1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
4  * Copyright (C) 2019-2020 Intel Corporation
5  */
6 #include <linux/netdevice.h>
7 #include <linux/types.h>
8 #include <linux/skbuff.h>
9 #include <linux/debugfs.h>
10 #include <linux/random.h>
11 #include <linux/moduleparam.h>
12 #include <linux/ieee80211.h>
13 #include <net/mac80211.h>
14 #include "rate.h"
15 #include "sta_info.h"
16 #include "rc80211_minstrel.h"
17 #include "rc80211_minstrel_ht.h"
18 
19 #define AVG_AMPDU_SIZE	16
20 #define AVG_PKT_SIZE	1200
21 
22 #define SAMPLE_SWITCH_THR	100
23 
24 /* Number of bits for an average sized packet */
25 #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
26 
27 /* Number of symbols for a packet with (bps) bits per symbol */
28 #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
29 
30 /* Transmission time (nanoseconds) for a packet containing (syms) symbols */
31 #define MCS_SYMBOL_TIME(sgi, syms)					\
32 	(sgi ?								\
33 	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
34 	  ((syms) * 1000) << 2		/* syms * 4 us */		\
35 	)
36 
37 /* Transmit duration for the raw data part of an average sized packet */
38 #define MCS_DURATION(streams, sgi, bps) \
39 	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
40 
41 #define BW_20			0
42 #define BW_40			1
43 #define BW_80			2
44 
45 /*
46  * Define group sort order: HT40 -> SGI -> #streams
47  */
48 #define GROUP_IDX(_streams, _sgi, _ht40)	\
49 	MINSTREL_HT_GROUP_0 +			\
50 	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
51 	MINSTREL_MAX_STREAMS * _sgi +	\
52 	_streams - 1
53 
54 #define _MAX(a, b) (((a)>(b))?(a):(b))
55 
56 #define GROUP_SHIFT(duration)						\
57 	_MAX(0, 16 - __builtin_clz(duration))
58 
59 /* MCS rate information for an MCS group */
60 #define __MCS_GROUP(_streams, _sgi, _ht40, _s)				\
61 	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
62 	.streams = _streams,						\
63 	.shift = _s,							\
64 	.bw = _ht40,							\
65 	.flags =							\
66 		IEEE80211_TX_RC_MCS |					\
67 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
68 		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
69 	.duration = {							\
70 		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s,	\
71 		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s,	\
72 		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s,	\
73 		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s,	\
74 		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s,	\
75 		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s,	\
76 		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s,	\
77 		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s	\
78 	}								\
79 }
80 
81 #define MCS_GROUP_SHIFT(_streams, _sgi, _ht40)				\
82 	GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26))
83 
84 #define MCS_GROUP(_streams, _sgi, _ht40)				\
85 	__MCS_GROUP(_streams, _sgi, _ht40,				\
86 		    MCS_GROUP_SHIFT(_streams, _sgi, _ht40))
87 
88 #define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
89 	(MINSTREL_VHT_GROUP_0 +						\
90 	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
91 	 MINSTREL_MAX_STREAMS * (_sgi) +				\
92 	 (_streams) - 1)
93 
94 #define BW2VBPS(_bw, r3, r2, r1)					\
95 	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
96 
97 #define __VHT_GROUP(_streams, _sgi, _bw, _s)				\
98 	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
99 	.streams = _streams,						\
100 	.shift = _s,							\
101 	.bw = _bw,							\
102 	.flags =							\
103 		IEEE80211_TX_RC_VHT_MCS |				\
104 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
105 		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
106 		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
107 	.duration = {							\
108 		MCS_DURATION(_streams, _sgi,				\
109 			     BW2VBPS(_bw,  117,  54,  26)) >> _s,	\
110 		MCS_DURATION(_streams, _sgi,				\
111 			     BW2VBPS(_bw,  234, 108,  52)) >> _s,	\
112 		MCS_DURATION(_streams, _sgi,				\
113 			     BW2VBPS(_bw,  351, 162,  78)) >> _s,	\
114 		MCS_DURATION(_streams, _sgi,				\
115 			     BW2VBPS(_bw,  468, 216, 104)) >> _s,	\
116 		MCS_DURATION(_streams, _sgi,				\
117 			     BW2VBPS(_bw,  702, 324, 156)) >> _s,	\
118 		MCS_DURATION(_streams, _sgi,				\
119 			     BW2VBPS(_bw,  936, 432, 208)) >> _s,	\
120 		MCS_DURATION(_streams, _sgi,				\
121 			     BW2VBPS(_bw, 1053, 486, 234)) >> _s,	\
122 		MCS_DURATION(_streams, _sgi,				\
123 			     BW2VBPS(_bw, 1170, 540, 260)) >> _s,	\
124 		MCS_DURATION(_streams, _sgi,				\
125 			     BW2VBPS(_bw, 1404, 648, 312)) >> _s,	\
126 		MCS_DURATION(_streams, _sgi,				\
127 			     BW2VBPS(_bw, 1560, 720, 346)) >> _s	\
128 	}								\
129 }
130 
131 #define VHT_GROUP_SHIFT(_streams, _sgi, _bw)				\
132 	GROUP_SHIFT(MCS_DURATION(_streams, _sgi,			\
133 				 BW2VBPS(_bw,  117,  54,  26)))
134 
135 #define VHT_GROUP(_streams, _sgi, _bw)					\
136 	__VHT_GROUP(_streams, _sgi, _bw,				\
137 		    VHT_GROUP_SHIFT(_streams, _sgi, _bw))
138 
139 #define CCK_DURATION(_bitrate, _short, _len)		\
140 	(1000 * (10 /* SIFS */ +			\
141 	 (_short ? 72 + 24 : 144 + 48) +		\
142 	 (8 * (_len + 4) * 10) / (_bitrate)))
143 
144 #define CCK_ACK_DURATION(_bitrate, _short)			\
145 	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
146 	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))
147 
148 #define CCK_DURATION_LIST(_short, _s)			\
149 	CCK_ACK_DURATION(10, _short) >> _s,		\
150 	CCK_ACK_DURATION(20, _short) >> _s,		\
151 	CCK_ACK_DURATION(55, _short) >> _s,		\
152 	CCK_ACK_DURATION(110, _short) >> _s
153 
154 #define __CCK_GROUP(_s)					\
155 	[MINSTREL_CCK_GROUP] = {			\
156 		.streams = 1,				\
157 		.flags = 0,				\
158 		.shift = _s,				\
159 		.duration = {				\
160 			CCK_DURATION_LIST(false, _s),	\
161 			CCK_DURATION_LIST(true, _s)	\
162 		}					\
163 	}
164 
165 #define CCK_GROUP_SHIFT					\
166 	GROUP_SHIFT(CCK_ACK_DURATION(10, false))
167 
168 #define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT)
169 
170 
171 static bool minstrel_vht_only = true;
172 module_param(minstrel_vht_only, bool, 0644);
173 MODULE_PARM_DESC(minstrel_vht_only,
174 		 "Use only VHT rates when VHT is supported by sta.");
175 
176 /*
177  * To enable sufficiently targeted rate sampling, MCS rates are divided into
178  * groups, based on the number of streams and flags (HT40, SGI) that they
179  * use.
180  *
181  * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
182  * BW -> SGI -> #streams
183  */
184 const struct mcs_group minstrel_mcs_groups[] = {
185 	MCS_GROUP(1, 0, BW_20),
186 	MCS_GROUP(2, 0, BW_20),
187 	MCS_GROUP(3, 0, BW_20),
188 	MCS_GROUP(4, 0, BW_20),
189 
190 	MCS_GROUP(1, 1, BW_20),
191 	MCS_GROUP(2, 1, BW_20),
192 	MCS_GROUP(3, 1, BW_20),
193 	MCS_GROUP(4, 1, BW_20),
194 
195 	MCS_GROUP(1, 0, BW_40),
196 	MCS_GROUP(2, 0, BW_40),
197 	MCS_GROUP(3, 0, BW_40),
198 	MCS_GROUP(4, 0, BW_40),
199 
200 	MCS_GROUP(1, 1, BW_40),
201 	MCS_GROUP(2, 1, BW_40),
202 	MCS_GROUP(3, 1, BW_40),
203 	MCS_GROUP(4, 1, BW_40),
204 
205 	CCK_GROUP,
206 
207 	VHT_GROUP(1, 0, BW_20),
208 	VHT_GROUP(2, 0, BW_20),
209 	VHT_GROUP(3, 0, BW_20),
210 	VHT_GROUP(4, 0, BW_20),
211 
212 	VHT_GROUP(1, 1, BW_20),
213 	VHT_GROUP(2, 1, BW_20),
214 	VHT_GROUP(3, 1, BW_20),
215 	VHT_GROUP(4, 1, BW_20),
216 
217 	VHT_GROUP(1, 0, BW_40),
218 	VHT_GROUP(2, 0, BW_40),
219 	VHT_GROUP(3, 0, BW_40),
220 	VHT_GROUP(4, 0, BW_40),
221 
222 	VHT_GROUP(1, 1, BW_40),
223 	VHT_GROUP(2, 1, BW_40),
224 	VHT_GROUP(3, 1, BW_40),
225 	VHT_GROUP(4, 1, BW_40),
226 
227 	VHT_GROUP(1, 0, BW_80),
228 	VHT_GROUP(2, 0, BW_80),
229 	VHT_GROUP(3, 0, BW_80),
230 	VHT_GROUP(4, 0, BW_80),
231 
232 	VHT_GROUP(1, 1, BW_80),
233 	VHT_GROUP(2, 1, BW_80),
234 	VHT_GROUP(3, 1, BW_80),
235 	VHT_GROUP(4, 1, BW_80),
236 };
237 
238 static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
239 
240 static void
241 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
242 
243 /*
244  * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
245  * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
246  *
247  * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
248  */
249 static u16
minstrel_get_valid_vht_rates(int bw,int nss,__le16 mcs_map)250 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
251 {
252 	u16 mask = 0;
253 
254 	if (bw == BW_20) {
255 		if (nss != 3 && nss != 6)
256 			mask = BIT(9);
257 	} else if (bw == BW_80) {
258 		if (nss == 3 || nss == 7)
259 			mask = BIT(6);
260 		else if (nss == 6)
261 			mask = BIT(9);
262 	} else {
263 		WARN_ON(bw != BW_40);
264 	}
265 
266 	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
267 	case IEEE80211_VHT_MCS_SUPPORT_0_7:
268 		mask |= 0x300;
269 		break;
270 	case IEEE80211_VHT_MCS_SUPPORT_0_8:
271 		mask |= 0x200;
272 		break;
273 	case IEEE80211_VHT_MCS_SUPPORT_0_9:
274 		break;
275 	default:
276 		mask = 0x3ff;
277 	}
278 
279 	return 0x3ff & ~mask;
280 }
281 
282 /*
283  * Look up an MCS group index based on mac80211 rate information
284  */
285 static int
minstrel_ht_get_group_idx(struct ieee80211_tx_rate * rate)286 minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
287 {
288 	return GROUP_IDX((rate->idx / 8) + 1,
289 			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
290 			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
291 }
292 
293 static int
minstrel_vht_get_group_idx(struct ieee80211_tx_rate * rate)294 minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
295 {
296 	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
297 			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
298 			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
299 			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
300 }
301 
302 static struct minstrel_rate_stats *
minstrel_ht_get_stats(struct minstrel_priv * mp,struct minstrel_ht_sta * mi,struct ieee80211_tx_rate * rate)303 minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
304 		      struct ieee80211_tx_rate *rate)
305 {
306 	int group, idx;
307 
308 	if (rate->flags & IEEE80211_TX_RC_MCS) {
309 		group = minstrel_ht_get_group_idx(rate);
310 		idx = rate->idx % 8;
311 	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
312 		group = minstrel_vht_get_group_idx(rate);
313 		idx = ieee80211_rate_get_vht_mcs(rate);
314 	} else {
315 		group = MINSTREL_CCK_GROUP;
316 
317 		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
318 			if (rate->idx == mp->cck_rates[idx])
319 				break;
320 
321 		/* short preamble */
322 		if ((mi->supported[group] & BIT(idx + 4)) &&
323 		    (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
324 			idx += 4;
325 	}
326 	return &mi->groups[group].rates[idx];
327 }
328 
329 static inline struct minstrel_rate_stats *
minstrel_get_ratestats(struct minstrel_ht_sta * mi,int index)330 minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
331 {
332 	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
333 }
334 
335 static unsigned int
minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta * mi)336 minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta *mi)
337 {
338 	if (!mi->avg_ampdu_len)
339 		return AVG_AMPDU_SIZE;
340 
341 	return MINSTREL_TRUNC(mi->avg_ampdu_len);
342 }
343 
344 /*
345  * Return current throughput based on the average A-MPDU length, taking into
346  * account the expected number of retransmissions and their expected length
347  */
348 int
minstrel_ht_get_tp_avg(struct minstrel_ht_sta * mi,int group,int rate,int prob_avg)349 minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
350 		       int prob_avg)
351 {
352 	unsigned int nsecs = 0;
353 
354 	/* do not account throughput if sucess prob is below 10% */
355 	if (prob_avg < MINSTREL_FRAC(10, 100))
356 		return 0;
357 
358 	if (group != MINSTREL_CCK_GROUP)
359 		nsecs = 1000 * mi->overhead / minstrel_ht_avg_ampdu_len(mi);
360 
361 	nsecs += minstrel_mcs_groups[group].duration[rate] <<
362 		 minstrel_mcs_groups[group].shift;
363 
364 	/*
365 	 * For the throughput calculation, limit the probability value to 90% to
366 	 * account for collision related packet error rate fluctuation
367 	 * (prob is scaled - see MINSTREL_FRAC above)
368 	 */
369 	if (prob_avg > MINSTREL_FRAC(90, 100))
370 		return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000)
371 								      / nsecs));
372 	else
373 		return MINSTREL_TRUNC(100000 * ((prob_avg * 1000) / nsecs));
374 }
375 
376 /*
377  * Find & sort topmost throughput rates
378  *
379  * If multiple rates provide equal throughput the sorting is based on their
380  * current success probability. Higher success probability is preferred among
381  * MCS groups, CCK rates do not provide aggregation and are therefore at last.
382  */
383 static void
minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta * mi,u16 index,u16 * tp_list)384 minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
385 			       u16 *tp_list)
386 {
387 	int cur_group, cur_idx, cur_tp_avg, cur_prob;
388 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
389 	int j = MAX_THR_RATES;
390 
391 	cur_group = index / MCS_GROUP_RATES;
392 	cur_idx = index  % MCS_GROUP_RATES;
393 	cur_prob = mi->groups[cur_group].rates[cur_idx].prob_avg;
394 	cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
395 
396 	do {
397 		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
398 		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
399 		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
400 		tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
401 						    tmp_prob);
402 		if (cur_tp_avg < tmp_tp_avg ||
403 		    (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
404 			break;
405 		j--;
406 	} while (j > 0);
407 
408 	if (j < MAX_THR_RATES - 1) {
409 		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
410 		       (MAX_THR_RATES - (j + 1))));
411 	}
412 	if (j < MAX_THR_RATES)
413 		tp_list[j] = index;
414 }
415 
416 /*
417  * Find and set the topmost probability rate per sta and per group
418  */
419 static void
minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta * mi,u16 index)420 minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
421 {
422 	struct minstrel_mcs_group_data *mg;
423 	struct minstrel_rate_stats *mrs;
424 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
425 	int max_tp_group, cur_tp_avg, cur_group, cur_idx;
426 	int max_gpr_group, max_gpr_idx;
427 	int max_gpr_tp_avg, max_gpr_prob;
428 
429 	cur_group = index / MCS_GROUP_RATES;
430 	cur_idx = index % MCS_GROUP_RATES;
431 	mg = &mi->groups[index / MCS_GROUP_RATES];
432 	mrs = &mg->rates[index % MCS_GROUP_RATES];
433 
434 	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
435 	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
436 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
437 	tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
438 
439 	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
440 	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
441 	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
442 	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
443 	    (max_tp_group != MINSTREL_CCK_GROUP))
444 		return;
445 
446 	max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES;
447 	max_gpr_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
448 	max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_avg;
449 
450 	if (mrs->prob_avg > MINSTREL_FRAC(75, 100)) {
451 		cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
452 						    mrs->prob_avg);
453 		if (cur_tp_avg > tmp_tp_avg)
454 			mi->max_prob_rate = index;
455 
456 		max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
457 							max_gpr_idx,
458 							max_gpr_prob);
459 		if (cur_tp_avg > max_gpr_tp_avg)
460 			mg->max_group_prob_rate = index;
461 	} else {
462 		if (mrs->prob_avg > tmp_prob)
463 			mi->max_prob_rate = index;
464 		if (mrs->prob_avg > max_gpr_prob)
465 			mg->max_group_prob_rate = index;
466 	}
467 }
468 
469 
470 /*
471  * Assign new rate set per sta and use CCK rates only if the fastest
472  * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
473  * rate sets where MCS and CCK rates are mixed, because CCK rates can
474  * not use aggregation.
475  */
476 static void
minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta * mi,u16 tmp_mcs_tp_rate[MAX_THR_RATES],u16 tmp_cck_tp_rate[MAX_THR_RATES])477 minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
478 				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
479 				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
480 {
481 	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
482 	int i;
483 
484 	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
485 	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
486 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
487 	tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
488 
489 	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
490 	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
491 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
492 	tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
493 
494 	if (tmp_cck_tp > tmp_mcs_tp) {
495 		for(i = 0; i < MAX_THR_RATES; i++) {
496 			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
497 						       tmp_mcs_tp_rate);
498 		}
499 	}
500 
501 }
502 
503 /*
504  * Try to increase robustness of max_prob rate by decrease number of
505  * streams if possible.
506  */
507 static inline void
minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta * mi)508 minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
509 {
510 	struct minstrel_mcs_group_data *mg;
511 	int tmp_max_streams, group, tmp_idx, tmp_prob;
512 	int tmp_tp = 0;
513 
514 	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
515 			  MCS_GROUP_RATES].streams;
516 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
517 		mg = &mi->groups[group];
518 		if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
519 			continue;
520 
521 		tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
522 		tmp_prob = mi->groups[group].rates[tmp_idx].prob_avg;
523 
524 		if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
525 		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
526 				mi->max_prob_rate = mg->max_group_prob_rate;
527 				tmp_tp = minstrel_ht_get_tp_avg(mi, group,
528 								tmp_idx,
529 								tmp_prob);
530 		}
531 	}
532 }
533 
534 static inline int
minstrel_get_duration(int index)535 minstrel_get_duration(int index)
536 {
537 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
538 	unsigned int duration = group->duration[index % MCS_GROUP_RATES];
539 	return duration << group->shift;
540 }
541 
542 static bool
minstrel_ht_probe_group(struct minstrel_ht_sta * mi,const struct mcs_group * tp_group,int tp_idx,const struct mcs_group * group)543 minstrel_ht_probe_group(struct minstrel_ht_sta *mi, const struct mcs_group *tp_group,
544 						int tp_idx, const struct mcs_group *group)
545 {
546 	if (group->bw < tp_group->bw)
547 		return false;
548 
549 	if (group->streams == tp_group->streams)
550 		return true;
551 
552 	if (tp_idx < 4 && group->streams == tp_group->streams - 1)
553 		return true;
554 
555 	return group->streams == tp_group->streams + 1;
556 }
557 
558 static void
minstrel_ht_find_probe_rates(struct minstrel_ht_sta * mi,u16 * rates,int * n_rates,bool faster_rate)559 minstrel_ht_find_probe_rates(struct minstrel_ht_sta *mi, u16 *rates, int *n_rates,
560 			     bool faster_rate)
561 {
562 	const struct mcs_group *group, *tp_group;
563 	int i, g, max_dur;
564 	int tp_idx;
565 
566 	tp_group = &minstrel_mcs_groups[mi->max_tp_rate[0] / MCS_GROUP_RATES];
567 	tp_idx = mi->max_tp_rate[0] % MCS_GROUP_RATES;
568 
569 	max_dur = minstrel_get_duration(mi->max_tp_rate[0]);
570 	if (faster_rate)
571 		max_dur -= max_dur / 16;
572 
573 	for (g = 0; g < MINSTREL_GROUPS_NB; g++) {
574 		u16 supported = mi->supported[g];
575 
576 		if (!supported)
577 			continue;
578 
579 		group = &minstrel_mcs_groups[g];
580 		if (!minstrel_ht_probe_group(mi, tp_group, tp_idx, group))
581 			continue;
582 
583 		for (i = 0; supported; supported >>= 1, i++) {
584 			int idx;
585 
586 			if (!(supported & 1))
587 				continue;
588 
589 			if ((group->duration[i] << group->shift) > max_dur)
590 				continue;
591 
592 			idx = g * MCS_GROUP_RATES + i;
593 			if (idx == mi->max_tp_rate[0])
594 				continue;
595 
596 			rates[(*n_rates)++] = idx;
597 			break;
598 		}
599 	}
600 }
601 
602 static void
minstrel_ht_rate_sample_switch(struct minstrel_priv * mp,struct minstrel_ht_sta * mi)603 minstrel_ht_rate_sample_switch(struct minstrel_priv *mp,
604 			       struct minstrel_ht_sta *mi)
605 {
606 	struct minstrel_rate_stats *mrs;
607 	u16 rates[MINSTREL_GROUPS_NB];
608 	int n_rates = 0;
609 	int probe_rate = 0;
610 	bool faster_rate;
611 	int i;
612 	u8 random;
613 
614 	/*
615 	 * Use rate switching instead of probing packets for devices with
616 	 * little control over retry fallback behavior
617 	 */
618 	if (mp->hw->max_rates > 1)
619 		return;
620 
621 	/*
622 	 * If the current EWMA prob is >75%, look for a rate that's 6.25%
623 	 * faster than the max tp rate.
624 	 * If that fails, look again for a rate that is at least as fast
625 	 */
626 	mrs = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
627 	faster_rate = mrs->prob_avg > MINSTREL_FRAC(75, 100);
628 	minstrel_ht_find_probe_rates(mi, rates, &n_rates, faster_rate);
629 	if (!n_rates && faster_rate)
630 		minstrel_ht_find_probe_rates(mi, rates, &n_rates, false);
631 
632 	/* If no suitable rate was found, try to pick the next one in the group */
633 	if (!n_rates) {
634 		int g_idx = mi->max_tp_rate[0] / MCS_GROUP_RATES;
635 		u16 supported = mi->supported[g_idx];
636 
637 		supported >>= mi->max_tp_rate[0] % MCS_GROUP_RATES;
638 		for (i = 0; supported; supported >>= 1, i++) {
639 			if (!(supported & 1))
640 				continue;
641 
642 			probe_rate = mi->max_tp_rate[0] + i;
643 			goto out;
644 		}
645 
646 		return;
647 	}
648 
649 	i = 0;
650 	if (n_rates > 1) {
651 		random = prandom_u32();
652 		i = random % n_rates;
653 	}
654 	probe_rate = rates[i];
655 
656 out:
657 	mi->sample_rate = probe_rate;
658 	mi->sample_mode = MINSTREL_SAMPLE_ACTIVE;
659 }
660 
661 /*
662  * Update rate statistics and select new primary rates
663  *
664  * Rules for rate selection:
665  *  - max_prob_rate must use only one stream, as a tradeoff between delivery
666  *    probability and throughput during strong fluctuations
667  *  - as long as the max prob rate has a probability of more than 75%, pick
668  *    higher throughput rates, even if the probablity is a bit lower
669  */
670 static void
minstrel_ht_update_stats(struct minstrel_priv * mp,struct minstrel_ht_sta * mi,bool sample)671 minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
672 			 bool sample)
673 {
674 	struct minstrel_mcs_group_data *mg;
675 	struct minstrel_rate_stats *mrs;
676 	int group, i, j, cur_prob;
677 	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
678 	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
679 
680 	mi->sample_mode = MINSTREL_SAMPLE_IDLE;
681 
682 	if (sample) {
683 		mi->total_packets_cur = mi->total_packets -
684 					mi->total_packets_last;
685 		mi->total_packets_last = mi->total_packets;
686 	}
687 	if (!mp->sample_switch)
688 		sample = false;
689 	if (mi->total_packets_cur < SAMPLE_SWITCH_THR && mp->sample_switch != 1)
690 	    sample = false;
691 
692 	if (mi->ampdu_packets > 0) {
693 		if (!ieee80211_hw_check(mp->hw, TX_STATUS_NO_AMPDU_LEN))
694 			mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
695 				MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets),
696 					      EWMA_LEVEL);
697 		else
698 			mi->avg_ampdu_len = 0;
699 		mi->ampdu_len = 0;
700 		mi->ampdu_packets = 0;
701 	}
702 
703 	mi->sample_slow = 0;
704 	mi->sample_count = 0;
705 
706 	memset(tmp_mcs_tp_rate, 0, sizeof(tmp_mcs_tp_rate));
707 	memset(tmp_cck_tp_rate, 0, sizeof(tmp_cck_tp_rate));
708 	if (mi->supported[MINSTREL_CCK_GROUP])
709 		for (j = 0; j < ARRAY_SIZE(tmp_cck_tp_rate); j++)
710 			tmp_cck_tp_rate[j] = MINSTREL_CCK_GROUP * MCS_GROUP_RATES;
711 
712 	if (mi->supported[MINSTREL_VHT_GROUP_0])
713 		index = MINSTREL_VHT_GROUP_0 * MCS_GROUP_RATES;
714 	else
715 		index = MINSTREL_HT_GROUP_0 * MCS_GROUP_RATES;
716 
717 	for (j = 0; j < ARRAY_SIZE(tmp_mcs_tp_rate); j++)
718 		tmp_mcs_tp_rate[j] = index;
719 
720 	/* Find best rate sets within all MCS groups*/
721 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
722 
723 		mg = &mi->groups[group];
724 		if (!mi->supported[group])
725 			continue;
726 
727 		mi->sample_count++;
728 
729 		/* (re)Initialize group rate indexes */
730 		for(j = 0; j < MAX_THR_RATES; j++)
731 			tmp_group_tp_rate[j] = MCS_GROUP_RATES * group;
732 
733 		for (i = 0; i < MCS_GROUP_RATES; i++) {
734 			if (!(mi->supported[group] & BIT(i)))
735 				continue;
736 
737 			index = MCS_GROUP_RATES * group + i;
738 
739 			mrs = &mg->rates[i];
740 			mrs->retry_updated = false;
741 			minstrel_calc_rate_stats(mp, mrs);
742 			cur_prob = mrs->prob_avg;
743 
744 			if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
745 				continue;
746 
747 			/* Find max throughput rate set */
748 			if (group != MINSTREL_CCK_GROUP) {
749 				minstrel_ht_sort_best_tp_rates(mi, index,
750 							       tmp_mcs_tp_rate);
751 			} else if (group == MINSTREL_CCK_GROUP) {
752 				minstrel_ht_sort_best_tp_rates(mi, index,
753 							       tmp_cck_tp_rate);
754 			}
755 
756 			/* Find max throughput rate set within a group */
757 			minstrel_ht_sort_best_tp_rates(mi, index,
758 						       tmp_group_tp_rate);
759 
760 			/* Find max probability rate per group and global */
761 			minstrel_ht_set_best_prob_rate(mi, index);
762 		}
763 
764 		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
765 		       sizeof(mg->max_group_tp_rate));
766 	}
767 
768 	/* Assign new rate set per sta */
769 	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
770 	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
771 
772 	/* Try to increase robustness of max_prob_rate*/
773 	minstrel_ht_prob_rate_reduce_streams(mi);
774 
775 	/* try to sample all available rates during each interval */
776 	mi->sample_count *= 8;
777 	if (mp->new_avg)
778 		mi->sample_count /= 2;
779 
780 	if (sample)
781 		minstrel_ht_rate_sample_switch(mp, mi);
782 
783 #ifdef CONFIG_MAC80211_DEBUGFS
784 	/* use fixed index if set */
785 	if (mp->fixed_rate_idx != -1) {
786 		for (i = 0; i < 4; i++)
787 			mi->max_tp_rate[i] = mp->fixed_rate_idx;
788 		mi->max_prob_rate = mp->fixed_rate_idx;
789 		mi->sample_mode = MINSTREL_SAMPLE_IDLE;
790 	}
791 #endif
792 
793 	/* Reset update timer */
794 	mi->last_stats_update = jiffies;
795 }
796 
797 static bool
minstrel_ht_txstat_valid(struct minstrel_priv * mp,struct ieee80211_tx_rate * rate)798 minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
799 {
800 	if (rate->idx < 0)
801 		return false;
802 
803 	if (!rate->count)
804 		return false;
805 
806 	if (rate->flags & IEEE80211_TX_RC_MCS ||
807 	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
808 		return true;
809 
810 	return rate->idx == mp->cck_rates[0] ||
811 	       rate->idx == mp->cck_rates[1] ||
812 	       rate->idx == mp->cck_rates[2] ||
813 	       rate->idx == mp->cck_rates[3];
814 }
815 
816 static void
minstrel_set_next_sample_idx(struct minstrel_ht_sta * mi)817 minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
818 {
819 	struct minstrel_mcs_group_data *mg;
820 
821 	for (;;) {
822 		mi->sample_group++;
823 		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
824 		mg = &mi->groups[mi->sample_group];
825 
826 		if (!mi->supported[mi->sample_group])
827 			continue;
828 
829 		if (++mg->index >= MCS_GROUP_RATES) {
830 			mg->index = 0;
831 			if (++mg->column >= ARRAY_SIZE(sample_table))
832 				mg->column = 0;
833 		}
834 		break;
835 	}
836 }
837 
838 static void
minstrel_downgrade_rate(struct minstrel_ht_sta * mi,u16 * idx,bool primary)839 minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
840 {
841 	int group, orig_group;
842 
843 	orig_group = group = *idx / MCS_GROUP_RATES;
844 	while (group > 0) {
845 		group--;
846 
847 		if (!mi->supported[group])
848 			continue;
849 
850 		if (minstrel_mcs_groups[group].streams >
851 		    minstrel_mcs_groups[orig_group].streams)
852 			continue;
853 
854 		if (primary)
855 			*idx = mi->groups[group].max_group_tp_rate[0];
856 		else
857 			*idx = mi->groups[group].max_group_tp_rate[1];
858 		break;
859 	}
860 }
861 
862 static void
minstrel_aggr_check(struct ieee80211_sta * pubsta,struct sk_buff * skb)863 minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
864 {
865 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
866 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
867 	u16 tid;
868 
869 	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
870 		return;
871 
872 	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
873 		return;
874 
875 	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
876 		return;
877 
878 	tid = ieee80211_get_tid(hdr);
879 	if (likely(sta->ampdu_mlme.tid_tx[tid]))
880 		return;
881 
882 	ieee80211_start_tx_ba_session(pubsta, tid, 0);
883 }
884 
885 static void
minstrel_ht_tx_status(void * priv,struct ieee80211_supported_band * sband,void * priv_sta,struct ieee80211_tx_status * st)886 minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
887                       void *priv_sta, struct ieee80211_tx_status *st)
888 {
889 	struct ieee80211_tx_info *info = st->info;
890 	struct minstrel_ht_sta_priv *msp = priv_sta;
891 	struct minstrel_ht_sta *mi = &msp->ht;
892 	struct ieee80211_tx_rate *ar = info->status.rates;
893 	struct minstrel_rate_stats *rate, *rate2, *rate_sample = NULL;
894 	struct minstrel_priv *mp = priv;
895 	u32 update_interval = mp->update_interval / 2;
896 	bool last, update = false;
897 	bool sample_status = false;
898 	int i;
899 
900 	if (!msp->is_ht)
901 		return mac80211_minstrel.tx_status_ext(priv, sband,
902 						       &msp->legacy, st);
903 
904 
905 	/* This packet was aggregated but doesn't carry status info */
906 	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
907 	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
908 		return;
909 
910 	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
911 		info->status.ampdu_ack_len =
912 			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
913 		info->status.ampdu_len = 1;
914 	}
915 
916 	mi->ampdu_packets++;
917 	mi->ampdu_len += info->status.ampdu_len;
918 
919 	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
920 		int avg_ampdu_len = minstrel_ht_avg_ampdu_len(mi);
921 
922 		mi->sample_wait = 16 + 2 * avg_ampdu_len;
923 		mi->sample_tries = 1;
924 		mi->sample_count--;
925 	}
926 
927 	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
928 		mi->sample_packets += info->status.ampdu_len;
929 
930 	if (mi->sample_mode != MINSTREL_SAMPLE_IDLE)
931 		rate_sample = minstrel_get_ratestats(mi, mi->sample_rate);
932 
933 	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
934 	for (i = 0; !last; i++) {
935 		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
936 		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
937 
938 		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
939 		if (rate == rate_sample)
940 			sample_status = true;
941 
942 		if (last)
943 			rate->success += info->status.ampdu_ack_len;
944 
945 		rate->attempts += ar[i].count * info->status.ampdu_len;
946 	}
947 
948 	switch (mi->sample_mode) {
949 	case MINSTREL_SAMPLE_IDLE:
950 		if (mp->new_avg &&
951 		    (mp->hw->max_rates > 1 ||
952 		     mi->total_packets_cur < SAMPLE_SWITCH_THR))
953 			update_interval /= 2;
954 		break;
955 
956 	case MINSTREL_SAMPLE_ACTIVE:
957 		if (!sample_status)
958 			break;
959 
960 		mi->sample_mode = MINSTREL_SAMPLE_PENDING;
961 		update = true;
962 		break;
963 
964 	case MINSTREL_SAMPLE_PENDING:
965 		if (sample_status)
966 			break;
967 
968 		update = true;
969 		minstrel_ht_update_stats(mp, mi, false);
970 		break;
971 	}
972 
973 
974 	if (mp->hw->max_rates > 1) {
975 		/*
976 		 * check for sudden death of spatial multiplexing,
977 		 * downgrade to a lower number of streams if necessary.
978 		 */
979 		rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
980 		if (rate->attempts > 30 &&
981 		    rate->success < rate->attempts / 4) {
982 			minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
983 			update = true;
984 		}
985 
986 		rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
987 		if (rate2->attempts > 30 &&
988 		    rate2->success < rate2->attempts / 4) {
989 			minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
990 			update = true;
991 		}
992 	}
993 
994 	if (time_after(jiffies, mi->last_stats_update + update_interval)) {
995 		update = true;
996 		minstrel_ht_update_stats(mp, mi, true);
997 	}
998 
999 	if (update)
1000 		minstrel_ht_update_rates(mp, mi);
1001 }
1002 
1003 static void
minstrel_calc_retransmit(struct minstrel_priv * mp,struct minstrel_ht_sta * mi,int index)1004 minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1005                          int index)
1006 {
1007 	struct minstrel_rate_stats *mrs;
1008 	unsigned int tx_time, tx_time_rtscts, tx_time_data;
1009 	unsigned int cw = mp->cw_min;
1010 	unsigned int ctime = 0;
1011 	unsigned int t_slot = 9; /* FIXME */
1012 	unsigned int ampdu_len = minstrel_ht_avg_ampdu_len(mi);
1013 	unsigned int overhead = 0, overhead_rtscts = 0;
1014 
1015 	mrs = minstrel_get_ratestats(mi, index);
1016 	if (mrs->prob_avg < MINSTREL_FRAC(1, 10)) {
1017 		mrs->retry_count = 1;
1018 		mrs->retry_count_rtscts = 1;
1019 		return;
1020 	}
1021 
1022 	mrs->retry_count = 2;
1023 	mrs->retry_count_rtscts = 2;
1024 	mrs->retry_updated = true;
1025 
1026 	tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000;
1027 
1028 	/* Contention time for first 2 tries */
1029 	ctime = (t_slot * cw) >> 1;
1030 	cw = min((cw << 1) | 1, mp->cw_max);
1031 	ctime += (t_slot * cw) >> 1;
1032 	cw = min((cw << 1) | 1, mp->cw_max);
1033 
1034 	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
1035 		overhead = mi->overhead;
1036 		overhead_rtscts = mi->overhead_rtscts;
1037 	}
1038 
1039 	/* Total TX time for data and Contention after first 2 tries */
1040 	tx_time = ctime + 2 * (overhead + tx_time_data);
1041 	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
1042 
1043 	/* See how many more tries we can fit inside segment size */
1044 	do {
1045 		/* Contention time for this try */
1046 		ctime = (t_slot * cw) >> 1;
1047 		cw = min((cw << 1) | 1, mp->cw_max);
1048 
1049 		/* Total TX time after this try */
1050 		tx_time += ctime + overhead + tx_time_data;
1051 		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
1052 
1053 		if (tx_time_rtscts < mp->segment_size)
1054 			mrs->retry_count_rtscts++;
1055 	} while ((tx_time < mp->segment_size) &&
1056 	         (++mrs->retry_count < mp->max_retry));
1057 }
1058 
1059 
1060 static void
minstrel_ht_set_rate(struct minstrel_priv * mp,struct minstrel_ht_sta * mi,struct ieee80211_sta_rates * ratetbl,int offset,int index)1061 minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1062                      struct ieee80211_sta_rates *ratetbl, int offset, int index)
1063 {
1064 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
1065 	struct minstrel_rate_stats *mrs;
1066 	u8 idx;
1067 	u16 flags = group->flags;
1068 
1069 	mrs = minstrel_get_ratestats(mi, index);
1070 	if (!mrs->retry_updated)
1071 		minstrel_calc_retransmit(mp, mi, index);
1072 
1073 	if (mrs->prob_avg < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
1074 		ratetbl->rate[offset].count = 2;
1075 		ratetbl->rate[offset].count_rts = 2;
1076 		ratetbl->rate[offset].count_cts = 2;
1077 	} else {
1078 		ratetbl->rate[offset].count = mrs->retry_count;
1079 		ratetbl->rate[offset].count_cts = mrs->retry_count;
1080 		ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
1081 	}
1082 
1083 	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
1084 		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
1085 	else if (flags & IEEE80211_TX_RC_VHT_MCS)
1086 		idx = ((group->streams - 1) << 4) |
1087 		      ((index % MCS_GROUP_RATES) & 0xF);
1088 	else
1089 		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
1090 
1091 	/* enable RTS/CTS if needed:
1092 	 *  - if station is in dynamic SMPS (and streams > 1)
1093 	 *  - for fallback rates, to increase chances of getting through
1094 	 */
1095 	if (offset > 0 ||
1096 	    (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
1097 	     group->streams > 1)) {
1098 		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
1099 		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
1100 	}
1101 
1102 	ratetbl->rate[offset].idx = idx;
1103 	ratetbl->rate[offset].flags = flags;
1104 }
1105 
1106 static inline int
minstrel_ht_get_prob_avg(struct minstrel_ht_sta * mi,int rate)1107 minstrel_ht_get_prob_avg(struct minstrel_ht_sta *mi, int rate)
1108 {
1109 	int group = rate / MCS_GROUP_RATES;
1110 	rate %= MCS_GROUP_RATES;
1111 	return mi->groups[group].rates[rate].prob_avg;
1112 }
1113 
1114 static int
minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta * mi)1115 minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
1116 {
1117 	int group = mi->max_prob_rate / MCS_GROUP_RATES;
1118 	const struct mcs_group *g = &minstrel_mcs_groups[group];
1119 	int rate = mi->max_prob_rate % MCS_GROUP_RATES;
1120 	unsigned int duration;
1121 
1122 	/* Disable A-MSDU if max_prob_rate is bad */
1123 	if (mi->groups[group].rates[rate].prob_avg < MINSTREL_FRAC(50, 100))
1124 		return 1;
1125 
1126 	duration = g->duration[rate];
1127 	duration <<= g->shift;
1128 
1129 	/* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
1130 	if (duration > MCS_DURATION(1, 0, 52))
1131 		return 500;
1132 
1133 	/*
1134 	 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
1135 	 * data packet size
1136 	 */
1137 	if (duration > MCS_DURATION(1, 0, 104))
1138 		return 1600;
1139 
1140 	/*
1141 	 * If the rate is slower than single-stream MCS7, or if the max throughput
1142 	 * rate success probability is less than 75%, limit A-MSDU to twice the usual
1143 	 * data packet size
1144 	 */
1145 	if (duration > MCS_DURATION(1, 0, 260) ||
1146 	    (minstrel_ht_get_prob_avg(mi, mi->max_tp_rate[0]) <
1147 	     MINSTREL_FRAC(75, 100)))
1148 		return 3200;
1149 
1150 	/*
1151 	 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
1152 	 * Since aggregation sessions are started/stopped without txq flush, use
1153 	 * the limit here to avoid the complexity of having to de-aggregate
1154 	 * packets in the queue.
1155 	 */
1156 	if (!mi->sta->vht_cap.vht_supported)
1157 		return IEEE80211_MAX_MPDU_LEN_HT_BA;
1158 
1159 	/* unlimited */
1160 	return 0;
1161 }
1162 
1163 static void
minstrel_ht_update_rates(struct minstrel_priv * mp,struct minstrel_ht_sta * mi)1164 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1165 {
1166 	struct ieee80211_sta_rates *rates;
1167 	u16 first_rate = mi->max_tp_rate[0];
1168 	int i = 0;
1169 
1170 	if (mi->sample_mode == MINSTREL_SAMPLE_ACTIVE)
1171 		first_rate = mi->sample_rate;
1172 
1173 	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
1174 	if (!rates)
1175 		return;
1176 
1177 	/* Start with max_tp_rate[0] */
1178 	minstrel_ht_set_rate(mp, mi, rates, i++, first_rate);
1179 
1180 	if (mp->hw->max_rates >= 3) {
1181 		/* At least 3 tx rates supported, use max_tp_rate[1] next */
1182 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
1183 	}
1184 
1185 	if (mp->hw->max_rates >= 2) {
1186 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
1187 	}
1188 
1189 	mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
1190 	rates->rate[i].idx = -1;
1191 	rate_control_set_rates(mp->hw, mi->sta, rates);
1192 }
1193 
1194 static int
minstrel_get_sample_rate(struct minstrel_priv * mp,struct minstrel_ht_sta * mi)1195 minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1196 {
1197 	struct minstrel_rate_stats *mrs;
1198 	struct minstrel_mcs_group_data *mg;
1199 	unsigned int sample_dur, sample_group, cur_max_tp_streams;
1200 	int tp_rate1, tp_rate2;
1201 	int sample_idx = 0;
1202 
1203 	if (mp->hw->max_rates == 1 && mp->sample_switch &&
1204 	    (mi->total_packets_cur >= SAMPLE_SWITCH_THR ||
1205 	     mp->sample_switch == 1))
1206 		return -1;
1207 
1208 	if (mi->sample_wait > 0) {
1209 		mi->sample_wait--;
1210 		return -1;
1211 	}
1212 
1213 	if (!mi->sample_tries)
1214 		return -1;
1215 
1216 	sample_group = mi->sample_group;
1217 	mg = &mi->groups[sample_group];
1218 	sample_idx = sample_table[mg->column][mg->index];
1219 	minstrel_set_next_sample_idx(mi);
1220 
1221 	if (!(mi->supported[sample_group] & BIT(sample_idx)))
1222 		return -1;
1223 
1224 	mrs = &mg->rates[sample_idx];
1225 	sample_idx += sample_group * MCS_GROUP_RATES;
1226 
1227 	/* Set tp_rate1, tp_rate2 to the highest / second highest max_tp_rate */
1228 	if (minstrel_get_duration(mi->max_tp_rate[0]) >
1229 	    minstrel_get_duration(mi->max_tp_rate[1])) {
1230 		tp_rate1 = mi->max_tp_rate[1];
1231 		tp_rate2 = mi->max_tp_rate[0];
1232 	} else {
1233 		tp_rate1 = mi->max_tp_rate[0];
1234 		tp_rate2 = mi->max_tp_rate[1];
1235 	}
1236 
1237 	/*
1238 	 * Sampling might add some overhead (RTS, no aggregation)
1239 	 * to the frame. Hence, don't use sampling for the highest currently
1240 	 * used highest throughput or probability rate.
1241 	 */
1242 	if (sample_idx == mi->max_tp_rate[0] || sample_idx == mi->max_prob_rate)
1243 		return -1;
1244 
1245 	/*
1246 	 * Do not sample if the probability is already higher than 95%,
1247 	 * or if the rate is 3 times slower than the current max probability
1248 	 * rate, to avoid wasting airtime.
1249 	 */
1250 	sample_dur = minstrel_get_duration(sample_idx);
1251 	if (mrs->prob_avg > MINSTREL_FRAC(95, 100) ||
1252 	    minstrel_get_duration(mi->max_prob_rate) * 3 < sample_dur)
1253 		return -1;
1254 
1255 
1256 	/*
1257 	 * For devices with no configurable multi-rate retry, skip sampling
1258 	 * below the per-group max throughput rate, and only use one sampling
1259 	 * attempt per rate
1260 	 */
1261 	if (mp->hw->max_rates == 1 &&
1262 	    (minstrel_get_duration(mg->max_group_tp_rate[0]) < sample_dur ||
1263 	     mrs->attempts))
1264 		return -1;
1265 
1266 	/* Skip already sampled slow rates */
1267 	if (sample_dur >= minstrel_get_duration(tp_rate1) && mrs->attempts)
1268 		return -1;
1269 
1270 	/*
1271 	 * Make sure that lower rates get sampled only occasionally,
1272 	 * if the link is working perfectly.
1273 	 */
1274 
1275 	cur_max_tp_streams = minstrel_mcs_groups[tp_rate1 /
1276 		MCS_GROUP_RATES].streams;
1277 	if (sample_dur >= minstrel_get_duration(tp_rate2) &&
1278 	    (cur_max_tp_streams - 1 <
1279 	     minstrel_mcs_groups[sample_group].streams ||
1280 	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
1281 		if (mrs->sample_skipped < 20)
1282 			return -1;
1283 
1284 		if (mi->sample_slow++ > 2)
1285 			return -1;
1286 	}
1287 	mi->sample_tries--;
1288 
1289 	return sample_idx;
1290 }
1291 
1292 static void
minstrel_ht_get_rate(void * priv,struct ieee80211_sta * sta,void * priv_sta,struct ieee80211_tx_rate_control * txrc)1293 minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1294                      struct ieee80211_tx_rate_control *txrc)
1295 {
1296 	const struct mcs_group *sample_group;
1297 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1298 	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1299 	struct minstrel_ht_sta_priv *msp = priv_sta;
1300 	struct minstrel_ht_sta *mi = &msp->ht;
1301 	struct minstrel_priv *mp = priv;
1302 	int sample_idx;
1303 
1304 	if (!msp->is_ht)
1305 		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);
1306 
1307 	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
1308 	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
1309 		minstrel_aggr_check(sta, txrc->skb);
1310 
1311 	info->flags |= mi->tx_flags;
1312 
1313 #ifdef CONFIG_MAC80211_DEBUGFS
1314 	if (mp->fixed_rate_idx != -1)
1315 		return;
1316 #endif
1317 
1318 	/* Don't use EAPOL frames for sampling on non-mrr hw */
1319 	if (mp->hw->max_rates == 1 &&
1320 	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1321 		sample_idx = -1;
1322 	else
1323 		sample_idx = minstrel_get_sample_rate(mp, mi);
1324 
1325 	mi->total_packets++;
1326 
1327 	/* wraparound */
1328 	if (mi->total_packets == ~0) {
1329 		mi->total_packets = 0;
1330 		mi->sample_packets = 0;
1331 	}
1332 
1333 	if (sample_idx < 0)
1334 		return;
1335 
1336 	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
1337 	sample_idx %= MCS_GROUP_RATES;
1338 
1339 	if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] &&
1340 	    (sample_idx >= 4) != txrc->short_preamble)
1341 		return;
1342 
1343 	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1344 	rate->count = 1;
1345 
1346 	if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) {
1347 		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1348 		rate->idx = mp->cck_rates[idx];
1349 	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1350 		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
1351 				       sample_group->streams);
1352 	} else {
1353 		rate->idx = sample_idx + (sample_group->streams - 1) * 8;
1354 	}
1355 
1356 	rate->flags = sample_group->flags;
1357 }
1358 
1359 static void
minstrel_ht_update_cck(struct minstrel_priv * mp,struct minstrel_ht_sta * mi,struct ieee80211_supported_band * sband,struct ieee80211_sta * sta)1360 minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1361 		       struct ieee80211_supported_band *sband,
1362 		       struct ieee80211_sta *sta)
1363 {
1364 	int i;
1365 
1366 	if (sband->band != NL80211_BAND_2GHZ)
1367 		return;
1368 
1369 	if (!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1370 		return;
1371 
1372 	mi->cck_supported = 0;
1373 	mi->cck_supported_short = 0;
1374 	for (i = 0; i < 4; i++) {
1375 		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
1376 			continue;
1377 
1378 		mi->cck_supported |= BIT(i);
1379 		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1380 			mi->cck_supported_short |= BIT(i);
1381 	}
1382 
1383 	mi->supported[MINSTREL_CCK_GROUP] = mi->cck_supported;
1384 }
1385 
1386 static void
minstrel_ht_update_caps(void * priv,struct ieee80211_supported_band * sband,struct cfg80211_chan_def * chandef,struct ieee80211_sta * sta,void * priv_sta)1387 minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1388 			struct cfg80211_chan_def *chandef,
1389                         struct ieee80211_sta *sta, void *priv_sta)
1390 {
1391 	struct minstrel_priv *mp = priv;
1392 	struct minstrel_ht_sta_priv *msp = priv_sta;
1393 	struct minstrel_ht_sta *mi = &msp->ht;
1394 	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
1395 	u16 ht_cap = sta->ht_cap.cap;
1396 	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
1397 	int use_vht;
1398 	int n_supported = 0;
1399 	int ack_dur;
1400 	int stbc;
1401 	int i;
1402 	bool ldpc;
1403 
1404 	/* fall back to the old minstrel for legacy stations */
1405 	if (!sta->ht_cap.ht_supported)
1406 		goto use_legacy;
1407 
1408 	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1409 
1410 	if (vht_cap->vht_supported)
1411 		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1412 	else
1413 		use_vht = 0;
1414 
1415 	msp->is_ht = true;
1416 	memset(mi, 0, sizeof(*mi));
1417 
1418 	mi->sta = sta;
1419 	mi->last_stats_update = jiffies;
1420 
1421 	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
1422 	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
1423 	mi->overhead += ack_dur;
1424 	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1425 
1426 	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1427 
1428 	/* When using MRR, sample more on the first attempt, without delay */
1429 	if (mp->has_mrr) {
1430 		mi->sample_count = 16;
1431 		mi->sample_wait = 0;
1432 	} else {
1433 		mi->sample_count = 8;
1434 		mi->sample_wait = 8;
1435 	}
1436 	mi->sample_tries = 4;
1437 
1438 	if (!use_vht) {
1439 		stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >>
1440 			IEEE80211_HT_CAP_RX_STBC_SHIFT;
1441 
1442 		ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING;
1443 	} else {
1444 		stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >>
1445 			IEEE80211_VHT_CAP_RXSTBC_SHIFT;
1446 
1447 		ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC;
1448 	}
1449 
1450 	mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1451 	if (ldpc)
1452 		mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1453 
1454 	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1455 		u32 gflags = minstrel_mcs_groups[i].flags;
1456 		int bw, nss;
1457 
1458 		mi->supported[i] = 0;
1459 		if (i == MINSTREL_CCK_GROUP) {
1460 			minstrel_ht_update_cck(mp, mi, sband, sta);
1461 			continue;
1462 		}
1463 
1464 		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1465 			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1466 				if (!(ht_cap & IEEE80211_HT_CAP_SGI_40))
1467 					continue;
1468 			} else {
1469 				if (!(ht_cap & IEEE80211_HT_CAP_SGI_20))
1470 					continue;
1471 			}
1472 		}
1473 
1474 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1475 		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1476 			continue;
1477 
1478 		nss = minstrel_mcs_groups[i].streams;
1479 
1480 		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1481 		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1482 			continue;
1483 
1484 		/* HT rate */
1485 		if (gflags & IEEE80211_TX_RC_MCS) {
1486 			if (use_vht && minstrel_vht_only)
1487 				continue;
1488 
1489 			mi->supported[i] = mcs->rx_mask[nss - 1];
1490 			if (mi->supported[i])
1491 				n_supported++;
1492 			continue;
1493 		}
1494 
1495 		/* VHT rate */
1496 		if (!vht_cap->vht_supported ||
1497 		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1498 		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1499 			continue;
1500 
1501 		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1502 			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
1503 			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1504 			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1505 				continue;
1506 			}
1507 		}
1508 
1509 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1510 			bw = BW_40;
1511 		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1512 			bw = BW_80;
1513 		else
1514 			bw = BW_20;
1515 
1516 		mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
1517 				vht_cap->vht_mcs.tx_mcs_map);
1518 
1519 		if (mi->supported[i])
1520 			n_supported++;
1521 	}
1522 
1523 	if (!n_supported)
1524 		goto use_legacy;
1525 
1526 	mi->supported[MINSTREL_CCK_GROUP] |= mi->cck_supported_short << 4;
1527 
1528 	/* create an initial rate table with the lowest supported rates */
1529 	minstrel_ht_update_stats(mp, mi, true);
1530 	minstrel_ht_update_rates(mp, mi);
1531 
1532 	return;
1533 
1534 use_legacy:
1535 	msp->is_ht = false;
1536 	memset(&msp->legacy, 0, sizeof(msp->legacy));
1537 	msp->legacy.r = msp->ratelist;
1538 	msp->legacy.sample_table = msp->sample_table;
1539 	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
1540 					   &msp->legacy);
1541 }
1542 
1543 static void
minstrel_ht_rate_init(void * priv,struct ieee80211_supported_band * sband,struct cfg80211_chan_def * chandef,struct ieee80211_sta * sta,void * priv_sta)1544 minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1545 		      struct cfg80211_chan_def *chandef,
1546                       struct ieee80211_sta *sta, void *priv_sta)
1547 {
1548 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1549 }
1550 
1551 static void
minstrel_ht_rate_update(void * priv,struct ieee80211_supported_band * sband,struct cfg80211_chan_def * chandef,struct ieee80211_sta * sta,void * priv_sta,u32 changed)1552 minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1553 			struct cfg80211_chan_def *chandef,
1554                         struct ieee80211_sta *sta, void *priv_sta,
1555                         u32 changed)
1556 {
1557 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1558 }
1559 
1560 static void *
minstrel_ht_alloc_sta(void * priv,struct ieee80211_sta * sta,gfp_t gfp)1561 minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1562 {
1563 	struct ieee80211_supported_band *sband;
1564 	struct minstrel_ht_sta_priv *msp;
1565 	struct minstrel_priv *mp = priv;
1566 	struct ieee80211_hw *hw = mp->hw;
1567 	int max_rates = 0;
1568 	int i;
1569 
1570 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
1571 		sband = hw->wiphy->bands[i];
1572 		if (sband && sband->n_bitrates > max_rates)
1573 			max_rates = sband->n_bitrates;
1574 	}
1575 
1576 	msp = kzalloc(sizeof(*msp), gfp);
1577 	if (!msp)
1578 		return NULL;
1579 
1580 	msp->ratelist = kcalloc(max_rates, sizeof(struct minstrel_rate), gfp);
1581 	if (!msp->ratelist)
1582 		goto error;
1583 
1584 	msp->sample_table = kmalloc_array(max_rates, SAMPLE_COLUMNS, gfp);
1585 	if (!msp->sample_table)
1586 		goto error1;
1587 
1588 	return msp;
1589 
1590 error1:
1591 	kfree(msp->ratelist);
1592 error:
1593 	kfree(msp);
1594 	return NULL;
1595 }
1596 
1597 static void
minstrel_ht_free_sta(void * priv,struct ieee80211_sta * sta,void * priv_sta)1598 minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1599 {
1600 	struct minstrel_ht_sta_priv *msp = priv_sta;
1601 
1602 	kfree(msp->sample_table);
1603 	kfree(msp->ratelist);
1604 	kfree(msp);
1605 }
1606 
1607 static void
minstrel_ht_init_cck_rates(struct minstrel_priv * mp)1608 minstrel_ht_init_cck_rates(struct minstrel_priv *mp)
1609 {
1610 	static const int bitrates[4] = { 10, 20, 55, 110 };
1611 	struct ieee80211_supported_band *sband;
1612 	u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1613 	int i, j;
1614 
1615 	sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ];
1616 	if (!sband)
1617 		return;
1618 
1619 	for (i = 0; i < sband->n_bitrates; i++) {
1620 		struct ieee80211_rate *rate = &sband->bitrates[i];
1621 
1622 		if (rate->flags & IEEE80211_RATE_ERP_G)
1623 			continue;
1624 
1625 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1626 			continue;
1627 
1628 		for (j = 0; j < ARRAY_SIZE(bitrates); j++) {
1629 			if (rate->bitrate != bitrates[j])
1630 				continue;
1631 
1632 			mp->cck_rates[j] = i;
1633 			break;
1634 		}
1635 	}
1636 }
1637 
1638 static void *
minstrel_ht_alloc(struct ieee80211_hw * hw)1639 minstrel_ht_alloc(struct ieee80211_hw *hw)
1640 {
1641 	struct minstrel_priv *mp;
1642 
1643 	mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC);
1644 	if (!mp)
1645 		return NULL;
1646 
1647 	mp->sample_switch = -1;
1648 
1649 	/* contention window settings
1650 	 * Just an approximation. Using the per-queue values would complicate
1651 	 * the calculations and is probably unnecessary */
1652 	mp->cw_min = 15;
1653 	mp->cw_max = 1023;
1654 
1655 	/* number of packets (in %) to use for sampling other rates
1656 	 * sample less often for non-mrr packets, because the overhead
1657 	 * is much higher than with mrr */
1658 	mp->lookaround_rate = 5;
1659 	mp->lookaround_rate_mrr = 10;
1660 
1661 	/* maximum time that the hw is allowed to stay in one MRR segment */
1662 	mp->segment_size = 6000;
1663 
1664 	if (hw->max_rate_tries > 0)
1665 		mp->max_retry = hw->max_rate_tries;
1666 	else
1667 		/* safe default, does not necessarily have to match hw properties */
1668 		mp->max_retry = 7;
1669 
1670 	if (hw->max_rates >= 4)
1671 		mp->has_mrr = true;
1672 
1673 	mp->hw = hw;
1674 	mp->update_interval = HZ / 10;
1675 	mp->new_avg = true;
1676 
1677 	minstrel_ht_init_cck_rates(mp);
1678 
1679 	return mp;
1680 }
1681 
1682 #ifdef CONFIG_MAC80211_DEBUGFS
minstrel_ht_add_debugfs(struct ieee80211_hw * hw,void * priv,struct dentry * debugfsdir)1683 static void minstrel_ht_add_debugfs(struct ieee80211_hw *hw, void *priv,
1684 				    struct dentry *debugfsdir)
1685 {
1686 	struct minstrel_priv *mp = priv;
1687 
1688 	mp->fixed_rate_idx = (u32) -1;
1689 	debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir,
1690 			   &mp->fixed_rate_idx);
1691 	debugfs_create_u32("sample_switch", S_IRUGO | S_IWUSR, debugfsdir,
1692 			   &mp->sample_switch);
1693 	debugfs_create_bool("new_avg", S_IRUGO | S_IWUSR, debugfsdir,
1694 			   &mp->new_avg);
1695 }
1696 #endif
1697 
1698 static void
minstrel_ht_free(void * priv)1699 minstrel_ht_free(void *priv)
1700 {
1701 	kfree(priv);
1702 }
1703 
minstrel_ht_get_expected_throughput(void * priv_sta)1704 static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1705 {
1706 	struct minstrel_ht_sta_priv *msp = priv_sta;
1707 	struct minstrel_ht_sta *mi = &msp->ht;
1708 	int i, j, prob, tp_avg;
1709 
1710 	if (!msp->is_ht)
1711 		return mac80211_minstrel.get_expected_throughput(priv_sta);
1712 
1713 	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
1714 	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1715 	prob = mi->groups[i].rates[j].prob_avg;
1716 
1717 	/* convert tp_avg from pkt per second in kbps */
1718 	tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
1719 	tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1720 
1721 	return tp_avg;
1722 }
1723 
1724 static const struct rate_control_ops mac80211_minstrel_ht = {
1725 	.name = "minstrel_ht",
1726 	.tx_status_ext = minstrel_ht_tx_status,
1727 	.get_rate = minstrel_ht_get_rate,
1728 	.rate_init = minstrel_ht_rate_init,
1729 	.rate_update = minstrel_ht_rate_update,
1730 	.alloc_sta = minstrel_ht_alloc_sta,
1731 	.free_sta = minstrel_ht_free_sta,
1732 	.alloc = minstrel_ht_alloc,
1733 	.free = minstrel_ht_free,
1734 #ifdef CONFIG_MAC80211_DEBUGFS
1735 	.add_debugfs = minstrel_ht_add_debugfs,
1736 	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
1737 #endif
1738 	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1739 };
1740 
1741 
init_sample_table(void)1742 static void __init init_sample_table(void)
1743 {
1744 	int col, i, new_idx;
1745 	u8 rnd[MCS_GROUP_RATES];
1746 
1747 	memset(sample_table, 0xff, sizeof(sample_table));
1748 	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1749 		prandom_bytes(rnd, sizeof(rnd));
1750 		for (i = 0; i < MCS_GROUP_RATES; i++) {
1751 			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
1752 			while (sample_table[col][new_idx] != 0xff)
1753 				new_idx = (new_idx + 1) % MCS_GROUP_RATES;
1754 
1755 			sample_table[col][new_idx] = i;
1756 		}
1757 	}
1758 }
1759 
1760 int __init
rc80211_minstrel_init(void)1761 rc80211_minstrel_init(void)
1762 {
1763 	init_sample_table();
1764 	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
1765 }
1766 
1767 void
rc80211_minstrel_exit(void)1768 rc80211_minstrel_exit(void)
1769 {
1770 	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
1771 }
1772