put(listener);
586 }
587
588 /**** SOCKET OPERATIONS ****/
589
__vsock_bind_stream(struct vsock_sock * vsk,struct sockaddr_vm * addr)590 static int __vsock_bind_stream(struct vsock_sock *vsk,
591 struct sockaddr_vm *addr)
592 {
593 static u32 port;
594 struct sockaddr_vm new_addr;
595
596 if (!port)
597 port = LAST_RESERVED_PORT + 1 +
598 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
599
600 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
601
602 if (addr->svm_port == VMADDR_PORT_ANY) {
603 bool found = false;
604 unsigned int i;
605
606 for (i = 0; i < MAX_PORT_RETRIES; i++) {
607 if (port <= LAST_RESERVED_PORT)
608 port = LAST_RESERVED_PORT + 1;
609
610 new_addr.svm_port = port++;
611
612 if (!__vsock_find_bound_socket(&new_addr)) {
613 found = true;
614 break;
615 }
616 }
617
618 if (!found)
619 return -EADDRNOTAVAIL;
620 } else {
621 /* If port is in reserved range, ensure caller
622 * has necessary privileges.
623 */
624 if (addr->svm_port <= LAST_RESERVED_PORT &&
625 !capable(CAP_NET_BIND_SERVICE)) {
626 return -EACCES;
627 }
628
629 if (__vsock_find_bound_socket(&new_addr))
630 return -EADDRINUSE;
631 }
632
633 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
634
635 /* Remove stream sockets from the unbound list and add them to the hash
636 * table for easy lookup by its address. The unbound list is simply an
637 * extra entry at the end of the hash table, a trick used by AF_UNIX.
638 */
639 __vsock_remove_bound(vsk);
640 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
641
642 return 0;
643 }
644
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)645 static int __vsock_bind_dgram(struct vsock_sock *vsk,
646 struct sockaddr_vm *addr)
647 {
648 return vsk->transport->dgram_bind(vsk, addr);
649 }
650
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)651 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
652 {
653 struct vsock_sock *vsk = vsock_sk(sk);
654 int retval;
655
656 /* First ensure this socket isn't already bound. */
657 if (vsock_addr_bound(&vsk->local_addr))
658 return -EINVAL;
659
660 /* Now bind to the provided address or select appropriate values if
661 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
662 * like AF_INET prevents binding to a non-local IP address (in most
663 * cases), we only allow binding to a local CID.
664 */
665 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
666 return -EADDRNOTAVAIL;
667
668 switch (sk->sk_socket->type) {
669 case SOCK_STREAM:
670 spin_lock_bh(&vsock_table_lock);
671 retval = __vsock_bind_stream(vsk, addr);
672 spin_unlock_bh(&vsock_table_lock);
673 break;
674
675 case SOCK_DGRAM:
676 retval = __vsock_bind_dgram(vsk, addr);
677 break;
678
679 default:
680 retval = -EINVAL;
681 break;
682 }
683
684 return retval;
685 }
686
687 static void vsock_connect_timeout(struct work_struct *work);
688
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)689 static struct sock *__vsock_create(struct net *net,
690 struct socket *sock,
691 struct sock *parent,
692 gfp_t priority,
693 unsigned short type,
694 int kern)
695 {
696 struct sock *sk;
697 struct vsock_sock *psk;
698 struct vsock_sock *vsk;
699
700 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
701 if (!sk)
702 return NULL;
703
704 sock_init_data(sock, sk);
705
706 /* sk->sk_type is normally set in sock_init_data, but only if sock is
707 * non-NULL. We make sure that our sockets always have a type by
708 * setting it here if needed.
709 */
710 if (!sock)
711 sk->sk_type = type;
712
713 vsk = vsock_sk(sk);
714 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
715 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
716
717 sk->sk_destruct = vsock_sk_destruct;
718 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
719 sock_reset_flag(sk, SOCK_DONE);
720
721 INIT_LIST_HEAD(&vsk->bound_table);
722 INIT_LIST_HEAD(&vsk->connected_table);
723 vsk->listener = NULL;
724 INIT_LIST_HEAD(&vsk->pending_links);
725 INIT_LIST_HEAD(&vsk->accept_queue);
726 vsk->rejected = false;
727 vsk->sent_request = false;
728 vsk->ignore_connecting_rst = false;
729 vsk->peer_shutdown = 0;
730 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
731 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
732
733 psk = parent ? vsock_sk(parent) : NULL;
734 if (parent) {
735 vsk->trusted = psk->trusted;
736 vsk->owner = get_cred(psk->owner);
737 vsk->connect_timeout = psk->connect_timeout;
738 vsk->buffer_size = psk->buffer_size;
739 vsk->buffer_min_size = psk->buffer_min_size;
740 vsk->buffer_max_size = psk->buffer_max_size;
741 } else {
742 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
743 vsk->owner = get_current_cred();
744 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
745 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
746 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
747 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
748 }
749
750 return sk;
751 }
752
__vsock_release(struct sock * sk,int level)753 static void __vsock_release(struct sock *sk, int level)
754 {
755 if (sk) {
756 struct sock *pending;
757 struct vsock_sock *vsk;
758
759 vsk = vsock_sk(sk);
760 pending = NULL; /* Compiler warning. */
761
762 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
763 * version to avoid the warning "possible recursive locking
764 * detected". When "level" is 0, lock_sock_nested(sk, level)
765 * is the same as lock_sock(sk).
766 */
767 lock_sock_nested(sk, level);
768
769 if (vsk->transport)
770 vsk->transport->release(vsk);
771 else if (sk->sk_type == SOCK_STREAM)
772 vsock_remove_sock(vsk);
773
774 sock_orphan(sk);
775 sk->sk_shutdown = SHUTDOWN_MASK;
776
777 skb_queue_purge(&sk->sk_receive_queue);
778
779 /* Clean up any sockets that never were accepted. */
780 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
781 __vsock_release(pending, SINGLE_DEPTH_NESTING);
782 sock_put(pending);
783 }
784
785 release_sock(sk);
786 sock_put(sk);
787 }
788 }
789
vsock_sk_destruct(struct sock * sk)790 static void vsock_sk_destruct(struct sock *sk)
791 {
792 struct vsock_sock *vsk = vsock_sk(sk);
793
794 vsock_deassign_transport(vsk);
795
796 /* When clearing these addresses, there's no need to set the family and
797 * possibly register the address family with the kernel.
798 */
799 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
800 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
801
802 put_cred(vsk->owner);
803 }
804
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)805 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
806 {
807 int err;
808
809 err = sock_queue_rcv_skb(sk, skb);
810 if (err)
811 kfree_skb(skb);
812
813 return err;
814 }
815
vsock_create_connected(struct sock * parent)816 struct sock *vsock_create_connected(struct sock *parent)
817 {
818 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
819 parent->sk_type, 0);
820 }
821 EXPORT_SYMBOL_GPL(vsock_create_connected);
822
vsock_stream_has_data(struct vsock_sock * vsk)823 s64 vsock_stream_has_data(struct vsock_sock *vsk)
824 {
825 return vsk->transport->stream_has_data(vsk);
826 }
827 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
828
vsock_stream_has_space(struct vsock_sock * vsk)829 s64 vsock_stream_has_space(struct vsock_sock *vsk)
830 {
831 return vsk->transport->stream_has_space(vsk);
832 }
833 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
834
vsock_release(struct socket * sock)835 static int vsock_release(struct socket *sock)
836 {
837 __vsock_release(sock->sk, 0);
838 sock->sk = NULL;
839 sock->state = SS_FREE;
840
841 return 0;
842 }
843
844 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)845 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
846 {
847 int err;
848 struct sock *sk;
849 struct sockaddr_vm *vm_addr;
850
851 sk = sock->sk;
852
853 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
854 return -EINVAL;
855
856 lock_sock(sk);
857 err = __vsock_bind(sk, vm_addr);
858 release_sock(sk);
859
860 return err;
861 }
862
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)863 static int vsock_getname(struct socket *sock,
864 struct sockaddr *addr, int peer)
865 {
866 int err;
867 struct sock *sk;
868 struct vsock_sock *vsk;
869 struct sockaddr_vm *vm_addr;
870
871 sk = sock->sk;
872 vsk = vsock_sk(sk);
873 err = 0;
874
875 lock_sock(sk);
876
877 if (peer) {
878 if (sock->state != SS_CONNECTED) {
879 err = -ENOTCONN;
880 goto out;
881 }
882 vm_addr = &vsk->remote_addr;
883 } else {
884 vm_addr = &vsk->local_addr;
885 }
886
887 if (!vm_addr) {
888 err = -EINVAL;
889 goto out;
890 }
891
892 /* sys_getsockname() and sys_getpeername() pass us a
893 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
894 * that macro is defined in socket.c instead of .h, so we hardcode its
895 * value here.
896 */
897 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
898 memcpy(addr, vm_addr, sizeof(*vm_addr));
899 err = sizeof(*vm_addr);
900
901 out:
902 release_sock(sk);
903 return err;
904 }
905
vsock_shutdown(struct socket * sock,int mode)906 static int vsock_shutdown(struct socket *sock, int mode)
907 {
908 int err;
909 struct sock *sk;
910
911 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
912 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
913 * here like the other address families do. Note also that the
914 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
915 * which is what we want.
916 */
917 mode++;
918
919 if ((mode & ~SHUTDOWN_MASK) || !mode)
920 return -EINVAL;
921
922 /* If this is a STREAM socket and it is not connected then bail out
923 * immediately. If it is a DGRAM socket then we must first kick the
924 * socket so that it wakes up from any sleeping calls, for example
925 * recv(), and then afterwards return the error.
926 */
927
928 sk = sock->sk;
929 if (sock->state == SS_UNCONNECTED) {
930 err = -ENOTCONN;
931 if (sk->sk_type == SOCK_STREAM)
932 return err;
933 } else {
934 sock->state = SS_DISCONNECTING;
935 err = 0;
936 }
937
938 /* Receive and send shutdowns are treated alike. */
939 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
940 if (mode) {
941 lock_sock(sk);
942 sk->sk_shutdown |= mode;
943 sk->sk_state_change(sk);
944 release_sock(sk);
945
946 if (sk->sk_type == SOCK_STREAM) {
947 sock_reset_flag(sk, SOCK_DONE);
948 vsock_send_shutdown(sk, mode);
949 }
950 }
951
952 return err;
953 }
954
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)955 static __poll_t vsock_poll(struct file *file, struct socket *sock,
956 poll_table *wait)
957 {
958 struct sock *sk;
959 __poll_t mask;
960 struct vsock_sock *vsk;
961
962 sk = sock->sk;
963 vsk = vsock_sk(sk);
964
965 poll_wait(file, sk_sleep(sk), wait);
966 mask = 0;
967
968 if (sk->sk_err)
969 /* Signify that there has been an error on this socket. */
970 mask |= EPOLLERR;
971
972 /* INET sockets treat local write shutdown and peer write shutdown as a
973 * case of EPOLLHUP set.
974 */
975 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
976 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
977 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
978 mask |= EPOLLHUP;
979 }
980
981 if (sk->sk_shutdown & RCV_SHUTDOWN ||
982 vsk->peer_shutdown & SEND_SHUTDOWN) {
983 mask |= EPOLLRDHUP;
984 }
985
986 if (sock->type == SOCK_DGRAM) {
987 /* For datagram sockets we can read if there is something in
988 * the queue and write as long as the socket isn't shutdown for
989 * sending.
990 */
991 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
992 (sk->sk_shutdown & RCV_SHUTDOWN)) {
993 mask |= EPOLLIN | EPOLLRDNORM;
994 }
995
996 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
997 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
998
999 } else if (sock->type == SOCK_STREAM) {
1000 const struct vsock_transport *transport = vsk->transport;
1001 lock_sock(sk);
1002
1003 /* Listening sockets that have connections in their accept
1004 * queue can be read.
1005 */
1006 if (sk->sk_state == TCP_LISTEN
1007 && !vsock_is_accept_queue_empty(sk))
1008 mask |= EPOLLIN | EPOLLRDNORM;
1009
1010 /* If there is something in the queue then we can read. */
1011 if (transport && transport->stream_is_active(vsk) &&
1012 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1013 bool data_ready_now = false;
1014 int ret = transport->notify_poll_in(
1015 vsk, 1, &data_ready_now);
1016 if (ret < 0) {
1017 mask |= EPOLLERR;
1018 } else {
1019 if (data_ready_now)
1020 mask |= EPOLLIN | EPOLLRDNORM;
1021
1022 }
1023 }
1024
1025 /* Sockets whose connections have been closed, reset, or
1026 * terminated should also be considered read, and we check the
1027 * shutdown flag for that.
1028 */
1029 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1030 vsk->peer_shutdown & SEND_SHUTDOWN) {
1031 mask |= EPOLLIN | EPOLLRDNORM;
1032 }
1033
1034 /* Connected sockets that can produce data can be written. */
1035 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1036 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1037 bool space_avail_now = false;
1038 int ret = transport->notify_poll_out(
1039 vsk, 1, &space_avail_now);
1040 if (ret < 0) {
1041 mask |= EPOLLERR;
1042 } else {
1043 if (space_avail_now)
1044 /* Remove EPOLLWRBAND since INET
1045 * sockets are not setting it.
1046 */
1047 mask |= EPOLLOUT | EPOLLWRNORM;
1048
1049 }
1050 }
1051 }
1052
1053 /* Simulate INET socket poll behaviors, which sets
1054 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1055 * but local send is not shutdown.
1056 */
1057 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1058 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1059 mask |= EPOLLOUT | EPOLLWRNORM;
1060
1061 }
1062
1063 release_sock(sk);
1064 }
1065
1066 return mask;
1067 }
1068
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1069 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1070 size_t len)
1071 {
1072 int err;
1073 struct sock *sk;
1074 struct vsock_sock *vsk;
1075 struct sockaddr_vm *remote_addr;
1076 const struct vsock_transport *transport;
1077
1078 if (msg->msg_flags & MSG_OOB)
1079 return -EOPNOTSUPP;
1080
1081 /* For now, MSG_DONTWAIT is always assumed... */
1082 err = 0;
1083 sk = sock->sk;
1084 vsk = vsock_sk(sk);
1085 transport = vsk->transport;
1086
1087 lock_sock(sk);
1088
1089 err = vsock_auto_bind(vsk);
1090 if (err)
1091 goto out;
1092
1093
1094 /* If the provided message contains an address, use that. Otherwise
1095 * fall back on the socket's remote handle (if it has been connected).
1096 */
1097 if (msg->msg_name &&
1098 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1099 &remote_addr) == 0) {
1100 /* Ensure this address is of the right type and is a valid
1101 * destination.
1102 */
1103
1104 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1105 remote_addr->svm_cid = transport->get_local_cid();
1106
1107 if (!vsock_addr_bound(remote_addr)) {
1108 err = -EINVAL;
1109 goto out;
1110 }
1111 } else if (sock->state == SS_CONNECTED) {
1112 remote_addr = &vsk->remote_addr;
1113
1114 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1115 remote_addr->svm_cid = transport->get_local_cid();
1116
1117 /* XXX Should connect() or this function ensure remote_addr is
1118 * bound?
1119 */
1120 if (!vsock_addr_bound(&vsk->remote_addr)) {
1121 err = -EINVAL;
1122 goto out;
1123 }
1124 } else {
1125 err = -EINVAL;
1126 goto out;
1127 }
1128
1129 if (!transport->dgram_allow(remote_addr->svm_cid,
1130 remote_addr->svm_port)) {
1131 err = -EINVAL;
1132 goto out;
1133 }
1134
1135 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1136
1137 out:
1138 release_sock(sk);
1139 return err;
1140 }
1141
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1142 static int vsock_dgram_connect(struct socket *sock,
1143 struct sockaddr *addr, int addr_len, int flags)
1144 {
1145 int err;
1146 struct sock *sk;
1147 struct vsock_sock *vsk;
1148 struct sockaddr_vm *remote_addr;
1149
1150 sk = sock->sk;
1151 vsk = vsock_sk(sk);
1152
1153 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1154 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1155 lock_sock(sk);
1156 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1157 VMADDR_PORT_ANY);
1158 sock->state = SS_UNCONNECTED;
1159 release_sock(sk);
1160 return 0;
1161 } else if (err != 0)
1162 return -EINVAL;
1163
1164 lock_sock(sk);
1165
1166 err = vsock_auto_bind(vsk);
1167 if (err)
1168 goto out;
1169
1170 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1171 remote_addr->svm_port)) {
1172 err = -EINVAL;
1173 goto out;
1174 }
1175
1176 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1177 sock->state = SS_CONNECTED;
1178
1179 out:
1180 release_sock(sk);
1181 return err;
1182 }
1183
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1184 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1185 size_t len, int flags)
1186 {
1187 struct vsock_sock *vsk = vsock_sk(sock->sk);
1188
1189 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1190 }
1191
1192 static const struct proto_ops vsock_dgram_ops = {
1193 .family = PF_VSOCK,
1194 .owner = THIS_MODULE,
1195 .release = vsock_release,
1196 .bind = vsock_bind,
1197 .connect = vsock_dgram_connect,
1198 .socketpair = sock_no_socketpair,
1199 .accept = sock_no_accept,
1200 .getname = vsock_getname,
1201 .poll = vsock_poll,
1202 .ioctl = sock_no_ioctl,
1203 .listen = sock_no_listen,
1204 .shutdown = vsock_shutdown,
1205 .sendmsg = vsock_dgram_sendmsg,
1206 .recvmsg = vsock_dgram_recvmsg,
1207 .mmap = sock_no_mmap,
1208 .sendpage = sock_no_sendpage,
1209 };
1210
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1211 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1212 {
1213 const struct vsock_transport *transport = vsk->transport;
1214
1215 if (!transport->cancel_pkt)
1216 return -EOPNOTSUPP;
1217
1218 return transport->cancel_pkt(vsk);
1219 }
1220
vsock_connect_timeout(struct work_struct * work)1221 static void vsock_connect_timeout(struct work_struct *work)
1222 {
1223 struct sock *sk;
1224 struct vsock_sock *vsk;
1225 int cancel = 0;
1226
1227 vsk = container_of(work, struct vsock_sock, connect_work.work);
1228 sk = sk_vsock(vsk);
1229
1230 lock_sock(sk);
1231 if (sk->sk_state == TCP_SYN_SENT &&
1232 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1233 sk->sk_state = TCP_CLOSE;
1234 sk->sk_err = ETIMEDOUT;
1235 sk->sk_error_report(sk);
1236 cancel = 1;
1237 }
1238 release_sock(sk);
1239 if (cancel)
1240 vsock_transport_cancel_pkt(vsk);
1241
1242 sock_put(sk);
1243 }
1244
vsock_stream_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1245 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1246 int addr_len, int flags)
1247 {
1248 int err;
1249 struct sock *sk;
1250 struct vsock_sock *vsk;
1251 const struct vsock_transport *transport;
1252 struct sockaddr_vm *remote_addr;
1253 long timeout;
1254 DEFINE_WAIT(wait);
1255
1256 err = 0;
1257 sk = sock->sk;
1258 vsk = vsock_sk(sk);
1259
1260 lock_sock(sk);
1261
1262 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1263 switch (sock->state) {
1264 case SS_CONNECTED:
1265 err = -EISCONN;
1266 goto out;
1267 case SS_DISCONNECTING:
1268 err = -EINVAL;
1269 goto out;
1270 case SS_CONNECTING:
1271 /* This continues on so we can move sock into the SS_CONNECTED
1272 * state once the connection has completed (at which point err
1273 * will be set to zero also). Otherwise, we will either wait
1274 * for the connection or return -EALREADY should this be a
1275 * non-blocking call.
1276 */
1277 err = -EALREADY;
1278 break;
1279 default:
1280 if ((sk->sk_state == TCP_LISTEN) ||
1281 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1282 err = -EINVAL;
1283 goto out;
1284 }
1285
1286 /* Set the remote address that we are connecting to. */
1287 memcpy(&vsk->remote_addr, remote_addr,
1288 sizeof(vsk->remote_addr));
1289
1290 err = vsock_assign_transport(vsk, NULL);
1291 if (err)
1292 goto out;
1293
1294 transport = vsk->transport;
1295
1296 /* The hypervisor and well-known contexts do not have socket
1297 * endpoints.
1298 */
1299 if (!transport ||
1300 !transport->stream_allow(remote_addr->svm_cid,
1301 remote_addr->svm_port)) {
1302 err = -ENETUNREACH;
1303 goto out;
1304 }
1305
1306 err = vsock_auto_bind(vsk);
1307 if (err)
1308 goto out;
1309
1310 sk->sk_state = TCP_SYN_SENT;
1311
1312 err = transport->connect(vsk);
1313 if (err < 0)
1314 goto out;
1315
1316 /* Mark sock as connecting and set the error code to in
1317 * progress in case this is a non-blocking connect.
1318 */
1319 sock->state = SS_CONNECTING;
1320 err = -EINPROGRESS;
1321 }
1322
1323 /* The receive path will handle all communication until we are able to
1324 * enter the connected state. Here we wait for the connection to be
1325 * completed or a notification of an error.
1326 */
1327 timeout = vsk->connect_timeout;
1328 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1329
1330 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1331 if (flags & O_NONBLOCK) {
1332 /* If we're not going to block, we schedule a timeout
1333 * function to generate a timeout on the connection
1334 * attempt, in case the peer doesn't respond in a
1335 * timely manner. We hold on to the socket until the
1336 * timeout fires.
1337 */
1338 sock_hold(sk);
1339 schedule_delayed_work(&vsk->connect_work, timeout);
1340
1341 /* Skip ahead to preserve error code set above. */
1342 goto out_wait;
1343 }
1344
1345 release_sock(sk);
1346 timeout = schedule_timeout(timeout);
1347 lock_sock(sk);
1348
1349 if (signal_pending(current)) {
1350 err = sock_intr_errno(timeout);
1351 sk->sk_state = TCP_CLOSE;
1352 sock->state = SS_UNCONNECTED;
1353 vsock_transport_cancel_pkt(vsk);
1354 goto out_wait;
1355 } else if (timeout == 0) {
1356 err = -ETIMEDOUT;
1357 sk->sk_state = TCP_CLOSE;
1358 sock->state = SS_UNCONNECTED;
1359 vsock_transport_cancel_pkt(vsk);
1360 goto out_wait;
1361 }
1362
1363 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1364 }
1365
1366 if (sk->sk_err) {
1367 err = -sk->sk_err;
1368 sk->sk_state = TCP_CLOSE;
1369 sock->state = SS_UNCONNECTED;
1370 } else {
1371 err = 0;
1372 }
1373
1374 out_wait:
1375 finish_wait(sk_sleep(sk), &wait);
1376 out:
1377 release_sock(sk);
1378 return err;
1379 }
1380
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1381 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1382 bool kern)
1383 {
1384 struct sock *listener;
1385 int err;
1386 struct sock *connected;
1387 struct vsock_sock *vconnected;
1388 long timeout;
1389 DEFINE_WAIT(wait);
1390
1391 err = 0;
1392 listener = sock->sk;
1393
1394 lock_sock(listener);
1395
1396 if (sock->type != SOCK_STREAM) {
1397 err = -EOPNOTSUPP;
1398 goto out;
1399 }
1400
1401 if (listener->sk_state != TCP_LISTEN) {
1402 err = -EINVAL;
1403 goto out;
1404 }
1405
1406 /* Wait for children sockets to appear; these are the new sockets
1407 * created upon connection establishment.
1408 */
1409 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1410 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1411
1412 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1413 listener->sk_err == 0) {
1414 release_sock(listener);
1415 timeout = schedule_timeout(timeout);
1416 finish_wait(sk_sleep(listener), &wait);
1417 lock_sock(listener);
1418
1419 if (signal_pending(current)) {
1420 err = sock_intr_errno(timeout);
1421 goto out;
1422 } else if (timeout == 0) {
1423 err = -EAGAIN;
1424 goto out;
1425 }
1426
1427 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1428 }
1429 finish_wait(sk_sleep(listener), &wait);
1430
1431 if (listener->sk_err)
1432 err = -listener->sk_err;
1433
1434 if (connected) {
1435 sk_acceptq_removed(listener);
1436
1437 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1438 vconnected = vsock_sk(connected);
1439
1440 /* If the listener socket has received an error, then we should
1441 * reject this socket and return. Note that we simply mark the
1442 * socket rejected, drop our reference, and let the cleanup
1443 * function handle the cleanup; the fact that we found it in
1444 * the listener's accept queue guarantees that the cleanup
1445 * function hasn't run yet.
1446 */
1447 if (err) {
1448 vconnected->rejected = true;
1449 } else {
1450 newsock->state = SS_CONNECTED;
1451 sock_graft(connected, newsock);
1452 }
1453
1454 release_sock(connected);
1455 sock_put(connected);
1456 }
1457
1458 out:
1459 release_sock(listener);
1460 return err;
1461 }
1462
vsock_listen(struct socket * sock,int backlog)1463 static int vsock_listen(struct socket *sock, int backlog)
1464 {
1465 int err;
1466 struct sock *sk;
1467 struct vsock_sock *vsk;
1468
1469 sk = sock->sk;
1470
1471 lock_sock(sk);
1472
1473 if (sock->type != SOCK_STREAM) {
1474 err = -EOPNOTSUPP;
1475 goto out;
1476 }
1477
1478 if (sock->state != SS_UNCONNECTED) {
1479 err = -EINVAL;
1480 goto out;
1481 }
1482
1483 vsk = vsock_sk(sk);
1484
1485 if (!vsock_addr_bound(&vsk->local_addr)) {
1486 err = -EINVAL;
1487 goto out;
1488 }
1489
1490 sk->sk_max_ack_backlog = backlog;
1491 sk->sk_state = TCP_LISTEN;
1492
1493 err = 0;
1494
1495 out:
1496 release_sock(sk);
1497 return err;
1498 }
1499
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1500 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1501 const struct vsock_transport *transport,
1502 u64 val)
1503 {
1504 if (val > vsk->buffer_max_size)
1505 val = vsk->buffer_max_size;
1506
1507 if (val < vsk->buffer_min_size)
1508 val = vsk->buffer_min_size;
1509
1510 if (val != vsk->buffer_size &&
1511 transport && transport->notify_buffer_size)
1512 transport->notify_buffer_size(vsk, &val);
1513
1514 vsk->buffer_size = val;
1515 }
1516
vsock_stream_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1517 static int vsock_stream_setsockopt(struct socket *sock,
1518 int level,
1519 int optname,
1520 sockptr_t optval,
1521 unsigned int optlen)
1522 {
1523 int err;
1524 struct sock *sk;
1525 struct vsock_sock *vsk;
1526 const struct vsock_transport *transport;
1527 u64 val;
1528
1529 if (level != AF_VSOCK)
1530 return -ENOPROTOOPT;
1531
1532 #define COPY_IN(_v) \
1533 do { \
1534 if (optlen < sizeof(_v)) { \
1535 err = -EINVAL; \
1536 goto exit; \
1537 } \
1538 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1539 err = -EFAULT; \
1540 goto exit; \
1541 } \
1542 } while (0)
1543
1544 err = 0;
1545 sk = sock->sk;
1546 vsk = vsock_sk(sk);
1547 transport = vsk->transport;
1548
1549 lock_sock(sk);
1550
1551 switch (optname) {
1552 case SO_VM_SOCKETS_BUFFER_SIZE:
1553 COPY_IN(val);
1554 vsock_update_buffer_size(vsk, transport, val);
1555 break;
1556
1557 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1558 COPY_IN(val);
1559 vsk->buffer_max_size = val;
1560 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1561 break;
1562
1563 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1564 COPY_IN(val);
1565 vsk->buffer_min_size = val;
1566 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1567 break;
1568
1569 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1570 struct __kernel_old_timeval tv;
1571 COPY_IN(tv);
1572 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1573 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1574 vsk->connect_timeout = tv.tv_sec * HZ +
1575 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1576 if (vsk->connect_timeout == 0)
1577 vsk->connect_timeout =
1578 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1579
1580 } else {
1581 err = -ERANGE;
1582 }
1583 break;
1584 }
1585
1586 default:
1587 err = -ENOPROTOOPT;
1588 break;
1589 }
1590
1591 #undef COPY_IN
1592
1593 exit:
1594 release_sock(sk);
1595 return err;
1596 }
1597
vsock_stream_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1598 static int vsock_stream_getsockopt(struct socket *sock,
1599 int level, int optname,
1600 char __user *optval,
1601 int __user *optlen)
1602 {
1603 int err;
1604 int len;
1605 struct sock *sk;
1606 struct vsock_sock *vsk;
1607 u64 val;
1608
1609 if (level != AF_VSOCK)
1610 return -ENOPROTOOPT;
1611
1612 err = get_user(len, optlen);
1613 if (err != 0)
1614 return err;
1615
1616 #define COPY_OUT(_v) \
1617 do { \
1618 if (len < sizeof(_v)) \
1619 return -EINVAL; \
1620 \
1621 len = sizeof(_v); \
1622 if (copy_to_user(optval, &_v, len) != 0) \
1623 return -EFAULT; \
1624 \
1625 } while (0)
1626
1627 err = 0;
1628 sk = sock->sk;
1629 vsk = vsock_sk(sk);
1630
1631 switch (optname) {
1632 case SO_VM_SOCKETS_BUFFER_SIZE:
1633 val = vsk->buffer_size;
1634 COPY_OUT(val);
1635 break;
1636
1637 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1638 val = vsk->buffer_max_size;
1639 COPY_OUT(val);
1640 break;
1641
1642 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1643 val = vsk->buffer_min_size;
1644 COPY_OUT(val);
1645 break;
1646
1647 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1648 struct __kernel_old_timeval tv;
1649 tv.tv_sec = vsk->connect_timeout / HZ;
1650 tv.tv_usec =
1651 (vsk->connect_timeout -
1652 tv.tv_sec * HZ) * (1000000 / HZ);
1653 COPY_OUT(tv);
1654 break;
1655 }
1656 default:
1657 return -ENOPROTOOPT;
1658 }
1659
1660 err = put_user(len, optlen);
1661 if (err != 0)
1662 return -EFAULT;
1663
1664 #undef COPY_OUT
1665
1666 return 0;
1667 }
1668
vsock_stream_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1669 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1670 size_t len)
1671 {
1672 struct sock *sk;
1673 struct vsock_sock *vsk;
1674 const struct vsock_transport *transport;
1675 ssize_t total_written;
1676 long timeout;
1677 int err;
1678 struct vsock_transport_send_notify_data send_data;
1679 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1680
1681 sk = sock->sk;
1682 vsk = vsock_sk(sk);
1683 transport = vsk->transport;
1684 total_written = 0;
1685 err = 0;
1686
1687 if (msg->msg_flags & MSG_OOB)
1688 return -EOPNOTSUPP;
1689
1690 lock_sock(sk);
1691
1692 /* Callers should not provide a destination with stream sockets. */
1693 if (msg->msg_namelen) {
1694 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1695 goto out;
1696 }
1697
1698 /* Send data only if both sides are not shutdown in the direction. */
1699 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1700 vsk->peer_shutdown & RCV_SHUTDOWN) {
1701 err = -EPIPE;
1702 goto out;
1703 }
1704
1705 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1706 !vsock_addr_bound(&vsk->local_addr)) {
1707 err = -ENOTCONN;
1708 goto out;
1709 }
1710
1711 if (!vsock_addr_bound(&vsk->remote_addr)) {
1712 err = -EDESTADDRREQ;
1713 goto out;
1714 }
1715
1716 /* Wait for room in the produce queue to enqueue our user's data. */
1717 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1718
1719 err = transport->notify_send_init(vsk, &send_data);
1720 if (err < 0)
1721 goto out;
1722
1723 while (total_written < len) {
1724 ssize_t written;
1725
1726 add_wait_queue(sk_sleep(sk), &wait);
1727 while (vsock_stream_has_space(vsk) == 0 &&
1728 sk->sk_err == 0 &&
1729 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1730 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1731
1732 /* Don't wait for non-blocking sockets. */
1733 if (timeout == 0) {
1734 err = -EAGAIN;
1735 remove_wait_queue(sk_sleep(sk), &wait);
1736 goto out_err;
1737 }
1738
1739 err = transport->notify_send_pre_block(vsk, &send_data);
1740 if (err < 0) {
1741 remove_wait_queue(sk_sleep(sk), &wait);
1742 goto out_err;
1743 }
1744
1745 release_sock(sk);
1746 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1747 lock_sock(sk);
1748 if (signal_pending(current)) {
1749 err = sock_intr_errno(timeout);
1750 remove_wait_queue(sk_sleep(sk), &wait);
1751 goto out_err;
1752 } else if (timeout == 0) {
1753 err = -EAGAIN;
1754 remove_wait_queue(sk_sleep(sk), &wait);
1755 goto out_err;
1756 }
1757 }
1758 remove_wait_queue(sk_sleep(sk), &wait);
1759
1760 /* These checks occur both as part of and after the loop
1761 * conditional since we need to check before and after
1762 * sleeping.
1763 */
1764 if (sk->sk_err) {
1765 err = -sk->sk_err;
1766 goto out_err;
1767 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1768 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1769 err = -EPIPE;
1770 goto out_err;
1771 }
1772
1773 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1774 if (err < 0)
1775 goto out_err;
1776
1777 /* Note that enqueue will only write as many bytes as are free
1778 * in the produce queue, so we don't need to ensure len is
1779 * smaller than the queue size. It is the caller's
1780 * responsibility to check how many bytes we were able to send.
1781 */
1782
1783 written = transport->stream_enqueue(
1784 vsk, msg,
1785 len - total_written);
1786 if (written < 0) {
1787 err = -ENOMEM;
1788 goto out_err;
1789 }
1790
1791 total_written += written;
1792
1793 err = transport->notify_send_post_enqueue(
1794 vsk, written, &send_data);
1795 if (err < 0)
1796 goto out_err;
1797
1798 }
1799
1800 out_err:
1801 if (total_written > 0)
1802 err = total_written;
1803 out:
1804 release_sock(sk);
1805 return err;
1806 }
1807
1808
1809 static int
vsock_stream_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1810 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1811 int flags)
1812 {
1813 struct sock *sk;
1814 struct vsock_sock *vsk;
1815 const struct vsock_transport *transport;
1816 int err;
1817 size_t target;
1818 ssize_t copied;
1819 long timeout;
1820 struct vsock_transport_recv_notify_data recv_data;
1821
1822 DEFINE_WAIT(wait);
1823
1824 sk = sock->sk;
1825 vsk = vsock_sk(sk);
1826 transport = vsk->transport;
1827 err = 0;
1828
1829 lock_sock(sk);
1830
1831 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1832 /* Recvmsg is supposed to return 0 if a peer performs an
1833 * orderly shutdown. Differentiate between that case and when a
1834 * peer has not connected or a local shutdown occured with the
1835 * SOCK_DONE flag.
1836 */
1837 if (sock_flag(sk, SOCK_DONE))
1838 err = 0;
1839 else
1840 err = -ENOTCONN;
1841
1842 goto out;
1843 }
1844
1845 if (flags & MSG_OOB) {
1846 err = -EOPNOTSUPP;
1847 goto out;
1848 }
1849
1850 /* We don't check peer_shutdown flag here since peer may actually shut
1851 * down, but there can be data in the queue that a local socket can
1852 * receive.
1853 */
1854 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1855 err = 0;
1856 goto out;
1857 }
1858
1859 /* It is valid on Linux to pass in a zero-length receive buffer. This
1860 * is not an error. We may as well bail out now.
1861 */
1862 if (!len) {
1863 err = 0;
1864 goto out;
1865 }
1866
1867 /* We must not copy less than target bytes into the user's buffer
1868 * before returning successfully, so we wait for the consume queue to
1869 * have that much data to consume before dequeueing. Note that this
1870 * makes it impossible to handle cases where target is greater than the
1871 * queue size.
1872 */
1873 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1874 if (target >= transport->stream_rcvhiwat(vsk)) {
1875 err = -ENOMEM;
1876 goto out;
1877 }
1878 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1879 copied = 0;
1880
1881 err = transport->notify_recv_init(vsk, target, &recv_data);
1882 if (err < 0)
1883 goto out;
1884
1885
1886 while (1) {
1887 s64 ready;
1888
1889 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1890 ready = vsock_stream_has_data(vsk);
1891
1892 if (ready == 0) {
1893 if (sk->sk_err != 0 ||
1894 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1895 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1896 finish_wait(sk_sleep(sk), &wait);
1897 break;
1898 }
1899 /* Don't wait for non-blocking sockets. */
1900 if (timeout == 0) {
1901 err = -EAGAIN;
1902 finish_wait(sk_sleep(sk), &wait);
1903 break;
1904 }
1905
1906 err = transport->notify_recv_pre_block(
1907 vsk, target, &recv_data);
1908 if (err < 0) {
1909 finish_wait(sk_sleep(sk), &wait);
1910 break;
1911 }
1912 release_sock(sk);
1913 timeout = schedule_timeout(timeout);
1914 lock_sock(sk);
1915
1916 if (signal_pending(current)) {
1917 err = sock_intr_errno(timeout);
1918 finish_wait(sk_sleep(sk), &wait);
1919 break;
1920 } else if (timeout == 0) {
1921 err = -EAGAIN;
1922 finish_wait(sk_sleep(sk), &wait);
1923 break;
1924 }
1925 } else {
1926 ssize_t read;
1927
1928 finish_wait(sk_sleep(sk), &wait);
1929
1930 if (ready < 0) {
1931 /* Invalid queue pair content. XXX This should
1932 * be changed to a connection reset in a later
1933 * change.
1934 */
1935
1936 err = -ENOMEM;
1937 goto out;
1938 }
1939
1940 err = transport->notify_recv_pre_dequeue(
1941 vsk, target, &recv_data);
1942 if (err < 0)
1943 break;
1944
1945 read = transport->stream_dequeue(
1946 vsk, msg,
1947 len - copied, flags);
1948 if (read < 0) {
1949 err = -ENOMEM;
1950 break;
1951 }
1952
1953 copied += read;
1954
1955 err = transport->notify_recv_post_dequeue(
1956 vsk, target, read,
1957 !(flags & MSG_PEEK), &recv_data);
1958 if (err < 0)
1959 goto out;
1960
1961 if (read >= target || flags & MSG_PEEK)
1962 break;
1963
1964 target -= read;
1965 }
1966 }
1967
1968 if (sk->sk_err)
1969 err = -sk->sk_err;
1970 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1971 err = 0;
1972
1973 if (copied > 0)
1974 err = copied;
1975
1976 out:
1977 release_sock(sk);
1978 return err;
1979 }
1980
1981 static const struct proto_ops vsock_stream_ops = {
1982 .family = PF_VSOCK,
1983 .owner = THIS_MODULE,
1984 .release = vsock_release,
1985 .bind = vsock_bind,
1986 .connect = vsock_stream_connect,
1987 .socketpair = sock_no_socketpair,
1988 .accept = vsock_accept,
1989 .getname = vsock_getname,
1990 .poll = vsock_poll,
1991 .ioctl = sock_no_ioctl,
1992 .listen = vsock_listen,
1993 .shutdown = vsock_shutdown,
1994 .setsockopt = vsock_stream_setsockopt,
1995 .getsockopt = vsock_stream_getsockopt,
1996 .sendmsg = vsock_stream_sendmsg,
1997 .recvmsg = vsock_stream_recvmsg,
1998 .mmap = sock_no_mmap,
1999 .sendpage = sock_no_sendpage,
2000 };
2001
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2002 static int vsock_create(struct net *net, struct socket *sock,
2003 int protocol, int kern)
2004 {
2005 struct vsock_sock *vsk;
2006 struct sock *sk;
2007 int ret;
2008
2009 if (!sock)
2010 return -EINVAL;
2011
2012 if (protocol && protocol != PF_VSOCK)
2013 return -EPROTONOSUPPORT;
2014
2015 switch (sock->type) {
2016 case SOCK_DGRAM:
2017 sock->ops = &vsock_dgram_ops;
2018 break;
2019 case SOCK_STREAM:
2020 sock->ops = &vsock_stream_ops;
2021 break;
2022 default:
2023 return -ESOCKTNOSUPPORT;
2024 }
2025
2026 sock->state = SS_UNCONNECTED;
2027
2028 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2029 if (!sk)
2030 return -ENOMEM;
2031
2032 vsk = vsock_sk(sk);
2033
2034 if (sock->type == SOCK_DGRAM) {
2035 ret = vsock_assign_transport(vsk, NULL);
2036 if (ret < 0) {
2037 sock_put(sk);
2038 return ret;
2039 }
2040 }
2041
2042 vsock_insert_unbound(vsk);
2043
2044 return 0;
2045 }
2046
2047 static const struct net_proto_family vsock_family_ops = {
2048 .family = AF_VSOCK,
2049 .create = vsock_create,
2050 .owner = THIS_MODULE,
2051 };
2052
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2053 static long vsock_dev_do_ioctl(struct file *filp,
2054 unsigned int cmd, void __user *ptr)
2055 {
2056 u32 __user *p = ptr;
2057 u32 cid = VMADDR_CID_ANY;
2058 int retval = 0;
2059
2060 switch (cmd) {
2061 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2062 /* To be compatible with the VMCI behavior, we prioritize the
2063 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2064 */
2065 if (transport_g2h)
2066 cid = transport_g2h->get_local_cid();
2067 else if (transport_h2g)
2068 cid = transport_h2g->get_local_cid();
2069
2070 if (put_user(cid, p) != 0)
2071 retval = -EFAULT;
2072 break;
2073
2074 default:
2075 pr_err("Unknown ioctl %d\n", cmd);
2076 retval = -EINVAL;
2077 }
2078
2079 return retval;
2080 }
2081
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2082 static long vsock_dev_ioctl(struct file *filp,
2083 unsigned int cmd, unsigned long arg)
2084 {
2085 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2086 }
2087
2088 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2089 static long vsock_dev_compat_ioctl(struct file *filp,
2090 unsigned int cmd, unsigned long arg)
2091 {
2092 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2093 }
2094 #endif
2095
2096 static const struct file_operations vsock_device_ops = {
2097 .owner = THIS_MODULE,
2098 .unlocked_ioctl = vsock_dev_ioctl,
2099 #ifdef CONFIG_COMPAT
2100 .compat_ioctl = vsock_dev_compat_ioctl,
2101 #endif
2102 .open = nonseekable_open,
2103 };
2104
2105 static struct miscdevice vsock_device = {
2106 .name = "vsock",
2107 .fops = &vsock_device_ops,
2108 };
2109
vsock_init(void)2110 static int __init vsock_init(void)
2111 {
2112 int err = 0;
2113
2114 vsock_init_tables();
2115
2116 vsock_proto.owner = THIS_MODULE;
2117 vsock_device.minor = MISC_DYNAMIC_MINOR;
2118 err = misc_register(&vsock_device);
2119 if (err) {
2120 pr_err("Failed to register misc device\n");
2121 goto err_reset_transport;
2122 }
2123
2124 err = proto_register(&vsock_proto, 1); /* we want our slab */
2125 if (err) {
2126 pr_err("Cannot register vsock protocol\n");
2127 goto err_deregister_misc;
2128 }
2129
2130 err = sock_register(&vsock_family_ops);
2131 if (err) {
2132 pr_err("could not register af_vsock (%d) address family: %d\n",
2133 AF_VSOCK, err);
2134 goto err_unregister_proto;
2135 }
2136
2137 return 0;
2138
2139 err_unregister_proto:
2140 proto_unregister(&vsock_proto);
2141 err_deregister_misc:
2142 misc_deregister(&vsock_device);
2143 err_reset_transport:
2144 return err;
2145 }
2146
vsock_exit(void)2147 static void __exit vsock_exit(void)
2148 {
2149 misc_deregister(&vsock_device);
2150 sock_unregister(AF_VSOCK);
2151 proto_unregister(&vsock_proto);
2152 }
2153
vsock_core_get_transport(struct vsock_sock * vsk)2154 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2155 {
2156 return vsk->transport;
2157 }
2158 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2159
vsock_core_register(const struct vsock_transport * t,int features)2160 int vsock_core_register(const struct vsock_transport *t, int features)
2161 {
2162 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2163 int err = mutex_lock_interruptible(&vsock_register_mutex);
2164
2165 if (err)
2166 return err;
2167
2168 t_h2g = transport_h2g;
2169 t_g2h = transport_g2h;
2170 t_dgram = transport_dgram;
2171 t_local = transport_local;
2172
2173 if (features & VSOCK_TRANSPORT_F_H2G) {
2174 if (t_h2g) {
2175 err = -EBUSY;
2176 goto err_busy;
2177 }
2178 t_h2g = t;
2179 }
2180
2181 if (features & VSOCK_TRANSPORT_F_G2H) {
2182 if (t_g2h) {
2183 err = -EBUSY;
2184 goto err_busy;
2185 }
2186 t_g2h = t;
2187 }
2188
2189 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2190 if (t_dgram) {
2191 err = -EBUSY;
2192 goto err_busy;
2193 }
2194 t_dgram = t;
2195 }
2196
2197 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2198 if (t_local) {
2199 err = -EBUSY;
2200 goto err_busy;
2201 }
2202 t_local = t;
2203 }
2204
2205 transport_h2g = t_h2g;
2206 transport_g2h = t_g2h;
2207 transport_dgram = t_dgram;
2208 transport_local = t_local;
2209
2210 err_busy:
2211 mutex_unlock(&vsock_register_mutex);
2212 return err;
2213 }
2214 EXPORT_SYMBOL_GPL(vsock_core_register);
2215
vsock_core_unregister(const struct vsock_transport * t)2216 void vsock_core_unregister(const struct vsock_transport *t)
2217 {
2218 mutex_lock(&vsock_register_mutex);
2219
2220 if (transport_h2g == t)
2221 transport_h2g = NULL;
2222
2223 if (transport_g2h == t)
2224 transport_g2h = NULL;
2225
2226 if (transport_dgram == t)
2227 transport_dgram = NULL;
2228
2229 if (transport_local == t)
2230 transport_local = NULL;
2231
2232 mutex_unlock(&vsock_register_mutex);
2233 }
2234 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2235
2236 module_init(vsock_init);
2237 module_exit(vsock_exit);
2238
2239 MODULE_AUTHOR("VMware, Inc.");
2240 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2241 MODULE_VERSION("1.0.2.0-k");
2242 MODULE_LICENSE("GPL v2");
2243