1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include "flow.h"
9 #include "datapath.h"
10 #include <linux/uaccess.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_ether.h>
14 #include <linux/if_vlan.h>
15 #include <net/llc_pdu.h>
16 #include <linux/kernel.h>
17 #include <linux/jhash.h>
18 #include <linux/jiffies.h>
19 #include <linux/llc.h>
20 #include <linux/module.h>
21 #include <linux/in.h>
22 #include <linux/rcupdate.h>
23 #include <linux/if_arp.h>
24 #include <linux/ip.h>
25 #include <linux/ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/icmp.h>
30 #include <linux/icmpv6.h>
31 #include <linux/rculist.h>
32 #include <net/geneve.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/mpls.h>
37 #include <net/vxlan.h>
38 #include <net/tun_proto.h>
39 #include <net/erspan.h>
40
41 #include "flow_netlink.h"
42
43 struct ovs_len_tbl {
44 int len;
45 const struct ovs_len_tbl *next;
46 };
47
48 #define OVS_ATTR_NESTED -1
49 #define OVS_ATTR_VARIABLE -2
50
actions_may_change_flow(const struct nlattr * actions)51 static bool actions_may_change_flow(const struct nlattr *actions)
52 {
53 struct nlattr *nla;
54 int rem;
55
56 nla_for_each_nested(nla, actions, rem) {
57 u16 action = nla_type(nla);
58
59 switch (action) {
60 case OVS_ACTION_ATTR_OUTPUT:
61 case OVS_ACTION_ATTR_RECIRC:
62 case OVS_ACTION_ATTR_TRUNC:
63 case OVS_ACTION_ATTR_USERSPACE:
64 break;
65
66 case OVS_ACTION_ATTR_CT:
67 case OVS_ACTION_ATTR_CT_CLEAR:
68 case OVS_ACTION_ATTR_HASH:
69 case OVS_ACTION_ATTR_POP_ETH:
70 case OVS_ACTION_ATTR_POP_MPLS:
71 case OVS_ACTION_ATTR_POP_NSH:
72 case OVS_ACTION_ATTR_POP_VLAN:
73 case OVS_ACTION_ATTR_PUSH_ETH:
74 case OVS_ACTION_ATTR_PUSH_MPLS:
75 case OVS_ACTION_ATTR_PUSH_NSH:
76 case OVS_ACTION_ATTR_PUSH_VLAN:
77 case OVS_ACTION_ATTR_SAMPLE:
78 case OVS_ACTION_ATTR_SET:
79 case OVS_ACTION_ATTR_SET_MASKED:
80 case OVS_ACTION_ATTR_METER:
81 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
82 case OVS_ACTION_ATTR_ADD_MPLS:
83 case OVS_ACTION_ATTR_DEC_TTL:
84 default:
85 return true;
86 }
87 }
88 return false;
89 }
90
update_range(struct sw_flow_match * match,size_t offset,size_t size,bool is_mask)91 static void update_range(struct sw_flow_match *match,
92 size_t offset, size_t size, bool is_mask)
93 {
94 struct sw_flow_key_range *range;
95 size_t start = rounddown(offset, sizeof(long));
96 size_t end = roundup(offset + size, sizeof(long));
97
98 if (!is_mask)
99 range = &match->range;
100 else
101 range = &match->mask->range;
102
103 if (range->start == range->end) {
104 range->start = start;
105 range->end = end;
106 return;
107 }
108
109 if (range->start > start)
110 range->start = start;
111
112 if (range->end < end)
113 range->end = end;
114 }
115
116 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
117 do { \
118 update_range(match, offsetof(struct sw_flow_key, field), \
119 sizeof((match)->key->field), is_mask); \
120 if (is_mask) \
121 (match)->mask->key.field = value; \
122 else \
123 (match)->key->field = value; \
124 } while (0)
125
126 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
127 do { \
128 update_range(match, offset, len, is_mask); \
129 if (is_mask) \
130 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
131 len); \
132 else \
133 memcpy((u8 *)(match)->key + offset, value_p, len); \
134 } while (0)
135
136 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
137 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
138 value_p, len, is_mask)
139
140 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
141 do { \
142 update_range(match, offsetof(struct sw_flow_key, field), \
143 sizeof((match)->key->field), is_mask); \
144 if (is_mask) \
145 memset((u8 *)&(match)->mask->key.field, value, \
146 sizeof((match)->mask->key.field)); \
147 else \
148 memset((u8 *)&(match)->key->field, value, \
149 sizeof((match)->key->field)); \
150 } while (0)
151
match_validate(const struct sw_flow_match * match,u64 key_attrs,u64 mask_attrs,bool log)152 static bool match_validate(const struct sw_flow_match *match,
153 u64 key_attrs, u64 mask_attrs, bool log)
154 {
155 u64 key_expected = 0;
156 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
157
158 /* The following mask attributes allowed only if they
159 * pass the validation tests. */
160 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
161 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
162 | (1 << OVS_KEY_ATTR_IPV6)
163 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
164 | (1 << OVS_KEY_ATTR_TCP)
165 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
166 | (1 << OVS_KEY_ATTR_UDP)
167 | (1 << OVS_KEY_ATTR_SCTP)
168 | (1 << OVS_KEY_ATTR_ICMP)
169 | (1 << OVS_KEY_ATTR_ICMPV6)
170 | (1 << OVS_KEY_ATTR_ARP)
171 | (1 << OVS_KEY_ATTR_ND)
172 | (1 << OVS_KEY_ATTR_MPLS)
173 | (1 << OVS_KEY_ATTR_NSH));
174
175 /* Always allowed mask fields. */
176 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
177 | (1 << OVS_KEY_ATTR_IN_PORT)
178 | (1 << OVS_KEY_ATTR_ETHERTYPE));
179
180 /* Check key attributes. */
181 if (match->key->eth.type == htons(ETH_P_ARP)
182 || match->key->eth.type == htons(ETH_P_RARP)) {
183 key_expected |= 1 << OVS_KEY_ATTR_ARP;
184 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
185 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
186 }
187
188 if (eth_p_mpls(match->key->eth.type)) {
189 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
190 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
191 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
192 }
193
194 if (match->key->eth.type == htons(ETH_P_IP)) {
195 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
196 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
197 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
198 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
199 }
200
201 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
202 if (match->key->ip.proto == IPPROTO_UDP) {
203 key_expected |= 1 << OVS_KEY_ATTR_UDP;
204 if (match->mask && (match->mask->key.ip.proto == 0xff))
205 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
206 }
207
208 if (match->key->ip.proto == IPPROTO_SCTP) {
209 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
210 if (match->mask && (match->mask->key.ip.proto == 0xff))
211 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
212 }
213
214 if (match->key->ip.proto == IPPROTO_TCP) {
215 key_expected |= 1 << OVS_KEY_ATTR_TCP;
216 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
217 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
218 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
219 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
220 }
221 }
222
223 if (match->key->ip.proto == IPPROTO_ICMP) {
224 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
225 if (match->mask && (match->mask->key.ip.proto == 0xff))
226 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
227 }
228 }
229 }
230
231 if (match->key->eth.type == htons(ETH_P_IPV6)) {
232 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
233 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
234 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
235 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
236 }
237
238 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
239 if (match->key->ip.proto == IPPROTO_UDP) {
240 key_expected |= 1 << OVS_KEY_ATTR_UDP;
241 if (match->mask && (match->mask->key.ip.proto == 0xff))
242 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
243 }
244
245 if (match->key->ip.proto == IPPROTO_SCTP) {
246 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
247 if (match->mask && (match->mask->key.ip.proto == 0xff))
248 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
249 }
250
251 if (match->key->ip.proto == IPPROTO_TCP) {
252 key_expected |= 1 << OVS_KEY_ATTR_TCP;
253 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
254 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
255 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
256 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
257 }
258 }
259
260 if (match->key->ip.proto == IPPROTO_ICMPV6) {
261 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
262 if (match->mask && (match->mask->key.ip.proto == 0xff))
263 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
264
265 if (match->key->tp.src ==
266 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
267 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
268 key_expected |= 1 << OVS_KEY_ATTR_ND;
269 /* Original direction conntrack tuple
270 * uses the same space as the ND fields
271 * in the key, so both are not allowed
272 * at the same time.
273 */
274 mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
275 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
276 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
277 }
278 }
279 }
280 }
281
282 if (match->key->eth.type == htons(ETH_P_NSH)) {
283 key_expected |= 1 << OVS_KEY_ATTR_NSH;
284 if (match->mask &&
285 match->mask->key.eth.type == htons(0xffff)) {
286 mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
287 }
288 }
289
290 if ((key_attrs & key_expected) != key_expected) {
291 /* Key attributes check failed. */
292 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
293 (unsigned long long)key_attrs,
294 (unsigned long long)key_expected);
295 return false;
296 }
297
298 if ((mask_attrs & mask_allowed) != mask_attrs) {
299 /* Mask attributes check failed. */
300 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
301 (unsigned long long)mask_attrs,
302 (unsigned long long)mask_allowed);
303 return false;
304 }
305
306 return true;
307 }
308
ovs_tun_key_attr_size(void)309 size_t ovs_tun_key_attr_size(void)
310 {
311 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
312 * updating this function.
313 */
314 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
315 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
316 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
317 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
318 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
319 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
320 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
321 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
322 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
323 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
324 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
325 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
326 */
327 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
328 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
329 }
330
ovs_nsh_key_attr_size(void)331 static size_t ovs_nsh_key_attr_size(void)
332 {
333 /* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
334 * updating this function.
335 */
336 return nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
337 /* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
338 * mutually exclusive, so the bigger one can cover
339 * the small one.
340 */
341 + nla_total_size(NSH_CTX_HDRS_MAX_LEN);
342 }
343
ovs_key_attr_size(void)344 size_t ovs_key_attr_size(void)
345 {
346 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
347 * updating this function.
348 */
349 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29);
350
351 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
352 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
353 + ovs_tun_key_attr_size()
354 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
355 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
356 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
357 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
358 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
359 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
360 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
361 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
362 + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
363 + nla_total_size(0) /* OVS_KEY_ATTR_NSH */
364 + ovs_nsh_key_attr_size()
365 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
366 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
367 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
368 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
369 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
370 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
371 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
372 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
373 }
374
375 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
376 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
377 };
378
379 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
380 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
381 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
382 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
383 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
384 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
385 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
386 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
387 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
388 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
389 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
390 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
391 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
392 .next = ovs_vxlan_ext_key_lens },
393 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
394 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
395 [OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS] = { .len = OVS_ATTR_VARIABLE },
396 [OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE] = { .len = 0 },
397 };
398
399 static const struct ovs_len_tbl
400 ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
401 [OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
402 [OVS_NSH_KEY_ATTR_MD1] = { .len = sizeof(struct ovs_nsh_key_md1) },
403 [OVS_NSH_KEY_ATTR_MD2] = { .len = OVS_ATTR_VARIABLE },
404 };
405
406 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
407 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
408 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
409 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
410 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
411 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
412 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
413 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
414 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
415 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
416 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
417 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
418 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
419 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
420 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
421 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
422 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
423 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
424 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
425 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
426 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
427 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
428 .next = ovs_tunnel_key_lens, },
429 [OVS_KEY_ATTR_MPLS] = { .len = OVS_ATTR_VARIABLE },
430 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
431 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
432 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
433 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
434 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
435 .len = sizeof(struct ovs_key_ct_tuple_ipv4) },
436 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
437 .len = sizeof(struct ovs_key_ct_tuple_ipv6) },
438 [OVS_KEY_ATTR_NSH] = { .len = OVS_ATTR_NESTED,
439 .next = ovs_nsh_key_attr_lens, },
440 };
441
check_attr_len(unsigned int attr_len,unsigned int expected_len)442 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
443 {
444 return expected_len == attr_len ||
445 expected_len == OVS_ATTR_NESTED ||
446 expected_len == OVS_ATTR_VARIABLE;
447 }
448
is_all_zero(const u8 * fp,size_t size)449 static bool is_all_zero(const u8 *fp, size_t size)
450 {
451 int i;
452
453 if (!fp)
454 return false;
455
456 for (i = 0; i < size; i++)
457 if (fp[i])
458 return false;
459
460 return true;
461 }
462
__parse_flow_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log,bool nz)463 static int __parse_flow_nlattrs(const struct nlattr *attr,
464 const struct nlattr *a[],
465 u64 *attrsp, bool log, bool nz)
466 {
467 const struct nlattr *nla;
468 u64 attrs;
469 int rem;
470
471 attrs = *attrsp;
472 nla_for_each_nested(nla, attr, rem) {
473 u16 type = nla_type(nla);
474 int expected_len;
475
476 if (type > OVS_KEY_ATTR_MAX) {
477 OVS_NLERR(log, "Key type %d is out of range max %d",
478 type, OVS_KEY_ATTR_MAX);
479 return -EINVAL;
480 }
481
482 if (attrs & (1 << type)) {
483 OVS_NLERR(log, "Duplicate key (type %d).", type);
484 return -EINVAL;
485 }
486
487 expected_len = ovs_key_lens[type].len;
488 if (!check_attr_len(nla_len(nla), expected_len)) {
489 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
490 type, nla_len(nla), expected_len);
491 return -EINVAL;
492 }
493
494 if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
495 attrs |= 1 << type;
496 a[type] = nla;
497 }
498 }
499 if (rem) {
500 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
501 return -EINVAL;
502 }
503
504 *attrsp = attrs;
505 return 0;
506 }
507
parse_flow_mask_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log)508 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
509 const struct nlattr *a[], u64 *attrsp,
510 bool log)
511 {
512 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
513 }
514
parse_flow_nlattrs(const struct nlattr * attr,const struct nlattr * a[],u64 * attrsp,bool log)515 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
516 u64 *attrsp, bool log)
517 {
518 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
519 }
520
genev_tun_opt_from_nlattr(const struct nlattr * a,struct sw_flow_match * match,bool is_mask,bool log)521 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
522 struct sw_flow_match *match, bool is_mask,
523 bool log)
524 {
525 unsigned long opt_key_offset;
526
527 if (nla_len(a) > sizeof(match->key->tun_opts)) {
528 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
529 nla_len(a), sizeof(match->key->tun_opts));
530 return -EINVAL;
531 }
532
533 if (nla_len(a) % 4 != 0) {
534 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
535 nla_len(a));
536 return -EINVAL;
537 }
538
539 /* We need to record the length of the options passed
540 * down, otherwise packets with the same format but
541 * additional options will be silently matched.
542 */
543 if (!is_mask) {
544 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
545 false);
546 } else {
547 /* This is somewhat unusual because it looks at
548 * both the key and mask while parsing the
549 * attributes (and by extension assumes the key
550 * is parsed first). Normally, we would verify
551 * that each is the correct length and that the
552 * attributes line up in the validate function.
553 * However, that is difficult because this is
554 * variable length and we won't have the
555 * information later.
556 */
557 if (match->key->tun_opts_len != nla_len(a)) {
558 OVS_NLERR(log, "Geneve option len %d != mask len %d",
559 match->key->tun_opts_len, nla_len(a));
560 return -EINVAL;
561 }
562
563 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
564 }
565
566 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
567 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
568 nla_len(a), is_mask);
569 return 0;
570 }
571
vxlan_tun_opt_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool log)572 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
573 struct sw_flow_match *match, bool is_mask,
574 bool log)
575 {
576 struct nlattr *a;
577 int rem;
578 unsigned long opt_key_offset;
579 struct vxlan_metadata opts;
580
581 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
582
583 memset(&opts, 0, sizeof(opts));
584 nla_for_each_nested(a, attr, rem) {
585 int type = nla_type(a);
586
587 if (type > OVS_VXLAN_EXT_MAX) {
588 OVS_NLERR(log, "VXLAN extension %d out of range max %d",
589 type, OVS_VXLAN_EXT_MAX);
590 return -EINVAL;
591 }
592
593 if (!check_attr_len(nla_len(a),
594 ovs_vxlan_ext_key_lens[type].len)) {
595 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
596 type, nla_len(a),
597 ovs_vxlan_ext_key_lens[type].len);
598 return -EINVAL;
599 }
600
601 switch (type) {
602 case OVS_VXLAN_EXT_GBP:
603 opts.gbp = nla_get_u32(a);
604 break;
605 default:
606 OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
607 type);
608 return -EINVAL;
609 }
610 }
611 if (rem) {
612 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
613 rem);
614 return -EINVAL;
615 }
616
617 if (!is_mask)
618 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
619 else
620 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
621
622 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
623 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
624 is_mask);
625 return 0;
626 }
627
erspan_tun_opt_from_nlattr(const struct nlattr * a,struct sw_flow_match * match,bool is_mask,bool log)628 static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
629 struct sw_flow_match *match, bool is_mask,
630 bool log)
631 {
632 unsigned long opt_key_offset;
633
634 BUILD_BUG_ON(sizeof(struct erspan_metadata) >
635 sizeof(match->key->tun_opts));
636
637 if (nla_len(a) > sizeof(match->key->tun_opts)) {
638 OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
639 nla_len(a), sizeof(match->key->tun_opts));
640 return -EINVAL;
641 }
642
643 if (!is_mask)
644 SW_FLOW_KEY_PUT(match, tun_opts_len,
645 sizeof(struct erspan_metadata), false);
646 else
647 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
648
649 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
650 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
651 nla_len(a), is_mask);
652 return 0;
653 }
654
ip_tun_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool log)655 static int ip_tun_from_nlattr(const struct nlattr *attr,
656 struct sw_flow_match *match, bool is_mask,
657 bool log)
658 {
659 bool ttl = false, ipv4 = false, ipv6 = false;
660 bool info_bridge_mode = false;
661 __be16 tun_flags = 0;
662 int opts_type = 0;
663 struct nlattr *a;
664 int rem;
665
666 nla_for_each_nested(a, attr, rem) {
667 int type = nla_type(a);
668 int err;
669
670 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
671 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
672 type, OVS_TUNNEL_KEY_ATTR_MAX);
673 return -EINVAL;
674 }
675
676 if (!check_attr_len(nla_len(a),
677 ovs_tunnel_key_lens[type].len)) {
678 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
679 type, nla_len(a), ovs_tunnel_key_lens[type].len);
680 return -EINVAL;
681 }
682
683 switch (type) {
684 case OVS_TUNNEL_KEY_ATTR_ID:
685 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
686 nla_get_be64(a), is_mask);
687 tun_flags |= TUNNEL_KEY;
688 break;
689 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
690 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
691 nla_get_in_addr(a), is_mask);
692 ipv4 = true;
693 break;
694 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
695 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
696 nla_get_in_addr(a), is_mask);
697 ipv4 = true;
698 break;
699 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
700 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
701 nla_get_in6_addr(a), is_mask);
702 ipv6 = true;
703 break;
704 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
705 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
706 nla_get_in6_addr(a), is_mask);
707 ipv6 = true;
708 break;
709 case OVS_TUNNEL_KEY_ATTR_TOS:
710 SW_FLOW_KEY_PUT(match, tun_key.tos,
711 nla_get_u8(a), is_mask);
712 break;
713 case OVS_TUNNEL_KEY_ATTR_TTL:
714 SW_FLOW_KEY_PUT(match, tun_key.ttl,
715 nla_get_u8(a), is_mask);
716 ttl = true;
717 break;
718 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
719 tun_flags |= TUNNEL_DONT_FRAGMENT;
720 break;
721 case OVS_TUNNEL_KEY_ATTR_CSUM:
722 tun_flags |= TUNNEL_CSUM;
723 break;
724 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
725 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
726 nla_get_be16(a), is_mask);
727 break;
728 case OVS_TUNNEL_KEY_ATTR_TP_DST:
729 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
730 nla_get_be16(a), is_mask);
731 break;
732 case OVS_TUNNEL_KEY_ATTR_OAM:
733 tun_flags |= TUNNEL_OAM;
734 break;
735 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
736 if (opts_type) {
737 OVS_NLERR(log, "Multiple metadata blocks provided");
738 return -EINVAL;
739 }
740
741 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
742 if (err)
743 return err;
744
745 tun_flags |= TUNNEL_GENEVE_OPT;
746 opts_type = type;
747 break;
748 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
749 if (opts_type) {
750 OVS_NLERR(log, "Multiple metadata blocks provided");
751 return -EINVAL;
752 }
753
754 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
755 if (err)
756 return err;
757
758 tun_flags |= TUNNEL_VXLAN_OPT;
759 opts_type = type;
760 break;
761 case OVS_TUNNEL_KEY_ATTR_PAD:
762 break;
763 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
764 if (opts_type) {
765 OVS_NLERR(log, "Multiple metadata blocks provided");
766 return -EINVAL;
767 }
768
769 err = erspan_tun_opt_from_nlattr(a, match, is_mask,
770 log);
771 if (err)
772 return err;
773
774 tun_flags |= TUNNEL_ERSPAN_OPT;
775 opts_type = type;
776 break;
777 case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
778 info_bridge_mode = true;
779 ipv4 = true;
780 break;
781 default:
782 OVS_NLERR(log, "Unknown IP tunnel attribute %d",
783 type);
784 return -EINVAL;
785 }
786 }
787
788 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
789 if (is_mask)
790 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
791 else
792 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
793 false);
794
795 if (rem > 0) {
796 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
797 rem);
798 return -EINVAL;
799 }
800
801 if (ipv4 && ipv6) {
802 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
803 return -EINVAL;
804 }
805
806 if (!is_mask) {
807 if (!ipv4 && !ipv6) {
808 OVS_NLERR(log, "IP tunnel dst address not specified");
809 return -EINVAL;
810 }
811 if (ipv4) {
812 if (info_bridge_mode) {
813 if (match->key->tun_key.u.ipv4.src ||
814 match->key->tun_key.u.ipv4.dst ||
815 match->key->tun_key.tp_src ||
816 match->key->tun_key.tp_dst ||
817 match->key->tun_key.ttl ||
818 match->key->tun_key.tos ||
819 tun_flags & ~TUNNEL_KEY) {
820 OVS_NLERR(log, "IPv4 tun info is not correct");
821 return -EINVAL;
822 }
823 } else if (!match->key->tun_key.u.ipv4.dst) {
824 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
825 return -EINVAL;
826 }
827 }
828 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
829 OVS_NLERR(log, "IPv6 tunnel dst address is zero");
830 return -EINVAL;
831 }
832
833 if (!ttl && !info_bridge_mode) {
834 OVS_NLERR(log, "IP tunnel TTL not specified.");
835 return -EINVAL;
836 }
837 }
838
839 return opts_type;
840 }
841
vxlan_opt_to_nlattr(struct sk_buff * skb,const void * tun_opts,int swkey_tun_opts_len)842 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
843 const void *tun_opts, int swkey_tun_opts_len)
844 {
845 const struct vxlan_metadata *opts = tun_opts;
846 struct nlattr *nla;
847
848 nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
849 if (!nla)
850 return -EMSGSIZE;
851
852 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
853 return -EMSGSIZE;
854
855 nla_nest_end(skb, nla);
856 return 0;
857 }
858
__ip_tun_to_nlattr(struct sk_buff * skb,const struct ip_tunnel_key * output,const void * tun_opts,int swkey_tun_opts_len,unsigned short tun_proto,u8 mode)859 static int __ip_tun_to_nlattr(struct sk_buff *skb,
860 const struct ip_tunnel_key *output,
861 const void *tun_opts, int swkey_tun_opts_len,
862 unsigned short tun_proto, u8 mode)
863 {
864 if (output->tun_flags & TUNNEL_KEY &&
865 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
866 OVS_TUNNEL_KEY_ATTR_PAD))
867 return -EMSGSIZE;
868
869 if (mode & IP_TUNNEL_INFO_BRIDGE)
870 return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
871 ? -EMSGSIZE : 0;
872
873 switch (tun_proto) {
874 case AF_INET:
875 if (output->u.ipv4.src &&
876 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
877 output->u.ipv4.src))
878 return -EMSGSIZE;
879 if (output->u.ipv4.dst &&
880 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
881 output->u.ipv4.dst))
882 return -EMSGSIZE;
883 break;
884 case AF_INET6:
885 if (!ipv6_addr_any(&output->u.ipv6.src) &&
886 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
887 &output->u.ipv6.src))
888 return -EMSGSIZE;
889 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
890 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
891 &output->u.ipv6.dst))
892 return -EMSGSIZE;
893 break;
894 }
895 if (output->tos &&
896 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
897 return -EMSGSIZE;
898 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
899 return -EMSGSIZE;
900 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
901 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
902 return -EMSGSIZE;
903 if ((output->tun_flags & TUNNEL_CSUM) &&
904 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
905 return -EMSGSIZE;
906 if (output->tp_src &&
907 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
908 return -EMSGSIZE;
909 if (output->tp_dst &&
910 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
911 return -EMSGSIZE;
912 if ((output->tun_flags & TUNNEL_OAM) &&
913 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
914 return -EMSGSIZE;
915 if (swkey_tun_opts_len) {
916 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
917 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
918 swkey_tun_opts_len, tun_opts))
919 return -EMSGSIZE;
920 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
921 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
922 return -EMSGSIZE;
923 else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
924 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
925 swkey_tun_opts_len, tun_opts))
926 return -EMSGSIZE;
927 }
928
929 return 0;
930 }
931
ip_tun_to_nlattr(struct sk_buff * skb,const struct ip_tunnel_key * output,const void * tun_opts,int swkey_tun_opts_len,unsigned short tun_proto,u8 mode)932 static int ip_tun_to_nlattr(struct sk_buff *skb,
933 const struct ip_tunnel_key *output,
934 const void *tun_opts, int swkey_tun_opts_len,
935 unsigned short tun_proto, u8 mode)
936 {
937 struct nlattr *nla;
938 int err;
939
940 nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
941 if (!nla)
942 return -EMSGSIZE;
943
944 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
945 tun_proto, mode);
946 if (err)
947 return err;
948
949 nla_nest_end(skb, nla);
950 return 0;
951 }
952
ovs_nla_put_tunnel_info(struct sk_buff * skb,struct ip_tunnel_info * tun_info)953 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
954 struct ip_tunnel_info *tun_info)
955 {
956 return __ip_tun_to_nlattr(skb, &tun_info->key,
957 ip_tunnel_info_opts(tun_info),
958 tun_info->options_len,
959 ip_tunnel_info_af(tun_info), tun_info->mode);
960 }
961
encode_vlan_from_nlattrs(struct sw_flow_match * match,const struct nlattr * a[],bool is_mask,bool inner)962 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
963 const struct nlattr *a[],
964 bool is_mask, bool inner)
965 {
966 __be16 tci = 0;
967 __be16 tpid = 0;
968
969 if (a[OVS_KEY_ATTR_VLAN])
970 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
971
972 if (a[OVS_KEY_ATTR_ETHERTYPE])
973 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
974
975 if (likely(!inner)) {
976 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
977 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
978 } else {
979 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
980 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
981 }
982 return 0;
983 }
984
validate_vlan_from_nlattrs(const struct sw_flow_match * match,u64 key_attrs,bool inner,const struct nlattr ** a,bool log)985 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
986 u64 key_attrs, bool inner,
987 const struct nlattr **a, bool log)
988 {
989 __be16 tci = 0;
990
991 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
992 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
993 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
994 /* Not a VLAN. */
995 return 0;
996 }
997
998 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
999 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1000 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1001 return -EINVAL;
1002 }
1003
1004 if (a[OVS_KEY_ATTR_VLAN])
1005 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1006
1007 if (!(tci & htons(VLAN_CFI_MASK))) {
1008 if (tci) {
1009 OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1010 (inner) ? "C-VLAN" : "VLAN");
1011 return -EINVAL;
1012 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1013 /* Corner case for truncated VLAN header. */
1014 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1015 (inner) ? "C-VLAN" : "VLAN");
1016 return -EINVAL;
1017 }
1018 }
1019
1020 return 1;
1021 }
1022
validate_vlan_mask_from_nlattrs(const struct sw_flow_match * match,u64 key_attrs,bool inner,const struct nlattr ** a,bool log)1023 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1024 u64 key_attrs, bool inner,
1025 const struct nlattr **a, bool log)
1026 {
1027 __be16 tci = 0;
1028 __be16 tpid = 0;
1029 bool encap_valid = !!(match->key->eth.vlan.tci &
1030 htons(VLAN_CFI_MASK));
1031 bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1032 htons(VLAN_CFI_MASK));
1033
1034 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1035 /* Not a VLAN. */
1036 return 0;
1037 }
1038
1039 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1040 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1041 (inner) ? "C-VLAN" : "VLAN");
1042 return -EINVAL;
1043 }
1044
1045 if (a[OVS_KEY_ATTR_VLAN])
1046 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1047
1048 if (a[OVS_KEY_ATTR_ETHERTYPE])
1049 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1050
1051 if (tpid != htons(0xffff)) {
1052 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1053 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1054 return -EINVAL;
1055 }
1056 if (!(tci & htons(VLAN_CFI_MASK))) {
1057 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1058 (inner) ? "C-VLAN" : "VLAN");
1059 return -EINVAL;
1060 }
1061
1062 return 1;
1063 }
1064
__parse_vlan_from_nlattrs(struct sw_flow_match * match,u64 * key_attrs,bool inner,const struct nlattr ** a,bool is_mask,bool log)1065 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1066 u64 *key_attrs, bool inner,
1067 const struct nlattr **a, bool is_mask,
1068 bool log)
1069 {
1070 int err;
1071 const struct nlattr *encap;
1072
1073 if (!is_mask)
1074 err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1075 a, log);
1076 else
1077 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1078 a, log);
1079 if (err <= 0)
1080 return err;
1081
1082 err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1083 if (err)
1084 return err;
1085
1086 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1087 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1088 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1089
1090 encap = a[OVS_KEY_ATTR_ENCAP];
1091
1092 if (!is_mask)
1093 err = parse_flow_nlattrs(encap, a, key_attrs, log);
1094 else
1095 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1096
1097 return err;
1098 }
1099
parse_vlan_from_nlattrs(struct sw_flow_match * match,u64 * key_attrs,const struct nlattr ** a,bool is_mask,bool log)1100 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1101 u64 *key_attrs, const struct nlattr **a,
1102 bool is_mask, bool log)
1103 {
1104 int err;
1105 bool encap_valid = false;
1106
1107 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1108 is_mask, log);
1109 if (err)
1110 return err;
1111
1112 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1113 if (encap_valid) {
1114 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1115 is_mask, log);
1116 if (err)
1117 return err;
1118 }
1119
1120 return 0;
1121 }
1122
parse_eth_type_from_nlattrs(struct sw_flow_match * match,u64 * attrs,const struct nlattr ** a,bool is_mask,bool log)1123 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1124 u64 *attrs, const struct nlattr **a,
1125 bool is_mask, bool log)
1126 {
1127 __be16 eth_type;
1128
1129 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1130 if (is_mask) {
1131 /* Always exact match EtherType. */
1132 eth_type = htons(0xffff);
1133 } else if (!eth_proto_is_802_3(eth_type)) {
1134 OVS_NLERR(log, "EtherType %x is less than min %x",
1135 ntohs(eth_type), ETH_P_802_3_MIN);
1136 return -EINVAL;
1137 }
1138
1139 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1140 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1141 return 0;
1142 }
1143
metadata_from_nlattrs(struct net * net,struct sw_flow_match * match,u64 * attrs,const struct nlattr ** a,bool is_mask,bool log)1144 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1145 u64 *attrs, const struct nlattr **a,
1146 bool is_mask, bool log)
1147 {
1148 u8 mac_proto = MAC_PROTO_ETHERNET;
1149
1150 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1151 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1152
1153 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1154 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1155 }
1156
1157 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1158 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1159
1160 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1161 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1162 }
1163
1164 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1165 SW_FLOW_KEY_PUT(match, phy.priority,
1166 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1167 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1168 }
1169
1170 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1171 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1172
1173 if (is_mask) {
1174 in_port = 0xffffffff; /* Always exact match in_port. */
1175 } else if (in_port >= DP_MAX_PORTS) {
1176 OVS_NLERR(log, "Port %d exceeds max allowable %d",
1177 in_port, DP_MAX_PORTS);
1178 return -EINVAL;
1179 }
1180
1181 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1182 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1183 } else if (!is_mask) {
1184 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1185 }
1186
1187 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1188 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1189
1190 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1191 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1192 }
1193 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1194 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1195 is_mask, log) < 0)
1196 return -EINVAL;
1197 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1198 }
1199
1200 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1201 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1202 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1203
1204 if (ct_state & ~CT_SUPPORTED_MASK) {
1205 OVS_NLERR(log, "ct_state flags %08x unsupported",
1206 ct_state);
1207 return -EINVAL;
1208 }
1209
1210 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1211 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1212 }
1213 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1214 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1215 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1216
1217 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1218 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1219 }
1220 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1221 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1222 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1223
1224 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1225 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1226 }
1227 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1228 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1229 const struct ovs_key_ct_labels *cl;
1230
1231 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1232 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1233 sizeof(*cl), is_mask);
1234 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1235 }
1236 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1237 const struct ovs_key_ct_tuple_ipv4 *ct;
1238
1239 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1240
1241 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1242 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1243 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1244 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1245 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1246 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1247 }
1248 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1249 const struct ovs_key_ct_tuple_ipv6 *ct;
1250
1251 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1252
1253 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1254 sizeof(match->key->ipv6.ct_orig.src),
1255 is_mask);
1256 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1257 sizeof(match->key->ipv6.ct_orig.dst),
1258 is_mask);
1259 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1260 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1261 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1262 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1263 }
1264
1265 /* For layer 3 packets the Ethernet type is provided
1266 * and treated as metadata but no MAC addresses are provided.
1267 */
1268 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1269 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1270 mac_proto = MAC_PROTO_NONE;
1271
1272 /* Always exact match mac_proto */
1273 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1274
1275 if (mac_proto == MAC_PROTO_NONE)
1276 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1277 log);
1278
1279 return 0;
1280 }
1281
nsh_hdr_from_nlattr(const struct nlattr * attr,struct nshhdr * nh,size_t size)1282 int nsh_hdr_from_nlattr(const struct nlattr *attr,
1283 struct nshhdr *nh, size_t size)
1284 {
1285 struct nlattr *a;
1286 int rem;
1287 u8 flags = 0;
1288 u8 ttl = 0;
1289 int mdlen = 0;
1290
1291 /* validate_nsh has check this, so we needn't do duplicate check here
1292 */
1293 if (size < NSH_BASE_HDR_LEN)
1294 return -ENOBUFS;
1295
1296 nla_for_each_nested(a, attr, rem) {
1297 int type = nla_type(a);
1298
1299 switch (type) {
1300 case OVS_NSH_KEY_ATTR_BASE: {
1301 const struct ovs_nsh_key_base *base = nla_data(a);
1302
1303 flags = base->flags;
1304 ttl = base->ttl;
1305 nh->np = base->np;
1306 nh->mdtype = base->mdtype;
1307 nh->path_hdr = base->path_hdr;
1308 break;
1309 }
1310 case OVS_NSH_KEY_ATTR_MD1:
1311 mdlen = nla_len(a);
1312 if (mdlen > size - NSH_BASE_HDR_LEN)
1313 return -ENOBUFS;
1314 memcpy(&nh->md1, nla_data(a), mdlen);
1315 break;
1316
1317 case OVS_NSH_KEY_ATTR_MD2:
1318 mdlen = nla_len(a);
1319 if (mdlen > size - NSH_BASE_HDR_LEN)
1320 return -ENOBUFS;
1321 memcpy(&nh->md2, nla_data(a), mdlen);
1322 break;
1323
1324 default:
1325 return -EINVAL;
1326 }
1327 }
1328
1329 /* nsh header length = NSH_BASE_HDR_LEN + mdlen */
1330 nh->ver_flags_ttl_len = 0;
1331 nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1332
1333 return 0;
1334 }
1335
nsh_key_from_nlattr(const struct nlattr * attr,struct ovs_key_nsh * nsh,struct ovs_key_nsh * nsh_mask)1336 int nsh_key_from_nlattr(const struct nlattr *attr,
1337 struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1338 {
1339 struct nlattr *a;
1340 int rem;
1341
1342 /* validate_nsh has check this, so we needn't do duplicate check here
1343 */
1344 nla_for_each_nested(a, attr, rem) {
1345 int type = nla_type(a);
1346
1347 switch (type) {
1348 case OVS_NSH_KEY_ATTR_BASE: {
1349 const struct ovs_nsh_key_base *base = nla_data(a);
1350 const struct ovs_nsh_key_base *base_mask = base + 1;
1351
1352 nsh->base = *base;
1353 nsh_mask->base = *base_mask;
1354 break;
1355 }
1356 case OVS_NSH_KEY_ATTR_MD1: {
1357 const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1358 const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1359
1360 memcpy(nsh->context, md1->context, sizeof(*md1));
1361 memcpy(nsh_mask->context, md1_mask->context,
1362 sizeof(*md1_mask));
1363 break;
1364 }
1365 case OVS_NSH_KEY_ATTR_MD2:
1366 /* Not supported yet */
1367 return -ENOTSUPP;
1368 default:
1369 return -EINVAL;
1370 }
1371 }
1372
1373 return 0;
1374 }
1375
nsh_key_put_from_nlattr(const struct nlattr * attr,struct sw_flow_match * match,bool is_mask,bool is_push_nsh,bool log)1376 static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1377 struct sw_flow_match *match, bool is_mask,
1378 bool is_push_nsh, bool log)
1379 {
1380 struct nlattr *a;
1381 int rem;
1382 bool has_base = false;
1383 bool has_md1 = false;
1384 bool has_md2 = false;
1385 u8 mdtype = 0;
1386 int mdlen = 0;
1387
1388 if (WARN_ON(is_push_nsh && is_mask))
1389 return -EINVAL;
1390
1391 nla_for_each_nested(a, attr, rem) {
1392 int type = nla_type(a);
1393 int i;
1394
1395 if (type > OVS_NSH_KEY_ATTR_MAX) {
1396 OVS_NLERR(log, "nsh attr %d is out of range max %d",
1397 type, OVS_NSH_KEY_ATTR_MAX);
1398 return -EINVAL;
1399 }
1400
1401 if (!check_attr_len(nla_len(a),
1402 ovs_nsh_key_attr_lens[type].len)) {
1403 OVS_NLERR(
1404 log,
1405 "nsh attr %d has unexpected len %d expected %d",
1406 type,
1407 nla_len(a),
1408 ovs_nsh_key_attr_lens[type].len
1409 );
1410 return -EINVAL;
1411 }
1412
1413 switch (type) {
1414 case OVS_NSH_KEY_ATTR_BASE: {
1415 const struct ovs_nsh_key_base *base = nla_data(a);
1416
1417 has_base = true;
1418 mdtype = base->mdtype;
1419 SW_FLOW_KEY_PUT(match, nsh.base.flags,
1420 base->flags, is_mask);
1421 SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1422 base->ttl, is_mask);
1423 SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1424 base->mdtype, is_mask);
1425 SW_FLOW_KEY_PUT(match, nsh.base.np,
1426 base->np, is_mask);
1427 SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1428 base->path_hdr, is_mask);
1429 break;
1430 }
1431 case OVS_NSH_KEY_ATTR_MD1: {
1432 const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1433
1434 has_md1 = true;
1435 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1436 SW_FLOW_KEY_PUT(match, nsh.context[i],
1437 md1->context[i], is_mask);
1438 break;
1439 }
1440 case OVS_NSH_KEY_ATTR_MD2:
1441 if (!is_push_nsh) /* Not supported MD type 2 yet */
1442 return -ENOTSUPP;
1443
1444 has_md2 = true;
1445 mdlen = nla_len(a);
1446 if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1447 OVS_NLERR(
1448 log,
1449 "Invalid MD length %d for MD type %d",
1450 mdlen,
1451 mdtype
1452 );
1453 return -EINVAL;
1454 }
1455 break;
1456 default:
1457 OVS_NLERR(log, "Unknown nsh attribute %d",
1458 type);
1459 return -EINVAL;
1460 }
1461 }
1462
1463 if (rem > 0) {
1464 OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1465 return -EINVAL;
1466 }
1467
1468 if (has_md1 && has_md2) {
1469 OVS_NLERR(
1470 1,
1471 "invalid nsh attribute: md1 and md2 are exclusive."
1472 );
1473 return -EINVAL;
1474 }
1475
1476 if (!is_mask) {
1477 if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1478 (has_md2 && mdtype != NSH_M_TYPE2)) {
1479 OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1480 mdtype);
1481 return -EINVAL;
1482 }
1483
1484 if (is_push_nsh &&
1485 (!has_base || (!has_md1 && !has_md2))) {
1486 OVS_NLERR(
1487 1,
1488 "push_nsh: missing base or metadata attributes"
1489 );
1490 return -EINVAL;
1491 }
1492 }
1493
1494 return 0;
1495 }
1496
ovs_key_from_nlattrs(struct net * net,struct sw_flow_match * match,u64 attrs,const struct nlattr ** a,bool is_mask,bool log)1497 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1498 u64 attrs, const struct nlattr **a,
1499 bool is_mask, bool log)
1500 {
1501 int err;
1502
1503 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1504 if (err)
1505 return err;
1506
1507 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1508 const struct ovs_key_ethernet *eth_key;
1509
1510 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1511 SW_FLOW_KEY_MEMCPY(match, eth.src,
1512 eth_key->eth_src, ETH_ALEN, is_mask);
1513 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1514 eth_key->eth_dst, ETH_ALEN, is_mask);
1515 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1516
1517 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1518 /* VLAN attribute is always parsed before getting here since it
1519 * may occur multiple times.
1520 */
1521 OVS_NLERR(log, "VLAN attribute unexpected.");
1522 return -EINVAL;
1523 }
1524
1525 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1526 err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1527 log);
1528 if (err)
1529 return err;
1530 } else if (!is_mask) {
1531 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1532 }
1533 } else if (!match->key->eth.type) {
1534 OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1535 return -EINVAL;
1536 }
1537
1538 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1539 const struct ovs_key_ipv4 *ipv4_key;
1540
1541 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1542 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1543 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1544 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1545 return -EINVAL;
1546 }
1547 SW_FLOW_KEY_PUT(match, ip.proto,
1548 ipv4_key->ipv4_proto, is_mask);
1549 SW_FLOW_KEY_PUT(match, ip.tos,
1550 ipv4_key->ipv4_tos, is_mask);
1551 SW_FLOW_KEY_PUT(match, ip.ttl,
1552 ipv4_key->ipv4_ttl, is_mask);
1553 SW_FLOW_KEY_PUT(match, ip.frag,
1554 ipv4_key->ipv4_frag, is_mask);
1555 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1556 ipv4_key->ipv4_src, is_mask);
1557 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1558 ipv4_key->ipv4_dst, is_mask);
1559 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1560 }
1561
1562 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1563 const struct ovs_key_ipv6 *ipv6_key;
1564
1565 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1566 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1567 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1568 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1569 return -EINVAL;
1570 }
1571
1572 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1573 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1574 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1575 return -EINVAL;
1576 }
1577
1578 SW_FLOW_KEY_PUT(match, ipv6.label,
1579 ipv6_key->ipv6_label, is_mask);
1580 SW_FLOW_KEY_PUT(match, ip.proto,
1581 ipv6_key->ipv6_proto, is_mask);
1582 SW_FLOW_KEY_PUT(match, ip.tos,
1583 ipv6_key->ipv6_tclass, is_mask);
1584 SW_FLOW_KEY_PUT(match, ip.ttl,
1585 ipv6_key->ipv6_hlimit, is_mask);
1586 SW_FLOW_KEY_PUT(match, ip.frag,
1587 ipv6_key->ipv6_frag, is_mask);
1588 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1589 ipv6_key->ipv6_src,
1590 sizeof(match->key->ipv6.addr.src),
1591 is_mask);
1592 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1593 ipv6_key->ipv6_dst,
1594 sizeof(match->key->ipv6.addr.dst),
1595 is_mask);
1596
1597 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1598 }
1599
1600 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1601 const struct ovs_key_arp *arp_key;
1602
1603 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1604 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1605 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1606 arp_key->arp_op);
1607 return -EINVAL;
1608 }
1609
1610 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1611 arp_key->arp_sip, is_mask);
1612 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1613 arp_key->arp_tip, is_mask);
1614 SW_FLOW_KEY_PUT(match, ip.proto,
1615 ntohs(arp_key->arp_op), is_mask);
1616 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1617 arp_key->arp_sha, ETH_ALEN, is_mask);
1618 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1619 arp_key->arp_tha, ETH_ALEN, is_mask);
1620
1621 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1622 }
1623
1624 if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1625 if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1626 is_mask, false, log) < 0)
1627 return -EINVAL;
1628 attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1629 }
1630
1631 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1632 const struct ovs_key_mpls *mpls_key;
1633 u32 hdr_len;
1634 u32 label_count, label_count_mask, i;
1635
1636 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1637 hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1638 label_count = hdr_len / sizeof(struct ovs_key_mpls);
1639
1640 if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1641 hdr_len % sizeof(struct ovs_key_mpls))
1642 return -EINVAL;
1643
1644 label_count_mask = GENMASK(label_count - 1, 0);
1645
1646 for (i = 0 ; i < label_count; i++)
1647 SW_FLOW_KEY_PUT(match, mpls.lse[i],
1648 mpls_key[i].mpls_lse, is_mask);
1649
1650 SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1651 label_count_mask, is_mask);
1652
1653 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1654 }
1655
1656 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1657 const struct ovs_key_tcp *tcp_key;
1658
1659 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1660 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1661 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1662 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1663 }
1664
1665 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1666 SW_FLOW_KEY_PUT(match, tp.flags,
1667 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1668 is_mask);
1669 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1670 }
1671
1672 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1673 const struct ovs_key_udp *udp_key;
1674
1675 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1676 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1677 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1678 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1679 }
1680
1681 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1682 const struct ovs_key_sctp *sctp_key;
1683
1684 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1685 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1686 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1687 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1688 }
1689
1690 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1691 const struct ovs_key_icmp *icmp_key;
1692
1693 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1694 SW_FLOW_KEY_PUT(match, tp.src,
1695 htons(icmp_key->icmp_type), is_mask);
1696 SW_FLOW_KEY_PUT(match, tp.dst,
1697 htons(icmp_key->icmp_code), is_mask);
1698 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1699 }
1700
1701 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1702 const struct ovs_key_icmpv6 *icmpv6_key;
1703
1704 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1705 SW_FLOW_KEY_PUT(match, tp.src,
1706 htons(icmpv6_key->icmpv6_type), is_mask);
1707 SW_FLOW_KEY_PUT(match, tp.dst,
1708 htons(icmpv6_key->icmpv6_code), is_mask);
1709 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1710 }
1711
1712 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1713 const struct ovs_key_nd *nd_key;
1714
1715 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1716 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1717 nd_key->nd_target,
1718 sizeof(match->key->ipv6.nd.target),
1719 is_mask);
1720 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1721 nd_key->nd_sll, ETH_ALEN, is_mask);
1722 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1723 nd_key->nd_tll, ETH_ALEN, is_mask);
1724 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1725 }
1726
1727 if (attrs != 0) {
1728 OVS_NLERR(log, "Unknown key attributes %llx",
1729 (unsigned long long)attrs);
1730 return -EINVAL;
1731 }
1732
1733 return 0;
1734 }
1735
nlattr_set(struct nlattr * attr,u8 val,const struct ovs_len_tbl * tbl)1736 static void nlattr_set(struct nlattr *attr, u8 val,
1737 const struct ovs_len_tbl *tbl)
1738 {
1739 struct nlattr *nla;
1740 int rem;
1741
1742 /* The nlattr stream should already have been validated */
1743 nla_for_each_nested(nla, attr, rem) {
1744 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1745 nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1746 else
1747 memset(nla_data(nla), val, nla_len(nla));
1748
1749 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1750 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1751 }
1752 }
1753
mask_set_nlattr(struct nlattr * attr,u8 val)1754 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1755 {
1756 nlattr_set(attr, val, ovs_key_lens);
1757 }
1758
1759 /**
1760 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1761 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1762 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1763 * does not include any don't care bit.
1764 * @net: Used to determine per-namespace field support.
1765 * @match: receives the extracted flow match information.
1766 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1767 * sequence. The fields should of the packet that triggered the creation
1768 * of this flow.
1769 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1770 * Netlink attribute specifies the mask field of the wildcarded flow.
1771 * @log: Boolean to allow kernel error logging. Normally true, but when
1772 * probing for feature compatibility this should be passed in as false to
1773 * suppress unnecessary error logging.
1774 */
ovs_nla_get_match(struct net * net,struct sw_flow_match * match,const struct nlattr * nla_key,const struct nlattr * nla_mask,bool log)1775 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1776 const struct nlattr *nla_key,
1777 const struct nlattr *nla_mask,
1778 bool log)
1779 {
1780 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1781 struct nlattr *newmask = NULL;
1782 u64 key_attrs = 0;
1783 u64 mask_attrs = 0;
1784 int err;
1785
1786 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1787 if (err)
1788 return err;
1789
1790 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1791 if (err)
1792 return err;
1793
1794 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1795 if (err)
1796 return err;
1797
1798 if (match->mask) {
1799 if (!nla_mask) {
1800 /* Create an exact match mask. We need to set to 0xff
1801 * all the 'match->mask' fields that have been touched
1802 * in 'match->key'. We cannot simply memset
1803 * 'match->mask', because padding bytes and fields not
1804 * specified in 'match->key' should be left to 0.
1805 * Instead, we use a stream of netlink attributes,
1806 * copied from 'key' and set to 0xff.
1807 * ovs_key_from_nlattrs() will take care of filling
1808 * 'match->mask' appropriately.
1809 */
1810 newmask = kmemdup(nla_key,
1811 nla_total_size(nla_len(nla_key)),
1812 GFP_KERNEL);
1813 if (!newmask)
1814 return -ENOMEM;
1815
1816 mask_set_nlattr(newmask, 0xff);
1817
1818 /* The userspace does not send tunnel attributes that
1819 * are 0, but we should not wildcard them nonetheless.
1820 */
1821 if (match->key->tun_proto)
1822 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1823 0xff, true);
1824
1825 nla_mask = newmask;
1826 }
1827
1828 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1829 if (err)
1830 goto free_newmask;
1831
1832 /* Always match on tci. */
1833 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1834 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1835
1836 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1837 if (err)
1838 goto free_newmask;
1839
1840 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1841 log);
1842 if (err)
1843 goto free_newmask;
1844 }
1845
1846 if (!match_validate(match, key_attrs, mask_attrs, log))
1847 err = -EINVAL;
1848
1849 free_newmask:
1850 kfree(newmask);
1851 return err;
1852 }
1853
get_ufid_len(const struct nlattr * attr,bool log)1854 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1855 {
1856 size_t len;
1857
1858 if (!attr)
1859 return 0;
1860
1861 len = nla_len(attr);
1862 if (len < 1 || len > MAX_UFID_LENGTH) {
1863 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1864 nla_len(attr), MAX_UFID_LENGTH);
1865 return 0;
1866 }
1867
1868 return len;
1869 }
1870
1871 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1872 * or false otherwise.
1873 */
ovs_nla_get_ufid(struct sw_flow_id * sfid,const struct nlattr * attr,bool log)1874 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1875 bool log)
1876 {
1877 sfid->ufid_len = get_ufid_len(attr, log);
1878 if (sfid->ufid_len)
1879 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1880
1881 return sfid->ufid_len;
1882 }
1883
ovs_nla_get_identifier(struct sw_flow_id * sfid,const struct nlattr * ufid,const struct sw_flow_key * key,bool log)1884 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1885 const struct sw_flow_key *key, bool log)
1886 {
1887 struct sw_flow_key *new_key;
1888
1889 if (ovs_nla_get_ufid(sfid, ufid, log))
1890 return 0;
1891
1892 /* If UFID was not provided, use unmasked key. */
1893 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1894 if (!new_key)
1895 return -ENOMEM;
1896 memcpy(new_key, key, sizeof(*key));
1897 sfid->unmasked_key = new_key;
1898
1899 return 0;
1900 }
1901
ovs_nla_get_ufid_flags(const struct nlattr * attr)1902 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1903 {
1904 return attr ? nla_get_u32(attr) : 0;
1905 }
1906
1907 /**
1908 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1909 * @net: Network namespace.
1910 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1911 * metadata.
1912 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1913 * attributes.
1914 * @attrs: Bit mask for the netlink attributes included in @a.
1915 * @log: Boolean to allow kernel error logging. Normally true, but when
1916 * probing for feature compatibility this should be passed in as false to
1917 * suppress unnecessary error logging.
1918 *
1919 * This parses a series of Netlink attributes that form a flow key, which must
1920 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1921 * get the metadata, that is, the parts of the flow key that cannot be
1922 * extracted from the packet itself.
1923 *
1924 * This must be called before the packet key fields are filled in 'key'.
1925 */
1926
ovs_nla_get_flow_metadata(struct net * net,const struct nlattr * a[OVS_KEY_ATTR_MAX+1],u64 attrs,struct sw_flow_key * key,bool log)1927 int ovs_nla_get_flow_metadata(struct net *net,
1928 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1929 u64 attrs, struct sw_flow_key *key, bool log)
1930 {
1931 struct sw_flow_match match;
1932
1933 memset(&match, 0, sizeof(match));
1934 match.key = key;
1935
1936 key->ct_state = 0;
1937 key->ct_zone = 0;
1938 key->ct_orig_proto = 0;
1939 memset(&key->ct, 0, sizeof(key->ct));
1940 memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1941 memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1942
1943 key->phy.in_port = DP_MAX_PORTS;
1944
1945 return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1946 }
1947
ovs_nla_put_vlan(struct sk_buff * skb,const struct vlan_head * vh,bool is_mask)1948 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1949 bool is_mask)
1950 {
1951 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1952
1953 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1954 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1955 return -EMSGSIZE;
1956 return 0;
1957 }
1958
nsh_key_to_nlattr(const struct ovs_key_nsh * nsh,bool is_mask,struct sk_buff * skb)1959 static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1960 struct sk_buff *skb)
1961 {
1962 struct nlattr *start;
1963
1964 start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1965 if (!start)
1966 return -EMSGSIZE;
1967
1968 if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1969 goto nla_put_failure;
1970
1971 if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1972 if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1973 sizeof(nsh->context), nsh->context))
1974 goto nla_put_failure;
1975 }
1976
1977 /* Don't support MD type 2 yet */
1978
1979 nla_nest_end(skb, start);
1980
1981 return 0;
1982
1983 nla_put_failure:
1984 return -EMSGSIZE;
1985 }
1986
__ovs_nla_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,bool is_mask,struct sk_buff * skb)1987 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1988 const struct sw_flow_key *output, bool is_mask,
1989 struct sk_buff *skb)
1990 {
1991 struct ovs_key_ethernet *eth_key;
1992 struct nlattr *nla;
1993 struct nlattr *encap = NULL;
1994 struct nlattr *in_encap = NULL;
1995
1996 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1997 goto nla_put_failure;
1998
1999 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2000 goto nla_put_failure;
2001
2002 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2003 goto nla_put_failure;
2004
2005 if ((swkey->tun_proto || is_mask)) {
2006 const void *opts = NULL;
2007
2008 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2009 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2010
2011 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2012 swkey->tun_opts_len, swkey->tun_proto, 0))
2013 goto nla_put_failure;
2014 }
2015
2016 if (swkey->phy.in_port == DP_MAX_PORTS) {
2017 if (is_mask && (output->phy.in_port == 0xffff))
2018 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2019 goto nla_put_failure;
2020 } else {
2021 u16 upper_u16;
2022 upper_u16 = !is_mask ? 0 : 0xffff;
2023
2024 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2025 (upper_u16 << 16) | output->phy.in_port))
2026 goto nla_put_failure;
2027 }
2028
2029 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2030 goto nla_put_failure;
2031
2032 if (ovs_ct_put_key(swkey, output, skb))
2033 goto nla_put_failure;
2034
2035 if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2036 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2037 if (!nla)
2038 goto nla_put_failure;
2039
2040 eth_key = nla_data(nla);
2041 ether_addr_copy(eth_key->eth_src, output->eth.src);
2042 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2043
2044 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2045 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2046 goto nla_put_failure;
2047 encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2048 if (!swkey->eth.vlan.tci)
2049 goto unencap;
2050
2051 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2052 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2053 goto nla_put_failure;
2054 in_encap = nla_nest_start_noflag(skb,
2055 OVS_KEY_ATTR_ENCAP);
2056 if (!swkey->eth.cvlan.tci)
2057 goto unencap;
2058 }
2059 }
2060
2061 if (swkey->eth.type == htons(ETH_P_802_2)) {
2062 /*
2063 * Ethertype 802.2 is represented in the netlink with omitted
2064 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2065 * 0xffff in the mask attribute. Ethertype can also
2066 * be wildcarded.
2067 */
2068 if (is_mask && output->eth.type)
2069 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2070 output->eth.type))
2071 goto nla_put_failure;
2072 goto unencap;
2073 }
2074 }
2075
2076 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2077 goto nla_put_failure;
2078
2079 if (eth_type_vlan(swkey->eth.type)) {
2080 /* There are 3 VLAN tags, we don't know anything about the rest
2081 * of the packet, so truncate here.
2082 */
2083 WARN_ON_ONCE(!(encap && in_encap));
2084 goto unencap;
2085 }
2086
2087 if (swkey->eth.type == htons(ETH_P_IP)) {
2088 struct ovs_key_ipv4 *ipv4_key;
2089
2090 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2091 if (!nla)
2092 goto nla_put_failure;
2093 ipv4_key = nla_data(nla);
2094 ipv4_key->ipv4_src = output->ipv4.addr.src;
2095 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2096 ipv4_key->ipv4_proto = output->ip.proto;
2097 ipv4_key->ipv4_tos = output->ip.tos;
2098 ipv4_key->ipv4_ttl = output->ip.ttl;
2099 ipv4_key->ipv4_frag = output->ip.frag;
2100 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2101 struct ovs_key_ipv6 *ipv6_key;
2102
2103 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2104 if (!nla)
2105 goto nla_put_failure;
2106 ipv6_key = nla_data(nla);
2107 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2108 sizeof(ipv6_key->ipv6_src));
2109 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2110 sizeof(ipv6_key->ipv6_dst));
2111 ipv6_key->ipv6_label = output->ipv6.label;
2112 ipv6_key->ipv6_proto = output->ip.proto;
2113 ipv6_key->ipv6_tclass = output->ip.tos;
2114 ipv6_key->ipv6_hlimit = output->ip.ttl;
2115 ipv6_key->ipv6_frag = output->ip.frag;
2116 } else if (swkey->eth.type == htons(ETH_P_NSH)) {
2117 if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2118 goto nla_put_failure;
2119 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
2120 swkey->eth.type == htons(ETH_P_RARP)) {
2121 struct ovs_key_arp *arp_key;
2122
2123 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2124 if (!nla)
2125 goto nla_put_failure;
2126 arp_key = nla_data(nla);
2127 memset(arp_key, 0, sizeof(struct ovs_key_arp));
2128 arp_key->arp_sip = output->ipv4.addr.src;
2129 arp_key->arp_tip = output->ipv4.addr.dst;
2130 arp_key->arp_op = htons(output->ip.proto);
2131 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2132 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2133 } else if (eth_p_mpls(swkey->eth.type)) {
2134 u8 i, num_labels;
2135 struct ovs_key_mpls *mpls_key;
2136
2137 num_labels = hweight_long(output->mpls.num_labels_mask);
2138 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2139 num_labels * sizeof(*mpls_key));
2140 if (!nla)
2141 goto nla_put_failure;
2142
2143 mpls_key = nla_data(nla);
2144 for (i = 0; i < num_labels; i++)
2145 mpls_key[i].mpls_lse = output->mpls.lse[i];
2146 }
2147
2148 if ((swkey->eth.type == htons(ETH_P_IP) ||
2149 swkey->eth.type == htons(ETH_P_IPV6)) &&
2150 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2151
2152 if (swkey->ip.proto == IPPROTO_TCP) {
2153 struct ovs_key_tcp *tcp_key;
2154
2155 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2156 if (!nla)
2157 goto nla_put_failure;
2158 tcp_key = nla_data(nla);
2159 tcp_key->tcp_src = output->tp.src;
2160 tcp_key->tcp_dst = output->tp.dst;
2161 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2162 output->tp.flags))
2163 goto nla_put_failure;
2164 } else if (swkey->ip.proto == IPPROTO_UDP) {
2165 struct ovs_key_udp *udp_key;
2166
2167 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2168 if (!nla)
2169 goto nla_put_failure;
2170 udp_key = nla_data(nla);
2171 udp_key->udp_src = output->tp.src;
2172 udp_key->udp_dst = output->tp.dst;
2173 } else if (swkey->ip.proto == IPPROTO_SCTP) {
2174 struct ovs_key_sctp *sctp_key;
2175
2176 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2177 if (!nla)
2178 goto nla_put_failure;
2179 sctp_key = nla_data(nla);
2180 sctp_key->sctp_src = output->tp.src;
2181 sctp_key->sctp_dst = output->tp.dst;
2182 } else if (swkey->eth.type == htons(ETH_P_IP) &&
2183 swkey->ip.proto == IPPROTO_ICMP) {
2184 struct ovs_key_icmp *icmp_key;
2185
2186 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2187 if (!nla)
2188 goto nla_put_failure;
2189 icmp_key = nla_data(nla);
2190 icmp_key->icmp_type = ntohs(output->tp.src);
2191 icmp_key->icmp_code = ntohs(output->tp.dst);
2192 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2193 swkey->ip.proto == IPPROTO_ICMPV6) {
2194 struct ovs_key_icmpv6 *icmpv6_key;
2195
2196 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2197 sizeof(*icmpv6_key));
2198 if (!nla)
2199 goto nla_put_failure;
2200 icmpv6_key = nla_data(nla);
2201 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2202 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2203
2204 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
2205 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
2206 struct ovs_key_nd *nd_key;
2207
2208 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2209 if (!nla)
2210 goto nla_put_failure;
2211 nd_key = nla_data(nla);
2212 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2213 sizeof(nd_key->nd_target));
2214 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2215 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2216 }
2217 }
2218 }
2219
2220 unencap:
2221 if (in_encap)
2222 nla_nest_end(skb, in_encap);
2223 if (encap)
2224 nla_nest_end(skb, encap);
2225
2226 return 0;
2227
2228 nla_put_failure:
2229 return -EMSGSIZE;
2230 }
2231
ovs_nla_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,int attr,bool is_mask,struct sk_buff * skb)2232 int ovs_nla_put_key(const struct sw_flow_key *swkey,
2233 const struct sw_flow_key *output, int attr, bool is_mask,
2234 struct sk_buff *skb)
2235 {
2236 int err;
2237 struct nlattr *nla;
2238
2239 nla = nla_nest_start_noflag(skb, attr);
2240 if (!nla)
2241 return -EMSGSIZE;
2242 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2243 if (err)
2244 return err;
2245 nla_nest_end(skb, nla);
2246
2247 return 0;
2248 }
2249
2250 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_identifier(const struct sw_flow * flow,struct sk_buff * skb)2251 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2252 {
2253 if (ovs_identifier_is_ufid(&flow->id))
2254 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2255 flow->id.ufid);
2256
2257 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2258 OVS_FLOW_ATTR_KEY, false, skb);
2259 }
2260
2261 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_masked_key(const struct sw_flow * flow,struct sk_buff * skb)2262 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2263 {
2264 return ovs_nla_put_key(&flow->key, &flow->key,
2265 OVS_FLOW_ATTR_KEY, false, skb);
2266 }
2267
2268 /* Called with ovs_mutex or RCU read lock. */
ovs_nla_put_mask(const struct sw_flow * flow,struct sk_buff * skb)2269 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2270 {
2271 return ovs_nla_put_key(&flow->key, &flow->mask->key,
2272 OVS_FLOW_ATTR_MASK, true, skb);
2273 }
2274
2275 #define MAX_ACTIONS_BUFSIZE (32 * 1024)
2276
nla_alloc_flow_actions(int size)2277 static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2278 {
2279 struct sw_flow_actions *sfa;
2280
2281 WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2282
2283 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2284 if (!sfa)
2285 return ERR_PTR(-ENOMEM);
2286
2287 sfa->actions_len = 0;
2288 return sfa;
2289 }
2290
ovs_nla_free_set_action(const struct nlattr * a)2291 static void ovs_nla_free_set_action(const struct nlattr *a)
2292 {
2293 const struct nlattr *ovs_key = nla_data(a);
2294 struct ovs_tunnel_info *ovs_tun;
2295
2296 switch (nla_type(ovs_key)) {
2297 case OVS_KEY_ATTR_TUNNEL_INFO:
2298 ovs_tun = nla_data(ovs_key);
2299 dst_release((struct dst_entry *)ovs_tun->tun_dst);
2300 break;
2301 }
2302 }
2303
ovs_nla_free_flow_actions(struct sw_flow_actions * sf_acts)2304 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2305 {
2306 const struct nlattr *a;
2307 int rem;
2308
2309 if (!sf_acts)
2310 return;
2311
2312 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
2313 switch (nla_type(a)) {
2314 case OVS_ACTION_ATTR_SET:
2315 ovs_nla_free_set_action(a);
2316 break;
2317 case OVS_ACTION_ATTR_CT:
2318 ovs_ct_free_action(a);
2319 break;
2320 }
2321 }
2322
2323 kfree(sf_acts);
2324 }
2325
__ovs_nla_free_flow_actions(struct rcu_head * head)2326 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2327 {
2328 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2329 }
2330
2331 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
2332 * The caller must hold rcu_read_lock for this to be sensible. */
ovs_nla_free_flow_actions_rcu(struct sw_flow_actions * sf_acts)2333 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2334 {
2335 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2336 }
2337
reserve_sfa_size(struct sw_flow_actions ** sfa,int attr_len,bool log)2338 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2339 int attr_len, bool log)
2340 {
2341
2342 struct sw_flow_actions *acts;
2343 int new_acts_size;
2344 size_t req_size = NLA_ALIGN(attr_len);
2345 int next_offset = offsetof(struct sw_flow_actions, actions) +
2346 (*sfa)->actions_len;
2347
2348 if (req_size <= (ksize(*sfa) - next_offset))
2349 goto out;
2350
2351 new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2352
2353 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2354 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
2355 OVS_NLERR(log, "Flow action size exceeds max %u",
2356 MAX_ACTIONS_BUFSIZE);
2357 return ERR_PTR(-EMSGSIZE);
2358 }
2359 new_acts_size = MAX_ACTIONS_BUFSIZE;
2360 }
2361
2362 acts = nla_alloc_flow_actions(new_acts_size);
2363 if (IS_ERR(acts))
2364 return (void *)acts;
2365
2366 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2367 acts->actions_len = (*sfa)->actions_len;
2368 acts->orig_len = (*sfa)->orig_len;
2369 kfree(*sfa);
2370 *sfa = acts;
2371
2372 out:
2373 (*sfa)->actions_len += req_size;
2374 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2375 }
2376
__add_action(struct sw_flow_actions ** sfa,int attrtype,void * data,int len,bool log)2377 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2378 int attrtype, void *data, int len, bool log)
2379 {
2380 struct nlattr *a;
2381
2382 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2383 if (IS_ERR(a))
2384 return a;
2385
2386 a->nla_type = attrtype;
2387 a->nla_len = nla_attr_size(len);
2388
2389 if (data)
2390 memcpy(nla_data(a), data, len);
2391 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2392
2393 return a;
2394 }
2395
ovs_nla_add_action(struct sw_flow_actions ** sfa,int attrtype,void * data,int len,bool log)2396 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2397 int len, bool log)
2398 {
2399 struct nlattr *a;
2400
2401 a = __add_action(sfa, attrtype, data, len, log);
2402
2403 return PTR_ERR_OR_ZERO(a);
2404 }
2405
add_nested_action_start(struct sw_flow_actions ** sfa,int attrtype,bool log)2406 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2407 int attrtype, bool log)
2408 {
2409 int used = (*sfa)->actions_len;
2410 int err;
2411
2412 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2413 if (err)
2414 return err;
2415
2416 return used;
2417 }
2418
add_nested_action_end(struct sw_flow_actions * sfa,int st_offset)2419 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2420 int st_offset)
2421 {
2422 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2423 st_offset);
2424
2425 a->nla_len = sfa->actions_len - st_offset;
2426 }
2427
2428 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2429 const struct sw_flow_key *key,
2430 struct sw_flow_actions **sfa,
2431 __be16 eth_type, __be16 vlan_tci,
2432 u32 mpls_label_count, bool log);
2433
validate_and_copy_sample(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,bool last)2434 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2435 const struct sw_flow_key *key,
2436 struct sw_flow_actions **sfa,
2437 __be16 eth_type, __be16 vlan_tci,
2438 u32 mpls_label_count, bool log, bool last)
2439 {
2440 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2441 const struct nlattr *probability, *actions;
2442 const struct nlattr *a;
2443 int rem, start, err;
2444 struct sample_arg arg;
2445
2446 memset(attrs, 0, sizeof(attrs));
2447 nla_for_each_nested(a, attr, rem) {
2448 int type = nla_type(a);
2449 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2450 return -EINVAL;
2451 attrs[type] = a;
2452 }
2453 if (rem)
2454 return -EINVAL;
2455
2456 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2457 if (!probability || nla_len(probability) != sizeof(u32))
2458 return -EINVAL;
2459
2460 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2461 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2462 return -EINVAL;
2463
2464 /* validation done, copy sample action. */
2465 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2466 if (start < 0)
2467 return start;
2468
2469 /* When both skb and flow may be changed, put the sample
2470 * into a deferred fifo. On the other hand, if only skb
2471 * may be modified, the actions can be executed in place.
2472 *
2473 * Do this analysis at the flow installation time.
2474 * Set 'clone_action->exec' to true if the actions can be
2475 * executed without being deferred.
2476 *
2477 * If the sample is the last action, it can always be excuted
2478 * rather than deferred.
2479 */
2480 arg.exec = last || !actions_may_change_flow(actions);
2481 arg.probability = nla_get_u32(probability);
2482
2483 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2484 log);
2485 if (err)
2486 return err;
2487
2488 err = __ovs_nla_copy_actions(net, actions, key, sfa,
2489 eth_type, vlan_tci, mpls_label_count, log);
2490
2491 if (err)
2492 return err;
2493
2494 add_nested_action_end(*sfa, start);
2495
2496 return 0;
2497 }
2498
validate_and_copy_dec_ttl(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log)2499 static int validate_and_copy_dec_ttl(struct net *net,
2500 const struct nlattr *attr,
2501 const struct sw_flow_key *key,
2502 struct sw_flow_actions **sfa,
2503 __be16 eth_type, __be16 vlan_tci,
2504 u32 mpls_label_count, bool log)
2505 {
2506 const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2507 int start, action_start, err, rem;
2508 const struct nlattr *a, *actions;
2509
2510 memset(attrs, 0, sizeof(attrs));
2511 nla_for_each_nested(a, attr, rem) {
2512 int type = nla_type(a);
2513
2514 /* Ignore unknown attributes to be future proof. */
2515 if (type > OVS_DEC_TTL_ATTR_MAX)
2516 continue;
2517
2518 if (!type || attrs[type])
2519 return -EINVAL;
2520
2521 attrs[type] = a;
2522 }
2523
2524 actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2525 if (rem || !actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2526 return -EINVAL;
2527
2528 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2529 if (start < 0)
2530 return start;
2531
2532 action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2533 if (action_start < 0)
2534 return action_start;
2535
2536 err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2537 vlan_tci, mpls_label_count, log);
2538 if (err)
2539 return err;
2540
2541 add_nested_action_end(*sfa, action_start);
2542 add_nested_action_end(*sfa, start);
2543 return 0;
2544 }
2545
validate_and_copy_clone(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,bool last)2546 static int validate_and_copy_clone(struct net *net,
2547 const struct nlattr *attr,
2548 const struct sw_flow_key *key,
2549 struct sw_flow_actions **sfa,
2550 __be16 eth_type, __be16 vlan_tci,
2551 u32 mpls_label_count, bool log, bool last)
2552 {
2553 int start, err;
2554 u32 exec;
2555
2556 if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2557 return -EINVAL;
2558
2559 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2560 if (start < 0)
2561 return start;
2562
2563 exec = last || !actions_may_change_flow(attr);
2564
2565 err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2566 sizeof(exec), log);
2567 if (err)
2568 return err;
2569
2570 err = __ovs_nla_copy_actions(net, attr, key, sfa,
2571 eth_type, vlan_tci, mpls_label_count, log);
2572 if (err)
2573 return err;
2574
2575 add_nested_action_end(*sfa, start);
2576
2577 return 0;
2578 }
2579
ovs_match_init(struct sw_flow_match * match,struct sw_flow_key * key,bool reset_key,struct sw_flow_mask * mask)2580 void ovs_match_init(struct sw_flow_match *match,
2581 struct sw_flow_key *key,
2582 bool reset_key,
2583 struct sw_flow_mask *mask)
2584 {
2585 memset(match, 0, sizeof(*match));
2586 match->key = key;
2587 match->mask = mask;
2588
2589 if (reset_key)
2590 memset(key, 0, sizeof(*key));
2591
2592 if (mask) {
2593 memset(&mask->key, 0, sizeof(mask->key));
2594 mask->range.start = mask->range.end = 0;
2595 }
2596 }
2597
validate_geneve_opts(struct sw_flow_key * key)2598 static int validate_geneve_opts(struct sw_flow_key *key)
2599 {
2600 struct geneve_opt *option;
2601 int opts_len = key->tun_opts_len;
2602 bool crit_opt = false;
2603
2604 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2605 while (opts_len > 0) {
2606 int len;
2607
2608 if (opts_len < sizeof(*option))
2609 return -EINVAL;
2610
2611 len = sizeof(*option) + option->length * 4;
2612 if (len > opts_len)
2613 return -EINVAL;
2614
2615 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2616
2617 option = (struct geneve_opt *)((u8 *)option + len);
2618 opts_len -= len;
2619 }
2620
2621 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2622
2623 return 0;
2624 }
2625
validate_and_copy_set_tun(const struct nlattr * attr,struct sw_flow_actions ** sfa,bool log)2626 static int validate_and_copy_set_tun(const struct nlattr *attr,
2627 struct sw_flow_actions **sfa, bool log)
2628 {
2629 struct sw_flow_match match;
2630 struct sw_flow_key key;
2631 struct metadata_dst *tun_dst;
2632 struct ip_tunnel_info *tun_info;
2633 struct ovs_tunnel_info *ovs_tun;
2634 struct nlattr *a;
2635 int err = 0, start, opts_type;
2636 __be16 dst_opt_type;
2637
2638 dst_opt_type = 0;
2639 ovs_match_init(&match, &key, true, NULL);
2640 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2641 if (opts_type < 0)
2642 return opts_type;
2643
2644 if (key.tun_opts_len) {
2645 switch (opts_type) {
2646 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2647 err = validate_geneve_opts(&key);
2648 if (err < 0)
2649 return err;
2650 dst_opt_type = TUNNEL_GENEVE_OPT;
2651 break;
2652 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2653 dst_opt_type = TUNNEL_VXLAN_OPT;
2654 break;
2655 case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2656 dst_opt_type = TUNNEL_ERSPAN_OPT;
2657 break;
2658 }
2659 }
2660
2661 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2662 if (start < 0)
2663 return start;
2664
2665 tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2666 GFP_KERNEL);
2667
2668 if (!tun_dst)
2669 return -ENOMEM;
2670
2671 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2672 if (err) {
2673 dst_release((struct dst_entry *)tun_dst);
2674 return err;
2675 }
2676
2677 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2678 sizeof(*ovs_tun), log);
2679 if (IS_ERR(a)) {
2680 dst_release((struct dst_entry *)tun_dst);
2681 return PTR_ERR(a);
2682 }
2683
2684 ovs_tun = nla_data(a);
2685 ovs_tun->tun_dst = tun_dst;
2686
2687 tun_info = &tun_dst->u.tun_info;
2688 tun_info->mode = IP_TUNNEL_INFO_TX;
2689 if (key.tun_proto == AF_INET6)
2690 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2691 else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2692 tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2693 tun_info->key = key.tun_key;
2694
2695 /* We need to store the options in the action itself since
2696 * everything else will go away after flow setup. We can append
2697 * it to tun_info and then point there.
2698 */
2699 ip_tunnel_info_opts_set(tun_info,
2700 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2701 key.tun_opts_len, dst_opt_type);
2702 add_nested_action_end(*sfa, start);
2703
2704 return err;
2705 }
2706
validate_nsh(const struct nlattr * attr,bool is_mask,bool is_push_nsh,bool log)2707 static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2708 bool is_push_nsh, bool log)
2709 {
2710 struct sw_flow_match match;
2711 struct sw_flow_key key;
2712 int ret = 0;
2713
2714 ovs_match_init(&match, &key, true, NULL);
2715 ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2716 is_push_nsh, log);
2717 return !ret;
2718 }
2719
2720 /* Return false if there are any non-masked bits set.
2721 * Mask follows data immediately, before any netlink padding.
2722 */
validate_masked(u8 * data,int len)2723 static bool validate_masked(u8 *data, int len)
2724 {
2725 u8 *mask = data + len;
2726
2727 while (len--)
2728 if (*data++ & ~*mask++)
2729 return false;
2730
2731 return true;
2732 }
2733
validate_set(const struct nlattr * a,const struct sw_flow_key * flow_key,struct sw_flow_actions ** sfa,bool * skip_copy,u8 mac_proto,__be16 eth_type,bool masked,bool log)2734 static int validate_set(const struct nlattr *a,
2735 const struct sw_flow_key *flow_key,
2736 struct sw_flow_actions **sfa, bool *skip_copy,
2737 u8 mac_proto, __be16 eth_type, bool masked, bool log)
2738 {
2739 const struct nlattr *ovs_key = nla_data(a);
2740 int key_type = nla_type(ovs_key);
2741 size_t key_len;
2742
2743 /* There can be only one key in a action */
2744 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2745 return -EINVAL;
2746
2747 key_len = nla_len(ovs_key);
2748 if (masked)
2749 key_len /= 2;
2750
2751 if (key_type > OVS_KEY_ATTR_MAX ||
2752 !check_attr_len(key_len, ovs_key_lens[key_type].len))
2753 return -EINVAL;
2754
2755 if (masked && !validate_masked(nla_data(ovs_key), key_len))
2756 return -EINVAL;
2757
2758 switch (key_type) {
2759 case OVS_KEY_ATTR_PRIORITY:
2760 case OVS_KEY_ATTR_SKB_MARK:
2761 case OVS_KEY_ATTR_CT_MARK:
2762 case OVS_KEY_ATTR_CT_LABELS:
2763 break;
2764
2765 case OVS_KEY_ATTR_ETHERNET:
2766 if (mac_proto != MAC_PROTO_ETHERNET)
2767 return -EINVAL;
2768 break;
2769
2770 case OVS_KEY_ATTR_TUNNEL: {
2771 int err;
2772
2773 if (masked)
2774 return -EINVAL; /* Masked tunnel set not supported. */
2775
2776 *skip_copy = true;
2777 err = validate_and_copy_set_tun(a, sfa, log);
2778 if (err)
2779 return err;
2780 break;
2781 }
2782 case OVS_KEY_ATTR_IPV4: {
2783 const struct ovs_key_ipv4 *ipv4_key;
2784
2785 if (eth_type != htons(ETH_P_IP))
2786 return -EINVAL;
2787
2788 ipv4_key = nla_data(ovs_key);
2789
2790 if (masked) {
2791 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2792
2793 /* Non-writeable fields. */
2794 if (mask->ipv4_proto || mask->ipv4_frag)
2795 return -EINVAL;
2796 } else {
2797 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2798 return -EINVAL;
2799
2800 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2801 return -EINVAL;
2802 }
2803 break;
2804 }
2805 case OVS_KEY_ATTR_IPV6: {
2806 const struct ovs_key_ipv6 *ipv6_key;
2807
2808 if (eth_type != htons(ETH_P_IPV6))
2809 return -EINVAL;
2810
2811 ipv6_key = nla_data(ovs_key);
2812
2813 if (masked) {
2814 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2815
2816 /* Non-writeable fields. */
2817 if (mask->ipv6_proto || mask->ipv6_frag)
2818 return -EINVAL;
2819
2820 /* Invalid bits in the flow label mask? */
2821 if (ntohl(mask->ipv6_label) & 0xFFF00000)
2822 return -EINVAL;
2823 } else {
2824 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2825 return -EINVAL;
2826
2827 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2828 return -EINVAL;
2829 }
2830 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2831 return -EINVAL;
2832
2833 break;
2834 }
2835 case OVS_KEY_ATTR_TCP:
2836 if ((eth_type != htons(ETH_P_IP) &&
2837 eth_type != htons(ETH_P_IPV6)) ||
2838 flow_key->ip.proto != IPPROTO_TCP)
2839 return -EINVAL;
2840
2841 break;
2842
2843 case OVS_KEY_ATTR_UDP:
2844 if ((eth_type != htons(ETH_P_IP) &&
2845 eth_type != htons(ETH_P_IPV6)) ||
2846 flow_key->ip.proto != IPPROTO_UDP)
2847 return -EINVAL;
2848
2849 break;
2850
2851 case OVS_KEY_ATTR_MPLS:
2852 if (!eth_p_mpls(eth_type))
2853 return -EINVAL;
2854 break;
2855
2856 case OVS_KEY_ATTR_SCTP:
2857 if ((eth_type != htons(ETH_P_IP) &&
2858 eth_type != htons(ETH_P_IPV6)) ||
2859 flow_key->ip.proto != IPPROTO_SCTP)
2860 return -EINVAL;
2861
2862 break;
2863
2864 case OVS_KEY_ATTR_NSH:
2865 if (eth_type != htons(ETH_P_NSH))
2866 return -EINVAL;
2867 if (!validate_nsh(nla_data(a), masked, false, log))
2868 return -EINVAL;
2869 break;
2870
2871 default:
2872 return -EINVAL;
2873 }
2874
2875 /* Convert non-masked non-tunnel set actions to masked set actions. */
2876 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2877 int start, len = key_len * 2;
2878 struct nlattr *at;
2879
2880 *skip_copy = true;
2881
2882 start = add_nested_action_start(sfa,
2883 OVS_ACTION_ATTR_SET_TO_MASKED,
2884 log);
2885 if (start < 0)
2886 return start;
2887
2888 at = __add_action(sfa, key_type, NULL, len, log);
2889 if (IS_ERR(at))
2890 return PTR_ERR(at);
2891
2892 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2893 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
2894 /* Clear non-writeable bits from otherwise writeable fields. */
2895 if (key_type == OVS_KEY_ATTR_IPV6) {
2896 struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2897
2898 mask->ipv6_label &= htonl(0x000FFFFF);
2899 }
2900 add_nested_action_end(*sfa, start);
2901 }
2902
2903 return 0;
2904 }
2905
validate_userspace(const struct nlattr * attr)2906 static int validate_userspace(const struct nlattr *attr)
2907 {
2908 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2909 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2910 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2911 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2912 };
2913 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2914 int error;
2915
2916 error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
2917 userspace_policy, NULL);
2918 if (error)
2919 return error;
2920
2921 if (!a[OVS_USERSPACE_ATTR_PID] ||
2922 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2923 return -EINVAL;
2924
2925 return 0;
2926 }
2927
2928 static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
2929 [OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
2930 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
2931 [OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
2932 };
2933
validate_and_copy_check_pkt_len(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log,bool last)2934 static int validate_and_copy_check_pkt_len(struct net *net,
2935 const struct nlattr *attr,
2936 const struct sw_flow_key *key,
2937 struct sw_flow_actions **sfa,
2938 __be16 eth_type, __be16 vlan_tci,
2939 u32 mpls_label_count,
2940 bool log, bool last)
2941 {
2942 const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
2943 struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
2944 struct check_pkt_len_arg arg;
2945 int nested_acts_start;
2946 int start, err;
2947
2948 err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
2949 nla_data(attr), nla_len(attr),
2950 cpl_policy, NULL);
2951 if (err)
2952 return err;
2953
2954 if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
2955 !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
2956 return -EINVAL;
2957
2958 acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
2959 acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
2960
2961 /* Both the nested action should be present. */
2962 if (!acts_if_greater || !acts_if_lesser_eq)
2963 return -EINVAL;
2964
2965 /* validation done, copy the nested actions. */
2966 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
2967 log);
2968 if (start < 0)
2969 return start;
2970
2971 arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
2972 arg.exec_for_lesser_equal =
2973 last || !actions_may_change_flow(acts_if_lesser_eq);
2974 arg.exec_for_greater =
2975 last || !actions_may_change_flow(acts_if_greater);
2976
2977 err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
2978 sizeof(arg), log);
2979 if (err)
2980 return err;
2981
2982 nested_acts_start = add_nested_action_start(sfa,
2983 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
2984 if (nested_acts_start < 0)
2985 return nested_acts_start;
2986
2987 err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
2988 eth_type, vlan_tci, mpls_label_count, log);
2989
2990 if (err)
2991 return err;
2992
2993 add_nested_action_end(*sfa, nested_acts_start);
2994
2995 nested_acts_start = add_nested_action_start(sfa,
2996 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
2997 if (nested_acts_start < 0)
2998 return nested_acts_start;
2999
3000 err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3001 eth_type, vlan_tci, mpls_label_count, log);
3002
3003 if (err)
3004 return err;
3005
3006 add_nested_action_end(*sfa, nested_acts_start);
3007 add_nested_action_end(*sfa, start);
3008 return 0;
3009 }
3010
copy_action(const struct nlattr * from,struct sw_flow_actions ** sfa,bool log)3011 static int copy_action(const struct nlattr *from,
3012 struct sw_flow_actions **sfa, bool log)
3013 {
3014 int totlen = NLA_ALIGN(from->nla_len);
3015 struct nlattr *to;
3016
3017 to = reserve_sfa_size(sfa, from->nla_len, log);
3018 if (IS_ERR(to))
3019 return PTR_ERR(to);
3020
3021 memcpy(to, from, totlen);
3022 return 0;
3023 }
3024
__ovs_nla_copy_actions(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,__be16 eth_type,__be16 vlan_tci,u32 mpls_label_count,bool log)3025 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3026 const struct sw_flow_key *key,
3027 struct sw_flow_actions **sfa,
3028 __be16 eth_type, __be16 vlan_tci,
3029 u32 mpls_label_count, bool log)
3030 {
3031 u8 mac_proto = ovs_key_mac_proto(key);
3032 const struct nlattr *a;
3033 int rem, err;
3034
3035 nla_for_each_nested(a, attr, rem) {
3036 /* Expected argument lengths, (u32)-1 for variable length. */
3037 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3038 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3039 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3040 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3041 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3042 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3043 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3044 [OVS_ACTION_ATTR_POP_VLAN] = 0,
3045 [OVS_ACTION_ATTR_SET] = (u32)-1,
3046 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3047 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3048 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3049 [OVS_ACTION_ATTR_CT] = (u32)-1,
3050 [OVS_ACTION_ATTR_CT_CLEAR] = 0,
3051 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3052 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3053 [OVS_ACTION_ATTR_POP_ETH] = 0,
3054 [OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3055 [OVS_ACTION_ATTR_POP_NSH] = 0,
3056 [OVS_ACTION_ATTR_METER] = sizeof(u32),
3057 [OVS_ACTION_ATTR_CLONE] = (u32)-1,
3058 [OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3059 [OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3060 [OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3061 };
3062 const struct ovs_action_push_vlan *vlan;
3063 int type = nla_type(a);
3064 bool skip_copy;
3065
3066 if (type > OVS_ACTION_ATTR_MAX ||
3067 (action_lens[type] != nla_len(a) &&
3068 action_lens[type] != (u32)-1))
3069 return -EINVAL;
3070
3071 skip_copy = false;
3072 switch (type) {
3073 case OVS_ACTION_ATTR_UNSPEC:
3074 return -EINVAL;
3075
3076 case OVS_ACTION_ATTR_USERSPACE:
3077 err = validate_userspace(a);
3078 if (err)
3079 return err;
3080 break;
3081
3082 case OVS_ACTION_ATTR_OUTPUT:
3083 if (nla_get_u32(a) >= DP_MAX_PORTS)
3084 return -EINVAL;
3085 break;
3086
3087 case OVS_ACTION_ATTR_TRUNC: {
3088 const struct ovs_action_trunc *trunc = nla_data(a);
3089
3090 if (trunc->max_len < ETH_HLEN)
3091 return -EINVAL;
3092 break;
3093 }
3094
3095 case OVS_ACTION_ATTR_HASH: {
3096 const struct ovs_action_hash *act_hash = nla_data(a);
3097
3098 switch (act_hash->hash_alg) {
3099 case OVS_HASH_ALG_L4:
3100 break;
3101 default:
3102 return -EINVAL;
3103 }
3104
3105 break;
3106 }
3107
3108 case OVS_ACTION_ATTR_POP_VLAN:
3109 if (mac_proto != MAC_PROTO_ETHERNET)
3110 return -EINVAL;
3111 vlan_tci = htons(0);
3112 break;
3113
3114 case OVS_ACTION_ATTR_PUSH_VLAN:
3115 if (mac_proto != MAC_PROTO_ETHERNET)
3116 return -EINVAL;
3117 vlan = nla_data(a);
3118 if (!eth_type_vlan(vlan->vlan_tpid))
3119 return -EINVAL;
3120 if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3121 return -EINVAL;
3122 vlan_tci = vlan->vlan_tci;
3123 break;
3124
3125 case OVS_ACTION_ATTR_RECIRC:
3126 break;
3127
3128 case OVS_ACTION_ATTR_ADD_MPLS: {
3129 const struct ovs_action_add_mpls *mpls = nla_data(a);
3130
3131 if (!eth_p_mpls(mpls->mpls_ethertype))
3132 return -EINVAL;
3133
3134 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3135 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3136 (eth_type != htons(ETH_P_IP) &&
3137 eth_type != htons(ETH_P_IPV6) &&
3138 eth_type != htons(ETH_P_ARP) &&
3139 eth_type != htons(ETH_P_RARP) &&
3140 !eth_p_mpls(eth_type)))
3141 return -EINVAL;
3142 mpls_label_count++;
3143 } else {
3144 if (mac_proto == MAC_PROTO_ETHERNET) {
3145 mpls_label_count = 1;
3146 mac_proto = MAC_PROTO_NONE;
3147 } else {
3148 mpls_label_count++;
3149 }
3150 }
3151 eth_type = mpls->mpls_ethertype;
3152 break;
3153 }
3154
3155 case OVS_ACTION_ATTR_PUSH_MPLS: {
3156 const struct ovs_action_push_mpls *mpls = nla_data(a);
3157
3158 if (!eth_p_mpls(mpls->mpls_ethertype))
3159 return -EINVAL;
3160 /* Prohibit push MPLS other than to a white list
3161 * for packets that have a known tag order.
3162 */
3163 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3164 (eth_type != htons(ETH_P_IP) &&
3165 eth_type != htons(ETH_P_IPV6) &&
3166 eth_type != htons(ETH_P_ARP) &&
3167 eth_type != htons(ETH_P_RARP) &&
3168 !eth_p_mpls(eth_type)))
3169 return -EINVAL;
3170 eth_type = mpls->mpls_ethertype;
3171 mpls_label_count++;
3172 break;
3173 }
3174
3175 case OVS_ACTION_ATTR_POP_MPLS: {
3176 __be16 proto;
3177 if (vlan_tci & htons(VLAN_CFI_MASK) ||
3178 !eth_p_mpls(eth_type))
3179 return -EINVAL;
3180
3181 /* Disallow subsequent L2.5+ set actions and mpls_pop
3182 * actions once the last MPLS label in the packet is
3183 * is popped as there is no check here to ensure that
3184 * the new eth type is valid and thus set actions could
3185 * write off the end of the packet or otherwise corrupt
3186 * it.
3187 *
3188 * Support for these actions is planned using packet
3189 * recirculation.
3190 */
3191 proto = nla_get_be16(a);
3192
3193 if (proto == htons(ETH_P_TEB) &&
3194 mac_proto != MAC_PROTO_NONE)
3195 return -EINVAL;
3196
3197 mpls_label_count--;
3198
3199 if (!eth_p_mpls(proto) || !mpls_label_count)
3200 eth_type = htons(0);
3201 else
3202 eth_type = proto;
3203
3204 break;
3205 }
3206
3207 case OVS_ACTION_ATTR_SET:
3208 err = validate_set(a, key, sfa,
3209 &skip_copy, mac_proto, eth_type,
3210 false, log);
3211 if (err)
3212 return err;
3213 break;
3214
3215 case OVS_ACTION_ATTR_SET_MASKED:
3216 err = validate_set(a, key, sfa,
3217 &skip_copy, mac_proto, eth_type,
3218 true, log);
3219 if (err)
3220 return err;
3221 break;
3222
3223 case OVS_ACTION_ATTR_SAMPLE: {
3224 bool last = nla_is_last(a, rem);
3225
3226 err = validate_and_copy_sample(net, a, key, sfa,
3227 eth_type, vlan_tci,
3228 mpls_label_count,
3229 log, last);
3230 if (err)
3231 return err;
3232 skip_copy = true;
3233 break;
3234 }
3235
3236 case OVS_ACTION_ATTR_CT:
3237 err = ovs_ct_copy_action(net, a, key, sfa, log);
3238 if (err)
3239 return err;
3240 skip_copy = true;
3241 break;
3242
3243 case OVS_ACTION_ATTR_CT_CLEAR:
3244 break;
3245
3246 case OVS_ACTION_ATTR_PUSH_ETH:
3247 /* Disallow pushing an Ethernet header if one
3248 * is already present */
3249 if (mac_proto != MAC_PROTO_NONE)
3250 return -EINVAL;
3251 mac_proto = MAC_PROTO_ETHERNET;
3252 break;
3253
3254 case OVS_ACTION_ATTR_POP_ETH:
3255 if (mac_proto != MAC_PROTO_ETHERNET)
3256 return -EINVAL;
3257 if (vlan_tci & htons(VLAN_CFI_MASK))
3258 return -EINVAL;
3259 mac_proto = MAC_PROTO_NONE;
3260 break;
3261
3262 case OVS_ACTION_ATTR_PUSH_NSH:
3263 if (mac_proto != MAC_PROTO_ETHERNET) {
3264 u8 next_proto;
3265
3266 next_proto = tun_p_from_eth_p(eth_type);
3267 if (!next_proto)
3268 return -EINVAL;
3269 }
3270 mac_proto = MAC_PROTO_NONE;
3271 if (!validate_nsh(nla_data(a), false, true, true))
3272 return -EINVAL;
3273 break;
3274
3275 case OVS_ACTION_ATTR_POP_NSH: {
3276 __be16 inner_proto;
3277
3278 if (eth_type != htons(ETH_P_NSH))
3279 return -EINVAL;
3280 inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3281 if (!inner_proto)
3282 return -EINVAL;
3283 if (key->nsh.base.np == TUN_P_ETHERNET)
3284 mac_proto = MAC_PROTO_ETHERNET;
3285 else
3286 mac_proto = MAC_PROTO_NONE;
3287 break;
3288 }
3289
3290 case OVS_ACTION_ATTR_METER:
3291 /* Non-existent meters are simply ignored. */
3292 break;
3293
3294 case OVS_ACTION_ATTR_CLONE: {
3295 bool last = nla_is_last(a, rem);
3296
3297 err = validate_and_copy_clone(net, a, key, sfa,
3298 eth_type, vlan_tci,
3299 mpls_label_count,
3300 log, last);
3301 if (err)
3302 return err;
3303 skip_copy = true;
3304 break;
3305 }
3306
3307 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3308 bool last = nla_is_last(a, rem);
3309
3310 err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3311 eth_type,
3312 vlan_tci,
3313 mpls_label_count,
3314 log, last);
3315 if (err)
3316 return err;
3317 skip_copy = true;
3318 break;
3319 }
3320
3321 case OVS_ACTION_ATTR_DEC_TTL:
3322 err = validate_and_copy_dec_ttl(net, a, key, sfa,
3323 eth_type, vlan_tci,
3324 mpls_label_count, log);
3325 if (err)
3326 return err;
3327 skip_copy = true;
3328 break;
3329
3330 default:
3331 OVS_NLERR(log, "Unknown Action type %d", type);
3332 return -EINVAL;
3333 }
3334 if (!skip_copy) {
3335 err = copy_action(a, sfa, log);
3336 if (err)
3337 return err;
3338 }
3339 }
3340
3341 if (rem > 0)
3342 return -EINVAL;
3343
3344 return 0;
3345 }
3346
3347 /* 'key' must be the masked key. */
ovs_nla_copy_actions(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,bool log)3348 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3349 const struct sw_flow_key *key,
3350 struct sw_flow_actions **sfa, bool log)
3351 {
3352 int err;
3353 u32 mpls_label_count = 0;
3354
3355 *sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3356 if (IS_ERR(*sfa))
3357 return PTR_ERR(*sfa);
3358
3359 if (eth_p_mpls(key->eth.type))
3360 mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3361
3362 (*sfa)->orig_len = nla_len(attr);
3363 err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3364 key->eth.vlan.tci, mpls_label_count, log);
3365 if (err)
3366 ovs_nla_free_flow_actions(*sfa);
3367
3368 return err;
3369 }
3370
sample_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3371 static int sample_action_to_attr(const struct nlattr *attr,
3372 struct sk_buff *skb)
3373 {
3374 struct nlattr *start, *ac_start = NULL, *sample_arg;
3375 int err = 0, rem = nla_len(attr);
3376 const struct sample_arg *arg;
3377 struct nlattr *actions;
3378
3379 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3380 if (!start)
3381 return -EMSGSIZE;
3382
3383 sample_arg = nla_data(attr);
3384 arg = nla_data(sample_arg);
3385 actions = nla_next(sample_arg, &rem);
3386
3387 if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3388 err = -EMSGSIZE;
3389 goto out;
3390 }
3391
3392 ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3393 if (!ac_start) {
3394 err = -EMSGSIZE;
3395 goto out;
3396 }
3397
3398 err = ovs_nla_put_actions(actions, rem, skb);
3399
3400 out:
3401 if (err) {
3402 nla_nest_cancel(skb, ac_start);
3403 nla_nest_cancel(skb, start);
3404 } else {
3405 nla_nest_end(skb, ac_start);
3406 nla_nest_end(skb, start);
3407 }
3408
3409 return err;
3410 }
3411
clone_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3412 static int clone_action_to_attr(const struct nlattr *attr,
3413 struct sk_buff *skb)
3414 {
3415 struct nlattr *start;
3416 int err = 0, rem = nla_len(attr);
3417
3418 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3419 if (!start)
3420 return -EMSGSIZE;
3421
3422 err = ovs_nla_put_actions(nla_data(attr), rem, skb);
3423
3424 if (err)
3425 nla_nest_cancel(skb, start);
3426 else
3427 nla_nest_end(skb, start);
3428
3429 return err;
3430 }
3431
check_pkt_len_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3432 static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3433 struct sk_buff *skb)
3434 {
3435 struct nlattr *start, *ac_start = NULL;
3436 const struct check_pkt_len_arg *arg;
3437 const struct nlattr *a, *cpl_arg;
3438 int err = 0, rem = nla_len(attr);
3439
3440 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3441 if (!start)
3442 return -EMSGSIZE;
3443
3444 /* The first nested attribute in 'attr' is always
3445 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3446 */
3447 cpl_arg = nla_data(attr);
3448 arg = nla_data(cpl_arg);
3449
3450 if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3451 err = -EMSGSIZE;
3452 goto out;
3453 }
3454
3455 /* Second nested attribute in 'attr' is always
3456 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3457 */
3458 a = nla_next(cpl_arg, &rem);
3459 ac_start = nla_nest_start_noflag(skb,
3460 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3461 if (!ac_start) {
3462 err = -EMSGSIZE;
3463 goto out;
3464 }
3465
3466 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3467 if (err) {
3468 nla_nest_cancel(skb, ac_start);
3469 goto out;
3470 } else {
3471 nla_nest_end(skb, ac_start);
3472 }
3473
3474 /* Third nested attribute in 'attr' is always
3475 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3476 */
3477 a = nla_next(a, &rem);
3478 ac_start = nla_nest_start_noflag(skb,
3479 OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3480 if (!ac_start) {
3481 err = -EMSGSIZE;
3482 goto out;
3483 }
3484
3485 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3486 if (err) {
3487 nla_nest_cancel(skb, ac_start);
3488 goto out;
3489 } else {
3490 nla_nest_end(skb, ac_start);
3491 }
3492
3493 nla_nest_end(skb, start);
3494 return 0;
3495
3496 out:
3497 nla_nest_cancel(skb, start);
3498 return err;
3499 }
3500
dec_ttl_action_to_attr(const struct nlattr * attr,struct sk_buff * skb)3501 static int dec_ttl_action_to_attr(const struct nlattr *attr,
3502 struct sk_buff *skb)
3503 {
3504 struct nlattr *start, *action_start;
3505 const struct nlattr *a;
3506 int err = 0, rem;
3507
3508 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3509 if (!start)
3510 return -EMSGSIZE;
3511
3512 nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3513 switch (nla_type(a)) {
3514 case OVS_DEC_TTL_ATTR_ACTION:
3515
3516 action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3517 if (!action_start) {
3518 err = -EMSGSIZE;
3519 goto out;
3520 }
3521
3522 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3523 if (err)
3524 goto out;
3525
3526 nla_nest_end(skb, action_start);
3527 break;
3528
3529 default:
3530 /* Ignore all other option to be future compatible */
3531 break;
3532 }
3533 }
3534
3535 nla_nest_end(skb, start);
3536 return 0;
3537
3538 out:
3539 nla_nest_cancel(skb, start);
3540 return err;
3541 }
3542
set_action_to_attr(const struct nlattr * a,struct sk_buff * skb)3543 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3544 {
3545 const struct nlattr *ovs_key = nla_data(a);
3546 int key_type = nla_type(ovs_key);
3547 struct nlattr *start;
3548 int err;
3549
3550 switch (key_type) {
3551 case OVS_KEY_ATTR_TUNNEL_INFO: {
3552 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3553 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3554
3555 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3556 if (!start)
3557 return -EMSGSIZE;
3558
3559 err = ip_tun_to_nlattr(skb, &tun_info->key,
3560 ip_tunnel_info_opts(tun_info),
3561 tun_info->options_len,
3562 ip_tunnel_info_af(tun_info), tun_info->mode);
3563 if (err)
3564 return err;
3565 nla_nest_end(skb, start);
3566 break;
3567 }
3568 default:
3569 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3570 return -EMSGSIZE;
3571 break;
3572 }
3573
3574 return 0;
3575 }
3576
masked_set_action_to_set_action_attr(const struct nlattr * a,struct sk_buff * skb)3577 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3578 struct sk_buff *skb)
3579 {
3580 const struct nlattr *ovs_key = nla_data(a);
3581 struct nlattr *nla;
3582 size_t key_len = nla_len(ovs_key) / 2;
3583
3584 /* Revert the conversion we did from a non-masked set action to
3585 * masked set action.
3586 */
3587 nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3588 if (!nla)
3589 return -EMSGSIZE;
3590
3591 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3592 return -EMSGSIZE;
3593
3594 nla_nest_end(skb, nla);
3595 return 0;
3596 }
3597
ovs_nla_put_actions(const struct nlattr * attr,int len,struct sk_buff * skb)3598 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3599 {
3600 const struct nlattr *a;
3601 int rem, err;
3602
3603 nla_for_each_attr(a, attr, len, rem) {
3604 int type = nla_type(a);
3605
3606 switch (type) {
3607 case OVS_ACTION_ATTR_SET:
3608 err = set_action_to_attr(a, skb);
3609 if (err)
3610 return err;
3611 break;
3612
3613 case OVS_ACTION_ATTR_SET_TO_MASKED:
3614 err = masked_set_action_to_set_action_attr(a, skb);
3615 if (err)
3616 return err;
3617 break;
3618
3619 case OVS_ACTION_ATTR_SAMPLE:
3620 err = sample_action_to_attr(a, skb);
3621 if (err)
3622 return err;
3623 break;
3624
3625 case OVS_ACTION_ATTR_CT:
3626 err = ovs_ct_action_to_attr(nla_data(a), skb);
3627 if (err)
3628 return err;
3629 break;
3630
3631 case OVS_ACTION_ATTR_CLONE:
3632 err = clone_action_to_attr(a, skb);
3633 if (err)
3634 return err;
3635 break;
3636
3637 case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3638 err = check_pkt_len_action_to_attr(a, skb);
3639 if (err)
3640 return err;
3641 break;
3642
3643 case OVS_ACTION_ATTR_DEC_TTL:
3644 err = dec_ttl_action_to_attr(a, skb);
3645 if (err)
3646 return err;
3647 break;
3648
3649 default:
3650 if (nla_put(skb, type, nla_len(a), nla_data(a)))
3651 return -EMSGSIZE;
3652 break;
3653 }
3654 }
3655
3656 return 0;
3657 }
3658