1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI sockets. */
26 #include <linux/compat.h>
27 #include <linux/export.h>
28 #include <linux/utsname.h>
29 #include <linux/sched.h>
30 #include <asm/unaligned.h>
31
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 #include <net/bluetooth/hci_mon.h>
35 #include <net/bluetooth/mgmt.h>
36
37 #include "mgmt_util.h"
38
39 static LIST_HEAD(mgmt_chan_list);
40 static DEFINE_MUTEX(mgmt_chan_list_lock);
41
42 static DEFINE_IDA(sock_cookie_ida);
43
44 static atomic_t monitor_promisc = ATOMIC_INIT(0);
45
46 /* ----- HCI socket interface ----- */
47
48 /* Socket info */
49 #define hci_pi(sk) ((struct hci_pinfo *) sk)
50
51 struct hci_pinfo {
52 struct bt_sock bt;
53 struct hci_dev *hdev;
54 struct hci_filter filter;
55 __u8 cmsg_mask;
56 unsigned short channel;
57 unsigned long flags;
58 __u32 cookie;
59 char comm[TASK_COMM_LEN];
60 };
61
hci_sock_set_flag(struct sock * sk,int nr)62 void hci_sock_set_flag(struct sock *sk, int nr)
63 {
64 set_bit(nr, &hci_pi(sk)->flags);
65 }
66
hci_sock_clear_flag(struct sock * sk,int nr)67 void hci_sock_clear_flag(struct sock *sk, int nr)
68 {
69 clear_bit(nr, &hci_pi(sk)->flags);
70 }
71
hci_sock_test_flag(struct sock * sk,int nr)72 int hci_sock_test_flag(struct sock *sk, int nr)
73 {
74 return test_bit(nr, &hci_pi(sk)->flags);
75 }
76
hci_sock_get_channel(struct sock * sk)77 unsigned short hci_sock_get_channel(struct sock *sk)
78 {
79 return hci_pi(sk)->channel;
80 }
81
hci_sock_get_cookie(struct sock * sk)82 u32 hci_sock_get_cookie(struct sock *sk)
83 {
84 return hci_pi(sk)->cookie;
85 }
86
hci_sock_gen_cookie(struct sock * sk)87 static bool hci_sock_gen_cookie(struct sock *sk)
88 {
89 int id = hci_pi(sk)->cookie;
90
91 if (!id) {
92 id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL);
93 if (id < 0)
94 id = 0xffffffff;
95
96 hci_pi(sk)->cookie = id;
97 get_task_comm(hci_pi(sk)->comm, current);
98 return true;
99 }
100
101 return false;
102 }
103
hci_sock_free_cookie(struct sock * sk)104 static void hci_sock_free_cookie(struct sock *sk)
105 {
106 int id = hci_pi(sk)->cookie;
107
108 if (id) {
109 hci_pi(sk)->cookie = 0xffffffff;
110 ida_simple_remove(&sock_cookie_ida, id);
111 }
112 }
113
hci_test_bit(int nr,const void * addr)114 static inline int hci_test_bit(int nr, const void *addr)
115 {
116 return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31));
117 }
118
119 /* Security filter */
120 #define HCI_SFLT_MAX_OGF 5
121
122 struct hci_sec_filter {
123 __u32 type_mask;
124 __u32 event_mask[2];
125 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
126 };
127
128 static const struct hci_sec_filter hci_sec_filter = {
129 /* Packet types */
130 0x10,
131 /* Events */
132 { 0x1000d9fe, 0x0000b00c },
133 /* Commands */
134 {
135 { 0x0 },
136 /* OGF_LINK_CTL */
137 { 0xbe000006, 0x00000001, 0x00000000, 0x00 },
138 /* OGF_LINK_POLICY */
139 { 0x00005200, 0x00000000, 0x00000000, 0x00 },
140 /* OGF_HOST_CTL */
141 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 },
142 /* OGF_INFO_PARAM */
143 { 0x000002be, 0x00000000, 0x00000000, 0x00 },
144 /* OGF_STATUS_PARAM */
145 { 0x000000ea, 0x00000000, 0x00000000, 0x00 }
146 }
147 };
148
149 static struct bt_sock_list hci_sk_list = {
150 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock)
151 };
152
is_filtered_packet(struct sock * sk,struct sk_buff * skb)153 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb)
154 {
155 struct hci_filter *flt;
156 int flt_type, flt_event;
157
158 /* Apply filter */
159 flt = &hci_pi(sk)->filter;
160
161 flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS;
162
163 if (!test_bit(flt_type, &flt->type_mask))
164 return true;
165
166 /* Extra filter for event packets only */
167 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT)
168 return false;
169
170 flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS);
171
172 if (!hci_test_bit(flt_event, &flt->event_mask))
173 return true;
174
175 /* Check filter only when opcode is set */
176 if (!flt->opcode)
177 return false;
178
179 if (flt_event == HCI_EV_CMD_COMPLETE &&
180 flt->opcode != get_unaligned((__le16 *)(skb->data + 3)))
181 return true;
182
183 if (flt_event == HCI_EV_CMD_STATUS &&
184 flt->opcode != get_unaligned((__le16 *)(skb->data + 4)))
185 return true;
186
187 return false;
188 }
189
190 /* Send frame to RAW socket */
hci_send_to_sock(struct hci_dev * hdev,struct sk_buff * skb)191 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb)
192 {
193 struct sock *sk;
194 struct sk_buff *skb_copy = NULL;
195
196 BT_DBG("hdev %p len %d", hdev, skb->len);
197
198 read_lock(&hci_sk_list.lock);
199
200 sk_for_each(sk, &hci_sk_list.head) {
201 struct sk_buff *nskb;
202
203 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev)
204 continue;
205
206 /* Don't send frame to the socket it came from */
207 if (skb->sk == sk)
208 continue;
209
210 if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) {
211 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
212 hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
213 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
214 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
215 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
216 continue;
217 if (is_filtered_packet(sk, skb))
218 continue;
219 } else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
220 if (!bt_cb(skb)->incoming)
221 continue;
222 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
223 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
224 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
225 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
226 continue;
227 } else {
228 /* Don't send frame to other channel types */
229 continue;
230 }
231
232 if (!skb_copy) {
233 /* Create a private copy with headroom */
234 skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true);
235 if (!skb_copy)
236 continue;
237
238 /* Put type byte before the data */
239 memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1);
240 }
241
242 nskb = skb_clone(skb_copy, GFP_ATOMIC);
243 if (!nskb)
244 continue;
245
246 if (sock_queue_rcv_skb(sk, nskb))
247 kfree_skb(nskb);
248 }
249
250 read_unlock(&hci_sk_list.lock);
251
252 kfree_skb(skb_copy);
253 }
254
255 /* Send frame to sockets with specific channel */
__hci_send_to_channel(unsigned short channel,struct sk_buff * skb,int flag,struct sock * skip_sk)256 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
257 int flag, struct sock *skip_sk)
258 {
259 struct sock *sk;
260
261 BT_DBG("channel %u len %d", channel, skb->len);
262
263 sk_for_each(sk, &hci_sk_list.head) {
264 struct sk_buff *nskb;
265
266 /* Ignore socket without the flag set */
267 if (!hci_sock_test_flag(sk, flag))
268 continue;
269
270 /* Skip the original socket */
271 if (sk == skip_sk)
272 continue;
273
274 if (sk->sk_state != BT_BOUND)
275 continue;
276
277 if (hci_pi(sk)->channel != channel)
278 continue;
279
280 nskb = skb_clone(skb, GFP_ATOMIC);
281 if (!nskb)
282 continue;
283
284 if (sock_queue_rcv_skb(sk, nskb))
285 kfree_skb(nskb);
286 }
287
288 }
289
hci_send_to_channel(unsigned short channel,struct sk_buff * skb,int flag,struct sock * skip_sk)290 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
291 int flag, struct sock *skip_sk)
292 {
293 read_lock(&hci_sk_list.lock);
294 __hci_send_to_channel(channel, skb, flag, skip_sk);
295 read_unlock(&hci_sk_list.lock);
296 }
297
298 /* Send frame to monitor socket */
hci_send_to_monitor(struct hci_dev * hdev,struct sk_buff * skb)299 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb)
300 {
301 struct sk_buff *skb_copy = NULL;
302 struct hci_mon_hdr *hdr;
303 __le16 opcode;
304
305 if (!atomic_read(&monitor_promisc))
306 return;
307
308 BT_DBG("hdev %p len %d", hdev, skb->len);
309
310 switch (hci_skb_pkt_type(skb)) {
311 case HCI_COMMAND_PKT:
312 opcode = cpu_to_le16(HCI_MON_COMMAND_PKT);
313 break;
314 case HCI_EVENT_PKT:
315 opcode = cpu_to_le16(HCI_MON_EVENT_PKT);
316 break;
317 case HCI_ACLDATA_PKT:
318 if (bt_cb(skb)->incoming)
319 opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT);
320 else
321 opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT);
322 break;
323 case HCI_SCODATA_PKT:
324 if (bt_cb(skb)->incoming)
325 opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT);
326 else
327 opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT);
328 break;
329 case HCI_ISODATA_PKT:
330 if (bt_cb(skb)->incoming)
331 opcode = cpu_to_le16(HCI_MON_ISO_RX_PKT);
332 else
333 opcode = cpu_to_le16(HCI_MON_ISO_TX_PKT);
334 break;
335 case HCI_DIAG_PKT:
336 opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG);
337 break;
338 default:
339 return;
340 }
341
342 /* Create a private copy with headroom */
343 skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true);
344 if (!skb_copy)
345 return;
346
347 /* Put header before the data */
348 hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE);
349 hdr->opcode = opcode;
350 hdr->index = cpu_to_le16(hdev->id);
351 hdr->len = cpu_to_le16(skb->len);
352
353 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy,
354 HCI_SOCK_TRUSTED, NULL);
355 kfree_skb(skb_copy);
356 }
357
hci_send_monitor_ctrl_event(struct hci_dev * hdev,u16 event,void * data,u16 data_len,ktime_t tstamp,int flag,struct sock * skip_sk)358 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
359 void *data, u16 data_len, ktime_t tstamp,
360 int flag, struct sock *skip_sk)
361 {
362 struct sock *sk;
363 __le16 index;
364
365 if (hdev)
366 index = cpu_to_le16(hdev->id);
367 else
368 index = cpu_to_le16(MGMT_INDEX_NONE);
369
370 read_lock(&hci_sk_list.lock);
371
372 sk_for_each(sk, &hci_sk_list.head) {
373 struct hci_mon_hdr *hdr;
374 struct sk_buff *skb;
375
376 if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL)
377 continue;
378
379 /* Ignore socket without the flag set */
380 if (!hci_sock_test_flag(sk, flag))
381 continue;
382
383 /* Skip the original socket */
384 if (sk == skip_sk)
385 continue;
386
387 skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC);
388 if (!skb)
389 continue;
390
391 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
392 put_unaligned_le16(event, skb_put(skb, 2));
393
394 if (data)
395 skb_put_data(skb, data, data_len);
396
397 skb->tstamp = tstamp;
398
399 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
400 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT);
401 hdr->index = index;
402 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
403
404 __hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
405 HCI_SOCK_TRUSTED, NULL);
406 kfree_skb(skb);
407 }
408
409 read_unlock(&hci_sk_list.lock);
410 }
411
create_monitor_event(struct hci_dev * hdev,int event)412 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event)
413 {
414 struct hci_mon_hdr *hdr;
415 struct hci_mon_new_index *ni;
416 struct hci_mon_index_info *ii;
417 struct sk_buff *skb;
418 __le16 opcode;
419
420 switch (event) {
421 case HCI_DEV_REG:
422 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC);
423 if (!skb)
424 return NULL;
425
426 ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE);
427 ni->type = hdev->dev_type;
428 ni->bus = hdev->bus;
429 bacpy(&ni->bdaddr, &hdev->bdaddr);
430 memcpy(ni->name, hdev->name, 8);
431
432 opcode = cpu_to_le16(HCI_MON_NEW_INDEX);
433 break;
434
435 case HCI_DEV_UNREG:
436 skb = bt_skb_alloc(0, GFP_ATOMIC);
437 if (!skb)
438 return NULL;
439
440 opcode = cpu_to_le16(HCI_MON_DEL_INDEX);
441 break;
442
443 case HCI_DEV_SETUP:
444 if (hdev->manufacturer == 0xffff)
445 return NULL;
446 fallthrough;
447
448 case HCI_DEV_UP:
449 skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC);
450 if (!skb)
451 return NULL;
452
453 ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE);
454 bacpy(&ii->bdaddr, &hdev->bdaddr);
455 ii->manufacturer = cpu_to_le16(hdev->manufacturer);
456
457 opcode = cpu_to_le16(HCI_MON_INDEX_INFO);
458 break;
459
460 case HCI_DEV_OPEN:
461 skb = bt_skb_alloc(0, GFP_ATOMIC);
462 if (!skb)
463 return NULL;
464
465 opcode = cpu_to_le16(HCI_MON_OPEN_INDEX);
466 break;
467
468 case HCI_DEV_CLOSE:
469 skb = bt_skb_alloc(0, GFP_ATOMIC);
470 if (!skb)
471 return NULL;
472
473 opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX);
474 break;
475
476 default:
477 return NULL;
478 }
479
480 __net_timestamp(skb);
481
482 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
483 hdr->opcode = opcode;
484 hdr->index = cpu_to_le16(hdev->id);
485 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
486
487 return skb;
488 }
489
create_monitor_ctrl_open(struct sock * sk)490 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk)
491 {
492 struct hci_mon_hdr *hdr;
493 struct sk_buff *skb;
494 u16 format;
495 u8 ver[3];
496 u32 flags;
497
498 /* No message needed when cookie is not present */
499 if (!hci_pi(sk)->cookie)
500 return NULL;
501
502 switch (hci_pi(sk)->channel) {
503 case HCI_CHANNEL_RAW:
504 format = 0x0000;
505 ver[0] = BT_SUBSYS_VERSION;
506 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
507 break;
508 case HCI_CHANNEL_USER:
509 format = 0x0001;
510 ver[0] = BT_SUBSYS_VERSION;
511 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
512 break;
513 case HCI_CHANNEL_CONTROL:
514 format = 0x0002;
515 mgmt_fill_version_info(ver);
516 break;
517 default:
518 /* No message for unsupported format */
519 return NULL;
520 }
521
522 skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC);
523 if (!skb)
524 return NULL;
525
526 flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0;
527
528 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
529 put_unaligned_le16(format, skb_put(skb, 2));
530 skb_put_data(skb, ver, sizeof(ver));
531 put_unaligned_le32(flags, skb_put(skb, 4));
532 skb_put_u8(skb, TASK_COMM_LEN);
533 skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN);
534
535 __net_timestamp(skb);
536
537 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
538 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN);
539 if (hci_pi(sk)->hdev)
540 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
541 else
542 hdr->index = cpu_to_le16(HCI_DEV_NONE);
543 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
544
545 return skb;
546 }
547
create_monitor_ctrl_close(struct sock * sk)548 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk)
549 {
550 struct hci_mon_hdr *hdr;
551 struct sk_buff *skb;
552
553 /* No message needed when cookie is not present */
554 if (!hci_pi(sk)->cookie)
555 return NULL;
556
557 switch (hci_pi(sk)->channel) {
558 case HCI_CHANNEL_RAW:
559 case HCI_CHANNEL_USER:
560 case HCI_CHANNEL_CONTROL:
561 break;
562 default:
563 /* No message for unsupported format */
564 return NULL;
565 }
566
567 skb = bt_skb_alloc(4, GFP_ATOMIC);
568 if (!skb)
569 return NULL;
570
571 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
572
573 __net_timestamp(skb);
574
575 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
576 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE);
577 if (hci_pi(sk)->hdev)
578 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
579 else
580 hdr->index = cpu_to_le16(HCI_DEV_NONE);
581 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
582
583 return skb;
584 }
585
create_monitor_ctrl_command(struct sock * sk,u16 index,u16 opcode,u16 len,const void * buf)586 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index,
587 u16 opcode, u16 len,
588 const void *buf)
589 {
590 struct hci_mon_hdr *hdr;
591 struct sk_buff *skb;
592
593 skb = bt_skb_alloc(6 + len, GFP_ATOMIC);
594 if (!skb)
595 return NULL;
596
597 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
598 put_unaligned_le16(opcode, skb_put(skb, 2));
599
600 if (buf)
601 skb_put_data(skb, buf, len);
602
603 __net_timestamp(skb);
604
605 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
606 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND);
607 hdr->index = cpu_to_le16(index);
608 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
609
610 return skb;
611 }
612
613 static void __printf(2, 3)
send_monitor_note(struct sock * sk,const char * fmt,...)614 send_monitor_note(struct sock *sk, const char *fmt, ...)
615 {
616 size_t len;
617 struct hci_mon_hdr *hdr;
618 struct sk_buff *skb;
619 va_list args;
620
621 va_start(args, fmt);
622 len = vsnprintf(NULL, 0, fmt, args);
623 va_end(args);
624
625 skb = bt_skb_alloc(len + 1, GFP_ATOMIC);
626 if (!skb)
627 return;
628
629 va_start(args, fmt);
630 vsprintf(skb_put(skb, len), fmt, args);
631 *(u8 *)skb_put(skb, 1) = 0;
632 va_end(args);
633
634 __net_timestamp(skb);
635
636 hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE);
637 hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE);
638 hdr->index = cpu_to_le16(HCI_DEV_NONE);
639 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
640
641 if (sock_queue_rcv_skb(sk, skb))
642 kfree_skb(skb);
643 }
644
send_monitor_replay(struct sock * sk)645 static void send_monitor_replay(struct sock *sk)
646 {
647 struct hci_dev *hdev;
648
649 read_lock(&hci_dev_list_lock);
650
651 list_for_each_entry(hdev, &hci_dev_list, list) {
652 struct sk_buff *skb;
653
654 skb = create_monitor_event(hdev, HCI_DEV_REG);
655 if (!skb)
656 continue;
657
658 if (sock_queue_rcv_skb(sk, skb))
659 kfree_skb(skb);
660
661 if (!test_bit(HCI_RUNNING, &hdev->flags))
662 continue;
663
664 skb = create_monitor_event(hdev, HCI_DEV_OPEN);
665 if (!skb)
666 continue;
667
668 if (sock_queue_rcv_skb(sk, skb))
669 kfree_skb(skb);
670
671 if (test_bit(HCI_UP, &hdev->flags))
672 skb = create_monitor_event(hdev, HCI_DEV_UP);
673 else if (hci_dev_test_flag(hdev, HCI_SETUP))
674 skb = create_monitor_event(hdev, HCI_DEV_SETUP);
675 else
676 skb = NULL;
677
678 if (skb) {
679 if (sock_queue_rcv_skb(sk, skb))
680 kfree_skb(skb);
681 }
682 }
683
684 read_unlock(&hci_dev_list_lock);
685 }
686
send_monitor_control_replay(struct sock * mon_sk)687 static void send_monitor_control_replay(struct sock *mon_sk)
688 {
689 struct sock *sk;
690
691 read_lock(&hci_sk_list.lock);
692
693 sk_for_each(sk, &hci_sk_list.head) {
694 struct sk_buff *skb;
695
696 skb = create_monitor_ctrl_open(sk);
697 if (!skb)
698 continue;
699
700 if (sock_queue_rcv_skb(mon_sk, skb))
701 kfree_skb(skb);
702 }
703
704 read_unlock(&hci_sk_list.lock);
705 }
706
707 /* Generate internal stack event */
hci_si_event(struct hci_dev * hdev,int type,int dlen,void * data)708 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data)
709 {
710 struct hci_event_hdr *hdr;
711 struct hci_ev_stack_internal *ev;
712 struct sk_buff *skb;
713
714 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC);
715 if (!skb)
716 return;
717
718 hdr = skb_put(skb, HCI_EVENT_HDR_SIZE);
719 hdr->evt = HCI_EV_STACK_INTERNAL;
720 hdr->plen = sizeof(*ev) + dlen;
721
722 ev = skb_put(skb, sizeof(*ev) + dlen);
723 ev->type = type;
724 memcpy(ev->data, data, dlen);
725
726 bt_cb(skb)->incoming = 1;
727 __net_timestamp(skb);
728
729 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
730 hci_send_to_sock(hdev, skb);
731 kfree_skb(skb);
732 }
733
hci_sock_dev_event(struct hci_dev * hdev,int event)734 void hci_sock_dev_event(struct hci_dev *hdev, int event)
735 {
736 BT_DBG("hdev %s event %d", hdev->name, event);
737
738 if (atomic_read(&monitor_promisc)) {
739 struct sk_buff *skb;
740
741 /* Send event to monitor */
742 skb = create_monitor_event(hdev, event);
743 if (skb) {
744 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
745 HCI_SOCK_TRUSTED, NULL);
746 kfree_skb(skb);
747 }
748 }
749
750 if (event <= HCI_DEV_DOWN) {
751 struct hci_ev_si_device ev;
752
753 /* Send event to sockets */
754 ev.event = event;
755 ev.dev_id = hdev->id;
756 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev);
757 }
758
759 if (event == HCI_DEV_UNREG) {
760 struct sock *sk;
761
762 /* Detach sockets from device */
763 read_lock(&hci_sk_list.lock);
764 sk_for_each(sk, &hci_sk_list.head) {
765 bh_lock_sock_nested(sk);
766 if (hci_pi(sk)->hdev == hdev) {
767 hci_pi(sk)->hdev = NULL;
768 sk->sk_err = EPIPE;
769 sk->sk_state = BT_OPEN;
770 sk->sk_state_change(sk);
771
772 hci_dev_put(hdev);
773 }
774 bh_unlock_sock(sk);
775 }
776 read_unlock(&hci_sk_list.lock);
777 }
778 }
779
__hci_mgmt_chan_find(unsigned short channel)780 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel)
781 {
782 struct hci_mgmt_chan *c;
783
784 list_for_each_entry(c, &mgmt_chan_list, list) {
785 if (c->channel == channel)
786 return c;
787 }
788
789 return NULL;
790 }
791
hci_mgmt_chan_find(unsigned short channel)792 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel)
793 {
794 struct hci_mgmt_chan *c;
795
796 mutex_lock(&mgmt_chan_list_lock);
797 c = __hci_mgmt_chan_find(channel);
798 mutex_unlock(&mgmt_chan_list_lock);
799
800 return c;
801 }
802
hci_mgmt_chan_register(struct hci_mgmt_chan * c)803 int hci_mgmt_chan_register(struct hci_mgmt_chan *c)
804 {
805 if (c->channel < HCI_CHANNEL_CONTROL)
806 return -EINVAL;
807
808 mutex_lock(&mgmt_chan_list_lock);
809 if (__hci_mgmt_chan_find(c->channel)) {
810 mutex_unlock(&mgmt_chan_list_lock);
811 return -EALREADY;
812 }
813
814 list_add_tail(&c->list, &mgmt_chan_list);
815
816 mutex_unlock(&mgmt_chan_list_lock);
817
818 return 0;
819 }
820 EXPORT_SYMBOL(hci_mgmt_chan_register);
821
hci_mgmt_chan_unregister(struct hci_mgmt_chan * c)822 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c)
823 {
824 mutex_lock(&mgmt_chan_list_lock);
825 list_del(&c->list);
826 mutex_unlock(&mgmt_chan_list_lock);
827 }
828 EXPORT_SYMBOL(hci_mgmt_chan_unregister);
829
hci_sock_release(struct socket * sock)830 static int hci_sock_release(struct socket *sock)
831 {
832 struct sock *sk = sock->sk;
833 struct hci_dev *hdev;
834 struct sk_buff *skb;
835
836 BT_DBG("sock %p sk %p", sock, sk);
837
838 if (!sk)
839 return 0;
840
841 lock_sock(sk);
842
843 switch (hci_pi(sk)->channel) {
844 case HCI_CHANNEL_MONITOR:
845 atomic_dec(&monitor_promisc);
846 break;
847 case HCI_CHANNEL_RAW:
848 case HCI_CHANNEL_USER:
849 case HCI_CHANNEL_CONTROL:
850 /* Send event to monitor */
851 skb = create_monitor_ctrl_close(sk);
852 if (skb) {
853 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
854 HCI_SOCK_TRUSTED, NULL);
855 kfree_skb(skb);
856 }
857
858 hci_sock_free_cookie(sk);
859 break;
860 }
861
862 bt_sock_unlink(&hci_sk_list, sk);
863
864 hdev = hci_pi(sk)->hdev;
865 if (hdev) {
866 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
867 /* When releasing a user channel exclusive access,
868 * call hci_dev_do_close directly instead of calling
869 * hci_dev_close to ensure the exclusive access will
870 * be released and the controller brought back down.
871 *
872 * The checking of HCI_AUTO_OFF is not needed in this
873 * case since it will have been cleared already when
874 * opening the user channel.
875 */
876 hci_dev_do_close(hdev);
877 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
878 mgmt_index_added(hdev);
879 }
880
881 atomic_dec(&hdev->promisc);
882 hci_dev_put(hdev);
883 }
884
885 sock_orphan(sk);
886
887 skb_queue_purge(&sk->sk_receive_queue);
888 skb_queue_purge(&sk->sk_write_queue);
889
890 release_sock(sk);
891 sock_put(sk);
892 return 0;
893 }
894
hci_sock_blacklist_add(struct hci_dev * hdev,void __user * arg)895 static int hci_sock_blacklist_add(struct hci_dev *hdev, void __user *arg)
896 {
897 bdaddr_t bdaddr;
898 int err;
899
900 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
901 return -EFAULT;
902
903 hci_dev_lock(hdev);
904
905 err = hci_bdaddr_list_add(&hdev->blacklist, &bdaddr, BDADDR_BREDR);
906
907 hci_dev_unlock(hdev);
908
909 return err;
910 }
911
hci_sock_blacklist_del(struct hci_dev * hdev,void __user * arg)912 static int hci_sock_blacklist_del(struct hci_dev *hdev, void __user *arg)
913 {
914 bdaddr_t bdaddr;
915 int err;
916
917 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
918 return -EFAULT;
919
920 hci_dev_lock(hdev);
921
922 err = hci_bdaddr_list_del(&hdev->blacklist, &bdaddr, BDADDR_BREDR);
923
924 hci_dev_unlock(hdev);
925
926 return err;
927 }
928
929 /* Ioctls that require bound socket */
hci_sock_bound_ioctl(struct sock * sk,unsigned int cmd,unsigned long arg)930 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd,
931 unsigned long arg)
932 {
933 struct hci_dev *hdev = hci_pi(sk)->hdev;
934
935 if (!hdev)
936 return -EBADFD;
937
938 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
939 return -EBUSY;
940
941 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
942 return -EOPNOTSUPP;
943
944 if (hdev->dev_type != HCI_PRIMARY)
945 return -EOPNOTSUPP;
946
947 switch (cmd) {
948 case HCISETRAW:
949 if (!capable(CAP_NET_ADMIN))
950 return -EPERM;
951 return -EOPNOTSUPP;
952
953 case HCIGETCONNINFO:
954 return hci_get_conn_info(hdev, (void __user *)arg);
955
956 case HCIGETAUTHINFO:
957 return hci_get_auth_info(hdev, (void __user *)arg);
958
959 case HCIBLOCKADDR:
960 if (!capable(CAP_NET_ADMIN))
961 return -EPERM;
962 return hci_sock_blacklist_add(hdev, (void __user *)arg);
963
964 case HCIUNBLOCKADDR:
965 if (!capable(CAP_NET_ADMIN))
966 return -EPERM;
967 return hci_sock_blacklist_del(hdev, (void __user *)arg);
968 }
969
970 return -ENOIOCTLCMD;
971 }
972
hci_sock_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)973 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd,
974 unsigned long arg)
975 {
976 void __user *argp = (void __user *)arg;
977 struct sock *sk = sock->sk;
978 int err;
979
980 BT_DBG("cmd %x arg %lx", cmd, arg);
981
982 lock_sock(sk);
983
984 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
985 err = -EBADFD;
986 goto done;
987 }
988
989 /* When calling an ioctl on an unbound raw socket, then ensure
990 * that the monitor gets informed. Ensure that the resulting event
991 * is only send once by checking if the cookie exists or not. The
992 * socket cookie will be only ever generated once for the lifetime
993 * of a given socket.
994 */
995 if (hci_sock_gen_cookie(sk)) {
996 struct sk_buff *skb;
997
998 if (capable(CAP_NET_ADMIN))
999 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1000
1001 /* Send event to monitor */
1002 skb = create_monitor_ctrl_open(sk);
1003 if (skb) {
1004 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1005 HCI_SOCK_TRUSTED, NULL);
1006 kfree_skb(skb);
1007 }
1008 }
1009
1010 release_sock(sk);
1011
1012 switch (cmd) {
1013 case HCIGETDEVLIST:
1014 return hci_get_dev_list(argp);
1015
1016 case HCIGETDEVINFO:
1017 return hci_get_dev_info(argp);
1018
1019 case HCIGETCONNLIST:
1020 return hci_get_conn_list(argp);
1021
1022 case HCIDEVUP:
1023 if (!capable(CAP_NET_ADMIN))
1024 return -EPERM;
1025 return hci_dev_open(arg);
1026
1027 case HCIDEVDOWN:
1028 if (!capable(CAP_NET_ADMIN))
1029 return -EPERM;
1030 return hci_dev_close(arg);
1031
1032 case HCIDEVRESET:
1033 if (!capable(CAP_NET_ADMIN))
1034 return -EPERM;
1035 return hci_dev_reset(arg);
1036
1037 case HCIDEVRESTAT:
1038 if (!capable(CAP_NET_ADMIN))
1039 return -EPERM;
1040 return hci_dev_reset_stat(arg);
1041
1042 case HCISETSCAN:
1043 case HCISETAUTH:
1044 case HCISETENCRYPT:
1045 case HCISETPTYPE:
1046 case HCISETLINKPOL:
1047 case HCISETLINKMODE:
1048 case HCISETACLMTU:
1049 case HCISETSCOMTU:
1050 if (!capable(CAP_NET_ADMIN))
1051 return -EPERM;
1052 return hci_dev_cmd(cmd, argp);
1053
1054 case HCIINQUIRY:
1055 return hci_inquiry(argp);
1056 }
1057
1058 lock_sock(sk);
1059
1060 err = hci_sock_bound_ioctl(sk, cmd, arg);
1061
1062 done:
1063 release_sock(sk);
1064 return err;
1065 }
1066
1067 #ifdef CONFIG_COMPAT
hci_sock_compat_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1068 static int hci_sock_compat_ioctl(struct socket *sock, unsigned int cmd,
1069 unsigned long arg)
1070 {
1071 switch (cmd) {
1072 case HCIDEVUP:
1073 case HCIDEVDOWN:
1074 case HCIDEVRESET:
1075 case HCIDEVRESTAT:
1076 return hci_sock_ioctl(sock, cmd, arg);
1077 }
1078
1079 return hci_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
1080 }
1081 #endif
1082
hci_sock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)1083 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr,
1084 int addr_len)
1085 {
1086 struct sockaddr_hci haddr;
1087 struct sock *sk = sock->sk;
1088 struct hci_dev *hdev = NULL;
1089 struct sk_buff *skb;
1090 int len, err = 0;
1091
1092 BT_DBG("sock %p sk %p", sock, sk);
1093
1094 if (!addr)
1095 return -EINVAL;
1096
1097 memset(&haddr, 0, sizeof(haddr));
1098 len = min_t(unsigned int, sizeof(haddr), addr_len);
1099 memcpy(&haddr, addr, len);
1100
1101 if (haddr.hci_family != AF_BLUETOOTH)
1102 return -EINVAL;
1103
1104 lock_sock(sk);
1105
1106 if (sk->sk_state == BT_BOUND) {
1107 err = -EALREADY;
1108 goto done;
1109 }
1110
1111 switch (haddr.hci_channel) {
1112 case HCI_CHANNEL_RAW:
1113 if (hci_pi(sk)->hdev) {
1114 err = -EALREADY;
1115 goto done;
1116 }
1117
1118 if (haddr.hci_dev != HCI_DEV_NONE) {
1119 hdev = hci_dev_get(haddr.hci_dev);
1120 if (!hdev) {
1121 err = -ENODEV;
1122 goto done;
1123 }
1124
1125 atomic_inc(&hdev->promisc);
1126 }
1127
1128 hci_pi(sk)->channel = haddr.hci_channel;
1129
1130 if (!hci_sock_gen_cookie(sk)) {
1131 /* In the case when a cookie has already been assigned,
1132 * then there has been already an ioctl issued against
1133 * an unbound socket and with that triggerd an open
1134 * notification. Send a close notification first to
1135 * allow the state transition to bounded.
1136 */
1137 skb = create_monitor_ctrl_close(sk);
1138 if (skb) {
1139 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1140 HCI_SOCK_TRUSTED, NULL);
1141 kfree_skb(skb);
1142 }
1143 }
1144
1145 if (capable(CAP_NET_ADMIN))
1146 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1147
1148 hci_pi(sk)->hdev = hdev;
1149
1150 /* Send event to monitor */
1151 skb = create_monitor_ctrl_open(sk);
1152 if (skb) {
1153 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1154 HCI_SOCK_TRUSTED, NULL);
1155 kfree_skb(skb);
1156 }
1157 break;
1158
1159 case HCI_CHANNEL_USER:
1160 if (hci_pi(sk)->hdev) {
1161 err = -EALREADY;
1162 goto done;
1163 }
1164
1165 if (haddr.hci_dev == HCI_DEV_NONE) {
1166 err = -EINVAL;
1167 goto done;
1168 }
1169
1170 if (!capable(CAP_NET_ADMIN)) {
1171 err = -EPERM;
1172 goto done;
1173 }
1174
1175 hdev = hci_dev_get(haddr.hci_dev);
1176 if (!hdev) {
1177 err = -ENODEV;
1178 goto done;
1179 }
1180
1181 if (test_bit(HCI_INIT, &hdev->flags) ||
1182 hci_dev_test_flag(hdev, HCI_SETUP) ||
1183 hci_dev_test_flag(hdev, HCI_CONFIG) ||
1184 (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
1185 test_bit(HCI_UP, &hdev->flags))) {
1186 err = -EBUSY;
1187 hci_dev_put(hdev);
1188 goto done;
1189 }
1190
1191 if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) {
1192 err = -EUSERS;
1193 hci_dev_put(hdev);
1194 goto done;
1195 }
1196
1197 mgmt_index_removed(hdev);
1198
1199 err = hci_dev_open(hdev->id);
1200 if (err) {
1201 if (err == -EALREADY) {
1202 /* In case the transport is already up and
1203 * running, clear the error here.
1204 *
1205 * This can happen when opening a user
1206 * channel and HCI_AUTO_OFF grace period
1207 * is still active.
1208 */
1209 err = 0;
1210 } else {
1211 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
1212 mgmt_index_added(hdev);
1213 hci_dev_put(hdev);
1214 goto done;
1215 }
1216 }
1217
1218 hci_pi(sk)->channel = haddr.hci_channel;
1219
1220 if (!hci_sock_gen_cookie(sk)) {
1221 /* In the case when a cookie has already been assigned,
1222 * this socket will transition from a raw socket into
1223 * a user channel socket. For a clean transition, send
1224 * the close notification first.
1225 */
1226 skb = create_monitor_ctrl_close(sk);
1227 if (skb) {
1228 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1229 HCI_SOCK_TRUSTED, NULL);
1230 kfree_skb(skb);
1231 }
1232 }
1233
1234 /* The user channel is restricted to CAP_NET_ADMIN
1235 * capabilities and with that implicitly trusted.
1236 */
1237 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1238
1239 hci_pi(sk)->hdev = hdev;
1240
1241 /* Send event to monitor */
1242 skb = create_monitor_ctrl_open(sk);
1243 if (skb) {
1244 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1245 HCI_SOCK_TRUSTED, NULL);
1246 kfree_skb(skb);
1247 }
1248
1249 atomic_inc(&hdev->promisc);
1250 break;
1251
1252 case HCI_CHANNEL_MONITOR:
1253 if (haddr.hci_dev != HCI_DEV_NONE) {
1254 err = -EINVAL;
1255 goto done;
1256 }
1257
1258 if (!capable(CAP_NET_RAW)) {
1259 err = -EPERM;
1260 goto done;
1261 }
1262
1263 hci_pi(sk)->channel = haddr.hci_channel;
1264
1265 /* The monitor interface is restricted to CAP_NET_RAW
1266 * capabilities and with that implicitly trusted.
1267 */
1268 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1269
1270 send_monitor_note(sk, "Linux version %s (%s)",
1271 init_utsname()->release,
1272 init_utsname()->machine);
1273 send_monitor_note(sk, "Bluetooth subsystem version %u.%u",
1274 BT_SUBSYS_VERSION, BT_SUBSYS_REVISION);
1275 send_monitor_replay(sk);
1276 send_monitor_control_replay(sk);
1277
1278 atomic_inc(&monitor_promisc);
1279 break;
1280
1281 case HCI_CHANNEL_LOGGING:
1282 if (haddr.hci_dev != HCI_DEV_NONE) {
1283 err = -EINVAL;
1284 goto done;
1285 }
1286
1287 if (!capable(CAP_NET_ADMIN)) {
1288 err = -EPERM;
1289 goto done;
1290 }
1291
1292 hci_pi(sk)->channel = haddr.hci_channel;
1293 break;
1294
1295 default:
1296 if (!hci_mgmt_chan_find(haddr.hci_channel)) {
1297 err = -EINVAL;
1298 goto done;
1299 }
1300
1301 if (haddr.hci_dev != HCI_DEV_NONE) {
1302 err = -EINVAL;
1303 goto done;
1304 }
1305
1306 /* Users with CAP_NET_ADMIN capabilities are allowed
1307 * access to all management commands and events. For
1308 * untrusted users the interface is restricted and
1309 * also only untrusted events are sent.
1310 */
1311 if (capable(CAP_NET_ADMIN))
1312 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1313
1314 hci_pi(sk)->channel = haddr.hci_channel;
1315
1316 /* At the moment the index and unconfigured index events
1317 * are enabled unconditionally. Setting them on each
1318 * socket when binding keeps this functionality. They
1319 * however might be cleared later and then sending of these
1320 * events will be disabled, but that is then intentional.
1321 *
1322 * This also enables generic events that are safe to be
1323 * received by untrusted users. Example for such events
1324 * are changes to settings, class of device, name etc.
1325 */
1326 if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) {
1327 if (!hci_sock_gen_cookie(sk)) {
1328 /* In the case when a cookie has already been
1329 * assigned, this socket will transtion from
1330 * a raw socket into a control socket. To
1331 * allow for a clean transtion, send the
1332 * close notification first.
1333 */
1334 skb = create_monitor_ctrl_close(sk);
1335 if (skb) {
1336 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1337 HCI_SOCK_TRUSTED, NULL);
1338 kfree_skb(skb);
1339 }
1340 }
1341
1342 /* Send event to monitor */
1343 skb = create_monitor_ctrl_open(sk);
1344 if (skb) {
1345 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1346 HCI_SOCK_TRUSTED, NULL);
1347 kfree_skb(skb);
1348 }
1349
1350 hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS);
1351 hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS);
1352 hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS);
1353 hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS);
1354 hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS);
1355 hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS);
1356 }
1357 break;
1358 }
1359
1360 sk->sk_state = BT_BOUND;
1361
1362 done:
1363 release_sock(sk);
1364 return err;
1365 }
1366
hci_sock_getname(struct socket * sock,struct sockaddr * addr,int peer)1367 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr,
1368 int peer)
1369 {
1370 struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr;
1371 struct sock *sk = sock->sk;
1372 struct hci_dev *hdev;
1373 int err = 0;
1374
1375 BT_DBG("sock %p sk %p", sock, sk);
1376
1377 if (peer)
1378 return -EOPNOTSUPP;
1379
1380 lock_sock(sk);
1381
1382 hdev = hci_pi(sk)->hdev;
1383 if (!hdev) {
1384 err = -EBADFD;
1385 goto done;
1386 }
1387
1388 haddr->hci_family = AF_BLUETOOTH;
1389 haddr->hci_dev = hdev->id;
1390 haddr->hci_channel= hci_pi(sk)->channel;
1391 err = sizeof(*haddr);
1392
1393 done:
1394 release_sock(sk);
1395 return err;
1396 }
1397
hci_sock_cmsg(struct sock * sk,struct msghdr * msg,struct sk_buff * skb)1398 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg,
1399 struct sk_buff *skb)
1400 {
1401 __u8 mask = hci_pi(sk)->cmsg_mask;
1402
1403 if (mask & HCI_CMSG_DIR) {
1404 int incoming = bt_cb(skb)->incoming;
1405 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming),
1406 &incoming);
1407 }
1408
1409 if (mask & HCI_CMSG_TSTAMP) {
1410 #ifdef CONFIG_COMPAT
1411 struct old_timeval32 ctv;
1412 #endif
1413 struct __kernel_old_timeval tv;
1414 void *data;
1415 int len;
1416
1417 skb_get_timestamp(skb, &tv);
1418
1419 data = &tv;
1420 len = sizeof(tv);
1421 #ifdef CONFIG_COMPAT
1422 if (!COMPAT_USE_64BIT_TIME &&
1423 (msg->msg_flags & MSG_CMSG_COMPAT)) {
1424 ctv.tv_sec = tv.tv_sec;
1425 ctv.tv_usec = tv.tv_usec;
1426 data = &ctv;
1427 len = sizeof(ctv);
1428 }
1429 #endif
1430
1431 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data);
1432 }
1433 }
1434
hci_sock_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1435 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg,
1436 size_t len, int flags)
1437 {
1438 int noblock = flags & MSG_DONTWAIT;
1439 struct sock *sk = sock->sk;
1440 struct sk_buff *skb;
1441 int copied, err;
1442 unsigned int skblen;
1443
1444 BT_DBG("sock %p, sk %p", sock, sk);
1445
1446 if (flags & MSG_OOB)
1447 return -EOPNOTSUPP;
1448
1449 if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING)
1450 return -EOPNOTSUPP;
1451
1452 if (sk->sk_state == BT_CLOSED)
1453 return 0;
1454
1455 skb = skb_recv_datagram(sk, flags, noblock, &err);
1456 if (!skb)
1457 return err;
1458
1459 skblen = skb->len;
1460 copied = skb->len;
1461 if (len < copied) {
1462 msg->msg_flags |= MSG_TRUNC;
1463 copied = len;
1464 }
1465
1466 skb_reset_transport_header(skb);
1467 err = skb_copy_datagram_msg(skb, 0, msg, copied);
1468
1469 switch (hci_pi(sk)->channel) {
1470 case HCI_CHANNEL_RAW:
1471 hci_sock_cmsg(sk, msg, skb);
1472 break;
1473 case HCI_CHANNEL_USER:
1474 case HCI_CHANNEL_MONITOR:
1475 sock_recv_timestamp(msg, sk, skb);
1476 break;
1477 default:
1478 if (hci_mgmt_chan_find(hci_pi(sk)->channel))
1479 sock_recv_timestamp(msg, sk, skb);
1480 break;
1481 }
1482
1483 skb_free_datagram(sk, skb);
1484
1485 if (flags & MSG_TRUNC)
1486 copied = skblen;
1487
1488 return err ? : copied;
1489 }
1490
hci_mgmt_cmd(struct hci_mgmt_chan * chan,struct sock * sk,struct msghdr * msg,size_t msglen)1491 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk,
1492 struct msghdr *msg, size_t msglen)
1493 {
1494 void *buf;
1495 u8 *cp;
1496 struct mgmt_hdr *hdr;
1497 u16 opcode, index, len;
1498 struct hci_dev *hdev = NULL;
1499 const struct hci_mgmt_handler *handler;
1500 bool var_len, no_hdev;
1501 int err;
1502
1503 BT_DBG("got %zu bytes", msglen);
1504
1505 if (msglen < sizeof(*hdr))
1506 return -EINVAL;
1507
1508 buf = kmalloc(msglen, GFP_KERNEL);
1509 if (!buf)
1510 return -ENOMEM;
1511
1512 if (memcpy_from_msg(buf, msg, msglen)) {
1513 err = -EFAULT;
1514 goto done;
1515 }
1516
1517 hdr = buf;
1518 opcode = __le16_to_cpu(hdr->opcode);
1519 index = __le16_to_cpu(hdr->index);
1520 len = __le16_to_cpu(hdr->len);
1521
1522 if (len != msglen - sizeof(*hdr)) {
1523 err = -EINVAL;
1524 goto done;
1525 }
1526
1527 if (chan->channel == HCI_CHANNEL_CONTROL) {
1528 struct sk_buff *skb;
1529
1530 /* Send event to monitor */
1531 skb = create_monitor_ctrl_command(sk, index, opcode, len,
1532 buf + sizeof(*hdr));
1533 if (skb) {
1534 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1535 HCI_SOCK_TRUSTED, NULL);
1536 kfree_skb(skb);
1537 }
1538 }
1539
1540 if (opcode >= chan->handler_count ||
1541 chan->handlers[opcode].func == NULL) {
1542 BT_DBG("Unknown op %u", opcode);
1543 err = mgmt_cmd_status(sk, index, opcode,
1544 MGMT_STATUS_UNKNOWN_COMMAND);
1545 goto done;
1546 }
1547
1548 handler = &chan->handlers[opcode];
1549
1550 if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) &&
1551 !(handler->flags & HCI_MGMT_UNTRUSTED)) {
1552 err = mgmt_cmd_status(sk, index, opcode,
1553 MGMT_STATUS_PERMISSION_DENIED);
1554 goto done;
1555 }
1556
1557 if (index != MGMT_INDEX_NONE) {
1558 hdev = hci_dev_get(index);
1559 if (!hdev) {
1560 err = mgmt_cmd_status(sk, index, opcode,
1561 MGMT_STATUS_INVALID_INDEX);
1562 goto done;
1563 }
1564
1565 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1566 hci_dev_test_flag(hdev, HCI_CONFIG) ||
1567 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1568 err = mgmt_cmd_status(sk, index, opcode,
1569 MGMT_STATUS_INVALID_INDEX);
1570 goto done;
1571 }
1572
1573 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1574 !(handler->flags & HCI_MGMT_UNCONFIGURED)) {
1575 err = mgmt_cmd_status(sk, index, opcode,
1576 MGMT_STATUS_INVALID_INDEX);
1577 goto done;
1578 }
1579 }
1580
1581 if (!(handler->flags & HCI_MGMT_HDEV_OPTIONAL)) {
1582 no_hdev = (handler->flags & HCI_MGMT_NO_HDEV);
1583 if (no_hdev != !hdev) {
1584 err = mgmt_cmd_status(sk, index, opcode,
1585 MGMT_STATUS_INVALID_INDEX);
1586 goto done;
1587 }
1588 }
1589
1590 var_len = (handler->flags & HCI_MGMT_VAR_LEN);
1591 if ((var_len && len < handler->data_len) ||
1592 (!var_len && len != handler->data_len)) {
1593 err = mgmt_cmd_status(sk, index, opcode,
1594 MGMT_STATUS_INVALID_PARAMS);
1595 goto done;
1596 }
1597
1598 if (hdev && chan->hdev_init)
1599 chan->hdev_init(sk, hdev);
1600
1601 cp = buf + sizeof(*hdr);
1602
1603 err = handler->func(sk, hdev, cp, len);
1604 if (err < 0)
1605 goto done;
1606
1607 err = msglen;
1608
1609 done:
1610 if (hdev)
1611 hci_dev_put(hdev);
1612
1613 kfree(buf);
1614 return err;
1615 }
1616
hci_logging_frame(struct sock * sk,struct msghdr * msg,int len)1617 static int hci_logging_frame(struct sock *sk, struct msghdr *msg, int len)
1618 {
1619 struct hci_mon_hdr *hdr;
1620 struct sk_buff *skb;
1621 struct hci_dev *hdev;
1622 u16 index;
1623 int err;
1624
1625 /* The logging frame consists at minimum of the standard header,
1626 * the priority byte, the ident length byte and at least one string
1627 * terminator NUL byte. Anything shorter are invalid packets.
1628 */
1629 if (len < sizeof(*hdr) + 3)
1630 return -EINVAL;
1631
1632 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err);
1633 if (!skb)
1634 return err;
1635
1636 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
1637 err = -EFAULT;
1638 goto drop;
1639 }
1640
1641 hdr = (void *)skb->data;
1642
1643 if (__le16_to_cpu(hdr->len) != len - sizeof(*hdr)) {
1644 err = -EINVAL;
1645 goto drop;
1646 }
1647
1648 if (__le16_to_cpu(hdr->opcode) == 0x0000) {
1649 __u8 priority = skb->data[sizeof(*hdr)];
1650 __u8 ident_len = skb->data[sizeof(*hdr) + 1];
1651
1652 /* Only the priorities 0-7 are valid and with that any other
1653 * value results in an invalid packet.
1654 *
1655 * The priority byte is followed by an ident length byte and
1656 * the NUL terminated ident string. Check that the ident
1657 * length is not overflowing the packet and also that the
1658 * ident string itself is NUL terminated. In case the ident
1659 * length is zero, the length value actually doubles as NUL
1660 * terminator identifier.
1661 *
1662 * The message follows the ident string (if present) and
1663 * must be NUL terminated. Otherwise it is not a valid packet.
1664 */
1665 if (priority > 7 || skb->data[len - 1] != 0x00 ||
1666 ident_len > len - sizeof(*hdr) - 3 ||
1667 skb->data[sizeof(*hdr) + ident_len + 1] != 0x00) {
1668 err = -EINVAL;
1669 goto drop;
1670 }
1671 } else {
1672 err = -EINVAL;
1673 goto drop;
1674 }
1675
1676 index = __le16_to_cpu(hdr->index);
1677
1678 if (index != MGMT_INDEX_NONE) {
1679 hdev = hci_dev_get(index);
1680 if (!hdev) {
1681 err = -ENODEV;
1682 goto drop;
1683 }
1684 } else {
1685 hdev = NULL;
1686 }
1687
1688 hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING);
1689
1690 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL);
1691 err = len;
1692
1693 if (hdev)
1694 hci_dev_put(hdev);
1695
1696 drop:
1697 kfree_skb(skb);
1698 return err;
1699 }
1700
hci_sock_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1701 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg,
1702 size_t len)
1703 {
1704 struct sock *sk = sock->sk;
1705 struct hci_mgmt_chan *chan;
1706 struct hci_dev *hdev;
1707 struct sk_buff *skb;
1708 int err;
1709
1710 BT_DBG("sock %p sk %p", sock, sk);
1711
1712 if (msg->msg_flags & MSG_OOB)
1713 return -EOPNOTSUPP;
1714
1715 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_NOSIGNAL|MSG_ERRQUEUE|
1716 MSG_CMSG_COMPAT))
1717 return -EINVAL;
1718
1719 if (len < 4 || len > HCI_MAX_FRAME_SIZE)
1720 return -EINVAL;
1721
1722 lock_sock(sk);
1723
1724 switch (hci_pi(sk)->channel) {
1725 case HCI_CHANNEL_RAW:
1726 case HCI_CHANNEL_USER:
1727 break;
1728 case HCI_CHANNEL_MONITOR:
1729 err = -EOPNOTSUPP;
1730 goto done;
1731 case HCI_CHANNEL_LOGGING:
1732 err = hci_logging_frame(sk, msg, len);
1733 goto done;
1734 default:
1735 mutex_lock(&mgmt_chan_list_lock);
1736 chan = __hci_mgmt_chan_find(hci_pi(sk)->channel);
1737 if (chan)
1738 err = hci_mgmt_cmd(chan, sk, msg, len);
1739 else
1740 err = -EINVAL;
1741
1742 mutex_unlock(&mgmt_chan_list_lock);
1743 goto done;
1744 }
1745
1746 hdev = hci_pi(sk)->hdev;
1747 if (!hdev) {
1748 err = -EBADFD;
1749 goto done;
1750 }
1751
1752 if (!test_bit(HCI_UP, &hdev->flags)) {
1753 err = -ENETDOWN;
1754 goto done;
1755 }
1756
1757 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err);
1758 if (!skb)
1759 goto done;
1760
1761 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
1762 err = -EFAULT;
1763 goto drop;
1764 }
1765
1766 hci_skb_pkt_type(skb) = skb->data[0];
1767 skb_pull(skb, 1);
1768
1769 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
1770 /* No permission check is needed for user channel
1771 * since that gets enforced when binding the socket.
1772 *
1773 * However check that the packet type is valid.
1774 */
1775 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
1776 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1777 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1778 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1779 err = -EINVAL;
1780 goto drop;
1781 }
1782
1783 skb_queue_tail(&hdev->raw_q, skb);
1784 queue_work(hdev->workqueue, &hdev->tx_work);
1785 } else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) {
1786 u16 opcode = get_unaligned_le16(skb->data);
1787 u16 ogf = hci_opcode_ogf(opcode);
1788 u16 ocf = hci_opcode_ocf(opcode);
1789
1790 if (((ogf > HCI_SFLT_MAX_OGF) ||
1791 !hci_test_bit(ocf & HCI_FLT_OCF_BITS,
1792 &hci_sec_filter.ocf_mask[ogf])) &&
1793 !capable(CAP_NET_RAW)) {
1794 err = -EPERM;
1795 goto drop;
1796 }
1797
1798 /* Since the opcode has already been extracted here, store
1799 * a copy of the value for later use by the drivers.
1800 */
1801 hci_skb_opcode(skb) = opcode;
1802
1803 if (ogf == 0x3f) {
1804 skb_queue_tail(&hdev->raw_q, skb);
1805 queue_work(hdev->workqueue, &hdev->tx_work);
1806 } else {
1807 /* Stand-alone HCI commands must be flagged as
1808 * single-command requests.
1809 */
1810 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
1811
1812 skb_queue_tail(&hdev->cmd_q, skb);
1813 queue_work(hdev->workqueue, &hdev->cmd_work);
1814 }
1815 } else {
1816 if (!capable(CAP_NET_RAW)) {
1817 err = -EPERM;
1818 goto drop;
1819 }
1820
1821 if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1822 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1823 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1824 err = -EINVAL;
1825 goto drop;
1826 }
1827
1828 skb_queue_tail(&hdev->raw_q, skb);
1829 queue_work(hdev->workqueue, &hdev->tx_work);
1830 }
1831
1832 err = len;
1833
1834 done:
1835 release_sock(sk);
1836 return err;
1837
1838 drop:
1839 kfree_skb(skb);
1840 goto done;
1841 }
1842
hci_sock_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int len)1843 static int hci_sock_setsockopt(struct socket *sock, int level, int optname,
1844 sockptr_t optval, unsigned int len)
1845 {
1846 struct hci_ufilter uf = { .opcode = 0 };
1847 struct sock *sk = sock->sk;
1848 int err = 0, opt = 0;
1849
1850 BT_DBG("sk %p, opt %d", sk, optname);
1851
1852 if (level != SOL_HCI)
1853 return -ENOPROTOOPT;
1854
1855 lock_sock(sk);
1856
1857 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1858 err = -EBADFD;
1859 goto done;
1860 }
1861
1862 switch (optname) {
1863 case HCI_DATA_DIR:
1864 if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1865 err = -EFAULT;
1866 break;
1867 }
1868
1869 if (opt)
1870 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR;
1871 else
1872 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR;
1873 break;
1874
1875 case HCI_TIME_STAMP:
1876 if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1877 err = -EFAULT;
1878 break;
1879 }
1880
1881 if (opt)
1882 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP;
1883 else
1884 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP;
1885 break;
1886
1887 case HCI_FILTER:
1888 {
1889 struct hci_filter *f = &hci_pi(sk)->filter;
1890
1891 uf.type_mask = f->type_mask;
1892 uf.opcode = f->opcode;
1893 uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1894 uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1895 }
1896
1897 len = min_t(unsigned int, len, sizeof(uf));
1898 if (copy_from_sockptr(&uf, optval, len)) {
1899 err = -EFAULT;
1900 break;
1901 }
1902
1903 if (!capable(CAP_NET_RAW)) {
1904 uf.type_mask &= hci_sec_filter.type_mask;
1905 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0);
1906 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1);
1907 }
1908
1909 {
1910 struct hci_filter *f = &hci_pi(sk)->filter;
1911
1912 f->type_mask = uf.type_mask;
1913 f->opcode = uf.opcode;
1914 *((u32 *) f->event_mask + 0) = uf.event_mask[0];
1915 *((u32 *) f->event_mask + 1) = uf.event_mask[1];
1916 }
1917 break;
1918
1919 default:
1920 err = -ENOPROTOOPT;
1921 break;
1922 }
1923
1924 done:
1925 release_sock(sk);
1926 return err;
1927 }
1928
hci_sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1929 static int hci_sock_getsockopt(struct socket *sock, int level, int optname,
1930 char __user *optval, int __user *optlen)
1931 {
1932 struct hci_ufilter uf;
1933 struct sock *sk = sock->sk;
1934 int len, opt, err = 0;
1935
1936 BT_DBG("sk %p, opt %d", sk, optname);
1937
1938 if (level != SOL_HCI)
1939 return -ENOPROTOOPT;
1940
1941 if (get_user(len, optlen))
1942 return -EFAULT;
1943
1944 lock_sock(sk);
1945
1946 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1947 err = -EBADFD;
1948 goto done;
1949 }
1950
1951 switch (optname) {
1952 case HCI_DATA_DIR:
1953 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR)
1954 opt = 1;
1955 else
1956 opt = 0;
1957
1958 if (put_user(opt, optval))
1959 err = -EFAULT;
1960 break;
1961
1962 case HCI_TIME_STAMP:
1963 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP)
1964 opt = 1;
1965 else
1966 opt = 0;
1967
1968 if (put_user(opt, optval))
1969 err = -EFAULT;
1970 break;
1971
1972 case HCI_FILTER:
1973 {
1974 struct hci_filter *f = &hci_pi(sk)->filter;
1975
1976 memset(&uf, 0, sizeof(uf));
1977 uf.type_mask = f->type_mask;
1978 uf.opcode = f->opcode;
1979 uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1980 uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1981 }
1982
1983 len = min_t(unsigned int, len, sizeof(uf));
1984 if (copy_to_user(optval, &uf, len))
1985 err = -EFAULT;
1986 break;
1987
1988 default:
1989 err = -ENOPROTOOPT;
1990 break;
1991 }
1992
1993 done:
1994 release_sock(sk);
1995 return err;
1996 }
1997
1998 static const struct proto_ops hci_sock_ops = {
1999 .family = PF_BLUETOOTH,
2000 .owner = THIS_MODULE,
2001 .release = hci_sock_release,
2002 .bind = hci_sock_bind,
2003 .getname = hci_sock_getname,
2004 .sendmsg = hci_sock_sendmsg,
2005 .recvmsg = hci_sock_recvmsg,
2006 .ioctl = hci_sock_ioctl,
2007 #ifdef CONFIG_COMPAT
2008 .compat_ioctl = hci_sock_compat_ioctl,
2009 #endif
2010 .poll = datagram_poll,
2011 .listen = sock_no_listen,
2012 .shutdown = sock_no_shutdown,
2013 .setsockopt = hci_sock_setsockopt,
2014 .getsockopt = hci_sock_getsockopt,
2015 .connect = sock_no_connect,
2016 .socketpair = sock_no_socketpair,
2017 .accept = sock_no_accept,
2018 .mmap = sock_no_mmap
2019 };
2020
2021 static struct proto hci_sk_proto = {
2022 .name = "HCI",
2023 .owner = THIS_MODULE,
2024 .obj_size = sizeof(struct hci_pinfo)
2025 };
2026
hci_sock_create(struct net * net,struct socket * sock,int protocol,int kern)2027 static int hci_sock_create(struct net *net, struct socket *sock, int protocol,
2028 int kern)
2029 {
2030 struct sock *sk;
2031
2032 BT_DBG("sock %p", sock);
2033
2034 if (sock->type != SOCK_RAW)
2035 return -ESOCKTNOSUPPORT;
2036
2037 sock->ops = &hci_sock_ops;
2038
2039 sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern);
2040 if (!sk)
2041 return -ENOMEM;
2042
2043 sock_init_data(sock, sk);
2044
2045 sock_reset_flag(sk, SOCK_ZAPPED);
2046
2047 sk->sk_protocol = protocol;
2048
2049 sock->state = SS_UNCONNECTED;
2050 sk->sk_state = BT_OPEN;
2051
2052 bt_sock_link(&hci_sk_list, sk);
2053 return 0;
2054 }
2055
2056 static const struct net_proto_family hci_sock_family_ops = {
2057 .family = PF_BLUETOOTH,
2058 .owner = THIS_MODULE,
2059 .create = hci_sock_create,
2060 };
2061
hci_sock_init(void)2062 int __init hci_sock_init(void)
2063 {
2064 int err;
2065
2066 BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr));
2067
2068 err = proto_register(&hci_sk_proto, 0);
2069 if (err < 0)
2070 return err;
2071
2072 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops);
2073 if (err < 0) {
2074 BT_ERR("HCI socket registration failed");
2075 goto error;
2076 }
2077
2078 err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL);
2079 if (err < 0) {
2080 BT_ERR("Failed to create HCI proc file");
2081 bt_sock_unregister(BTPROTO_HCI);
2082 goto error;
2083 }
2084
2085 BT_INFO("HCI socket layer initialized");
2086
2087 return 0;
2088
2089 error:
2090 proto_unregister(&hci_sk_proto);
2091 return err;
2092 }
2093
hci_sock_cleanup(void)2094 void hci_sock_cleanup(void)
2095 {
2096 bt_procfs_cleanup(&init_net, "hci");
2097 bt_sock_unregister(BTPROTO_HCI);
2098 proto_unregister(&hci_sk_proto);
2099 }
2100