1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * z3fold.c
4 *
5 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6 * Copyright (C) 2016, Sony Mobile Communications Inc.
7 *
8 * This implementation is based on zbud written by Seth Jennings.
9 *
10 * z3fold is an special purpose allocator for storing compressed pages. It
11 * can store up to three compressed pages per page which improves the
12 * compression ratio of zbud while retaining its main concepts (e. g. always
13 * storing an integral number of objects per page) and simplicity.
14 * It still has simple and deterministic reclaim properties that make it
15 * preferable to a higher density approach (with no requirement on integral
16 * number of object per page) when reclaim is used.
17 *
18 * As in zbud, pages are divided into "chunks". The size of the chunks is
19 * fixed at compile time and is determined by NCHUNKS_ORDER below.
20 *
21 * z3fold doesn't export any API and is meant to be used via zpool API.
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 #include <linux/kmemleak.h>
47
48 /*
49 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50 * adjusting internal fragmentation. It also determines the number of
51 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53 * in the beginning of an allocated page are occupied by z3fold header, so
54 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55 * which shows the max number of free chunks in z3fold page, also there will
56 * be 63, or 62, respectively, freelists per pool.
57 */
58 #define NCHUNKS_ORDER 6
59
60 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
61 #define CHUNK_SIZE (1 << CHUNK_SHIFT)
62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
65 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
66
67 #define BUDDY_MASK (0x3)
68 #define BUDDY_SHIFT 2
69 #define SLOTS_ALIGN (0x40)
70
71 /*****************
72 * Structures
73 *****************/
74 struct z3fold_pool;
75 struct z3fold_ops {
76 int (*evict)(struct z3fold_pool *pool, unsigned long handle);
77 };
78
79 enum buddy {
80 HEADLESS = 0,
81 FIRST,
82 MIDDLE,
83 LAST,
84 BUDDIES_MAX = LAST
85 };
86
87 struct z3fold_buddy_slots {
88 /*
89 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90 * be enough slots to hold all possible variants
91 */
92 unsigned long slot[BUDDY_MASK + 1];
93 unsigned long pool; /* back link + flags */
94 rwlock_t lock;
95 };
96 #define HANDLE_FLAG_MASK (0x03)
97
98 /*
99 * struct z3fold_header - z3fold page metadata occupying first chunks of each
100 * z3fold page, except for HEADLESS pages
101 * @buddy: links the z3fold page into the relevant list in the
102 * pool
103 * @page_lock: per-page lock
104 * @refcount: reference count for the z3fold page
105 * @work: work_struct for page layout optimization
106 * @slots: pointer to the structure holding buddy slots
107 * @pool: pointer to the containing pool
108 * @cpu: CPU which this page "belongs" to
109 * @first_chunks: the size of the first buddy in chunks, 0 if free
110 * @middle_chunks: the size of the middle buddy in chunks, 0 if free
111 * @last_chunks: the size of the last buddy in chunks, 0 if free
112 * @first_num: the starting number (for the first handle)
113 * @mapped_count: the number of objects currently mapped
114 */
115 struct z3fold_header {
116 struct list_head buddy;
117 spinlock_t page_lock;
118 struct kref refcount;
119 struct work_struct work;
120 struct z3fold_buddy_slots *slots;
121 struct z3fold_pool *pool;
122 short cpu;
123 unsigned short first_chunks;
124 unsigned short middle_chunks;
125 unsigned short last_chunks;
126 unsigned short start_middle;
127 unsigned short first_num:2;
128 unsigned short mapped_count:2;
129 unsigned short foreign_handles:2;
130 };
131
132 /**
133 * struct z3fold_pool - stores metadata for each z3fold pool
134 * @name: pool name
135 * @lock: protects pool unbuddied/lru lists
136 * @stale_lock: protects pool stale page list
137 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2-
138 * buddies; the list each z3fold page is added to depends on
139 * the size of its free region.
140 * @lru: list tracking the z3fold pages in LRU order by most recently
141 * added buddy.
142 * @stale: list of pages marked for freeing
143 * @pages_nr: number of z3fold pages in the pool.
144 * @c_handle: cache for z3fold_buddy_slots allocation
145 * @ops: pointer to a structure of user defined operations specified at
146 * pool creation time.
147 * @compact_wq: workqueue for page layout background optimization
148 * @release_wq: workqueue for safe page release
149 * @work: work_struct for safe page release
150 * @inode: inode for z3fold pseudo filesystem
151 *
152 * This structure is allocated at pool creation time and maintains metadata
153 * pertaining to a particular z3fold pool.
154 */
155 struct z3fold_pool {
156 const char *name;
157 spinlock_t lock;
158 spinlock_t stale_lock;
159 struct list_head *unbuddied;
160 struct list_head lru;
161 struct list_head stale;
162 atomic64_t pages_nr;
163 struct kmem_cache *c_handle;
164 const struct z3fold_ops *ops;
165 struct zpool *zpool;
166 const struct zpool_ops *zpool_ops;
167 struct workqueue_struct *compact_wq;
168 struct workqueue_struct *release_wq;
169 struct work_struct work;
170 struct inode *inode;
171 };
172
173 /*
174 * Internal z3fold page flags
175 */
176 enum z3fold_page_flags {
177 PAGE_HEADLESS = 0,
178 MIDDLE_CHUNK_MAPPED,
179 NEEDS_COMPACTING,
180 PAGE_STALE,
181 PAGE_CLAIMED, /* by either reclaim or free */
182 };
183
184 /*
185 * handle flags, go under HANDLE_FLAG_MASK
186 */
187 enum z3fold_handle_flags {
188 HANDLES_ORPHANED = 0,
189 };
190
191 /*
192 * Forward declarations
193 */
194 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
195 static void compact_page_work(struct work_struct *w);
196
197 /*****************
198 * Helpers
199 *****************/
200
201 /* Converts an allocation size in bytes to size in z3fold chunks */
size_to_chunks(size_t size)202 static int size_to_chunks(size_t size)
203 {
204 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
205 }
206
207 #define for_each_unbuddied_list(_iter, _begin) \
208 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
209
alloc_slots(struct z3fold_pool * pool,gfp_t gfp)210 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
211 gfp_t gfp)
212 {
213 struct z3fold_buddy_slots *slots;
214
215 slots = kmem_cache_zalloc(pool->c_handle,
216 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
217
218 if (slots) {
219 /* It will be freed separately in free_handle(). */
220 kmemleak_not_leak(slots);
221 slots->pool = (unsigned long)pool;
222 rwlock_init(&slots->lock);
223 }
224
225 return slots;
226 }
227
slots_to_pool(struct z3fold_buddy_slots * s)228 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
229 {
230 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
231 }
232
handle_to_slots(unsigned long handle)233 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
234 {
235 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
236 }
237
238 /* Lock a z3fold page */
z3fold_page_lock(struct z3fold_header * zhdr)239 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
240 {
241 spin_lock(&zhdr->page_lock);
242 }
243
244 /* Try to lock a z3fold page */
z3fold_page_trylock(struct z3fold_header * zhdr)245 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
246 {
247 return spin_trylock(&zhdr->page_lock);
248 }
249
250 /* Unlock a z3fold page */
z3fold_page_unlock(struct z3fold_header * zhdr)251 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
252 {
253 spin_unlock(&zhdr->page_lock);
254 }
255
256
__get_z3fold_header(unsigned long handle,bool lock)257 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
258 bool lock)
259 {
260 struct z3fold_buddy_slots *slots;
261 struct z3fold_header *zhdr;
262 int locked = 0;
263
264 if (!(handle & (1 << PAGE_HEADLESS))) {
265 slots = handle_to_slots(handle);
266 do {
267 unsigned long addr;
268
269 read_lock(&slots->lock);
270 addr = *(unsigned long *)handle;
271 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
272 if (lock)
273 locked = z3fold_page_trylock(zhdr);
274 read_unlock(&slots->lock);
275 if (locked)
276 break;
277 cpu_relax();
278 } while (lock);
279 } else {
280 zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
281 }
282
283 return zhdr;
284 }
285
286 /* Returns the z3fold page where a given handle is stored */
handle_to_z3fold_header(unsigned long h)287 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
288 {
289 return __get_z3fold_header(h, false);
290 }
291
292 /* return locked z3fold page if it's not headless */
get_z3fold_header(unsigned long h)293 static inline struct z3fold_header *get_z3fold_header(unsigned long h)
294 {
295 return __get_z3fold_header(h, true);
296 }
297
put_z3fold_header(struct z3fold_header * zhdr)298 static inline void put_z3fold_header(struct z3fold_header *zhdr)
299 {
300 struct page *page = virt_to_page(zhdr);
301
302 if (!test_bit(PAGE_HEADLESS, &page->private))
303 z3fold_page_unlock(zhdr);
304 }
305
free_handle(unsigned long handle)306 static inline void free_handle(unsigned long handle)
307 {
308 struct z3fold_buddy_slots *slots;
309 struct z3fold_header *zhdr;
310 int i;
311 bool is_free;
312
313 if (handle & (1 << PAGE_HEADLESS))
314 return;
315
316 if (WARN_ON(*(unsigned long *)handle == 0))
317 return;
318
319 zhdr = handle_to_z3fold_header(handle);
320 slots = handle_to_slots(handle);
321 write_lock(&slots->lock);
322 *(unsigned long *)handle = 0;
323 if (zhdr->slots == slots) {
324 write_unlock(&slots->lock);
325 return; /* simple case, nothing else to do */
326 }
327
328 /* we are freeing a foreign handle if we are here */
329 zhdr->foreign_handles--;
330 is_free = true;
331 if (!test_bit(HANDLES_ORPHANED, &slots->pool)) {
332 write_unlock(&slots->lock);
333 return;
334 }
335 for (i = 0; i <= BUDDY_MASK; i++) {
336 if (slots->slot[i]) {
337 is_free = false;
338 break;
339 }
340 }
341 write_unlock(&slots->lock);
342
343 if (is_free) {
344 struct z3fold_pool *pool = slots_to_pool(slots);
345
346 kmem_cache_free(pool->c_handle, slots);
347 }
348 }
349
z3fold_init_fs_context(struct fs_context * fc)350 static int z3fold_init_fs_context(struct fs_context *fc)
351 {
352 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
353 }
354
355 static struct file_system_type z3fold_fs = {
356 .name = "z3fold",
357 .init_fs_context = z3fold_init_fs_context,
358 .kill_sb = kill_anon_super,
359 };
360
361 static struct vfsmount *z3fold_mnt;
z3fold_mount(void)362 static int z3fold_mount(void)
363 {
364 int ret = 0;
365
366 z3fold_mnt = kern_mount(&z3fold_fs);
367 if (IS_ERR(z3fold_mnt))
368 ret = PTR_ERR(z3fold_mnt);
369
370 return ret;
371 }
372
z3fold_unmount(void)373 static void z3fold_unmount(void)
374 {
375 kern_unmount(z3fold_mnt);
376 }
377
378 static const struct address_space_operations z3fold_aops;
z3fold_register_migration(struct z3fold_pool * pool)379 static int z3fold_register_migration(struct z3fold_pool *pool)
380 {
381 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
382 if (IS_ERR(pool->inode)) {
383 pool->inode = NULL;
384 return 1;
385 }
386
387 pool->inode->i_mapping->private_data = pool;
388 pool->inode->i_mapping->a_ops = &z3fold_aops;
389 return 0;
390 }
391
z3fold_unregister_migration(struct z3fold_pool * pool)392 static void z3fold_unregister_migration(struct z3fold_pool *pool)
393 {
394 if (pool->inode)
395 iput(pool->inode);
396 }
397
398 /* Initializes the z3fold header of a newly allocated z3fold page */
init_z3fold_page(struct page * page,bool headless,struct z3fold_pool * pool,gfp_t gfp)399 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
400 struct z3fold_pool *pool, gfp_t gfp)
401 {
402 struct z3fold_header *zhdr = page_address(page);
403 struct z3fold_buddy_slots *slots;
404
405 INIT_LIST_HEAD(&page->lru);
406 clear_bit(PAGE_HEADLESS, &page->private);
407 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
408 clear_bit(NEEDS_COMPACTING, &page->private);
409 clear_bit(PAGE_STALE, &page->private);
410 clear_bit(PAGE_CLAIMED, &page->private);
411 if (headless)
412 return zhdr;
413
414 slots = alloc_slots(pool, gfp);
415 if (!slots)
416 return NULL;
417
418 spin_lock_init(&zhdr->page_lock);
419 kref_init(&zhdr->refcount);
420 zhdr->first_chunks = 0;
421 zhdr->middle_chunks = 0;
422 zhdr->last_chunks = 0;
423 zhdr->first_num = 0;
424 zhdr->start_middle = 0;
425 zhdr->cpu = -1;
426 zhdr->foreign_handles = 0;
427 zhdr->mapped_count = 0;
428 zhdr->slots = slots;
429 zhdr->pool = pool;
430 INIT_LIST_HEAD(&zhdr->buddy);
431 INIT_WORK(&zhdr->work, compact_page_work);
432 return zhdr;
433 }
434
435 /* Resets the struct page fields and frees the page */
free_z3fold_page(struct page * page,bool headless)436 static void free_z3fold_page(struct page *page, bool headless)
437 {
438 if (!headless) {
439 lock_page(page);
440 __ClearPageMovable(page);
441 unlock_page(page);
442 }
443 ClearPagePrivate(page);
444 __free_page(page);
445 }
446
447 /* Helper function to build the index */
__idx(struct z3fold_header * zhdr,enum buddy bud)448 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
449 {
450 return (bud + zhdr->first_num) & BUDDY_MASK;
451 }
452
453 /*
454 * Encodes the handle of a particular buddy within a z3fold page
455 * Pool lock should be held as this function accesses first_num
456 */
__encode_handle(struct z3fold_header * zhdr,struct z3fold_buddy_slots * slots,enum buddy bud)457 static unsigned long __encode_handle(struct z3fold_header *zhdr,
458 struct z3fold_buddy_slots *slots,
459 enum buddy bud)
460 {
461 unsigned long h = (unsigned long)zhdr;
462 int idx = 0;
463
464 /*
465 * For a headless page, its handle is its pointer with the extra
466 * PAGE_HEADLESS bit set
467 */
468 if (bud == HEADLESS)
469 return h | (1 << PAGE_HEADLESS);
470
471 /* otherwise, return pointer to encoded handle */
472 idx = __idx(zhdr, bud);
473 h += idx;
474 if (bud == LAST)
475 h |= (zhdr->last_chunks << BUDDY_SHIFT);
476
477 write_lock(&slots->lock);
478 slots->slot[idx] = h;
479 write_unlock(&slots->lock);
480 return (unsigned long)&slots->slot[idx];
481 }
482
encode_handle(struct z3fold_header * zhdr,enum buddy bud)483 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
484 {
485 return __encode_handle(zhdr, zhdr->slots, bud);
486 }
487
488 /* only for LAST bud, returns zero otherwise */
handle_to_chunks(unsigned long handle)489 static unsigned short handle_to_chunks(unsigned long handle)
490 {
491 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
492 unsigned long addr;
493
494 read_lock(&slots->lock);
495 addr = *(unsigned long *)handle;
496 read_unlock(&slots->lock);
497 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
498 }
499
500 /*
501 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
502 * but that doesn't matter. because the masking will result in the
503 * correct buddy number.
504 */
handle_to_buddy(unsigned long handle)505 static enum buddy handle_to_buddy(unsigned long handle)
506 {
507 struct z3fold_header *zhdr;
508 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
509 unsigned long addr;
510
511 read_lock(&slots->lock);
512 WARN_ON(handle & (1 << PAGE_HEADLESS));
513 addr = *(unsigned long *)handle;
514 read_unlock(&slots->lock);
515 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
516 return (addr - zhdr->first_num) & BUDDY_MASK;
517 }
518
zhdr_to_pool(struct z3fold_header * zhdr)519 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
520 {
521 return zhdr->pool;
522 }
523
__release_z3fold_page(struct z3fold_header * zhdr,bool locked)524 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
525 {
526 struct page *page = virt_to_page(zhdr);
527 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
528 bool is_free = true;
529 int i;
530
531 WARN_ON(!list_empty(&zhdr->buddy));
532 set_bit(PAGE_STALE, &page->private);
533 clear_bit(NEEDS_COMPACTING, &page->private);
534 spin_lock(&pool->lock);
535 if (!list_empty(&page->lru))
536 list_del_init(&page->lru);
537 spin_unlock(&pool->lock);
538
539 /* If there are no foreign handles, free the handles array */
540 read_lock(&zhdr->slots->lock);
541 for (i = 0; i <= BUDDY_MASK; i++) {
542 if (zhdr->slots->slot[i]) {
543 is_free = false;
544 break;
545 }
546 }
547 if (!is_free)
548 set_bit(HANDLES_ORPHANED, &zhdr->slots->pool);
549 read_unlock(&zhdr->slots->lock);
550
551 if (is_free)
552 kmem_cache_free(pool->c_handle, zhdr->slots);
553
554 if (locked)
555 z3fold_page_unlock(zhdr);
556
557 spin_lock(&pool->stale_lock);
558 list_add(&zhdr->buddy, &pool->stale);
559 queue_work(pool->release_wq, &pool->work);
560 spin_unlock(&pool->stale_lock);
561 }
562
563 static void __attribute__((__unused__))
release_z3fold_page(struct kref * ref)564 release_z3fold_page(struct kref *ref)
565 {
566 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
567 refcount);
568 __release_z3fold_page(zhdr, false);
569 }
570
release_z3fold_page_locked(struct kref * ref)571 static void release_z3fold_page_locked(struct kref *ref)
572 {
573 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
574 refcount);
575 WARN_ON(z3fold_page_trylock(zhdr));
576 __release_z3fold_page(zhdr, true);
577 }
578
release_z3fold_page_locked_list(struct kref * ref)579 static void release_z3fold_page_locked_list(struct kref *ref)
580 {
581 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
582 refcount);
583 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
584
585 spin_lock(&pool->lock);
586 list_del_init(&zhdr->buddy);
587 spin_unlock(&pool->lock);
588
589 WARN_ON(z3fold_page_trylock(zhdr));
590 __release_z3fold_page(zhdr, true);
591 }
592
free_pages_work(struct work_struct * w)593 static void free_pages_work(struct work_struct *w)
594 {
595 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
596
597 spin_lock(&pool->stale_lock);
598 while (!list_empty(&pool->stale)) {
599 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
600 struct z3fold_header, buddy);
601 struct page *page = virt_to_page(zhdr);
602
603 list_del(&zhdr->buddy);
604 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
605 continue;
606 spin_unlock(&pool->stale_lock);
607 cancel_work_sync(&zhdr->work);
608 free_z3fold_page(page, false);
609 cond_resched();
610 spin_lock(&pool->stale_lock);
611 }
612 spin_unlock(&pool->stale_lock);
613 }
614
615 /*
616 * Returns the number of free chunks in a z3fold page.
617 * NB: can't be used with HEADLESS pages.
618 */
num_free_chunks(struct z3fold_header * zhdr)619 static int num_free_chunks(struct z3fold_header *zhdr)
620 {
621 int nfree;
622 /*
623 * If there is a middle object, pick up the bigger free space
624 * either before or after it. Otherwise just subtract the number
625 * of chunks occupied by the first and the last objects.
626 */
627 if (zhdr->middle_chunks != 0) {
628 int nfree_before = zhdr->first_chunks ?
629 0 : zhdr->start_middle - ZHDR_CHUNKS;
630 int nfree_after = zhdr->last_chunks ?
631 0 : TOTAL_CHUNKS -
632 (zhdr->start_middle + zhdr->middle_chunks);
633 nfree = max(nfree_before, nfree_after);
634 } else
635 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
636 return nfree;
637 }
638
639 /* Add to the appropriate unbuddied list */
add_to_unbuddied(struct z3fold_pool * pool,struct z3fold_header * zhdr)640 static inline void add_to_unbuddied(struct z3fold_pool *pool,
641 struct z3fold_header *zhdr)
642 {
643 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
644 zhdr->middle_chunks == 0) {
645 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
646
647 int freechunks = num_free_chunks(zhdr);
648 spin_lock(&pool->lock);
649 list_add(&zhdr->buddy, &unbuddied[freechunks]);
650 spin_unlock(&pool->lock);
651 zhdr->cpu = smp_processor_id();
652 put_cpu_ptr(pool->unbuddied);
653 }
654 }
655
mchunk_memmove(struct z3fold_header * zhdr,unsigned short dst_chunk)656 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
657 unsigned short dst_chunk)
658 {
659 void *beg = zhdr;
660 return memmove(beg + (dst_chunk << CHUNK_SHIFT),
661 beg + (zhdr->start_middle << CHUNK_SHIFT),
662 zhdr->middle_chunks << CHUNK_SHIFT);
663 }
664
buddy_single(struct z3fold_header * zhdr)665 static inline bool buddy_single(struct z3fold_header *zhdr)
666 {
667 return !((zhdr->first_chunks && zhdr->middle_chunks) ||
668 (zhdr->first_chunks && zhdr->last_chunks) ||
669 (zhdr->middle_chunks && zhdr->last_chunks));
670 }
671
compact_single_buddy(struct z3fold_header * zhdr)672 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
673 {
674 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
675 void *p = zhdr;
676 unsigned long old_handle = 0;
677 size_t sz = 0;
678 struct z3fold_header *new_zhdr = NULL;
679 int first_idx = __idx(zhdr, FIRST);
680 int middle_idx = __idx(zhdr, MIDDLE);
681 int last_idx = __idx(zhdr, LAST);
682 unsigned short *moved_chunks = NULL;
683
684 /*
685 * No need to protect slots here -- all the slots are "local" and
686 * the page lock is already taken
687 */
688 if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
689 p += ZHDR_SIZE_ALIGNED;
690 sz = zhdr->first_chunks << CHUNK_SHIFT;
691 old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
692 moved_chunks = &zhdr->first_chunks;
693 } else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
694 p += zhdr->start_middle << CHUNK_SHIFT;
695 sz = zhdr->middle_chunks << CHUNK_SHIFT;
696 old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
697 moved_chunks = &zhdr->middle_chunks;
698 } else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
699 p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
700 sz = zhdr->last_chunks << CHUNK_SHIFT;
701 old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
702 moved_chunks = &zhdr->last_chunks;
703 }
704
705 if (sz > 0) {
706 enum buddy new_bud = HEADLESS;
707 short chunks = size_to_chunks(sz);
708 void *q;
709
710 new_zhdr = __z3fold_alloc(pool, sz, false);
711 if (!new_zhdr)
712 return NULL;
713
714 if (WARN_ON(new_zhdr == zhdr))
715 goto out_fail;
716
717 if (new_zhdr->first_chunks == 0) {
718 if (new_zhdr->middle_chunks != 0 &&
719 chunks >= new_zhdr->start_middle) {
720 new_bud = LAST;
721 } else {
722 new_bud = FIRST;
723 }
724 } else if (new_zhdr->last_chunks == 0) {
725 new_bud = LAST;
726 } else if (new_zhdr->middle_chunks == 0) {
727 new_bud = MIDDLE;
728 }
729 q = new_zhdr;
730 switch (new_bud) {
731 case FIRST:
732 new_zhdr->first_chunks = chunks;
733 q += ZHDR_SIZE_ALIGNED;
734 break;
735 case MIDDLE:
736 new_zhdr->middle_chunks = chunks;
737 new_zhdr->start_middle =
738 new_zhdr->first_chunks + ZHDR_CHUNKS;
739 q += new_zhdr->start_middle << CHUNK_SHIFT;
740 break;
741 case LAST:
742 new_zhdr->last_chunks = chunks;
743 q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
744 break;
745 default:
746 goto out_fail;
747 }
748 new_zhdr->foreign_handles++;
749 memcpy(q, p, sz);
750 write_lock(&zhdr->slots->lock);
751 *(unsigned long *)old_handle = (unsigned long)new_zhdr +
752 __idx(new_zhdr, new_bud);
753 if (new_bud == LAST)
754 *(unsigned long *)old_handle |=
755 (new_zhdr->last_chunks << BUDDY_SHIFT);
756 write_unlock(&zhdr->slots->lock);
757 add_to_unbuddied(pool, new_zhdr);
758 z3fold_page_unlock(new_zhdr);
759
760 *moved_chunks = 0;
761 }
762
763 return new_zhdr;
764
765 out_fail:
766 if (new_zhdr) {
767 if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
768 atomic64_dec(&pool->pages_nr);
769 else {
770 add_to_unbuddied(pool, new_zhdr);
771 z3fold_page_unlock(new_zhdr);
772 }
773 }
774 return NULL;
775
776 }
777
778 #define BIG_CHUNK_GAP 3
779 /* Has to be called with lock held */
z3fold_compact_page(struct z3fold_header * zhdr)780 static int z3fold_compact_page(struct z3fold_header *zhdr)
781 {
782 struct page *page = virt_to_page(zhdr);
783
784 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
785 return 0; /* can't move middle chunk, it's used */
786
787 if (unlikely(PageIsolated(page)))
788 return 0;
789
790 if (zhdr->middle_chunks == 0)
791 return 0; /* nothing to compact */
792
793 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
794 /* move to the beginning */
795 mchunk_memmove(zhdr, ZHDR_CHUNKS);
796 zhdr->first_chunks = zhdr->middle_chunks;
797 zhdr->middle_chunks = 0;
798 zhdr->start_middle = 0;
799 zhdr->first_num++;
800 return 1;
801 }
802
803 /*
804 * moving data is expensive, so let's only do that if
805 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
806 */
807 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
808 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
809 BIG_CHUNK_GAP) {
810 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
811 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
812 return 1;
813 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
814 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
815 + zhdr->middle_chunks) >=
816 BIG_CHUNK_GAP) {
817 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
818 zhdr->middle_chunks;
819 mchunk_memmove(zhdr, new_start);
820 zhdr->start_middle = new_start;
821 return 1;
822 }
823
824 return 0;
825 }
826
do_compact_page(struct z3fold_header * zhdr,bool locked)827 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
828 {
829 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
830 struct page *page;
831
832 page = virt_to_page(zhdr);
833 if (locked)
834 WARN_ON(z3fold_page_trylock(zhdr));
835 else
836 z3fold_page_lock(zhdr);
837 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
838 z3fold_page_unlock(zhdr);
839 return;
840 }
841 spin_lock(&pool->lock);
842 list_del_init(&zhdr->buddy);
843 spin_unlock(&pool->lock);
844
845 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
846 atomic64_dec(&pool->pages_nr);
847 return;
848 }
849
850 if (unlikely(PageIsolated(page) ||
851 test_bit(PAGE_CLAIMED, &page->private) ||
852 test_bit(PAGE_STALE, &page->private))) {
853 z3fold_page_unlock(zhdr);
854 return;
855 }
856
857 if (!zhdr->foreign_handles && buddy_single(zhdr) &&
858 zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
859 if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
860 atomic64_dec(&pool->pages_nr);
861 else
862 z3fold_page_unlock(zhdr);
863 return;
864 }
865
866 z3fold_compact_page(zhdr);
867 add_to_unbuddied(pool, zhdr);
868 z3fold_page_unlock(zhdr);
869 }
870
compact_page_work(struct work_struct * w)871 static void compact_page_work(struct work_struct *w)
872 {
873 struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
874 work);
875
876 do_compact_page(zhdr, false);
877 }
878
879 /* returns _locked_ z3fold page header or NULL */
__z3fold_alloc(struct z3fold_pool * pool,size_t size,bool can_sleep)880 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
881 size_t size, bool can_sleep)
882 {
883 struct z3fold_header *zhdr = NULL;
884 struct page *page;
885 struct list_head *unbuddied;
886 int chunks = size_to_chunks(size), i;
887
888 lookup:
889 /* First, try to find an unbuddied z3fold page. */
890 unbuddied = get_cpu_ptr(pool->unbuddied);
891 for_each_unbuddied_list(i, chunks) {
892 struct list_head *l = &unbuddied[i];
893
894 zhdr = list_first_entry_or_null(READ_ONCE(l),
895 struct z3fold_header, buddy);
896
897 if (!zhdr)
898 continue;
899
900 /* Re-check under lock. */
901 spin_lock(&pool->lock);
902 l = &unbuddied[i];
903 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
904 struct z3fold_header, buddy)) ||
905 !z3fold_page_trylock(zhdr)) {
906 spin_unlock(&pool->lock);
907 zhdr = NULL;
908 put_cpu_ptr(pool->unbuddied);
909 if (can_sleep)
910 cond_resched();
911 goto lookup;
912 }
913 list_del_init(&zhdr->buddy);
914 zhdr->cpu = -1;
915 spin_unlock(&pool->lock);
916
917 page = virt_to_page(zhdr);
918 if (test_bit(NEEDS_COMPACTING, &page->private) ||
919 test_bit(PAGE_CLAIMED, &page->private)) {
920 z3fold_page_unlock(zhdr);
921 zhdr = NULL;
922 put_cpu_ptr(pool->unbuddied);
923 if (can_sleep)
924 cond_resched();
925 goto lookup;
926 }
927
928 /*
929 * this page could not be removed from its unbuddied
930 * list while pool lock was held, and then we've taken
931 * page lock so kref_put could not be called before
932 * we got here, so it's safe to just call kref_get()
933 */
934 kref_get(&zhdr->refcount);
935 break;
936 }
937 put_cpu_ptr(pool->unbuddied);
938
939 if (!zhdr) {
940 int cpu;
941
942 /* look for _exact_ match on other cpus' lists */
943 for_each_online_cpu(cpu) {
944 struct list_head *l;
945
946 unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
947 spin_lock(&pool->lock);
948 l = &unbuddied[chunks];
949
950 zhdr = list_first_entry_or_null(READ_ONCE(l),
951 struct z3fold_header, buddy);
952
953 if (!zhdr || !z3fold_page_trylock(zhdr)) {
954 spin_unlock(&pool->lock);
955 zhdr = NULL;
956 continue;
957 }
958 list_del_init(&zhdr->buddy);
959 zhdr->cpu = -1;
960 spin_unlock(&pool->lock);
961
962 page = virt_to_page(zhdr);
963 if (test_bit(NEEDS_COMPACTING, &page->private) ||
964 test_bit(PAGE_CLAIMED, &page->private)) {
965 z3fold_page_unlock(zhdr);
966 zhdr = NULL;
967 if (can_sleep)
968 cond_resched();
969 continue;
970 }
971 kref_get(&zhdr->refcount);
972 break;
973 }
974 }
975
976 return zhdr;
977 }
978
979 /*
980 * API Functions
981 */
982
983 /**
984 * z3fold_create_pool() - create a new z3fold pool
985 * @name: pool name
986 * @gfp: gfp flags when allocating the z3fold pool structure
987 * @ops: user-defined operations for the z3fold pool
988 *
989 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
990 * failed.
991 */
z3fold_create_pool(const char * name,gfp_t gfp,const struct z3fold_ops * ops)992 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
993 const struct z3fold_ops *ops)
994 {
995 struct z3fold_pool *pool = NULL;
996 int i, cpu;
997
998 pool = kzalloc(sizeof(struct z3fold_pool), gfp);
999 if (!pool)
1000 goto out;
1001 pool->c_handle = kmem_cache_create("z3fold_handle",
1002 sizeof(struct z3fold_buddy_slots),
1003 SLOTS_ALIGN, 0, NULL);
1004 if (!pool->c_handle)
1005 goto out_c;
1006 spin_lock_init(&pool->lock);
1007 spin_lock_init(&pool->stale_lock);
1008 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1009 if (!pool->unbuddied)
1010 goto out_pool;
1011 for_each_possible_cpu(cpu) {
1012 struct list_head *unbuddied =
1013 per_cpu_ptr(pool->unbuddied, cpu);
1014 for_each_unbuddied_list(i, 0)
1015 INIT_LIST_HEAD(&unbuddied[i]);
1016 }
1017 INIT_LIST_HEAD(&pool->lru);
1018 INIT_LIST_HEAD(&pool->stale);
1019 atomic64_set(&pool->pages_nr, 0);
1020 pool->name = name;
1021 pool->compact_wq = create_singlethread_workqueue(pool->name);
1022 if (!pool->compact_wq)
1023 goto out_unbuddied;
1024 pool->release_wq = create_singlethread_workqueue(pool->name);
1025 if (!pool->release_wq)
1026 goto out_wq;
1027 if (z3fold_register_migration(pool))
1028 goto out_rwq;
1029 INIT_WORK(&pool->work, free_pages_work);
1030 pool->ops = ops;
1031 return pool;
1032
1033 out_rwq:
1034 destroy_workqueue(pool->release_wq);
1035 out_wq:
1036 destroy_workqueue(pool->compact_wq);
1037 out_unbuddied:
1038 free_percpu(pool->unbuddied);
1039 out_pool:
1040 kmem_cache_destroy(pool->c_handle);
1041 out_c:
1042 kfree(pool);
1043 out:
1044 return NULL;
1045 }
1046
1047 /**
1048 * z3fold_destroy_pool() - destroys an existing z3fold pool
1049 * @pool: the z3fold pool to be destroyed
1050 *
1051 * The pool should be emptied before this function is called.
1052 */
z3fold_destroy_pool(struct z3fold_pool * pool)1053 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1054 {
1055 kmem_cache_destroy(pool->c_handle);
1056
1057 /*
1058 * We need to destroy pool->compact_wq before pool->release_wq,
1059 * as any pending work on pool->compact_wq will call
1060 * queue_work(pool->release_wq, &pool->work).
1061 *
1062 * There are still outstanding pages until both workqueues are drained,
1063 * so we cannot unregister migration until then.
1064 */
1065
1066 destroy_workqueue(pool->compact_wq);
1067 destroy_workqueue(pool->release_wq);
1068 z3fold_unregister_migration(pool);
1069 kfree(pool);
1070 }
1071
1072 /**
1073 * z3fold_alloc() - allocates a region of a given size
1074 * @pool: z3fold pool from which to allocate
1075 * @size: size in bytes of the desired allocation
1076 * @gfp: gfp flags used if the pool needs to grow
1077 * @handle: handle of the new allocation
1078 *
1079 * This function will attempt to find a free region in the pool large enough to
1080 * satisfy the allocation request. A search of the unbuddied lists is
1081 * performed first. If no suitable free region is found, then a new page is
1082 * allocated and added to the pool to satisfy the request.
1083 *
1084 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1085 * as z3fold pool pages.
1086 *
1087 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1088 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1089 * a new page.
1090 */
z3fold_alloc(struct z3fold_pool * pool,size_t size,gfp_t gfp,unsigned long * handle)1091 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1092 unsigned long *handle)
1093 {
1094 int chunks = size_to_chunks(size);
1095 struct z3fold_header *zhdr = NULL;
1096 struct page *page = NULL;
1097 enum buddy bud;
1098 bool can_sleep = gfpflags_allow_blocking(gfp);
1099
1100 if (!size)
1101 return -EINVAL;
1102
1103 if (size > PAGE_SIZE)
1104 return -ENOSPC;
1105
1106 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1107 bud = HEADLESS;
1108 else {
1109 retry:
1110 zhdr = __z3fold_alloc(pool, size, can_sleep);
1111 if (zhdr) {
1112 if (zhdr->first_chunks == 0) {
1113 if (zhdr->middle_chunks != 0 &&
1114 chunks >= zhdr->start_middle)
1115 bud = LAST;
1116 else
1117 bud = FIRST;
1118 } else if (zhdr->last_chunks == 0)
1119 bud = LAST;
1120 else if (zhdr->middle_chunks == 0)
1121 bud = MIDDLE;
1122 else {
1123 if (kref_put(&zhdr->refcount,
1124 release_z3fold_page_locked))
1125 atomic64_dec(&pool->pages_nr);
1126 else
1127 z3fold_page_unlock(zhdr);
1128 pr_err("No free chunks in unbuddied\n");
1129 WARN_ON(1);
1130 goto retry;
1131 }
1132 page = virt_to_page(zhdr);
1133 goto found;
1134 }
1135 bud = FIRST;
1136 }
1137
1138 page = NULL;
1139 if (can_sleep) {
1140 spin_lock(&pool->stale_lock);
1141 zhdr = list_first_entry_or_null(&pool->stale,
1142 struct z3fold_header, buddy);
1143 /*
1144 * Before allocating a page, let's see if we can take one from
1145 * the stale pages list. cancel_work_sync() can sleep so we
1146 * limit this case to the contexts where we can sleep
1147 */
1148 if (zhdr) {
1149 list_del(&zhdr->buddy);
1150 spin_unlock(&pool->stale_lock);
1151 cancel_work_sync(&zhdr->work);
1152 page = virt_to_page(zhdr);
1153 } else {
1154 spin_unlock(&pool->stale_lock);
1155 }
1156 }
1157 if (!page)
1158 page = alloc_page(gfp);
1159
1160 if (!page)
1161 return -ENOMEM;
1162
1163 zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1164 if (!zhdr) {
1165 __free_page(page);
1166 return -ENOMEM;
1167 }
1168 atomic64_inc(&pool->pages_nr);
1169
1170 if (bud == HEADLESS) {
1171 set_bit(PAGE_HEADLESS, &page->private);
1172 goto headless;
1173 }
1174 if (can_sleep) {
1175 lock_page(page);
1176 __SetPageMovable(page, pool->inode->i_mapping);
1177 unlock_page(page);
1178 } else {
1179 if (trylock_page(page)) {
1180 __SetPageMovable(page, pool->inode->i_mapping);
1181 unlock_page(page);
1182 }
1183 }
1184 z3fold_page_lock(zhdr);
1185
1186 found:
1187 if (bud == FIRST)
1188 zhdr->first_chunks = chunks;
1189 else if (bud == LAST)
1190 zhdr->last_chunks = chunks;
1191 else {
1192 zhdr->middle_chunks = chunks;
1193 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1194 }
1195 add_to_unbuddied(pool, zhdr);
1196
1197 headless:
1198 spin_lock(&pool->lock);
1199 /* Add/move z3fold page to beginning of LRU */
1200 if (!list_empty(&page->lru))
1201 list_del(&page->lru);
1202
1203 list_add(&page->lru, &pool->lru);
1204
1205 *handle = encode_handle(zhdr, bud);
1206 spin_unlock(&pool->lock);
1207 if (bud != HEADLESS)
1208 z3fold_page_unlock(zhdr);
1209
1210 return 0;
1211 }
1212
1213 /**
1214 * z3fold_free() - frees the allocation associated with the given handle
1215 * @pool: pool in which the allocation resided
1216 * @handle: handle associated with the allocation returned by z3fold_alloc()
1217 *
1218 * In the case that the z3fold page in which the allocation resides is under
1219 * reclaim, as indicated by the PG_reclaim flag being set, this function
1220 * only sets the first|last_chunks to 0. The page is actually freed
1221 * once both buddies are evicted (see z3fold_reclaim_page() below).
1222 */
z3fold_free(struct z3fold_pool * pool,unsigned long handle)1223 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1224 {
1225 struct z3fold_header *zhdr;
1226 struct page *page;
1227 enum buddy bud;
1228 bool page_claimed;
1229
1230 zhdr = get_z3fold_header(handle);
1231 page = virt_to_page(zhdr);
1232 page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1233
1234 if (test_bit(PAGE_HEADLESS, &page->private)) {
1235 /* if a headless page is under reclaim, just leave.
1236 * NB: we use test_and_set_bit for a reason: if the bit
1237 * has not been set before, we release this page
1238 * immediately so we don't care about its value any more.
1239 */
1240 if (!page_claimed) {
1241 spin_lock(&pool->lock);
1242 list_del(&page->lru);
1243 spin_unlock(&pool->lock);
1244 put_z3fold_header(zhdr);
1245 free_z3fold_page(page, true);
1246 atomic64_dec(&pool->pages_nr);
1247 }
1248 return;
1249 }
1250
1251 /* Non-headless case */
1252 bud = handle_to_buddy(handle);
1253
1254 switch (bud) {
1255 case FIRST:
1256 zhdr->first_chunks = 0;
1257 break;
1258 case MIDDLE:
1259 zhdr->middle_chunks = 0;
1260 break;
1261 case LAST:
1262 zhdr->last_chunks = 0;
1263 break;
1264 default:
1265 pr_err("%s: unknown bud %d\n", __func__, bud);
1266 WARN_ON(1);
1267 put_z3fold_header(zhdr);
1268 clear_bit(PAGE_CLAIMED, &page->private);
1269 return;
1270 }
1271
1272 if (!page_claimed)
1273 free_handle(handle);
1274 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1275 atomic64_dec(&pool->pages_nr);
1276 return;
1277 }
1278 if (page_claimed) {
1279 /* the page has not been claimed by us */
1280 z3fold_page_unlock(zhdr);
1281 return;
1282 }
1283 if (unlikely(PageIsolated(page)) ||
1284 test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1285 put_z3fold_header(zhdr);
1286 clear_bit(PAGE_CLAIMED, &page->private);
1287 return;
1288 }
1289 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1290 spin_lock(&pool->lock);
1291 list_del_init(&zhdr->buddy);
1292 spin_unlock(&pool->lock);
1293 zhdr->cpu = -1;
1294 kref_get(&zhdr->refcount);
1295 clear_bit(PAGE_CLAIMED, &page->private);
1296 do_compact_page(zhdr, true);
1297 return;
1298 }
1299 kref_get(&zhdr->refcount);
1300 clear_bit(PAGE_CLAIMED, &page->private);
1301 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1302 put_z3fold_header(zhdr);
1303 }
1304
1305 /**
1306 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1307 * @pool: pool from which a page will attempt to be evicted
1308 * @retries: number of pages on the LRU list for which eviction will
1309 * be attempted before failing
1310 *
1311 * z3fold reclaim is different from normal system reclaim in that it is done
1312 * from the bottom, up. This is because only the bottom layer, z3fold, has
1313 * information on how the allocations are organized within each z3fold page.
1314 * This has the potential to create interesting locking situations between
1315 * z3fold and the user, however.
1316 *
1317 * To avoid these, this is how z3fold_reclaim_page() should be called:
1318 *
1319 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1320 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1321 * call the user-defined eviction handler with the pool and handle as
1322 * arguments.
1323 *
1324 * If the handle can not be evicted, the eviction handler should return
1325 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1326 * appropriate list and try the next z3fold page on the LRU up to
1327 * a user defined number of retries.
1328 *
1329 * If the handle is successfully evicted, the eviction handler should
1330 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1331 * contains logic to delay freeing the page if the page is under reclaim,
1332 * as indicated by the setting of the PG_reclaim flag on the underlying page.
1333 *
1334 * If all buddies in the z3fold page are successfully evicted, then the
1335 * z3fold page can be freed.
1336 *
1337 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1338 * no pages to evict or an eviction handler is not registered, -EAGAIN if
1339 * the retry limit was hit.
1340 */
z3fold_reclaim_page(struct z3fold_pool * pool,unsigned int retries)1341 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1342 {
1343 int i, ret = -1;
1344 struct z3fold_header *zhdr = NULL;
1345 struct page *page = NULL;
1346 struct list_head *pos;
1347 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1348
1349 spin_lock(&pool->lock);
1350 if (!pool->ops || !pool->ops->evict || retries == 0) {
1351 spin_unlock(&pool->lock);
1352 return -EINVAL;
1353 }
1354 for (i = 0; i < retries; i++) {
1355 if (list_empty(&pool->lru)) {
1356 spin_unlock(&pool->lock);
1357 return -EINVAL;
1358 }
1359 list_for_each_prev(pos, &pool->lru) {
1360 page = list_entry(pos, struct page, lru);
1361
1362 /* this bit could have been set by free, in which case
1363 * we pass over to the next page in the pool.
1364 */
1365 if (test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1366 page = NULL;
1367 continue;
1368 }
1369
1370 if (unlikely(PageIsolated(page))) {
1371 clear_bit(PAGE_CLAIMED, &page->private);
1372 page = NULL;
1373 continue;
1374 }
1375 zhdr = page_address(page);
1376 if (test_bit(PAGE_HEADLESS, &page->private))
1377 break;
1378
1379 if (!z3fold_page_trylock(zhdr)) {
1380 clear_bit(PAGE_CLAIMED, &page->private);
1381 zhdr = NULL;
1382 continue; /* can't evict at this point */
1383 }
1384 if (zhdr->foreign_handles) {
1385 clear_bit(PAGE_CLAIMED, &page->private);
1386 z3fold_page_unlock(zhdr);
1387 zhdr = NULL;
1388 continue; /* can't evict such page */
1389 }
1390 kref_get(&zhdr->refcount);
1391 list_del_init(&zhdr->buddy);
1392 zhdr->cpu = -1;
1393 break;
1394 }
1395
1396 if (!zhdr)
1397 break;
1398
1399 list_del_init(&page->lru);
1400 spin_unlock(&pool->lock);
1401
1402 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1403 /*
1404 * We need encode the handles before unlocking, and
1405 * use our local slots structure because z3fold_free
1406 * can zero out zhdr->slots and we can't do much
1407 * about that
1408 */
1409 first_handle = 0;
1410 last_handle = 0;
1411 middle_handle = 0;
1412 if (zhdr->first_chunks)
1413 first_handle = encode_handle(zhdr, FIRST);
1414 if (zhdr->middle_chunks)
1415 middle_handle = encode_handle(zhdr, MIDDLE);
1416 if (zhdr->last_chunks)
1417 last_handle = encode_handle(zhdr, LAST);
1418 /*
1419 * it's safe to unlock here because we hold a
1420 * reference to this page
1421 */
1422 z3fold_page_unlock(zhdr);
1423 } else {
1424 first_handle = encode_handle(zhdr, HEADLESS);
1425 last_handle = middle_handle = 0;
1426 }
1427 /* Issue the eviction callback(s) */
1428 if (middle_handle) {
1429 ret = pool->ops->evict(pool, middle_handle);
1430 if (ret)
1431 goto next;
1432 free_handle(middle_handle);
1433 }
1434 if (first_handle) {
1435 ret = pool->ops->evict(pool, first_handle);
1436 if (ret)
1437 goto next;
1438 free_handle(first_handle);
1439 }
1440 if (last_handle) {
1441 ret = pool->ops->evict(pool, last_handle);
1442 if (ret)
1443 goto next;
1444 free_handle(last_handle);
1445 }
1446 next:
1447 if (test_bit(PAGE_HEADLESS, &page->private)) {
1448 if (ret == 0) {
1449 free_z3fold_page(page, true);
1450 atomic64_dec(&pool->pages_nr);
1451 return 0;
1452 }
1453 spin_lock(&pool->lock);
1454 list_add(&page->lru, &pool->lru);
1455 spin_unlock(&pool->lock);
1456 clear_bit(PAGE_CLAIMED, &page->private);
1457 } else {
1458 z3fold_page_lock(zhdr);
1459 if (kref_put(&zhdr->refcount,
1460 release_z3fold_page_locked)) {
1461 atomic64_dec(&pool->pages_nr);
1462 return 0;
1463 }
1464 /*
1465 * if we are here, the page is still not completely
1466 * free. Take the global pool lock then to be able
1467 * to add it back to the lru list
1468 */
1469 spin_lock(&pool->lock);
1470 list_add(&page->lru, &pool->lru);
1471 spin_unlock(&pool->lock);
1472 z3fold_page_unlock(zhdr);
1473 clear_bit(PAGE_CLAIMED, &page->private);
1474 }
1475
1476 /* We started off locked to we need to lock the pool back */
1477 spin_lock(&pool->lock);
1478 }
1479 spin_unlock(&pool->lock);
1480 return -EAGAIN;
1481 }
1482
1483 /**
1484 * z3fold_map() - maps the allocation associated with the given handle
1485 * @pool: pool in which the allocation resides
1486 * @handle: handle associated with the allocation to be mapped
1487 *
1488 * Extracts the buddy number from handle and constructs the pointer to the
1489 * correct starting chunk within the page.
1490 *
1491 * Returns: a pointer to the mapped allocation
1492 */
z3fold_map(struct z3fold_pool * pool,unsigned long handle)1493 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1494 {
1495 struct z3fold_header *zhdr;
1496 struct page *page;
1497 void *addr;
1498 enum buddy buddy;
1499
1500 zhdr = get_z3fold_header(handle);
1501 addr = zhdr;
1502 page = virt_to_page(zhdr);
1503
1504 if (test_bit(PAGE_HEADLESS, &page->private))
1505 goto out;
1506
1507 buddy = handle_to_buddy(handle);
1508 switch (buddy) {
1509 case FIRST:
1510 addr += ZHDR_SIZE_ALIGNED;
1511 break;
1512 case MIDDLE:
1513 addr += zhdr->start_middle << CHUNK_SHIFT;
1514 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1515 break;
1516 case LAST:
1517 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1518 break;
1519 default:
1520 pr_err("unknown buddy id %d\n", buddy);
1521 WARN_ON(1);
1522 addr = NULL;
1523 break;
1524 }
1525
1526 if (addr)
1527 zhdr->mapped_count++;
1528 out:
1529 put_z3fold_header(zhdr);
1530 return addr;
1531 }
1532
1533 /**
1534 * z3fold_unmap() - unmaps the allocation associated with the given handle
1535 * @pool: pool in which the allocation resides
1536 * @handle: handle associated with the allocation to be unmapped
1537 */
z3fold_unmap(struct z3fold_pool * pool,unsigned long handle)1538 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1539 {
1540 struct z3fold_header *zhdr;
1541 struct page *page;
1542 enum buddy buddy;
1543
1544 zhdr = get_z3fold_header(handle);
1545 page = virt_to_page(zhdr);
1546
1547 if (test_bit(PAGE_HEADLESS, &page->private))
1548 return;
1549
1550 buddy = handle_to_buddy(handle);
1551 if (buddy == MIDDLE)
1552 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1553 zhdr->mapped_count--;
1554 put_z3fold_header(zhdr);
1555 }
1556
1557 /**
1558 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1559 * @pool: pool whose size is being queried
1560 *
1561 * Returns: size in pages of the given pool.
1562 */
z3fold_get_pool_size(struct z3fold_pool * pool)1563 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1564 {
1565 return atomic64_read(&pool->pages_nr);
1566 }
1567
z3fold_page_isolate(struct page * page,isolate_mode_t mode)1568 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1569 {
1570 struct z3fold_header *zhdr;
1571 struct z3fold_pool *pool;
1572
1573 VM_BUG_ON_PAGE(!PageMovable(page), page);
1574 VM_BUG_ON_PAGE(PageIsolated(page), page);
1575
1576 if (test_bit(PAGE_HEADLESS, &page->private) ||
1577 test_bit(PAGE_CLAIMED, &page->private))
1578 return false;
1579
1580 zhdr = page_address(page);
1581 z3fold_page_lock(zhdr);
1582 if (test_bit(NEEDS_COMPACTING, &page->private) ||
1583 test_bit(PAGE_STALE, &page->private))
1584 goto out;
1585
1586 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1587 goto out;
1588
1589 pool = zhdr_to_pool(zhdr);
1590 spin_lock(&pool->lock);
1591 if (!list_empty(&zhdr->buddy))
1592 list_del_init(&zhdr->buddy);
1593 if (!list_empty(&page->lru))
1594 list_del_init(&page->lru);
1595 spin_unlock(&pool->lock);
1596
1597 kref_get(&zhdr->refcount);
1598 z3fold_page_unlock(zhdr);
1599 return true;
1600
1601 out:
1602 z3fold_page_unlock(zhdr);
1603 return false;
1604 }
1605
z3fold_page_migrate(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1606 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1607 struct page *page, enum migrate_mode mode)
1608 {
1609 struct z3fold_header *zhdr, *new_zhdr;
1610 struct z3fold_pool *pool;
1611 struct address_space *new_mapping;
1612
1613 VM_BUG_ON_PAGE(!PageMovable(page), page);
1614 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1615 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1616
1617 zhdr = page_address(page);
1618 pool = zhdr_to_pool(zhdr);
1619
1620 if (!z3fold_page_trylock(zhdr)) {
1621 return -EAGAIN;
1622 }
1623 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1624 z3fold_page_unlock(zhdr);
1625 return -EBUSY;
1626 }
1627 if (work_pending(&zhdr->work)) {
1628 z3fold_page_unlock(zhdr);
1629 return -EAGAIN;
1630 }
1631 new_zhdr = page_address(newpage);
1632 memcpy(new_zhdr, zhdr, PAGE_SIZE);
1633 newpage->private = page->private;
1634 page->private = 0;
1635 z3fold_page_unlock(zhdr);
1636 spin_lock_init(&new_zhdr->page_lock);
1637 INIT_WORK(&new_zhdr->work, compact_page_work);
1638 /*
1639 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1640 * so we only have to reinitialize it.
1641 */
1642 INIT_LIST_HEAD(&new_zhdr->buddy);
1643 new_mapping = page_mapping(page);
1644 __ClearPageMovable(page);
1645 ClearPagePrivate(page);
1646
1647 get_page(newpage);
1648 z3fold_page_lock(new_zhdr);
1649 if (new_zhdr->first_chunks)
1650 encode_handle(new_zhdr, FIRST);
1651 if (new_zhdr->last_chunks)
1652 encode_handle(new_zhdr, LAST);
1653 if (new_zhdr->middle_chunks)
1654 encode_handle(new_zhdr, MIDDLE);
1655 set_bit(NEEDS_COMPACTING, &newpage->private);
1656 new_zhdr->cpu = smp_processor_id();
1657 spin_lock(&pool->lock);
1658 list_add(&newpage->lru, &pool->lru);
1659 spin_unlock(&pool->lock);
1660 __SetPageMovable(newpage, new_mapping);
1661 z3fold_page_unlock(new_zhdr);
1662
1663 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1664
1665 page_mapcount_reset(page);
1666 put_page(page);
1667 return 0;
1668 }
1669
z3fold_page_putback(struct page * page)1670 static void z3fold_page_putback(struct page *page)
1671 {
1672 struct z3fold_header *zhdr;
1673 struct z3fold_pool *pool;
1674
1675 zhdr = page_address(page);
1676 pool = zhdr_to_pool(zhdr);
1677
1678 z3fold_page_lock(zhdr);
1679 if (!list_empty(&zhdr->buddy))
1680 list_del_init(&zhdr->buddy);
1681 INIT_LIST_HEAD(&page->lru);
1682 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1683 atomic64_dec(&pool->pages_nr);
1684 return;
1685 }
1686 spin_lock(&pool->lock);
1687 list_add(&page->lru, &pool->lru);
1688 spin_unlock(&pool->lock);
1689 z3fold_page_unlock(zhdr);
1690 }
1691
1692 static const struct address_space_operations z3fold_aops = {
1693 .isolate_page = z3fold_page_isolate,
1694 .migratepage = z3fold_page_migrate,
1695 .putback_page = z3fold_page_putback,
1696 };
1697
1698 /*****************
1699 * zpool
1700 ****************/
1701
z3fold_zpool_evict(struct z3fold_pool * pool,unsigned long handle)1702 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1703 {
1704 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1705 return pool->zpool_ops->evict(pool->zpool, handle);
1706 else
1707 return -ENOENT;
1708 }
1709
1710 static const struct z3fold_ops z3fold_zpool_ops = {
1711 .evict = z3fold_zpool_evict
1712 };
1713
z3fold_zpool_create(const char * name,gfp_t gfp,const struct zpool_ops * zpool_ops,struct zpool * zpool)1714 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1715 const struct zpool_ops *zpool_ops,
1716 struct zpool *zpool)
1717 {
1718 struct z3fold_pool *pool;
1719
1720 pool = z3fold_create_pool(name, gfp,
1721 zpool_ops ? &z3fold_zpool_ops : NULL);
1722 if (pool) {
1723 pool->zpool = zpool;
1724 pool->zpool_ops = zpool_ops;
1725 }
1726 return pool;
1727 }
1728
z3fold_zpool_destroy(void * pool)1729 static void z3fold_zpool_destroy(void *pool)
1730 {
1731 z3fold_destroy_pool(pool);
1732 }
1733
z3fold_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)1734 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1735 unsigned long *handle)
1736 {
1737 return z3fold_alloc(pool, size, gfp, handle);
1738 }
z3fold_zpool_free(void * pool,unsigned long handle)1739 static void z3fold_zpool_free(void *pool, unsigned long handle)
1740 {
1741 z3fold_free(pool, handle);
1742 }
1743
z3fold_zpool_shrink(void * pool,unsigned int pages,unsigned int * reclaimed)1744 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1745 unsigned int *reclaimed)
1746 {
1747 unsigned int total = 0;
1748 int ret = -EINVAL;
1749
1750 while (total < pages) {
1751 ret = z3fold_reclaim_page(pool, 8);
1752 if (ret < 0)
1753 break;
1754 total++;
1755 }
1756
1757 if (reclaimed)
1758 *reclaimed = total;
1759
1760 return ret;
1761 }
1762
z3fold_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)1763 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1764 enum zpool_mapmode mm)
1765 {
1766 return z3fold_map(pool, handle);
1767 }
z3fold_zpool_unmap(void * pool,unsigned long handle)1768 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1769 {
1770 z3fold_unmap(pool, handle);
1771 }
1772
z3fold_zpool_total_size(void * pool)1773 static u64 z3fold_zpool_total_size(void *pool)
1774 {
1775 return z3fold_get_pool_size(pool) * PAGE_SIZE;
1776 }
1777
1778 static struct zpool_driver z3fold_zpool_driver = {
1779 .type = "z3fold",
1780 .owner = THIS_MODULE,
1781 .create = z3fold_zpool_create,
1782 .destroy = z3fold_zpool_destroy,
1783 .malloc = z3fold_zpool_malloc,
1784 .free = z3fold_zpool_free,
1785 .shrink = z3fold_zpool_shrink,
1786 .map = z3fold_zpool_map,
1787 .unmap = z3fold_zpool_unmap,
1788 .total_size = z3fold_zpool_total_size,
1789 };
1790
1791 MODULE_ALIAS("zpool-z3fold");
1792
init_z3fold(void)1793 static int __init init_z3fold(void)
1794 {
1795 int ret;
1796
1797 /* Make sure the z3fold header is not larger than the page size */
1798 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1799 ret = z3fold_mount();
1800 if (ret)
1801 return ret;
1802
1803 zpool_register_driver(&z3fold_zpool_driver);
1804
1805 return 0;
1806 }
1807
exit_z3fold(void)1808 static void __exit exit_z3fold(void)
1809 {
1810 z3fold_unmount();
1811 zpool_unregister_driver(&z3fold_zpool_driver);
1812 }
1813
1814 module_init(init_z3fold);
1815 module_exit(exit_z3fold);
1816
1817 MODULE_LICENSE("GPL");
1818 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1819 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1820