1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * z3fold.c
4  *
5  * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6  * Copyright (C) 2016, Sony Mobile Communications Inc.
7  *
8  * This implementation is based on zbud written by Seth Jennings.
9  *
10  * z3fold is an special purpose allocator for storing compressed pages. It
11  * can store up to three compressed pages per page which improves the
12  * compression ratio of zbud while retaining its main concepts (e. g. always
13  * storing an integral number of objects per page) and simplicity.
14  * It still has simple and deterministic reclaim properties that make it
15  * preferable to a higher density approach (with no requirement on integral
16  * number of object per page) when reclaim is used.
17  *
18  * As in zbud, pages are divided into "chunks".  The size of the chunks is
19  * fixed at compile time and is determined by NCHUNKS_ORDER below.
20  *
21  * z3fold doesn't export any API and is meant to be used via zpool API.
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 #include <linux/kmemleak.h>
47 
48 /*
49  * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50  * adjusting internal fragmentation.  It also determines the number of
51  * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52  * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53  * in the beginning of an allocated page are occupied by z3fold header, so
54  * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55  * which shows the max number of free chunks in z3fold page, also there will
56  * be 63, or 62, respectively, freelists per pool.
57  */
58 #define NCHUNKS_ORDER	6
59 
60 #define CHUNK_SHIFT	(PAGE_SHIFT - NCHUNKS_ORDER)
61 #define CHUNK_SIZE	(1 << CHUNK_SHIFT)
62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63 #define ZHDR_CHUNKS	(ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64 #define TOTAL_CHUNKS	(PAGE_SIZE >> CHUNK_SHIFT)
65 #define NCHUNKS		((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
66 
67 #define BUDDY_MASK	(0x3)
68 #define BUDDY_SHIFT	2
69 #define SLOTS_ALIGN	(0x40)
70 
71 /*****************
72  * Structures
73 *****************/
74 struct z3fold_pool;
75 struct z3fold_ops {
76 	int (*evict)(struct z3fold_pool *pool, unsigned long handle);
77 };
78 
79 enum buddy {
80 	HEADLESS = 0,
81 	FIRST,
82 	MIDDLE,
83 	LAST,
84 	BUDDIES_MAX = LAST
85 };
86 
87 struct z3fold_buddy_slots {
88 	/*
89 	 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90 	 * be enough slots to hold all possible variants
91 	 */
92 	unsigned long slot[BUDDY_MASK + 1];
93 	unsigned long pool; /* back link + flags */
94 	rwlock_t lock;
95 };
96 #define HANDLE_FLAG_MASK	(0x03)
97 
98 /*
99  * struct z3fold_header - z3fold page metadata occupying first chunks of each
100  *			z3fold page, except for HEADLESS pages
101  * @buddy:		links the z3fold page into the relevant list in the
102  *			pool
103  * @page_lock:		per-page lock
104  * @refcount:		reference count for the z3fold page
105  * @work:		work_struct for page layout optimization
106  * @slots:		pointer to the structure holding buddy slots
107  * @pool:		pointer to the containing pool
108  * @cpu:		CPU which this page "belongs" to
109  * @first_chunks:	the size of the first buddy in chunks, 0 if free
110  * @middle_chunks:	the size of the middle buddy in chunks, 0 if free
111  * @last_chunks:	the size of the last buddy in chunks, 0 if free
112  * @first_num:		the starting number (for the first handle)
113  * @mapped_count:	the number of objects currently mapped
114  */
115 struct z3fold_header {
116 	struct list_head buddy;
117 	spinlock_t page_lock;
118 	struct kref refcount;
119 	struct work_struct work;
120 	struct z3fold_buddy_slots *slots;
121 	struct z3fold_pool *pool;
122 	short cpu;
123 	unsigned short first_chunks;
124 	unsigned short middle_chunks;
125 	unsigned short last_chunks;
126 	unsigned short start_middle;
127 	unsigned short first_num:2;
128 	unsigned short mapped_count:2;
129 	unsigned short foreign_handles:2;
130 };
131 
132 /**
133  * struct z3fold_pool - stores metadata for each z3fold pool
134  * @name:	pool name
135  * @lock:	protects pool unbuddied/lru lists
136  * @stale_lock:	protects pool stale page list
137  * @unbuddied:	per-cpu array of lists tracking z3fold pages that contain 2-
138  *		buddies; the list each z3fold page is added to depends on
139  *		the size of its free region.
140  * @lru:	list tracking the z3fold pages in LRU order by most recently
141  *		added buddy.
142  * @stale:	list of pages marked for freeing
143  * @pages_nr:	number of z3fold pages in the pool.
144  * @c_handle:	cache for z3fold_buddy_slots allocation
145  * @ops:	pointer to a structure of user defined operations specified at
146  *		pool creation time.
147  * @compact_wq:	workqueue for page layout background optimization
148  * @release_wq:	workqueue for safe page release
149  * @work:	work_struct for safe page release
150  * @inode:	inode for z3fold pseudo filesystem
151  *
152  * This structure is allocated at pool creation time and maintains metadata
153  * pertaining to a particular z3fold pool.
154  */
155 struct z3fold_pool {
156 	const char *name;
157 	spinlock_t lock;
158 	spinlock_t stale_lock;
159 	struct list_head *unbuddied;
160 	struct list_head lru;
161 	struct list_head stale;
162 	atomic64_t pages_nr;
163 	struct kmem_cache *c_handle;
164 	const struct z3fold_ops *ops;
165 	struct zpool *zpool;
166 	const struct zpool_ops *zpool_ops;
167 	struct workqueue_struct *compact_wq;
168 	struct workqueue_struct *release_wq;
169 	struct work_struct work;
170 	struct inode *inode;
171 };
172 
173 /*
174  * Internal z3fold page flags
175  */
176 enum z3fold_page_flags {
177 	PAGE_HEADLESS = 0,
178 	MIDDLE_CHUNK_MAPPED,
179 	NEEDS_COMPACTING,
180 	PAGE_STALE,
181 	PAGE_CLAIMED, /* by either reclaim or free */
182 };
183 
184 /*
185  * handle flags, go under HANDLE_FLAG_MASK
186  */
187 enum z3fold_handle_flags {
188 	HANDLES_ORPHANED = 0,
189 };
190 
191 /*
192  * Forward declarations
193  */
194 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
195 static void compact_page_work(struct work_struct *w);
196 
197 /*****************
198  * Helpers
199 *****************/
200 
201 /* Converts an allocation size in bytes to size in z3fold chunks */
size_to_chunks(size_t size)202 static int size_to_chunks(size_t size)
203 {
204 	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
205 }
206 
207 #define for_each_unbuddied_list(_iter, _begin) \
208 	for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
209 
alloc_slots(struct z3fold_pool * pool,gfp_t gfp)210 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
211 							gfp_t gfp)
212 {
213 	struct z3fold_buddy_slots *slots;
214 
215 	slots = kmem_cache_zalloc(pool->c_handle,
216 				 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
217 
218 	if (slots) {
219 		/* It will be freed separately in free_handle(). */
220 		kmemleak_not_leak(slots);
221 		slots->pool = (unsigned long)pool;
222 		rwlock_init(&slots->lock);
223 	}
224 
225 	return slots;
226 }
227 
slots_to_pool(struct z3fold_buddy_slots * s)228 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
229 {
230 	return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
231 }
232 
handle_to_slots(unsigned long handle)233 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
234 {
235 	return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
236 }
237 
238 /* Lock a z3fold page */
z3fold_page_lock(struct z3fold_header * zhdr)239 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
240 {
241 	spin_lock(&zhdr->page_lock);
242 }
243 
244 /* Try to lock a z3fold page */
z3fold_page_trylock(struct z3fold_header * zhdr)245 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
246 {
247 	return spin_trylock(&zhdr->page_lock);
248 }
249 
250 /* Unlock a z3fold page */
z3fold_page_unlock(struct z3fold_header * zhdr)251 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
252 {
253 	spin_unlock(&zhdr->page_lock);
254 }
255 
256 
__get_z3fold_header(unsigned long handle,bool lock)257 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
258 							bool lock)
259 {
260 	struct z3fold_buddy_slots *slots;
261 	struct z3fold_header *zhdr;
262 	int locked = 0;
263 
264 	if (!(handle & (1 << PAGE_HEADLESS))) {
265 		slots = handle_to_slots(handle);
266 		do {
267 			unsigned long addr;
268 
269 			read_lock(&slots->lock);
270 			addr = *(unsigned long *)handle;
271 			zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
272 			if (lock)
273 				locked = z3fold_page_trylock(zhdr);
274 			read_unlock(&slots->lock);
275 			if (locked)
276 				break;
277 			cpu_relax();
278 		} while (lock);
279 	} else {
280 		zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
281 	}
282 
283 	return zhdr;
284 }
285 
286 /* Returns the z3fold page where a given handle is stored */
handle_to_z3fold_header(unsigned long h)287 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
288 {
289 	return __get_z3fold_header(h, false);
290 }
291 
292 /* return locked z3fold page if it's not headless */
get_z3fold_header(unsigned long h)293 static inline struct z3fold_header *get_z3fold_header(unsigned long h)
294 {
295 	return __get_z3fold_header(h, true);
296 }
297 
put_z3fold_header(struct z3fold_header * zhdr)298 static inline void put_z3fold_header(struct z3fold_header *zhdr)
299 {
300 	struct page *page = virt_to_page(zhdr);
301 
302 	if (!test_bit(PAGE_HEADLESS, &page->private))
303 		z3fold_page_unlock(zhdr);
304 }
305 
free_handle(unsigned long handle)306 static inline void free_handle(unsigned long handle)
307 {
308 	struct z3fold_buddy_slots *slots;
309 	struct z3fold_header *zhdr;
310 	int i;
311 	bool is_free;
312 
313 	if (handle & (1 << PAGE_HEADLESS))
314 		return;
315 
316 	if (WARN_ON(*(unsigned long *)handle == 0))
317 		return;
318 
319 	zhdr = handle_to_z3fold_header(handle);
320 	slots = handle_to_slots(handle);
321 	write_lock(&slots->lock);
322 	*(unsigned long *)handle = 0;
323 	if (zhdr->slots == slots) {
324 		write_unlock(&slots->lock);
325 		return; /* simple case, nothing else to do */
326 	}
327 
328 	/* we are freeing a foreign handle if we are here */
329 	zhdr->foreign_handles--;
330 	is_free = true;
331 	if (!test_bit(HANDLES_ORPHANED, &slots->pool)) {
332 		write_unlock(&slots->lock);
333 		return;
334 	}
335 	for (i = 0; i <= BUDDY_MASK; i++) {
336 		if (slots->slot[i]) {
337 			is_free = false;
338 			break;
339 		}
340 	}
341 	write_unlock(&slots->lock);
342 
343 	if (is_free) {
344 		struct z3fold_pool *pool = slots_to_pool(slots);
345 
346 		kmem_cache_free(pool->c_handle, slots);
347 	}
348 }
349 
z3fold_init_fs_context(struct fs_context * fc)350 static int z3fold_init_fs_context(struct fs_context *fc)
351 {
352 	return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
353 }
354 
355 static struct file_system_type z3fold_fs = {
356 	.name		= "z3fold",
357 	.init_fs_context = z3fold_init_fs_context,
358 	.kill_sb	= kill_anon_super,
359 };
360 
361 static struct vfsmount *z3fold_mnt;
z3fold_mount(void)362 static int z3fold_mount(void)
363 {
364 	int ret = 0;
365 
366 	z3fold_mnt = kern_mount(&z3fold_fs);
367 	if (IS_ERR(z3fold_mnt))
368 		ret = PTR_ERR(z3fold_mnt);
369 
370 	return ret;
371 }
372 
z3fold_unmount(void)373 static void z3fold_unmount(void)
374 {
375 	kern_unmount(z3fold_mnt);
376 }
377 
378 static const struct address_space_operations z3fold_aops;
z3fold_register_migration(struct z3fold_pool * pool)379 static int z3fold_register_migration(struct z3fold_pool *pool)
380 {
381 	pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
382 	if (IS_ERR(pool->inode)) {
383 		pool->inode = NULL;
384 		return 1;
385 	}
386 
387 	pool->inode->i_mapping->private_data = pool;
388 	pool->inode->i_mapping->a_ops = &z3fold_aops;
389 	return 0;
390 }
391 
z3fold_unregister_migration(struct z3fold_pool * pool)392 static void z3fold_unregister_migration(struct z3fold_pool *pool)
393 {
394 	if (pool->inode)
395 		iput(pool->inode);
396  }
397 
398 /* Initializes the z3fold header of a newly allocated z3fold page */
init_z3fold_page(struct page * page,bool headless,struct z3fold_pool * pool,gfp_t gfp)399 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
400 					struct z3fold_pool *pool, gfp_t gfp)
401 {
402 	struct z3fold_header *zhdr = page_address(page);
403 	struct z3fold_buddy_slots *slots;
404 
405 	INIT_LIST_HEAD(&page->lru);
406 	clear_bit(PAGE_HEADLESS, &page->private);
407 	clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
408 	clear_bit(NEEDS_COMPACTING, &page->private);
409 	clear_bit(PAGE_STALE, &page->private);
410 	clear_bit(PAGE_CLAIMED, &page->private);
411 	if (headless)
412 		return zhdr;
413 
414 	slots = alloc_slots(pool, gfp);
415 	if (!slots)
416 		return NULL;
417 
418 	spin_lock_init(&zhdr->page_lock);
419 	kref_init(&zhdr->refcount);
420 	zhdr->first_chunks = 0;
421 	zhdr->middle_chunks = 0;
422 	zhdr->last_chunks = 0;
423 	zhdr->first_num = 0;
424 	zhdr->start_middle = 0;
425 	zhdr->cpu = -1;
426 	zhdr->foreign_handles = 0;
427 	zhdr->mapped_count = 0;
428 	zhdr->slots = slots;
429 	zhdr->pool = pool;
430 	INIT_LIST_HEAD(&zhdr->buddy);
431 	INIT_WORK(&zhdr->work, compact_page_work);
432 	return zhdr;
433 }
434 
435 /* Resets the struct page fields and frees the page */
free_z3fold_page(struct page * page,bool headless)436 static void free_z3fold_page(struct page *page, bool headless)
437 {
438 	if (!headless) {
439 		lock_page(page);
440 		__ClearPageMovable(page);
441 		unlock_page(page);
442 	}
443 	ClearPagePrivate(page);
444 	__free_page(page);
445 }
446 
447 /* Helper function to build the index */
__idx(struct z3fold_header * zhdr,enum buddy bud)448 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
449 {
450 	return (bud + zhdr->first_num) & BUDDY_MASK;
451 }
452 
453 /*
454  * Encodes the handle of a particular buddy within a z3fold page
455  * Pool lock should be held as this function accesses first_num
456  */
__encode_handle(struct z3fold_header * zhdr,struct z3fold_buddy_slots * slots,enum buddy bud)457 static unsigned long __encode_handle(struct z3fold_header *zhdr,
458 				struct z3fold_buddy_slots *slots,
459 				enum buddy bud)
460 {
461 	unsigned long h = (unsigned long)zhdr;
462 	int idx = 0;
463 
464 	/*
465 	 * For a headless page, its handle is its pointer with the extra
466 	 * PAGE_HEADLESS bit set
467 	 */
468 	if (bud == HEADLESS)
469 		return h | (1 << PAGE_HEADLESS);
470 
471 	/* otherwise, return pointer to encoded handle */
472 	idx = __idx(zhdr, bud);
473 	h += idx;
474 	if (bud == LAST)
475 		h |= (zhdr->last_chunks << BUDDY_SHIFT);
476 
477 	write_lock(&slots->lock);
478 	slots->slot[idx] = h;
479 	write_unlock(&slots->lock);
480 	return (unsigned long)&slots->slot[idx];
481 }
482 
encode_handle(struct z3fold_header * zhdr,enum buddy bud)483 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
484 {
485 	return __encode_handle(zhdr, zhdr->slots, bud);
486 }
487 
488 /* only for LAST bud, returns zero otherwise */
handle_to_chunks(unsigned long handle)489 static unsigned short handle_to_chunks(unsigned long handle)
490 {
491 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
492 	unsigned long addr;
493 
494 	read_lock(&slots->lock);
495 	addr = *(unsigned long *)handle;
496 	read_unlock(&slots->lock);
497 	return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
498 }
499 
500 /*
501  * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
502  *  but that doesn't matter. because the masking will result in the
503  *  correct buddy number.
504  */
handle_to_buddy(unsigned long handle)505 static enum buddy handle_to_buddy(unsigned long handle)
506 {
507 	struct z3fold_header *zhdr;
508 	struct z3fold_buddy_slots *slots = handle_to_slots(handle);
509 	unsigned long addr;
510 
511 	read_lock(&slots->lock);
512 	WARN_ON(handle & (1 << PAGE_HEADLESS));
513 	addr = *(unsigned long *)handle;
514 	read_unlock(&slots->lock);
515 	zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
516 	return (addr - zhdr->first_num) & BUDDY_MASK;
517 }
518 
zhdr_to_pool(struct z3fold_header * zhdr)519 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
520 {
521 	return zhdr->pool;
522 }
523 
__release_z3fold_page(struct z3fold_header * zhdr,bool locked)524 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
525 {
526 	struct page *page = virt_to_page(zhdr);
527 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
528 	bool is_free = true;
529 	int i;
530 
531 	WARN_ON(!list_empty(&zhdr->buddy));
532 	set_bit(PAGE_STALE, &page->private);
533 	clear_bit(NEEDS_COMPACTING, &page->private);
534 	spin_lock(&pool->lock);
535 	if (!list_empty(&page->lru))
536 		list_del_init(&page->lru);
537 	spin_unlock(&pool->lock);
538 
539 	/* If there are no foreign handles, free the handles array */
540 	read_lock(&zhdr->slots->lock);
541 	for (i = 0; i <= BUDDY_MASK; i++) {
542 		if (zhdr->slots->slot[i]) {
543 			is_free = false;
544 			break;
545 		}
546 	}
547 	if (!is_free)
548 		set_bit(HANDLES_ORPHANED, &zhdr->slots->pool);
549 	read_unlock(&zhdr->slots->lock);
550 
551 	if (is_free)
552 		kmem_cache_free(pool->c_handle, zhdr->slots);
553 
554 	if (locked)
555 		z3fold_page_unlock(zhdr);
556 
557 	spin_lock(&pool->stale_lock);
558 	list_add(&zhdr->buddy, &pool->stale);
559 	queue_work(pool->release_wq, &pool->work);
560 	spin_unlock(&pool->stale_lock);
561 }
562 
563 static void __attribute__((__unused__))
release_z3fold_page(struct kref * ref)564 			release_z3fold_page(struct kref *ref)
565 {
566 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
567 						refcount);
568 	__release_z3fold_page(zhdr, false);
569 }
570 
release_z3fold_page_locked(struct kref * ref)571 static void release_z3fold_page_locked(struct kref *ref)
572 {
573 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
574 						refcount);
575 	WARN_ON(z3fold_page_trylock(zhdr));
576 	__release_z3fold_page(zhdr, true);
577 }
578 
release_z3fold_page_locked_list(struct kref * ref)579 static void release_z3fold_page_locked_list(struct kref *ref)
580 {
581 	struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
582 					       refcount);
583 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
584 
585 	spin_lock(&pool->lock);
586 	list_del_init(&zhdr->buddy);
587 	spin_unlock(&pool->lock);
588 
589 	WARN_ON(z3fold_page_trylock(zhdr));
590 	__release_z3fold_page(zhdr, true);
591 }
592 
free_pages_work(struct work_struct * w)593 static void free_pages_work(struct work_struct *w)
594 {
595 	struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
596 
597 	spin_lock(&pool->stale_lock);
598 	while (!list_empty(&pool->stale)) {
599 		struct z3fold_header *zhdr = list_first_entry(&pool->stale,
600 						struct z3fold_header, buddy);
601 		struct page *page = virt_to_page(zhdr);
602 
603 		list_del(&zhdr->buddy);
604 		if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
605 			continue;
606 		spin_unlock(&pool->stale_lock);
607 		cancel_work_sync(&zhdr->work);
608 		free_z3fold_page(page, false);
609 		cond_resched();
610 		spin_lock(&pool->stale_lock);
611 	}
612 	spin_unlock(&pool->stale_lock);
613 }
614 
615 /*
616  * Returns the number of free chunks in a z3fold page.
617  * NB: can't be used with HEADLESS pages.
618  */
num_free_chunks(struct z3fold_header * zhdr)619 static int num_free_chunks(struct z3fold_header *zhdr)
620 {
621 	int nfree;
622 	/*
623 	 * If there is a middle object, pick up the bigger free space
624 	 * either before or after it. Otherwise just subtract the number
625 	 * of chunks occupied by the first and the last objects.
626 	 */
627 	if (zhdr->middle_chunks != 0) {
628 		int nfree_before = zhdr->first_chunks ?
629 			0 : zhdr->start_middle - ZHDR_CHUNKS;
630 		int nfree_after = zhdr->last_chunks ?
631 			0 : TOTAL_CHUNKS -
632 				(zhdr->start_middle + zhdr->middle_chunks);
633 		nfree = max(nfree_before, nfree_after);
634 	} else
635 		nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
636 	return nfree;
637 }
638 
639 /* Add to the appropriate unbuddied list */
add_to_unbuddied(struct z3fold_pool * pool,struct z3fold_header * zhdr)640 static inline void add_to_unbuddied(struct z3fold_pool *pool,
641 				struct z3fold_header *zhdr)
642 {
643 	if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
644 			zhdr->middle_chunks == 0) {
645 		struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
646 
647 		int freechunks = num_free_chunks(zhdr);
648 		spin_lock(&pool->lock);
649 		list_add(&zhdr->buddy, &unbuddied[freechunks]);
650 		spin_unlock(&pool->lock);
651 		zhdr->cpu = smp_processor_id();
652 		put_cpu_ptr(pool->unbuddied);
653 	}
654 }
655 
mchunk_memmove(struct z3fold_header * zhdr,unsigned short dst_chunk)656 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
657 				unsigned short dst_chunk)
658 {
659 	void *beg = zhdr;
660 	return memmove(beg + (dst_chunk << CHUNK_SHIFT),
661 		       beg + (zhdr->start_middle << CHUNK_SHIFT),
662 		       zhdr->middle_chunks << CHUNK_SHIFT);
663 }
664 
buddy_single(struct z3fold_header * zhdr)665 static inline bool buddy_single(struct z3fold_header *zhdr)
666 {
667 	return !((zhdr->first_chunks && zhdr->middle_chunks) ||
668 			(zhdr->first_chunks && zhdr->last_chunks) ||
669 			(zhdr->middle_chunks && zhdr->last_chunks));
670 }
671 
compact_single_buddy(struct z3fold_header * zhdr)672 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
673 {
674 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
675 	void *p = zhdr;
676 	unsigned long old_handle = 0;
677 	size_t sz = 0;
678 	struct z3fold_header *new_zhdr = NULL;
679 	int first_idx = __idx(zhdr, FIRST);
680 	int middle_idx = __idx(zhdr, MIDDLE);
681 	int last_idx = __idx(zhdr, LAST);
682 	unsigned short *moved_chunks = NULL;
683 
684 	/*
685 	 * No need to protect slots here -- all the slots are "local" and
686 	 * the page lock is already taken
687 	 */
688 	if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
689 		p += ZHDR_SIZE_ALIGNED;
690 		sz = zhdr->first_chunks << CHUNK_SHIFT;
691 		old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
692 		moved_chunks = &zhdr->first_chunks;
693 	} else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
694 		p += zhdr->start_middle << CHUNK_SHIFT;
695 		sz = zhdr->middle_chunks << CHUNK_SHIFT;
696 		old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
697 		moved_chunks = &zhdr->middle_chunks;
698 	} else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
699 		p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
700 		sz = zhdr->last_chunks << CHUNK_SHIFT;
701 		old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
702 		moved_chunks = &zhdr->last_chunks;
703 	}
704 
705 	if (sz > 0) {
706 		enum buddy new_bud = HEADLESS;
707 		short chunks = size_to_chunks(sz);
708 		void *q;
709 
710 		new_zhdr = __z3fold_alloc(pool, sz, false);
711 		if (!new_zhdr)
712 			return NULL;
713 
714 		if (WARN_ON(new_zhdr == zhdr))
715 			goto out_fail;
716 
717 		if (new_zhdr->first_chunks == 0) {
718 			if (new_zhdr->middle_chunks != 0 &&
719 					chunks >= new_zhdr->start_middle) {
720 				new_bud = LAST;
721 			} else {
722 				new_bud = FIRST;
723 			}
724 		} else if (new_zhdr->last_chunks == 0) {
725 			new_bud = LAST;
726 		} else if (new_zhdr->middle_chunks == 0) {
727 			new_bud = MIDDLE;
728 		}
729 		q = new_zhdr;
730 		switch (new_bud) {
731 		case FIRST:
732 			new_zhdr->first_chunks = chunks;
733 			q += ZHDR_SIZE_ALIGNED;
734 			break;
735 		case MIDDLE:
736 			new_zhdr->middle_chunks = chunks;
737 			new_zhdr->start_middle =
738 				new_zhdr->first_chunks + ZHDR_CHUNKS;
739 			q += new_zhdr->start_middle << CHUNK_SHIFT;
740 			break;
741 		case LAST:
742 			new_zhdr->last_chunks = chunks;
743 			q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
744 			break;
745 		default:
746 			goto out_fail;
747 		}
748 		new_zhdr->foreign_handles++;
749 		memcpy(q, p, sz);
750 		write_lock(&zhdr->slots->lock);
751 		*(unsigned long *)old_handle = (unsigned long)new_zhdr +
752 			__idx(new_zhdr, new_bud);
753 		if (new_bud == LAST)
754 			*(unsigned long *)old_handle |=
755 					(new_zhdr->last_chunks << BUDDY_SHIFT);
756 		write_unlock(&zhdr->slots->lock);
757 		add_to_unbuddied(pool, new_zhdr);
758 		z3fold_page_unlock(new_zhdr);
759 
760 		*moved_chunks = 0;
761 	}
762 
763 	return new_zhdr;
764 
765 out_fail:
766 	if (new_zhdr) {
767 		if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
768 			atomic64_dec(&pool->pages_nr);
769 		else {
770 			add_to_unbuddied(pool, new_zhdr);
771 			z3fold_page_unlock(new_zhdr);
772 		}
773 	}
774 	return NULL;
775 
776 }
777 
778 #define BIG_CHUNK_GAP	3
779 /* Has to be called with lock held */
z3fold_compact_page(struct z3fold_header * zhdr)780 static int z3fold_compact_page(struct z3fold_header *zhdr)
781 {
782 	struct page *page = virt_to_page(zhdr);
783 
784 	if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
785 		return 0; /* can't move middle chunk, it's used */
786 
787 	if (unlikely(PageIsolated(page)))
788 		return 0;
789 
790 	if (zhdr->middle_chunks == 0)
791 		return 0; /* nothing to compact */
792 
793 	if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
794 		/* move to the beginning */
795 		mchunk_memmove(zhdr, ZHDR_CHUNKS);
796 		zhdr->first_chunks = zhdr->middle_chunks;
797 		zhdr->middle_chunks = 0;
798 		zhdr->start_middle = 0;
799 		zhdr->first_num++;
800 		return 1;
801 	}
802 
803 	/*
804 	 * moving data is expensive, so let's only do that if
805 	 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
806 	 */
807 	if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
808 	    zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
809 			BIG_CHUNK_GAP) {
810 		mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
811 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
812 		return 1;
813 	} else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
814 		   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
815 					+ zhdr->middle_chunks) >=
816 			BIG_CHUNK_GAP) {
817 		unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
818 			zhdr->middle_chunks;
819 		mchunk_memmove(zhdr, new_start);
820 		zhdr->start_middle = new_start;
821 		return 1;
822 	}
823 
824 	return 0;
825 }
826 
do_compact_page(struct z3fold_header * zhdr,bool locked)827 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
828 {
829 	struct z3fold_pool *pool = zhdr_to_pool(zhdr);
830 	struct page *page;
831 
832 	page = virt_to_page(zhdr);
833 	if (locked)
834 		WARN_ON(z3fold_page_trylock(zhdr));
835 	else
836 		z3fold_page_lock(zhdr);
837 	if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
838 		z3fold_page_unlock(zhdr);
839 		return;
840 	}
841 	spin_lock(&pool->lock);
842 	list_del_init(&zhdr->buddy);
843 	spin_unlock(&pool->lock);
844 
845 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
846 		atomic64_dec(&pool->pages_nr);
847 		return;
848 	}
849 
850 	if (unlikely(PageIsolated(page) ||
851 		     test_bit(PAGE_CLAIMED, &page->private) ||
852 		     test_bit(PAGE_STALE, &page->private))) {
853 		z3fold_page_unlock(zhdr);
854 		return;
855 	}
856 
857 	if (!zhdr->foreign_handles && buddy_single(zhdr) &&
858 	    zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
859 		if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
860 			atomic64_dec(&pool->pages_nr);
861 		else
862 			z3fold_page_unlock(zhdr);
863 		return;
864 	}
865 
866 	z3fold_compact_page(zhdr);
867 	add_to_unbuddied(pool, zhdr);
868 	z3fold_page_unlock(zhdr);
869 }
870 
compact_page_work(struct work_struct * w)871 static void compact_page_work(struct work_struct *w)
872 {
873 	struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
874 						work);
875 
876 	do_compact_page(zhdr, false);
877 }
878 
879 /* returns _locked_ z3fold page header or NULL */
__z3fold_alloc(struct z3fold_pool * pool,size_t size,bool can_sleep)880 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
881 						size_t size, bool can_sleep)
882 {
883 	struct z3fold_header *zhdr = NULL;
884 	struct page *page;
885 	struct list_head *unbuddied;
886 	int chunks = size_to_chunks(size), i;
887 
888 lookup:
889 	/* First, try to find an unbuddied z3fold page. */
890 	unbuddied = get_cpu_ptr(pool->unbuddied);
891 	for_each_unbuddied_list(i, chunks) {
892 		struct list_head *l = &unbuddied[i];
893 
894 		zhdr = list_first_entry_or_null(READ_ONCE(l),
895 					struct z3fold_header, buddy);
896 
897 		if (!zhdr)
898 			continue;
899 
900 		/* Re-check under lock. */
901 		spin_lock(&pool->lock);
902 		l = &unbuddied[i];
903 		if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
904 						struct z3fold_header, buddy)) ||
905 		    !z3fold_page_trylock(zhdr)) {
906 			spin_unlock(&pool->lock);
907 			zhdr = NULL;
908 			put_cpu_ptr(pool->unbuddied);
909 			if (can_sleep)
910 				cond_resched();
911 			goto lookup;
912 		}
913 		list_del_init(&zhdr->buddy);
914 		zhdr->cpu = -1;
915 		spin_unlock(&pool->lock);
916 
917 		page = virt_to_page(zhdr);
918 		if (test_bit(NEEDS_COMPACTING, &page->private) ||
919 		    test_bit(PAGE_CLAIMED, &page->private)) {
920 			z3fold_page_unlock(zhdr);
921 			zhdr = NULL;
922 			put_cpu_ptr(pool->unbuddied);
923 			if (can_sleep)
924 				cond_resched();
925 			goto lookup;
926 		}
927 
928 		/*
929 		 * this page could not be removed from its unbuddied
930 		 * list while pool lock was held, and then we've taken
931 		 * page lock so kref_put could not be called before
932 		 * we got here, so it's safe to just call kref_get()
933 		 */
934 		kref_get(&zhdr->refcount);
935 		break;
936 	}
937 	put_cpu_ptr(pool->unbuddied);
938 
939 	if (!zhdr) {
940 		int cpu;
941 
942 		/* look for _exact_ match on other cpus' lists */
943 		for_each_online_cpu(cpu) {
944 			struct list_head *l;
945 
946 			unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
947 			spin_lock(&pool->lock);
948 			l = &unbuddied[chunks];
949 
950 			zhdr = list_first_entry_or_null(READ_ONCE(l),
951 						struct z3fold_header, buddy);
952 
953 			if (!zhdr || !z3fold_page_trylock(zhdr)) {
954 				spin_unlock(&pool->lock);
955 				zhdr = NULL;
956 				continue;
957 			}
958 			list_del_init(&zhdr->buddy);
959 			zhdr->cpu = -1;
960 			spin_unlock(&pool->lock);
961 
962 			page = virt_to_page(zhdr);
963 			if (test_bit(NEEDS_COMPACTING, &page->private) ||
964 			    test_bit(PAGE_CLAIMED, &page->private)) {
965 				z3fold_page_unlock(zhdr);
966 				zhdr = NULL;
967 				if (can_sleep)
968 					cond_resched();
969 				continue;
970 			}
971 			kref_get(&zhdr->refcount);
972 			break;
973 		}
974 	}
975 
976 	return zhdr;
977 }
978 
979 /*
980  * API Functions
981  */
982 
983 /**
984  * z3fold_create_pool() - create a new z3fold pool
985  * @name:	pool name
986  * @gfp:	gfp flags when allocating the z3fold pool structure
987  * @ops:	user-defined operations for the z3fold pool
988  *
989  * Return: pointer to the new z3fold pool or NULL if the metadata allocation
990  * failed.
991  */
z3fold_create_pool(const char * name,gfp_t gfp,const struct z3fold_ops * ops)992 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
993 		const struct z3fold_ops *ops)
994 {
995 	struct z3fold_pool *pool = NULL;
996 	int i, cpu;
997 
998 	pool = kzalloc(sizeof(struct z3fold_pool), gfp);
999 	if (!pool)
1000 		goto out;
1001 	pool->c_handle = kmem_cache_create("z3fold_handle",
1002 				sizeof(struct z3fold_buddy_slots),
1003 				SLOTS_ALIGN, 0, NULL);
1004 	if (!pool->c_handle)
1005 		goto out_c;
1006 	spin_lock_init(&pool->lock);
1007 	spin_lock_init(&pool->stale_lock);
1008 	pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1009 	if (!pool->unbuddied)
1010 		goto out_pool;
1011 	for_each_possible_cpu(cpu) {
1012 		struct list_head *unbuddied =
1013 				per_cpu_ptr(pool->unbuddied, cpu);
1014 		for_each_unbuddied_list(i, 0)
1015 			INIT_LIST_HEAD(&unbuddied[i]);
1016 	}
1017 	INIT_LIST_HEAD(&pool->lru);
1018 	INIT_LIST_HEAD(&pool->stale);
1019 	atomic64_set(&pool->pages_nr, 0);
1020 	pool->name = name;
1021 	pool->compact_wq = create_singlethread_workqueue(pool->name);
1022 	if (!pool->compact_wq)
1023 		goto out_unbuddied;
1024 	pool->release_wq = create_singlethread_workqueue(pool->name);
1025 	if (!pool->release_wq)
1026 		goto out_wq;
1027 	if (z3fold_register_migration(pool))
1028 		goto out_rwq;
1029 	INIT_WORK(&pool->work, free_pages_work);
1030 	pool->ops = ops;
1031 	return pool;
1032 
1033 out_rwq:
1034 	destroy_workqueue(pool->release_wq);
1035 out_wq:
1036 	destroy_workqueue(pool->compact_wq);
1037 out_unbuddied:
1038 	free_percpu(pool->unbuddied);
1039 out_pool:
1040 	kmem_cache_destroy(pool->c_handle);
1041 out_c:
1042 	kfree(pool);
1043 out:
1044 	return NULL;
1045 }
1046 
1047 /**
1048  * z3fold_destroy_pool() - destroys an existing z3fold pool
1049  * @pool:	the z3fold pool to be destroyed
1050  *
1051  * The pool should be emptied before this function is called.
1052  */
z3fold_destroy_pool(struct z3fold_pool * pool)1053 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1054 {
1055 	kmem_cache_destroy(pool->c_handle);
1056 
1057 	/*
1058 	 * We need to destroy pool->compact_wq before pool->release_wq,
1059 	 * as any pending work on pool->compact_wq will call
1060 	 * queue_work(pool->release_wq, &pool->work).
1061 	 *
1062 	 * There are still outstanding pages until both workqueues are drained,
1063 	 * so we cannot unregister migration until then.
1064 	 */
1065 
1066 	destroy_workqueue(pool->compact_wq);
1067 	destroy_workqueue(pool->release_wq);
1068 	z3fold_unregister_migration(pool);
1069 	kfree(pool);
1070 }
1071 
1072 /**
1073  * z3fold_alloc() - allocates a region of a given size
1074  * @pool:	z3fold pool from which to allocate
1075  * @size:	size in bytes of the desired allocation
1076  * @gfp:	gfp flags used if the pool needs to grow
1077  * @handle:	handle of the new allocation
1078  *
1079  * This function will attempt to find a free region in the pool large enough to
1080  * satisfy the allocation request.  A search of the unbuddied lists is
1081  * performed first. If no suitable free region is found, then a new page is
1082  * allocated and added to the pool to satisfy the request.
1083  *
1084  * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1085  * as z3fold pool pages.
1086  *
1087  * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1088  * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1089  * a new page.
1090  */
z3fold_alloc(struct z3fold_pool * pool,size_t size,gfp_t gfp,unsigned long * handle)1091 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1092 			unsigned long *handle)
1093 {
1094 	int chunks = size_to_chunks(size);
1095 	struct z3fold_header *zhdr = NULL;
1096 	struct page *page = NULL;
1097 	enum buddy bud;
1098 	bool can_sleep = gfpflags_allow_blocking(gfp);
1099 
1100 	if (!size)
1101 		return -EINVAL;
1102 
1103 	if (size > PAGE_SIZE)
1104 		return -ENOSPC;
1105 
1106 	if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1107 		bud = HEADLESS;
1108 	else {
1109 retry:
1110 		zhdr = __z3fold_alloc(pool, size, can_sleep);
1111 		if (zhdr) {
1112 			if (zhdr->first_chunks == 0) {
1113 				if (zhdr->middle_chunks != 0 &&
1114 				    chunks >= zhdr->start_middle)
1115 					bud = LAST;
1116 				else
1117 					bud = FIRST;
1118 			} else if (zhdr->last_chunks == 0)
1119 				bud = LAST;
1120 			else if (zhdr->middle_chunks == 0)
1121 				bud = MIDDLE;
1122 			else {
1123 				if (kref_put(&zhdr->refcount,
1124 					     release_z3fold_page_locked))
1125 					atomic64_dec(&pool->pages_nr);
1126 				else
1127 					z3fold_page_unlock(zhdr);
1128 				pr_err("No free chunks in unbuddied\n");
1129 				WARN_ON(1);
1130 				goto retry;
1131 			}
1132 			page = virt_to_page(zhdr);
1133 			goto found;
1134 		}
1135 		bud = FIRST;
1136 	}
1137 
1138 	page = NULL;
1139 	if (can_sleep) {
1140 		spin_lock(&pool->stale_lock);
1141 		zhdr = list_first_entry_or_null(&pool->stale,
1142 						struct z3fold_header, buddy);
1143 		/*
1144 		 * Before allocating a page, let's see if we can take one from
1145 		 * the stale pages list. cancel_work_sync() can sleep so we
1146 		 * limit this case to the contexts where we can sleep
1147 		 */
1148 		if (zhdr) {
1149 			list_del(&zhdr->buddy);
1150 			spin_unlock(&pool->stale_lock);
1151 			cancel_work_sync(&zhdr->work);
1152 			page = virt_to_page(zhdr);
1153 		} else {
1154 			spin_unlock(&pool->stale_lock);
1155 		}
1156 	}
1157 	if (!page)
1158 		page = alloc_page(gfp);
1159 
1160 	if (!page)
1161 		return -ENOMEM;
1162 
1163 	zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1164 	if (!zhdr) {
1165 		__free_page(page);
1166 		return -ENOMEM;
1167 	}
1168 	atomic64_inc(&pool->pages_nr);
1169 
1170 	if (bud == HEADLESS) {
1171 		set_bit(PAGE_HEADLESS, &page->private);
1172 		goto headless;
1173 	}
1174 	if (can_sleep) {
1175 		lock_page(page);
1176 		__SetPageMovable(page, pool->inode->i_mapping);
1177 		unlock_page(page);
1178 	} else {
1179 		if (trylock_page(page)) {
1180 			__SetPageMovable(page, pool->inode->i_mapping);
1181 			unlock_page(page);
1182 		}
1183 	}
1184 	z3fold_page_lock(zhdr);
1185 
1186 found:
1187 	if (bud == FIRST)
1188 		zhdr->first_chunks = chunks;
1189 	else if (bud == LAST)
1190 		zhdr->last_chunks = chunks;
1191 	else {
1192 		zhdr->middle_chunks = chunks;
1193 		zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1194 	}
1195 	add_to_unbuddied(pool, zhdr);
1196 
1197 headless:
1198 	spin_lock(&pool->lock);
1199 	/* Add/move z3fold page to beginning of LRU */
1200 	if (!list_empty(&page->lru))
1201 		list_del(&page->lru);
1202 
1203 	list_add(&page->lru, &pool->lru);
1204 
1205 	*handle = encode_handle(zhdr, bud);
1206 	spin_unlock(&pool->lock);
1207 	if (bud != HEADLESS)
1208 		z3fold_page_unlock(zhdr);
1209 
1210 	return 0;
1211 }
1212 
1213 /**
1214  * z3fold_free() - frees the allocation associated with the given handle
1215  * @pool:	pool in which the allocation resided
1216  * @handle:	handle associated with the allocation returned by z3fold_alloc()
1217  *
1218  * In the case that the z3fold page in which the allocation resides is under
1219  * reclaim, as indicated by the PG_reclaim flag being set, this function
1220  * only sets the first|last_chunks to 0.  The page is actually freed
1221  * once both buddies are evicted (see z3fold_reclaim_page() below).
1222  */
z3fold_free(struct z3fold_pool * pool,unsigned long handle)1223 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1224 {
1225 	struct z3fold_header *zhdr;
1226 	struct page *page;
1227 	enum buddy bud;
1228 	bool page_claimed;
1229 
1230 	zhdr = get_z3fold_header(handle);
1231 	page = virt_to_page(zhdr);
1232 	page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1233 
1234 	if (test_bit(PAGE_HEADLESS, &page->private)) {
1235 		/* if a headless page is under reclaim, just leave.
1236 		 * NB: we use test_and_set_bit for a reason: if the bit
1237 		 * has not been set before, we release this page
1238 		 * immediately so we don't care about its value any more.
1239 		 */
1240 		if (!page_claimed) {
1241 			spin_lock(&pool->lock);
1242 			list_del(&page->lru);
1243 			spin_unlock(&pool->lock);
1244 			put_z3fold_header(zhdr);
1245 			free_z3fold_page(page, true);
1246 			atomic64_dec(&pool->pages_nr);
1247 		}
1248 		return;
1249 	}
1250 
1251 	/* Non-headless case */
1252 	bud = handle_to_buddy(handle);
1253 
1254 	switch (bud) {
1255 	case FIRST:
1256 		zhdr->first_chunks = 0;
1257 		break;
1258 	case MIDDLE:
1259 		zhdr->middle_chunks = 0;
1260 		break;
1261 	case LAST:
1262 		zhdr->last_chunks = 0;
1263 		break;
1264 	default:
1265 		pr_err("%s: unknown bud %d\n", __func__, bud);
1266 		WARN_ON(1);
1267 		put_z3fold_header(zhdr);
1268 		clear_bit(PAGE_CLAIMED, &page->private);
1269 		return;
1270 	}
1271 
1272 	if (!page_claimed)
1273 		free_handle(handle);
1274 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1275 		atomic64_dec(&pool->pages_nr);
1276 		return;
1277 	}
1278 	if (page_claimed) {
1279 		/* the page has not been claimed by us */
1280 		z3fold_page_unlock(zhdr);
1281 		return;
1282 	}
1283 	if (unlikely(PageIsolated(page)) ||
1284 	    test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1285 		put_z3fold_header(zhdr);
1286 		clear_bit(PAGE_CLAIMED, &page->private);
1287 		return;
1288 	}
1289 	if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1290 		spin_lock(&pool->lock);
1291 		list_del_init(&zhdr->buddy);
1292 		spin_unlock(&pool->lock);
1293 		zhdr->cpu = -1;
1294 		kref_get(&zhdr->refcount);
1295 		clear_bit(PAGE_CLAIMED, &page->private);
1296 		do_compact_page(zhdr, true);
1297 		return;
1298 	}
1299 	kref_get(&zhdr->refcount);
1300 	clear_bit(PAGE_CLAIMED, &page->private);
1301 	queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1302 	put_z3fold_header(zhdr);
1303 }
1304 
1305 /**
1306  * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1307  * @pool:	pool from which a page will attempt to be evicted
1308  * @retries:	number of pages on the LRU list for which eviction will
1309  *		be attempted before failing
1310  *
1311  * z3fold reclaim is different from normal system reclaim in that it is done
1312  * from the bottom, up. This is because only the bottom layer, z3fold, has
1313  * information on how the allocations are organized within each z3fold page.
1314  * This has the potential to create interesting locking situations between
1315  * z3fold and the user, however.
1316  *
1317  * To avoid these, this is how z3fold_reclaim_page() should be called:
1318  *
1319  * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1320  * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1321  * call the user-defined eviction handler with the pool and handle as
1322  * arguments.
1323  *
1324  * If the handle can not be evicted, the eviction handler should return
1325  * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1326  * appropriate list and try the next z3fold page on the LRU up to
1327  * a user defined number of retries.
1328  *
1329  * If the handle is successfully evicted, the eviction handler should
1330  * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1331  * contains logic to delay freeing the page if the page is under reclaim,
1332  * as indicated by the setting of the PG_reclaim flag on the underlying page.
1333  *
1334  * If all buddies in the z3fold page are successfully evicted, then the
1335  * z3fold page can be freed.
1336  *
1337  * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1338  * no pages to evict or an eviction handler is not registered, -EAGAIN if
1339  * the retry limit was hit.
1340  */
z3fold_reclaim_page(struct z3fold_pool * pool,unsigned int retries)1341 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1342 {
1343 	int i, ret = -1;
1344 	struct z3fold_header *zhdr = NULL;
1345 	struct page *page = NULL;
1346 	struct list_head *pos;
1347 	unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1348 
1349 	spin_lock(&pool->lock);
1350 	if (!pool->ops || !pool->ops->evict || retries == 0) {
1351 		spin_unlock(&pool->lock);
1352 		return -EINVAL;
1353 	}
1354 	for (i = 0; i < retries; i++) {
1355 		if (list_empty(&pool->lru)) {
1356 			spin_unlock(&pool->lock);
1357 			return -EINVAL;
1358 		}
1359 		list_for_each_prev(pos, &pool->lru) {
1360 			page = list_entry(pos, struct page, lru);
1361 
1362 			/* this bit could have been set by free, in which case
1363 			 * we pass over to the next page in the pool.
1364 			 */
1365 			if (test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1366 				page = NULL;
1367 				continue;
1368 			}
1369 
1370 			if (unlikely(PageIsolated(page))) {
1371 				clear_bit(PAGE_CLAIMED, &page->private);
1372 				page = NULL;
1373 				continue;
1374 			}
1375 			zhdr = page_address(page);
1376 			if (test_bit(PAGE_HEADLESS, &page->private))
1377 				break;
1378 
1379 			if (!z3fold_page_trylock(zhdr)) {
1380 				clear_bit(PAGE_CLAIMED, &page->private);
1381 				zhdr = NULL;
1382 				continue; /* can't evict at this point */
1383 			}
1384 			if (zhdr->foreign_handles) {
1385 				clear_bit(PAGE_CLAIMED, &page->private);
1386 				z3fold_page_unlock(zhdr);
1387 				zhdr = NULL;
1388 				continue; /* can't evict such page */
1389 			}
1390 			kref_get(&zhdr->refcount);
1391 			list_del_init(&zhdr->buddy);
1392 			zhdr->cpu = -1;
1393 			break;
1394 		}
1395 
1396 		if (!zhdr)
1397 			break;
1398 
1399 		list_del_init(&page->lru);
1400 		spin_unlock(&pool->lock);
1401 
1402 		if (!test_bit(PAGE_HEADLESS, &page->private)) {
1403 			/*
1404 			 * We need encode the handles before unlocking, and
1405 			 * use our local slots structure because z3fold_free
1406 			 * can zero out zhdr->slots and we can't do much
1407 			 * about that
1408 			 */
1409 			first_handle = 0;
1410 			last_handle = 0;
1411 			middle_handle = 0;
1412 			if (zhdr->first_chunks)
1413 				first_handle = encode_handle(zhdr, FIRST);
1414 			if (zhdr->middle_chunks)
1415 				middle_handle = encode_handle(zhdr, MIDDLE);
1416 			if (zhdr->last_chunks)
1417 				last_handle = encode_handle(zhdr, LAST);
1418 			/*
1419 			 * it's safe to unlock here because we hold a
1420 			 * reference to this page
1421 			 */
1422 			z3fold_page_unlock(zhdr);
1423 		} else {
1424 			first_handle = encode_handle(zhdr, HEADLESS);
1425 			last_handle = middle_handle = 0;
1426 		}
1427 		/* Issue the eviction callback(s) */
1428 		if (middle_handle) {
1429 			ret = pool->ops->evict(pool, middle_handle);
1430 			if (ret)
1431 				goto next;
1432 			free_handle(middle_handle);
1433 		}
1434 		if (first_handle) {
1435 			ret = pool->ops->evict(pool, first_handle);
1436 			if (ret)
1437 				goto next;
1438 			free_handle(first_handle);
1439 		}
1440 		if (last_handle) {
1441 			ret = pool->ops->evict(pool, last_handle);
1442 			if (ret)
1443 				goto next;
1444 			free_handle(last_handle);
1445 		}
1446 next:
1447 		if (test_bit(PAGE_HEADLESS, &page->private)) {
1448 			if (ret == 0) {
1449 				free_z3fold_page(page, true);
1450 				atomic64_dec(&pool->pages_nr);
1451 				return 0;
1452 			}
1453 			spin_lock(&pool->lock);
1454 			list_add(&page->lru, &pool->lru);
1455 			spin_unlock(&pool->lock);
1456 			clear_bit(PAGE_CLAIMED, &page->private);
1457 		} else {
1458 			z3fold_page_lock(zhdr);
1459 			if (kref_put(&zhdr->refcount,
1460 					release_z3fold_page_locked)) {
1461 				atomic64_dec(&pool->pages_nr);
1462 				return 0;
1463 			}
1464 			/*
1465 			 * if we are here, the page is still not completely
1466 			 * free. Take the global pool lock then to be able
1467 			 * to add it back to the lru list
1468 			 */
1469 			spin_lock(&pool->lock);
1470 			list_add(&page->lru, &pool->lru);
1471 			spin_unlock(&pool->lock);
1472 			z3fold_page_unlock(zhdr);
1473 			clear_bit(PAGE_CLAIMED, &page->private);
1474 		}
1475 
1476 		/* We started off locked to we need to lock the pool back */
1477 		spin_lock(&pool->lock);
1478 	}
1479 	spin_unlock(&pool->lock);
1480 	return -EAGAIN;
1481 }
1482 
1483 /**
1484  * z3fold_map() - maps the allocation associated with the given handle
1485  * @pool:	pool in which the allocation resides
1486  * @handle:	handle associated with the allocation to be mapped
1487  *
1488  * Extracts the buddy number from handle and constructs the pointer to the
1489  * correct starting chunk within the page.
1490  *
1491  * Returns: a pointer to the mapped allocation
1492  */
z3fold_map(struct z3fold_pool * pool,unsigned long handle)1493 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1494 {
1495 	struct z3fold_header *zhdr;
1496 	struct page *page;
1497 	void *addr;
1498 	enum buddy buddy;
1499 
1500 	zhdr = get_z3fold_header(handle);
1501 	addr = zhdr;
1502 	page = virt_to_page(zhdr);
1503 
1504 	if (test_bit(PAGE_HEADLESS, &page->private))
1505 		goto out;
1506 
1507 	buddy = handle_to_buddy(handle);
1508 	switch (buddy) {
1509 	case FIRST:
1510 		addr += ZHDR_SIZE_ALIGNED;
1511 		break;
1512 	case MIDDLE:
1513 		addr += zhdr->start_middle << CHUNK_SHIFT;
1514 		set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1515 		break;
1516 	case LAST:
1517 		addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1518 		break;
1519 	default:
1520 		pr_err("unknown buddy id %d\n", buddy);
1521 		WARN_ON(1);
1522 		addr = NULL;
1523 		break;
1524 	}
1525 
1526 	if (addr)
1527 		zhdr->mapped_count++;
1528 out:
1529 	put_z3fold_header(zhdr);
1530 	return addr;
1531 }
1532 
1533 /**
1534  * z3fold_unmap() - unmaps the allocation associated with the given handle
1535  * @pool:	pool in which the allocation resides
1536  * @handle:	handle associated with the allocation to be unmapped
1537  */
z3fold_unmap(struct z3fold_pool * pool,unsigned long handle)1538 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1539 {
1540 	struct z3fold_header *zhdr;
1541 	struct page *page;
1542 	enum buddy buddy;
1543 
1544 	zhdr = get_z3fold_header(handle);
1545 	page = virt_to_page(zhdr);
1546 
1547 	if (test_bit(PAGE_HEADLESS, &page->private))
1548 		return;
1549 
1550 	buddy = handle_to_buddy(handle);
1551 	if (buddy == MIDDLE)
1552 		clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1553 	zhdr->mapped_count--;
1554 	put_z3fold_header(zhdr);
1555 }
1556 
1557 /**
1558  * z3fold_get_pool_size() - gets the z3fold pool size in pages
1559  * @pool:	pool whose size is being queried
1560  *
1561  * Returns: size in pages of the given pool.
1562  */
z3fold_get_pool_size(struct z3fold_pool * pool)1563 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1564 {
1565 	return atomic64_read(&pool->pages_nr);
1566 }
1567 
z3fold_page_isolate(struct page * page,isolate_mode_t mode)1568 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1569 {
1570 	struct z3fold_header *zhdr;
1571 	struct z3fold_pool *pool;
1572 
1573 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1574 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1575 
1576 	if (test_bit(PAGE_HEADLESS, &page->private) ||
1577 	    test_bit(PAGE_CLAIMED, &page->private))
1578 		return false;
1579 
1580 	zhdr = page_address(page);
1581 	z3fold_page_lock(zhdr);
1582 	if (test_bit(NEEDS_COMPACTING, &page->private) ||
1583 	    test_bit(PAGE_STALE, &page->private))
1584 		goto out;
1585 
1586 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1587 		goto out;
1588 
1589 	pool = zhdr_to_pool(zhdr);
1590 	spin_lock(&pool->lock);
1591 	if (!list_empty(&zhdr->buddy))
1592 		list_del_init(&zhdr->buddy);
1593 	if (!list_empty(&page->lru))
1594 		list_del_init(&page->lru);
1595 	spin_unlock(&pool->lock);
1596 
1597 	kref_get(&zhdr->refcount);
1598 	z3fold_page_unlock(zhdr);
1599 	return true;
1600 
1601 out:
1602 	z3fold_page_unlock(zhdr);
1603 	return false;
1604 }
1605 
z3fold_page_migrate(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1606 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1607 			       struct page *page, enum migrate_mode mode)
1608 {
1609 	struct z3fold_header *zhdr, *new_zhdr;
1610 	struct z3fold_pool *pool;
1611 	struct address_space *new_mapping;
1612 
1613 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1614 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1615 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1616 
1617 	zhdr = page_address(page);
1618 	pool = zhdr_to_pool(zhdr);
1619 
1620 	if (!z3fold_page_trylock(zhdr)) {
1621 		return -EAGAIN;
1622 	}
1623 	if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1624 		z3fold_page_unlock(zhdr);
1625 		return -EBUSY;
1626 	}
1627 	if (work_pending(&zhdr->work)) {
1628 		z3fold_page_unlock(zhdr);
1629 		return -EAGAIN;
1630 	}
1631 	new_zhdr = page_address(newpage);
1632 	memcpy(new_zhdr, zhdr, PAGE_SIZE);
1633 	newpage->private = page->private;
1634 	page->private = 0;
1635 	z3fold_page_unlock(zhdr);
1636 	spin_lock_init(&new_zhdr->page_lock);
1637 	INIT_WORK(&new_zhdr->work, compact_page_work);
1638 	/*
1639 	 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1640 	 * so we only have to reinitialize it.
1641 	 */
1642 	INIT_LIST_HEAD(&new_zhdr->buddy);
1643 	new_mapping = page_mapping(page);
1644 	__ClearPageMovable(page);
1645 	ClearPagePrivate(page);
1646 
1647 	get_page(newpage);
1648 	z3fold_page_lock(new_zhdr);
1649 	if (new_zhdr->first_chunks)
1650 		encode_handle(new_zhdr, FIRST);
1651 	if (new_zhdr->last_chunks)
1652 		encode_handle(new_zhdr, LAST);
1653 	if (new_zhdr->middle_chunks)
1654 		encode_handle(new_zhdr, MIDDLE);
1655 	set_bit(NEEDS_COMPACTING, &newpage->private);
1656 	new_zhdr->cpu = smp_processor_id();
1657 	spin_lock(&pool->lock);
1658 	list_add(&newpage->lru, &pool->lru);
1659 	spin_unlock(&pool->lock);
1660 	__SetPageMovable(newpage, new_mapping);
1661 	z3fold_page_unlock(new_zhdr);
1662 
1663 	queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1664 
1665 	page_mapcount_reset(page);
1666 	put_page(page);
1667 	return 0;
1668 }
1669 
z3fold_page_putback(struct page * page)1670 static void z3fold_page_putback(struct page *page)
1671 {
1672 	struct z3fold_header *zhdr;
1673 	struct z3fold_pool *pool;
1674 
1675 	zhdr = page_address(page);
1676 	pool = zhdr_to_pool(zhdr);
1677 
1678 	z3fold_page_lock(zhdr);
1679 	if (!list_empty(&zhdr->buddy))
1680 		list_del_init(&zhdr->buddy);
1681 	INIT_LIST_HEAD(&page->lru);
1682 	if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1683 		atomic64_dec(&pool->pages_nr);
1684 		return;
1685 	}
1686 	spin_lock(&pool->lock);
1687 	list_add(&page->lru, &pool->lru);
1688 	spin_unlock(&pool->lock);
1689 	z3fold_page_unlock(zhdr);
1690 }
1691 
1692 static const struct address_space_operations z3fold_aops = {
1693 	.isolate_page = z3fold_page_isolate,
1694 	.migratepage = z3fold_page_migrate,
1695 	.putback_page = z3fold_page_putback,
1696 };
1697 
1698 /*****************
1699  * zpool
1700  ****************/
1701 
z3fold_zpool_evict(struct z3fold_pool * pool,unsigned long handle)1702 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1703 {
1704 	if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1705 		return pool->zpool_ops->evict(pool->zpool, handle);
1706 	else
1707 		return -ENOENT;
1708 }
1709 
1710 static const struct z3fold_ops z3fold_zpool_ops = {
1711 	.evict =	z3fold_zpool_evict
1712 };
1713 
z3fold_zpool_create(const char * name,gfp_t gfp,const struct zpool_ops * zpool_ops,struct zpool * zpool)1714 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1715 			       const struct zpool_ops *zpool_ops,
1716 			       struct zpool *zpool)
1717 {
1718 	struct z3fold_pool *pool;
1719 
1720 	pool = z3fold_create_pool(name, gfp,
1721 				zpool_ops ? &z3fold_zpool_ops : NULL);
1722 	if (pool) {
1723 		pool->zpool = zpool;
1724 		pool->zpool_ops = zpool_ops;
1725 	}
1726 	return pool;
1727 }
1728 
z3fold_zpool_destroy(void * pool)1729 static void z3fold_zpool_destroy(void *pool)
1730 {
1731 	z3fold_destroy_pool(pool);
1732 }
1733 
z3fold_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)1734 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1735 			unsigned long *handle)
1736 {
1737 	return z3fold_alloc(pool, size, gfp, handle);
1738 }
z3fold_zpool_free(void * pool,unsigned long handle)1739 static void z3fold_zpool_free(void *pool, unsigned long handle)
1740 {
1741 	z3fold_free(pool, handle);
1742 }
1743 
z3fold_zpool_shrink(void * pool,unsigned int pages,unsigned int * reclaimed)1744 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1745 			unsigned int *reclaimed)
1746 {
1747 	unsigned int total = 0;
1748 	int ret = -EINVAL;
1749 
1750 	while (total < pages) {
1751 		ret = z3fold_reclaim_page(pool, 8);
1752 		if (ret < 0)
1753 			break;
1754 		total++;
1755 	}
1756 
1757 	if (reclaimed)
1758 		*reclaimed = total;
1759 
1760 	return ret;
1761 }
1762 
z3fold_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)1763 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1764 			enum zpool_mapmode mm)
1765 {
1766 	return z3fold_map(pool, handle);
1767 }
z3fold_zpool_unmap(void * pool,unsigned long handle)1768 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1769 {
1770 	z3fold_unmap(pool, handle);
1771 }
1772 
z3fold_zpool_total_size(void * pool)1773 static u64 z3fold_zpool_total_size(void *pool)
1774 {
1775 	return z3fold_get_pool_size(pool) * PAGE_SIZE;
1776 }
1777 
1778 static struct zpool_driver z3fold_zpool_driver = {
1779 	.type =		"z3fold",
1780 	.owner =	THIS_MODULE,
1781 	.create =	z3fold_zpool_create,
1782 	.destroy =	z3fold_zpool_destroy,
1783 	.malloc =	z3fold_zpool_malloc,
1784 	.free =		z3fold_zpool_free,
1785 	.shrink =	z3fold_zpool_shrink,
1786 	.map =		z3fold_zpool_map,
1787 	.unmap =	z3fold_zpool_unmap,
1788 	.total_size =	z3fold_zpool_total_size,
1789 };
1790 
1791 MODULE_ALIAS("zpool-z3fold");
1792 
init_z3fold(void)1793 static int __init init_z3fold(void)
1794 {
1795 	int ret;
1796 
1797 	/* Make sure the z3fold header is not larger than the page size */
1798 	BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1799 	ret = z3fold_mount();
1800 	if (ret)
1801 		return ret;
1802 
1803 	zpool_register_driver(&z3fold_zpool_driver);
1804 
1805 	return 0;
1806 }
1807 
exit_z3fold(void)1808 static void __exit exit_z3fold(void)
1809 {
1810 	z3fold_unmount();
1811 	zpool_unregister_driver(&z3fold_zpool_driver);
1812 }
1813 
1814 module_init(init_z3fold);
1815 module_exit(exit_z3fold);
1816 
1817 MODULE_LICENSE("GPL");
1818 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1819 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1820