1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60 
61 #include "internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/*
83 	 * Scan pressure balancing between anon and file LRUs
84 	 */
85 	unsigned long	anon_cost;
86 	unsigned long	file_cost;
87 
88 	/* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 	unsigned int may_deactivate:2;
92 	unsigned int force_deactivate:1;
93 	unsigned int skipped_deactivate:1;
94 
95 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
96 	unsigned int may_writepage:1;
97 
98 	/* Can mapped pages be reclaimed? */
99 	unsigned int may_unmap:1;
100 
101 	/* Can pages be swapped as part of reclaim? */
102 	unsigned int may_swap:1;
103 
104 	/*
105 	 * Cgroups are not reclaimed below their configured memory.low,
106 	 * unless we threaten to OOM. If any cgroups are skipped due to
107 	 * memory.low and nothing was reclaimed, go back for memory.low.
108 	 */
109 	unsigned int memcg_low_reclaim:1;
110 	unsigned int memcg_low_skipped:1;
111 
112 	unsigned int hibernation_mode:1;
113 
114 	/* One of the zones is ready for compaction */
115 	unsigned int compaction_ready:1;
116 
117 	/* There is easily reclaimable cold cache in the current node */
118 	unsigned int cache_trim_mode:1;
119 
120 	/* The file pages on the current node are dangerously low */
121 	unsigned int file_is_tiny:1;
122 
123 	/* Allocation order */
124 	s8 order;
125 
126 	/* Scan (total_size >> priority) pages at once */
127 	s8 priority;
128 
129 	/* The highest zone to isolate pages for reclaim from */
130 	s8 reclaim_idx;
131 
132 	/* This context's GFP mask */
133 	gfp_t gfp_mask;
134 
135 	/* Incremented by the number of inactive pages that were scanned */
136 	unsigned long nr_scanned;
137 
138 	/* Number of pages freed so far during a call to shrink_zones() */
139 	unsigned long nr_reclaimed;
140 
141 	struct {
142 		unsigned int dirty;
143 		unsigned int unqueued_dirty;
144 		unsigned int congested;
145 		unsigned int writeback;
146 		unsigned int immediate;
147 		unsigned int file_taken;
148 		unsigned int taken;
149 	} nr;
150 
151 	/* for recording the reclaimed slab by now */
152 	struct reclaim_state reclaim_state;
153 };
154 
155 #ifdef ARCH_HAS_PREFETCHW
156 #define prefetchw_prev_lru_page(_page, _base, _field)			\
157 	do {								\
158 		if ((_page)->lru.prev != _base) {			\
159 			struct page *prev;				\
160 									\
161 			prev = lru_to_page(&(_page->lru));		\
162 			prefetchw(&prev->_field);			\
163 		}							\
164 	} while (0)
165 #else
166 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
167 #endif
168 
169 /*
170  * From 0 .. 200.  Higher means more swappy.
171  */
172 int vm_swappiness = 60;
173 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)174 static void set_task_reclaim_state(struct task_struct *task,
175 				   struct reclaim_state *rs)
176 {
177 	/* Check for an overwrite */
178 	WARN_ON_ONCE(rs && task->reclaim_state);
179 
180 	/* Check for the nulling of an already-nulled member */
181 	WARN_ON_ONCE(!rs && !task->reclaim_state);
182 
183 	task->reclaim_state = rs;
184 }
185 
186 static LIST_HEAD(shrinker_list);
187 static DECLARE_RWSEM(shrinker_rwsem);
188 
189 #ifdef CONFIG_MEMCG
190 /*
191  * We allow subsystems to populate their shrinker-related
192  * LRU lists before register_shrinker_prepared() is called
193  * for the shrinker, since we don't want to impose
194  * restrictions on their internal registration order.
195  * In this case shrink_slab_memcg() may find corresponding
196  * bit is set in the shrinkers map.
197  *
198  * This value is used by the function to detect registering
199  * shrinkers and to skip do_shrink_slab() calls for them.
200  */
201 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
202 
203 static DEFINE_IDR(shrinker_idr);
204 static int shrinker_nr_max;
205 
prealloc_memcg_shrinker(struct shrinker * shrinker)206 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
207 {
208 	int id, ret = -ENOMEM;
209 
210 	down_write(&shrinker_rwsem);
211 	/* This may call shrinker, so it must use down_read_trylock() */
212 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
213 	if (id < 0)
214 		goto unlock;
215 
216 	if (id >= shrinker_nr_max) {
217 		if (memcg_expand_shrinker_maps(id)) {
218 			idr_remove(&shrinker_idr, id);
219 			goto unlock;
220 		}
221 
222 		shrinker_nr_max = id + 1;
223 	}
224 	shrinker->id = id;
225 	ret = 0;
226 unlock:
227 	up_write(&shrinker_rwsem);
228 	return ret;
229 }
230 
unregister_memcg_shrinker(struct shrinker * shrinker)231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 	int id = shrinker->id;
234 
235 	BUG_ON(id < 0);
236 
237 	down_write(&shrinker_rwsem);
238 	idr_remove(&shrinker_idr, id);
239 	up_write(&shrinker_rwsem);
240 }
241 
cgroup_reclaim(struct scan_control * sc)242 static bool cgroup_reclaim(struct scan_control *sc)
243 {
244 	return sc->target_mem_cgroup;
245 }
246 
247 /**
248  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
249  * @sc: scan_control in question
250  *
251  * The normal page dirty throttling mechanism in balance_dirty_pages() is
252  * completely broken with the legacy memcg and direct stalling in
253  * shrink_page_list() is used for throttling instead, which lacks all the
254  * niceties such as fairness, adaptive pausing, bandwidth proportional
255  * allocation and configurability.
256  *
257  * This function tests whether the vmscan currently in progress can assume
258  * that the normal dirty throttling mechanism is operational.
259  */
writeback_throttling_sane(struct scan_control * sc)260 static bool writeback_throttling_sane(struct scan_control *sc)
261 {
262 	if (!cgroup_reclaim(sc))
263 		return true;
264 #ifdef CONFIG_CGROUP_WRITEBACK
265 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
266 		return true;
267 #endif
268 	return false;
269 }
270 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)271 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
272 {
273 	return 0;
274 }
275 
unregister_memcg_shrinker(struct shrinker * shrinker)276 static void unregister_memcg_shrinker(struct shrinker *shrinker)
277 {
278 }
279 
cgroup_reclaim(struct scan_control * sc)280 static bool cgroup_reclaim(struct scan_control *sc)
281 {
282 	return false;
283 }
284 
writeback_throttling_sane(struct scan_control * sc)285 static bool writeback_throttling_sane(struct scan_control *sc)
286 {
287 	return true;
288 }
289 #endif
290 
291 /*
292  * This misses isolated pages which are not accounted for to save counters.
293  * As the data only determines if reclaim or compaction continues, it is
294  * not expected that isolated pages will be a dominating factor.
295  */
zone_reclaimable_pages(struct zone * zone)296 unsigned long zone_reclaimable_pages(struct zone *zone)
297 {
298 	unsigned long nr;
299 
300 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
301 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
302 	if (get_nr_swap_pages() > 0)
303 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
304 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
305 
306 	return nr;
307 }
308 
309 /**
310  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
311  * @lruvec: lru vector
312  * @lru: lru to use
313  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
314  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)315 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
316 {
317 	unsigned long size = 0;
318 	int zid;
319 
320 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
321 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
322 
323 		if (!managed_zone(zone))
324 			continue;
325 
326 		if (!mem_cgroup_disabled())
327 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
328 		else
329 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
330 	}
331 	return size;
332 }
333 
334 /*
335  * Add a shrinker callback to be called from the vm.
336  */
prealloc_shrinker(struct shrinker * shrinker)337 int prealloc_shrinker(struct shrinker *shrinker)
338 {
339 	unsigned int size = sizeof(*shrinker->nr_deferred);
340 
341 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
342 		size *= nr_node_ids;
343 
344 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
345 	if (!shrinker->nr_deferred)
346 		return -ENOMEM;
347 
348 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
349 		if (prealloc_memcg_shrinker(shrinker))
350 			goto free_deferred;
351 	}
352 
353 	return 0;
354 
355 free_deferred:
356 	kfree(shrinker->nr_deferred);
357 	shrinker->nr_deferred = NULL;
358 	return -ENOMEM;
359 }
360 
free_prealloced_shrinker(struct shrinker * shrinker)361 void free_prealloced_shrinker(struct shrinker *shrinker)
362 {
363 	if (!shrinker->nr_deferred)
364 		return;
365 
366 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
367 		unregister_memcg_shrinker(shrinker);
368 
369 	kfree(shrinker->nr_deferred);
370 	shrinker->nr_deferred = NULL;
371 }
372 
register_shrinker_prepared(struct shrinker * shrinker)373 void register_shrinker_prepared(struct shrinker *shrinker)
374 {
375 	down_write(&shrinker_rwsem);
376 	list_add_tail(&shrinker->list, &shrinker_list);
377 #ifdef CONFIG_MEMCG
378 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
379 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
380 #endif
381 	up_write(&shrinker_rwsem);
382 }
383 
register_shrinker(struct shrinker * shrinker)384 int register_shrinker(struct shrinker *shrinker)
385 {
386 	int err = prealloc_shrinker(shrinker);
387 
388 	if (err)
389 		return err;
390 	register_shrinker_prepared(shrinker);
391 	return 0;
392 }
393 EXPORT_SYMBOL(register_shrinker);
394 
395 /*
396  * Remove one
397  */
unregister_shrinker(struct shrinker * shrinker)398 void unregister_shrinker(struct shrinker *shrinker)
399 {
400 	if (!shrinker->nr_deferred)
401 		return;
402 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
403 		unregister_memcg_shrinker(shrinker);
404 	down_write(&shrinker_rwsem);
405 	list_del(&shrinker->list);
406 	up_write(&shrinker_rwsem);
407 	kfree(shrinker->nr_deferred);
408 	shrinker->nr_deferred = NULL;
409 }
410 EXPORT_SYMBOL(unregister_shrinker);
411 
412 #define SHRINK_BATCH 128
413 
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)414 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
415 				    struct shrinker *shrinker, int priority)
416 {
417 	unsigned long freed = 0;
418 	unsigned long long delta;
419 	long total_scan;
420 	long freeable;
421 	long nr;
422 	long new_nr;
423 	int nid = shrinkctl->nid;
424 	long batch_size = shrinker->batch ? shrinker->batch
425 					  : SHRINK_BATCH;
426 	long scanned = 0, next_deferred;
427 
428 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
429 		nid = 0;
430 
431 	freeable = shrinker->count_objects(shrinker, shrinkctl);
432 	if (freeable == 0 || freeable == SHRINK_EMPTY)
433 		return freeable;
434 
435 	/*
436 	 * copy the current shrinker scan count into a local variable
437 	 * and zero it so that other concurrent shrinker invocations
438 	 * don't also do this scanning work.
439 	 */
440 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
441 
442 	total_scan = nr;
443 	if (shrinker->seeks) {
444 		delta = freeable >> priority;
445 		delta *= 4;
446 		do_div(delta, shrinker->seeks);
447 	} else {
448 		/*
449 		 * These objects don't require any IO to create. Trim
450 		 * them aggressively under memory pressure to keep
451 		 * them from causing refetches in the IO caches.
452 		 */
453 		delta = freeable / 2;
454 	}
455 
456 	total_scan += delta;
457 	if (total_scan < 0) {
458 		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
459 		       shrinker->scan_objects, total_scan);
460 		total_scan = freeable;
461 		next_deferred = nr;
462 	} else
463 		next_deferred = total_scan;
464 
465 	/*
466 	 * We need to avoid excessive windup on filesystem shrinkers
467 	 * due to large numbers of GFP_NOFS allocations causing the
468 	 * shrinkers to return -1 all the time. This results in a large
469 	 * nr being built up so when a shrink that can do some work
470 	 * comes along it empties the entire cache due to nr >>>
471 	 * freeable. This is bad for sustaining a working set in
472 	 * memory.
473 	 *
474 	 * Hence only allow the shrinker to scan the entire cache when
475 	 * a large delta change is calculated directly.
476 	 */
477 	if (delta < freeable / 4)
478 		total_scan = min(total_scan, freeable / 2);
479 
480 	/*
481 	 * Avoid risking looping forever due to too large nr value:
482 	 * never try to free more than twice the estimate number of
483 	 * freeable entries.
484 	 */
485 	if (total_scan > freeable * 2)
486 		total_scan = freeable * 2;
487 
488 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
489 				   freeable, delta, total_scan, priority);
490 
491 	/*
492 	 * Normally, we should not scan less than batch_size objects in one
493 	 * pass to avoid too frequent shrinker calls, but if the slab has less
494 	 * than batch_size objects in total and we are really tight on memory,
495 	 * we will try to reclaim all available objects, otherwise we can end
496 	 * up failing allocations although there are plenty of reclaimable
497 	 * objects spread over several slabs with usage less than the
498 	 * batch_size.
499 	 *
500 	 * We detect the "tight on memory" situations by looking at the total
501 	 * number of objects we want to scan (total_scan). If it is greater
502 	 * than the total number of objects on slab (freeable), we must be
503 	 * scanning at high prio and therefore should try to reclaim as much as
504 	 * possible.
505 	 */
506 	while (total_scan >= batch_size ||
507 	       total_scan >= freeable) {
508 		unsigned long ret;
509 		unsigned long nr_to_scan = min(batch_size, total_scan);
510 
511 		shrinkctl->nr_to_scan = nr_to_scan;
512 		shrinkctl->nr_scanned = nr_to_scan;
513 		ret = shrinker->scan_objects(shrinker, shrinkctl);
514 		if (ret == SHRINK_STOP)
515 			break;
516 		freed += ret;
517 
518 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
519 		total_scan -= shrinkctl->nr_scanned;
520 		scanned += shrinkctl->nr_scanned;
521 
522 		cond_resched();
523 	}
524 
525 	if (next_deferred >= scanned)
526 		next_deferred -= scanned;
527 	else
528 		next_deferred = 0;
529 	/*
530 	 * move the unused scan count back into the shrinker in a
531 	 * manner that handles concurrent updates. If we exhausted the
532 	 * scan, there is no need to do an update.
533 	 */
534 	if (next_deferred > 0)
535 		new_nr = atomic_long_add_return(next_deferred,
536 						&shrinker->nr_deferred[nid]);
537 	else
538 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
539 
540 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
541 	return freed;
542 }
543 
544 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)545 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
546 			struct mem_cgroup *memcg, int priority)
547 {
548 	struct memcg_shrinker_map *map;
549 	unsigned long ret, freed = 0;
550 	int i;
551 
552 	if (!mem_cgroup_online(memcg))
553 		return 0;
554 
555 	if (!down_read_trylock(&shrinker_rwsem))
556 		return 0;
557 
558 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
559 					true);
560 	if (unlikely(!map))
561 		goto unlock;
562 
563 	for_each_set_bit(i, map->map, shrinker_nr_max) {
564 		struct shrink_control sc = {
565 			.gfp_mask = gfp_mask,
566 			.nid = nid,
567 			.memcg = memcg,
568 		};
569 		struct shrinker *shrinker;
570 
571 		shrinker = idr_find(&shrinker_idr, i);
572 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
573 			if (!shrinker)
574 				clear_bit(i, map->map);
575 			continue;
576 		}
577 
578 		/* Call non-slab shrinkers even though kmem is disabled */
579 		if (!memcg_kmem_enabled() &&
580 		    !(shrinker->flags & SHRINKER_NONSLAB))
581 			continue;
582 
583 		ret = do_shrink_slab(&sc, shrinker, priority);
584 		if (ret == SHRINK_EMPTY) {
585 			clear_bit(i, map->map);
586 			/*
587 			 * After the shrinker reported that it had no objects to
588 			 * free, but before we cleared the corresponding bit in
589 			 * the memcg shrinker map, a new object might have been
590 			 * added. To make sure, we have the bit set in this
591 			 * case, we invoke the shrinker one more time and reset
592 			 * the bit if it reports that it is not empty anymore.
593 			 * The memory barrier here pairs with the barrier in
594 			 * memcg_set_shrinker_bit():
595 			 *
596 			 * list_lru_add()     shrink_slab_memcg()
597 			 *   list_add_tail()    clear_bit()
598 			 *   <MB>               <MB>
599 			 *   set_bit()          do_shrink_slab()
600 			 */
601 			smp_mb__after_atomic();
602 			ret = do_shrink_slab(&sc, shrinker, priority);
603 			if (ret == SHRINK_EMPTY)
604 				ret = 0;
605 			else
606 				memcg_set_shrinker_bit(memcg, nid, i);
607 		}
608 		freed += ret;
609 
610 		if (rwsem_is_contended(&shrinker_rwsem)) {
611 			freed = freed ? : 1;
612 			break;
613 		}
614 	}
615 unlock:
616 	up_read(&shrinker_rwsem);
617 	return freed;
618 }
619 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)620 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
621 			struct mem_cgroup *memcg, int priority)
622 {
623 	return 0;
624 }
625 #endif /* CONFIG_MEMCG */
626 
627 /**
628  * shrink_slab - shrink slab caches
629  * @gfp_mask: allocation context
630  * @nid: node whose slab caches to target
631  * @memcg: memory cgroup whose slab caches to target
632  * @priority: the reclaim priority
633  *
634  * Call the shrink functions to age shrinkable caches.
635  *
636  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
637  * unaware shrinkers will receive a node id of 0 instead.
638  *
639  * @memcg specifies the memory cgroup to target. Unaware shrinkers
640  * are called only if it is the root cgroup.
641  *
642  * @priority is sc->priority, we take the number of objects and >> by priority
643  * in order to get the scan target.
644  *
645  * Returns the number of reclaimed slab objects.
646  */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)647 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
648 				 struct mem_cgroup *memcg,
649 				 int priority)
650 {
651 	unsigned long ret, freed = 0;
652 	struct shrinker *shrinker;
653 
654 	/*
655 	 * The root memcg might be allocated even though memcg is disabled
656 	 * via "cgroup_disable=memory" boot parameter.  This could make
657 	 * mem_cgroup_is_root() return false, then just run memcg slab
658 	 * shrink, but skip global shrink.  This may result in premature
659 	 * oom.
660 	 */
661 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
662 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
663 
664 	if (!down_read_trylock(&shrinker_rwsem))
665 		goto out;
666 
667 	list_for_each_entry(shrinker, &shrinker_list, list) {
668 		struct shrink_control sc = {
669 			.gfp_mask = gfp_mask,
670 			.nid = nid,
671 			.memcg = memcg,
672 		};
673 
674 		ret = do_shrink_slab(&sc, shrinker, priority);
675 		if (ret == SHRINK_EMPTY)
676 			ret = 0;
677 		freed += ret;
678 		/*
679 		 * Bail out if someone want to register a new shrinker to
680 		 * prevent the registration from being stalled for long periods
681 		 * by parallel ongoing shrinking.
682 		 */
683 		if (rwsem_is_contended(&shrinker_rwsem)) {
684 			freed = freed ? : 1;
685 			break;
686 		}
687 	}
688 
689 	up_read(&shrinker_rwsem);
690 out:
691 	cond_resched();
692 	return freed;
693 }
694 
drop_slab_node(int nid)695 void drop_slab_node(int nid)
696 {
697 	unsigned long freed;
698 
699 	do {
700 		struct mem_cgroup *memcg = NULL;
701 
702 		if (fatal_signal_pending(current))
703 			return;
704 
705 		freed = 0;
706 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
707 		do {
708 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
709 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
710 	} while (freed > 10);
711 }
712 
drop_slab(void)713 void drop_slab(void)
714 {
715 	int nid;
716 
717 	for_each_online_node(nid)
718 		drop_slab_node(nid);
719 }
720 
is_page_cache_freeable(struct page * page)721 static inline int is_page_cache_freeable(struct page *page)
722 {
723 	/*
724 	 * A freeable page cache page is referenced only by the caller
725 	 * that isolated the page, the page cache and optional buffer
726 	 * heads at page->private.
727 	 */
728 	int page_cache_pins = thp_nr_pages(page);
729 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
730 }
731 
may_write_to_inode(struct inode * inode)732 static int may_write_to_inode(struct inode *inode)
733 {
734 	if (current->flags & PF_SWAPWRITE)
735 		return 1;
736 	if (!inode_write_congested(inode))
737 		return 1;
738 	if (inode_to_bdi(inode) == current->backing_dev_info)
739 		return 1;
740 	return 0;
741 }
742 
743 /*
744  * We detected a synchronous write error writing a page out.  Probably
745  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
746  * fsync(), msync() or close().
747  *
748  * The tricky part is that after writepage we cannot touch the mapping: nothing
749  * prevents it from being freed up.  But we have a ref on the page and once
750  * that page is locked, the mapping is pinned.
751  *
752  * We're allowed to run sleeping lock_page() here because we know the caller has
753  * __GFP_FS.
754  */
handle_write_error(struct address_space * mapping,struct page * page,int error)755 static void handle_write_error(struct address_space *mapping,
756 				struct page *page, int error)
757 {
758 	lock_page(page);
759 	if (page_mapping(page) == mapping)
760 		mapping_set_error(mapping, error);
761 	unlock_page(page);
762 }
763 
764 /* possible outcome of pageout() */
765 typedef enum {
766 	/* failed to write page out, page is locked */
767 	PAGE_KEEP,
768 	/* move page to the active list, page is locked */
769 	PAGE_ACTIVATE,
770 	/* page has been sent to the disk successfully, page is unlocked */
771 	PAGE_SUCCESS,
772 	/* page is clean and locked */
773 	PAGE_CLEAN,
774 } pageout_t;
775 
776 /*
777  * pageout is called by shrink_page_list() for each dirty page.
778  * Calls ->writepage().
779  */
pageout(struct page * page,struct address_space * mapping)780 static pageout_t pageout(struct page *page, struct address_space *mapping)
781 {
782 	/*
783 	 * If the page is dirty, only perform writeback if that write
784 	 * will be non-blocking.  To prevent this allocation from being
785 	 * stalled by pagecache activity.  But note that there may be
786 	 * stalls if we need to run get_block().  We could test
787 	 * PagePrivate for that.
788 	 *
789 	 * If this process is currently in __generic_file_write_iter() against
790 	 * this page's queue, we can perform writeback even if that
791 	 * will block.
792 	 *
793 	 * If the page is swapcache, write it back even if that would
794 	 * block, for some throttling. This happens by accident, because
795 	 * swap_backing_dev_info is bust: it doesn't reflect the
796 	 * congestion state of the swapdevs.  Easy to fix, if needed.
797 	 */
798 	if (!is_page_cache_freeable(page))
799 		return PAGE_KEEP;
800 	if (!mapping) {
801 		/*
802 		 * Some data journaling orphaned pages can have
803 		 * page->mapping == NULL while being dirty with clean buffers.
804 		 */
805 		if (page_has_private(page)) {
806 			if (try_to_free_buffers(page)) {
807 				ClearPageDirty(page);
808 				pr_info("%s: orphaned page\n", __func__);
809 				return PAGE_CLEAN;
810 			}
811 		}
812 		return PAGE_KEEP;
813 	}
814 	if (mapping->a_ops->writepage == NULL)
815 		return PAGE_ACTIVATE;
816 	if (!may_write_to_inode(mapping->host))
817 		return PAGE_KEEP;
818 
819 	if (clear_page_dirty_for_io(page)) {
820 		int res;
821 		struct writeback_control wbc = {
822 			.sync_mode = WB_SYNC_NONE,
823 			.nr_to_write = SWAP_CLUSTER_MAX,
824 			.range_start = 0,
825 			.range_end = LLONG_MAX,
826 			.for_reclaim = 1,
827 		};
828 
829 		SetPageReclaim(page);
830 		res = mapping->a_ops->writepage(page, &wbc);
831 		if (res < 0)
832 			handle_write_error(mapping, page, res);
833 		if (res == AOP_WRITEPAGE_ACTIVATE) {
834 			ClearPageReclaim(page);
835 			return PAGE_ACTIVATE;
836 		}
837 
838 		if (!PageWriteback(page)) {
839 			/* synchronous write or broken a_ops? */
840 			ClearPageReclaim(page);
841 		}
842 		trace_mm_vmscan_writepage(page);
843 		inc_node_page_state(page, NR_VMSCAN_WRITE);
844 		return PAGE_SUCCESS;
845 	}
846 
847 	return PAGE_CLEAN;
848 }
849 
850 /*
851  * Same as remove_mapping, but if the page is removed from the mapping, it
852  * gets returned with a refcount of 0.
853  */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed,struct mem_cgroup * target_memcg)854 static int __remove_mapping(struct address_space *mapping, struct page *page,
855 			    bool reclaimed, struct mem_cgroup *target_memcg)
856 {
857 	unsigned long flags;
858 	int refcount;
859 	void *shadow = NULL;
860 
861 	BUG_ON(!PageLocked(page));
862 	BUG_ON(mapping != page_mapping(page));
863 
864 	xa_lock_irqsave(&mapping->i_pages, flags);
865 	/*
866 	 * The non racy check for a busy page.
867 	 *
868 	 * Must be careful with the order of the tests. When someone has
869 	 * a ref to the page, it may be possible that they dirty it then
870 	 * drop the reference. So if PageDirty is tested before page_count
871 	 * here, then the following race may occur:
872 	 *
873 	 * get_user_pages(&page);
874 	 * [user mapping goes away]
875 	 * write_to(page);
876 	 *				!PageDirty(page)    [good]
877 	 * SetPageDirty(page);
878 	 * put_page(page);
879 	 *				!page_count(page)   [good, discard it]
880 	 *
881 	 * [oops, our write_to data is lost]
882 	 *
883 	 * Reversing the order of the tests ensures such a situation cannot
884 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
885 	 * load is not satisfied before that of page->_refcount.
886 	 *
887 	 * Note that if SetPageDirty is always performed via set_page_dirty,
888 	 * and thus under the i_pages lock, then this ordering is not required.
889 	 */
890 	refcount = 1 + compound_nr(page);
891 	if (!page_ref_freeze(page, refcount))
892 		goto cannot_free;
893 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
894 	if (unlikely(PageDirty(page))) {
895 		page_ref_unfreeze(page, refcount);
896 		goto cannot_free;
897 	}
898 
899 	if (PageSwapCache(page)) {
900 		swp_entry_t swap = { .val = page_private(page) };
901 		mem_cgroup_swapout(page, swap);
902 		if (reclaimed && !mapping_exiting(mapping))
903 			shadow = workingset_eviction(page, target_memcg);
904 		__delete_from_swap_cache(page, swap, shadow);
905 		xa_unlock_irqrestore(&mapping->i_pages, flags);
906 		put_swap_page(page, swap);
907 	} else {
908 		void (*freepage)(struct page *);
909 
910 		freepage = mapping->a_ops->freepage;
911 		/*
912 		 * Remember a shadow entry for reclaimed file cache in
913 		 * order to detect refaults, thus thrashing, later on.
914 		 *
915 		 * But don't store shadows in an address space that is
916 		 * already exiting.  This is not just an optimization,
917 		 * inode reclaim needs to empty out the radix tree or
918 		 * the nodes are lost.  Don't plant shadows behind its
919 		 * back.
920 		 *
921 		 * We also don't store shadows for DAX mappings because the
922 		 * only page cache pages found in these are zero pages
923 		 * covering holes, and because we don't want to mix DAX
924 		 * exceptional entries and shadow exceptional entries in the
925 		 * same address_space.
926 		 */
927 		if (reclaimed && page_is_file_lru(page) &&
928 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
929 			shadow = workingset_eviction(page, target_memcg);
930 		__delete_from_page_cache(page, shadow);
931 		xa_unlock_irqrestore(&mapping->i_pages, flags);
932 
933 		if (freepage != NULL)
934 			freepage(page);
935 	}
936 
937 	return 1;
938 
939 cannot_free:
940 	xa_unlock_irqrestore(&mapping->i_pages, flags);
941 	return 0;
942 }
943 
944 /*
945  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
946  * someone else has a ref on the page, abort and return 0.  If it was
947  * successfully detached, return 1.  Assumes the caller has a single ref on
948  * this page.
949  */
remove_mapping(struct address_space * mapping,struct page * page)950 int remove_mapping(struct address_space *mapping, struct page *page)
951 {
952 	if (__remove_mapping(mapping, page, false, NULL)) {
953 		/*
954 		 * Unfreezing the refcount with 1 rather than 2 effectively
955 		 * drops the pagecache ref for us without requiring another
956 		 * atomic operation.
957 		 */
958 		page_ref_unfreeze(page, 1);
959 		return 1;
960 	}
961 	return 0;
962 }
963 
964 /**
965  * putback_lru_page - put previously isolated page onto appropriate LRU list
966  * @page: page to be put back to appropriate lru list
967  *
968  * Add previously isolated @page to appropriate LRU list.
969  * Page may still be unevictable for other reasons.
970  *
971  * lru_lock must not be held, interrupts must be enabled.
972  */
putback_lru_page(struct page * page)973 void putback_lru_page(struct page *page)
974 {
975 	lru_cache_add(page);
976 	put_page(page);		/* drop ref from isolate */
977 }
978 
979 enum page_references {
980 	PAGEREF_RECLAIM,
981 	PAGEREF_RECLAIM_CLEAN,
982 	PAGEREF_KEEP,
983 	PAGEREF_ACTIVATE,
984 };
985 
page_check_references(struct page * page,struct scan_control * sc)986 static enum page_references page_check_references(struct page *page,
987 						  struct scan_control *sc)
988 {
989 	int referenced_ptes, referenced_page;
990 	unsigned long vm_flags;
991 
992 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
993 					  &vm_flags);
994 	referenced_page = TestClearPageReferenced(page);
995 
996 	/*
997 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
998 	 * move the page to the unevictable list.
999 	 */
1000 	if (vm_flags & VM_LOCKED)
1001 		return PAGEREF_RECLAIM;
1002 
1003 	if (referenced_ptes) {
1004 		/*
1005 		 * All mapped pages start out with page table
1006 		 * references from the instantiating fault, so we need
1007 		 * to look twice if a mapped file page is used more
1008 		 * than once.
1009 		 *
1010 		 * Mark it and spare it for another trip around the
1011 		 * inactive list.  Another page table reference will
1012 		 * lead to its activation.
1013 		 *
1014 		 * Note: the mark is set for activated pages as well
1015 		 * so that recently deactivated but used pages are
1016 		 * quickly recovered.
1017 		 */
1018 		SetPageReferenced(page);
1019 
1020 		if (referenced_page || referenced_ptes > 1)
1021 			return PAGEREF_ACTIVATE;
1022 
1023 		/*
1024 		 * Activate file-backed executable pages after first usage.
1025 		 */
1026 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1027 			return PAGEREF_ACTIVATE;
1028 
1029 		return PAGEREF_KEEP;
1030 	}
1031 
1032 	/* Reclaim if clean, defer dirty pages to writeback */
1033 	if (referenced_page && !PageSwapBacked(page))
1034 		return PAGEREF_RECLAIM_CLEAN;
1035 
1036 	return PAGEREF_RECLAIM;
1037 }
1038 
1039 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)1040 static void page_check_dirty_writeback(struct page *page,
1041 				       bool *dirty, bool *writeback)
1042 {
1043 	struct address_space *mapping;
1044 
1045 	/*
1046 	 * Anonymous pages are not handled by flushers and must be written
1047 	 * from reclaim context. Do not stall reclaim based on them
1048 	 */
1049 	if (!page_is_file_lru(page) ||
1050 	    (PageAnon(page) && !PageSwapBacked(page))) {
1051 		*dirty = false;
1052 		*writeback = false;
1053 		return;
1054 	}
1055 
1056 	/* By default assume that the page flags are accurate */
1057 	*dirty = PageDirty(page);
1058 	*writeback = PageWriteback(page);
1059 
1060 	/* Verify dirty/writeback state if the filesystem supports it */
1061 	if (!page_has_private(page))
1062 		return;
1063 
1064 	mapping = page_mapping(page);
1065 	if (mapping && mapping->a_ops->is_dirty_writeback)
1066 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1067 }
1068 
1069 /*
1070  * shrink_page_list() returns the number of reclaimed pages
1071  */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,enum ttu_flags ttu_flags,struct reclaim_stat * stat,bool ignore_references)1072 static unsigned int shrink_page_list(struct list_head *page_list,
1073 				     struct pglist_data *pgdat,
1074 				     struct scan_control *sc,
1075 				     enum ttu_flags ttu_flags,
1076 				     struct reclaim_stat *stat,
1077 				     bool ignore_references)
1078 {
1079 	LIST_HEAD(ret_pages);
1080 	LIST_HEAD(free_pages);
1081 	unsigned int nr_reclaimed = 0;
1082 	unsigned int pgactivate = 0;
1083 
1084 	memset(stat, 0, sizeof(*stat));
1085 	cond_resched();
1086 
1087 	while (!list_empty(page_list)) {
1088 		struct address_space *mapping;
1089 		struct page *page;
1090 		enum page_references references = PAGEREF_RECLAIM;
1091 		bool dirty, writeback, may_enter_fs;
1092 		unsigned int nr_pages;
1093 
1094 		cond_resched();
1095 
1096 		page = lru_to_page(page_list);
1097 		list_del(&page->lru);
1098 
1099 		if (!trylock_page(page))
1100 			goto keep;
1101 
1102 		VM_BUG_ON_PAGE(PageActive(page), page);
1103 
1104 		nr_pages = compound_nr(page);
1105 
1106 		/* Account the number of base pages even though THP */
1107 		sc->nr_scanned += nr_pages;
1108 
1109 		if (unlikely(!page_evictable(page)))
1110 			goto activate_locked;
1111 
1112 		if (!sc->may_unmap && page_mapped(page))
1113 			goto keep_locked;
1114 
1115 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1116 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1117 
1118 		/*
1119 		 * The number of dirty pages determines if a node is marked
1120 		 * reclaim_congested which affects wait_iff_congested. kswapd
1121 		 * will stall and start writing pages if the tail of the LRU
1122 		 * is all dirty unqueued pages.
1123 		 */
1124 		page_check_dirty_writeback(page, &dirty, &writeback);
1125 		if (dirty || writeback)
1126 			stat->nr_dirty++;
1127 
1128 		if (dirty && !writeback)
1129 			stat->nr_unqueued_dirty++;
1130 
1131 		/*
1132 		 * Treat this page as congested if the underlying BDI is or if
1133 		 * pages are cycling through the LRU so quickly that the
1134 		 * pages marked for immediate reclaim are making it to the
1135 		 * end of the LRU a second time.
1136 		 */
1137 		mapping = page_mapping(page);
1138 		if (((dirty || writeback) && mapping &&
1139 		     inode_write_congested(mapping->host)) ||
1140 		    (writeback && PageReclaim(page)))
1141 			stat->nr_congested++;
1142 
1143 		/*
1144 		 * If a page at the tail of the LRU is under writeback, there
1145 		 * are three cases to consider.
1146 		 *
1147 		 * 1) If reclaim is encountering an excessive number of pages
1148 		 *    under writeback and this page is both under writeback and
1149 		 *    PageReclaim then it indicates that pages are being queued
1150 		 *    for IO but are being recycled through the LRU before the
1151 		 *    IO can complete. Waiting on the page itself risks an
1152 		 *    indefinite stall if it is impossible to writeback the
1153 		 *    page due to IO error or disconnected storage so instead
1154 		 *    note that the LRU is being scanned too quickly and the
1155 		 *    caller can stall after page list has been processed.
1156 		 *
1157 		 * 2) Global or new memcg reclaim encounters a page that is
1158 		 *    not marked for immediate reclaim, or the caller does not
1159 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1160 		 *    not to fs). In this case mark the page for immediate
1161 		 *    reclaim and continue scanning.
1162 		 *
1163 		 *    Require may_enter_fs because we would wait on fs, which
1164 		 *    may not have submitted IO yet. And the loop driver might
1165 		 *    enter reclaim, and deadlock if it waits on a page for
1166 		 *    which it is needed to do the write (loop masks off
1167 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1168 		 *    would probably show more reasons.
1169 		 *
1170 		 * 3) Legacy memcg encounters a page that is already marked
1171 		 *    PageReclaim. memcg does not have any dirty pages
1172 		 *    throttling so we could easily OOM just because too many
1173 		 *    pages are in writeback and there is nothing else to
1174 		 *    reclaim. Wait for the writeback to complete.
1175 		 *
1176 		 * In cases 1) and 2) we activate the pages to get them out of
1177 		 * the way while we continue scanning for clean pages on the
1178 		 * inactive list and refilling from the active list. The
1179 		 * observation here is that waiting for disk writes is more
1180 		 * expensive than potentially causing reloads down the line.
1181 		 * Since they're marked for immediate reclaim, they won't put
1182 		 * memory pressure on the cache working set any longer than it
1183 		 * takes to write them to disk.
1184 		 */
1185 		if (PageWriteback(page)) {
1186 			/* Case 1 above */
1187 			if (current_is_kswapd() &&
1188 			    PageReclaim(page) &&
1189 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1190 				stat->nr_immediate++;
1191 				goto activate_locked;
1192 
1193 			/* Case 2 above */
1194 			} else if (writeback_throttling_sane(sc) ||
1195 			    !PageReclaim(page) || !may_enter_fs) {
1196 				/*
1197 				 * This is slightly racy - end_page_writeback()
1198 				 * might have just cleared PageReclaim, then
1199 				 * setting PageReclaim here end up interpreted
1200 				 * as PageReadahead - but that does not matter
1201 				 * enough to care.  What we do want is for this
1202 				 * page to have PageReclaim set next time memcg
1203 				 * reclaim reaches the tests above, so it will
1204 				 * then wait_on_page_writeback() to avoid OOM;
1205 				 * and it's also appropriate in global reclaim.
1206 				 */
1207 				SetPageReclaim(page);
1208 				stat->nr_writeback++;
1209 				goto activate_locked;
1210 
1211 			/* Case 3 above */
1212 			} else {
1213 				unlock_page(page);
1214 				wait_on_page_writeback(page);
1215 				/* then go back and try same page again */
1216 				list_add_tail(&page->lru, page_list);
1217 				continue;
1218 			}
1219 		}
1220 
1221 		if (!ignore_references)
1222 			references = page_check_references(page, sc);
1223 
1224 		switch (references) {
1225 		case PAGEREF_ACTIVATE:
1226 			goto activate_locked;
1227 		case PAGEREF_KEEP:
1228 			stat->nr_ref_keep += nr_pages;
1229 			goto keep_locked;
1230 		case PAGEREF_RECLAIM:
1231 		case PAGEREF_RECLAIM_CLEAN:
1232 			; /* try to reclaim the page below */
1233 		}
1234 
1235 		/*
1236 		 * Anonymous process memory has backing store?
1237 		 * Try to allocate it some swap space here.
1238 		 * Lazyfree page could be freed directly
1239 		 */
1240 		if (PageAnon(page) && PageSwapBacked(page)) {
1241 			if (!PageSwapCache(page)) {
1242 				if (!(sc->gfp_mask & __GFP_IO))
1243 					goto keep_locked;
1244 				if (PageTransHuge(page)) {
1245 					/* cannot split THP, skip it */
1246 					if (!can_split_huge_page(page, NULL))
1247 						goto activate_locked;
1248 					/*
1249 					 * Split pages without a PMD map right
1250 					 * away. Chances are some or all of the
1251 					 * tail pages can be freed without IO.
1252 					 */
1253 					if (!compound_mapcount(page) &&
1254 					    split_huge_page_to_list(page,
1255 								    page_list))
1256 						goto activate_locked;
1257 				}
1258 				if (!add_to_swap(page)) {
1259 					if (!PageTransHuge(page))
1260 						goto activate_locked_split;
1261 					/* Fallback to swap normal pages */
1262 					if (split_huge_page_to_list(page,
1263 								    page_list))
1264 						goto activate_locked;
1265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1266 					count_vm_event(THP_SWPOUT_FALLBACK);
1267 #endif
1268 					if (!add_to_swap(page))
1269 						goto activate_locked_split;
1270 				}
1271 
1272 				may_enter_fs = true;
1273 
1274 				/* Adding to swap updated mapping */
1275 				mapping = page_mapping(page);
1276 			}
1277 		} else if (unlikely(PageTransHuge(page))) {
1278 			/* Split file THP */
1279 			if (split_huge_page_to_list(page, page_list))
1280 				goto keep_locked;
1281 		}
1282 
1283 		/*
1284 		 * THP may get split above, need minus tail pages and update
1285 		 * nr_pages to avoid accounting tail pages twice.
1286 		 *
1287 		 * The tail pages that are added into swap cache successfully
1288 		 * reach here.
1289 		 */
1290 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1291 			sc->nr_scanned -= (nr_pages - 1);
1292 			nr_pages = 1;
1293 		}
1294 
1295 		/*
1296 		 * The page is mapped into the page tables of one or more
1297 		 * processes. Try to unmap it here.
1298 		 */
1299 		if (page_mapped(page)) {
1300 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1301 			bool was_swapbacked = PageSwapBacked(page);
1302 
1303 			if (unlikely(PageTransHuge(page)))
1304 				flags |= TTU_SPLIT_HUGE_PMD;
1305 
1306 			if (!try_to_unmap(page, flags)) {
1307 				stat->nr_unmap_fail += nr_pages;
1308 				if (!was_swapbacked && PageSwapBacked(page))
1309 					stat->nr_lazyfree_fail += nr_pages;
1310 				goto activate_locked;
1311 			}
1312 		}
1313 
1314 		if (PageDirty(page)) {
1315 			/*
1316 			 * Only kswapd can writeback filesystem pages
1317 			 * to avoid risk of stack overflow. But avoid
1318 			 * injecting inefficient single-page IO into
1319 			 * flusher writeback as much as possible: only
1320 			 * write pages when we've encountered many
1321 			 * dirty pages, and when we've already scanned
1322 			 * the rest of the LRU for clean pages and see
1323 			 * the same dirty pages again (PageReclaim).
1324 			 */
1325 			if (page_is_file_lru(page) &&
1326 			    (!current_is_kswapd() || !PageReclaim(page) ||
1327 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1328 				/*
1329 				 * Immediately reclaim when written back.
1330 				 * Similar in principal to deactivate_page()
1331 				 * except we already have the page isolated
1332 				 * and know it's dirty
1333 				 */
1334 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1335 				SetPageReclaim(page);
1336 
1337 				goto activate_locked;
1338 			}
1339 
1340 			if (references == PAGEREF_RECLAIM_CLEAN)
1341 				goto keep_locked;
1342 			if (!may_enter_fs)
1343 				goto keep_locked;
1344 			if (!sc->may_writepage)
1345 				goto keep_locked;
1346 
1347 			/*
1348 			 * Page is dirty. Flush the TLB if a writable entry
1349 			 * potentially exists to avoid CPU writes after IO
1350 			 * starts and then write it out here.
1351 			 */
1352 			try_to_unmap_flush_dirty();
1353 			switch (pageout(page, mapping)) {
1354 			case PAGE_KEEP:
1355 				goto keep_locked;
1356 			case PAGE_ACTIVATE:
1357 				goto activate_locked;
1358 			case PAGE_SUCCESS:
1359 				stat->nr_pageout += thp_nr_pages(page);
1360 
1361 				if (PageWriteback(page))
1362 					goto keep;
1363 				if (PageDirty(page))
1364 					goto keep;
1365 
1366 				/*
1367 				 * A synchronous write - probably a ramdisk.  Go
1368 				 * ahead and try to reclaim the page.
1369 				 */
1370 				if (!trylock_page(page))
1371 					goto keep;
1372 				if (PageDirty(page) || PageWriteback(page))
1373 					goto keep_locked;
1374 				mapping = page_mapping(page);
1375 			case PAGE_CLEAN:
1376 				; /* try to free the page below */
1377 			}
1378 		}
1379 
1380 		/*
1381 		 * If the page has buffers, try to free the buffer mappings
1382 		 * associated with this page. If we succeed we try to free
1383 		 * the page as well.
1384 		 *
1385 		 * We do this even if the page is PageDirty().
1386 		 * try_to_release_page() does not perform I/O, but it is
1387 		 * possible for a page to have PageDirty set, but it is actually
1388 		 * clean (all its buffers are clean).  This happens if the
1389 		 * buffers were written out directly, with submit_bh(). ext3
1390 		 * will do this, as well as the blockdev mapping.
1391 		 * try_to_release_page() will discover that cleanness and will
1392 		 * drop the buffers and mark the page clean - it can be freed.
1393 		 *
1394 		 * Rarely, pages can have buffers and no ->mapping.  These are
1395 		 * the pages which were not successfully invalidated in
1396 		 * truncate_complete_page().  We try to drop those buffers here
1397 		 * and if that worked, and the page is no longer mapped into
1398 		 * process address space (page_count == 1) it can be freed.
1399 		 * Otherwise, leave the page on the LRU so it is swappable.
1400 		 */
1401 		if (page_has_private(page)) {
1402 			if (!try_to_release_page(page, sc->gfp_mask))
1403 				goto activate_locked;
1404 			if (!mapping && page_count(page) == 1) {
1405 				unlock_page(page);
1406 				if (put_page_testzero(page))
1407 					goto free_it;
1408 				else {
1409 					/*
1410 					 * rare race with speculative reference.
1411 					 * the speculative reference will free
1412 					 * this page shortly, so we may
1413 					 * increment nr_reclaimed here (and
1414 					 * leave it off the LRU).
1415 					 */
1416 					nr_reclaimed++;
1417 					continue;
1418 				}
1419 			}
1420 		}
1421 
1422 		if (PageAnon(page) && !PageSwapBacked(page)) {
1423 			/* follow __remove_mapping for reference */
1424 			if (!page_ref_freeze(page, 1))
1425 				goto keep_locked;
1426 			if (PageDirty(page)) {
1427 				page_ref_unfreeze(page, 1);
1428 				goto keep_locked;
1429 			}
1430 
1431 			count_vm_event(PGLAZYFREED);
1432 			count_memcg_page_event(page, PGLAZYFREED);
1433 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1434 							 sc->target_mem_cgroup))
1435 			goto keep_locked;
1436 
1437 		unlock_page(page);
1438 free_it:
1439 		/*
1440 		 * THP may get swapped out in a whole, need account
1441 		 * all base pages.
1442 		 */
1443 		nr_reclaimed += nr_pages;
1444 
1445 		/*
1446 		 * Is there need to periodically free_page_list? It would
1447 		 * appear not as the counts should be low
1448 		 */
1449 		if (unlikely(PageTransHuge(page)))
1450 			destroy_compound_page(page);
1451 		else
1452 			list_add(&page->lru, &free_pages);
1453 		continue;
1454 
1455 activate_locked_split:
1456 		/*
1457 		 * The tail pages that are failed to add into swap cache
1458 		 * reach here.  Fixup nr_scanned and nr_pages.
1459 		 */
1460 		if (nr_pages > 1) {
1461 			sc->nr_scanned -= (nr_pages - 1);
1462 			nr_pages = 1;
1463 		}
1464 activate_locked:
1465 		/* Not a candidate for swapping, so reclaim swap space. */
1466 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1467 						PageMlocked(page)))
1468 			try_to_free_swap(page);
1469 		VM_BUG_ON_PAGE(PageActive(page), page);
1470 		if (!PageMlocked(page)) {
1471 			int type = page_is_file_lru(page);
1472 			SetPageActive(page);
1473 			stat->nr_activate[type] += nr_pages;
1474 			count_memcg_page_event(page, PGACTIVATE);
1475 		}
1476 keep_locked:
1477 		unlock_page(page);
1478 keep:
1479 		list_add(&page->lru, &ret_pages);
1480 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1481 	}
1482 
1483 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1484 
1485 	mem_cgroup_uncharge_list(&free_pages);
1486 	try_to_unmap_flush();
1487 	free_unref_page_list(&free_pages);
1488 
1489 	list_splice(&ret_pages, page_list);
1490 	count_vm_events(PGACTIVATE, pgactivate);
1491 
1492 	return nr_reclaimed;
1493 }
1494 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1495 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1496 					    struct list_head *page_list)
1497 {
1498 	struct scan_control sc = {
1499 		.gfp_mask = GFP_KERNEL,
1500 		.priority = DEF_PRIORITY,
1501 		.may_unmap = 1,
1502 	};
1503 	struct reclaim_stat stat;
1504 	unsigned int nr_reclaimed;
1505 	struct page *page, *next;
1506 	LIST_HEAD(clean_pages);
1507 
1508 	list_for_each_entry_safe(page, next, page_list, lru) {
1509 		if (page_is_file_lru(page) && !PageDirty(page) &&
1510 		    !__PageMovable(page) && !PageUnevictable(page)) {
1511 			ClearPageActive(page);
1512 			list_move(&page->lru, &clean_pages);
1513 		}
1514 	}
1515 
1516 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1517 			TTU_IGNORE_ACCESS, &stat, true);
1518 	list_splice(&clean_pages, page_list);
1519 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1520 			    -(long)nr_reclaimed);
1521 	/*
1522 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1523 	 * they will rotate back to anonymous LRU in the end if it failed to
1524 	 * discard so isolated count will be mismatched.
1525 	 * Compensate the isolated count for both LRU lists.
1526 	 */
1527 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1528 			    stat.nr_lazyfree_fail);
1529 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1530 			    -(long)stat.nr_lazyfree_fail);
1531 	return nr_reclaimed;
1532 }
1533 
1534 /*
1535  * Attempt to remove the specified page from its LRU.  Only take this page
1536  * if it is of the appropriate PageActive status.  Pages which are being
1537  * freed elsewhere are also ignored.
1538  *
1539  * page:	page to consider
1540  * mode:	one of the LRU isolation modes defined above
1541  *
1542  * returns 0 on success, -ve errno on failure.
1543  */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1544 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1545 {
1546 	int ret = -EINVAL;
1547 
1548 	/* Only take pages on the LRU. */
1549 	if (!PageLRU(page))
1550 		return ret;
1551 
1552 	/* Compaction should not handle unevictable pages but CMA can do so */
1553 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1554 		return ret;
1555 
1556 	ret = -EBUSY;
1557 
1558 	/*
1559 	 * To minimise LRU disruption, the caller can indicate that it only
1560 	 * wants to isolate pages it will be able to operate on without
1561 	 * blocking - clean pages for the most part.
1562 	 *
1563 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1564 	 * that it is possible to migrate without blocking
1565 	 */
1566 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1567 		/* All the caller can do on PageWriteback is block */
1568 		if (PageWriteback(page))
1569 			return ret;
1570 
1571 		if (PageDirty(page)) {
1572 			struct address_space *mapping;
1573 			bool migrate_dirty;
1574 
1575 			/*
1576 			 * Only pages without mappings or that have a
1577 			 * ->migratepage callback are possible to migrate
1578 			 * without blocking. However, we can be racing with
1579 			 * truncation so it's necessary to lock the page
1580 			 * to stabilise the mapping as truncation holds
1581 			 * the page lock until after the page is removed
1582 			 * from the page cache.
1583 			 */
1584 			if (!trylock_page(page))
1585 				return ret;
1586 
1587 			mapping = page_mapping(page);
1588 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1589 			unlock_page(page);
1590 			if (!migrate_dirty)
1591 				return ret;
1592 		}
1593 	}
1594 
1595 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1596 		return ret;
1597 
1598 	if (likely(get_page_unless_zero(page))) {
1599 		/*
1600 		 * Be careful not to clear PageLRU until after we're
1601 		 * sure the page is not being freed elsewhere -- the
1602 		 * page release code relies on it.
1603 		 */
1604 		ClearPageLRU(page);
1605 		ret = 0;
1606 	}
1607 
1608 	return ret;
1609 }
1610 
1611 
1612 /*
1613  * Update LRU sizes after isolating pages. The LRU size updates must
1614  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1615  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1616 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1617 			enum lru_list lru, unsigned long *nr_zone_taken)
1618 {
1619 	int zid;
1620 
1621 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1622 		if (!nr_zone_taken[zid])
1623 			continue;
1624 
1625 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1626 	}
1627 
1628 }
1629 
1630 /**
1631  * pgdat->lru_lock is heavily contended.  Some of the functions that
1632  * shrink the lists perform better by taking out a batch of pages
1633  * and working on them outside the LRU lock.
1634  *
1635  * For pagecache intensive workloads, this function is the hottest
1636  * spot in the kernel (apart from copy_*_user functions).
1637  *
1638  * Appropriate locks must be held before calling this function.
1639  *
1640  * @nr_to_scan:	The number of eligible pages to look through on the list.
1641  * @lruvec:	The LRU vector to pull pages from.
1642  * @dst:	The temp list to put pages on to.
1643  * @nr_scanned:	The number of pages that were scanned.
1644  * @sc:		The scan_control struct for this reclaim session
1645  * @lru:	LRU list id for isolating
1646  *
1647  * returns how many pages were moved onto *@dst.
1648  */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1649 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1650 		struct lruvec *lruvec, struct list_head *dst,
1651 		unsigned long *nr_scanned, struct scan_control *sc,
1652 		enum lru_list lru)
1653 {
1654 	struct list_head *src = &lruvec->lists[lru];
1655 	unsigned long nr_taken = 0;
1656 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1657 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1658 	unsigned long skipped = 0;
1659 	unsigned long scan, total_scan, nr_pages;
1660 	LIST_HEAD(pages_skipped);
1661 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1662 
1663 	total_scan = 0;
1664 	scan = 0;
1665 	while (scan < nr_to_scan && !list_empty(src)) {
1666 		struct page *page;
1667 
1668 		page = lru_to_page(src);
1669 		prefetchw_prev_lru_page(page, src, flags);
1670 
1671 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1672 
1673 		nr_pages = compound_nr(page);
1674 		total_scan += nr_pages;
1675 
1676 		if (page_zonenum(page) > sc->reclaim_idx) {
1677 			list_move(&page->lru, &pages_skipped);
1678 			nr_skipped[page_zonenum(page)] += nr_pages;
1679 			continue;
1680 		}
1681 
1682 		/*
1683 		 * Do not count skipped pages because that makes the function
1684 		 * return with no isolated pages if the LRU mostly contains
1685 		 * ineligible pages.  This causes the VM to not reclaim any
1686 		 * pages, triggering a premature OOM.
1687 		 *
1688 		 * Account all tail pages of THP.  This would not cause
1689 		 * premature OOM since __isolate_lru_page() returns -EBUSY
1690 		 * only when the page is being freed somewhere else.
1691 		 */
1692 		scan += nr_pages;
1693 		switch (__isolate_lru_page(page, mode)) {
1694 		case 0:
1695 			nr_taken += nr_pages;
1696 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1697 			list_move(&page->lru, dst);
1698 			break;
1699 
1700 		case -EBUSY:
1701 			/* else it is being freed elsewhere */
1702 			list_move(&page->lru, src);
1703 			continue;
1704 
1705 		default:
1706 			BUG();
1707 		}
1708 	}
1709 
1710 	/*
1711 	 * Splice any skipped pages to the start of the LRU list. Note that
1712 	 * this disrupts the LRU order when reclaiming for lower zones but
1713 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1714 	 * scanning would soon rescan the same pages to skip and put the
1715 	 * system at risk of premature OOM.
1716 	 */
1717 	if (!list_empty(&pages_skipped)) {
1718 		int zid;
1719 
1720 		list_splice(&pages_skipped, src);
1721 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1722 			if (!nr_skipped[zid])
1723 				continue;
1724 
1725 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1726 			skipped += nr_skipped[zid];
1727 		}
1728 	}
1729 	*nr_scanned = total_scan;
1730 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1731 				    total_scan, skipped, nr_taken, mode, lru);
1732 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1733 	return nr_taken;
1734 }
1735 
1736 /**
1737  * isolate_lru_page - tries to isolate a page from its LRU list
1738  * @page: page to isolate from its LRU list
1739  *
1740  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1741  * vmstat statistic corresponding to whatever LRU list the page was on.
1742  *
1743  * Returns 0 if the page was removed from an LRU list.
1744  * Returns -EBUSY if the page was not on an LRU list.
1745  *
1746  * The returned page will have PageLRU() cleared.  If it was found on
1747  * the active list, it will have PageActive set.  If it was found on
1748  * the unevictable list, it will have the PageUnevictable bit set. That flag
1749  * may need to be cleared by the caller before letting the page go.
1750  *
1751  * The vmstat statistic corresponding to the list on which the page was
1752  * found will be decremented.
1753  *
1754  * Restrictions:
1755  *
1756  * (1) Must be called with an elevated refcount on the page. This is a
1757  *     fundamental difference from isolate_lru_pages (which is called
1758  *     without a stable reference).
1759  * (2) the lru_lock must not be held.
1760  * (3) interrupts must be enabled.
1761  */
isolate_lru_page(struct page * page)1762 int isolate_lru_page(struct page *page)
1763 {
1764 	int ret = -EBUSY;
1765 
1766 	VM_BUG_ON_PAGE(!page_count(page), page);
1767 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1768 
1769 	if (PageLRU(page)) {
1770 		pg_data_t *pgdat = page_pgdat(page);
1771 		struct lruvec *lruvec;
1772 
1773 		spin_lock_irq(&pgdat->lru_lock);
1774 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1775 		if (PageLRU(page)) {
1776 			int lru = page_lru(page);
1777 			get_page(page);
1778 			ClearPageLRU(page);
1779 			del_page_from_lru_list(page, lruvec, lru);
1780 			ret = 0;
1781 		}
1782 		spin_unlock_irq(&pgdat->lru_lock);
1783 	}
1784 	return ret;
1785 }
1786 
1787 /*
1788  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1789  * then get rescheduled. When there are massive number of tasks doing page
1790  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1791  * the LRU list will go small and be scanned faster than necessary, leading to
1792  * unnecessary swapping, thrashing and OOM.
1793  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1794 static int too_many_isolated(struct pglist_data *pgdat, int file,
1795 		struct scan_control *sc)
1796 {
1797 	unsigned long inactive, isolated;
1798 
1799 	if (current_is_kswapd())
1800 		return 0;
1801 
1802 	if (!writeback_throttling_sane(sc))
1803 		return 0;
1804 
1805 	if (file) {
1806 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1807 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1808 	} else {
1809 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1810 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1811 	}
1812 
1813 	/*
1814 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1815 	 * won't get blocked by normal direct-reclaimers, forming a circular
1816 	 * deadlock.
1817 	 */
1818 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1819 		inactive >>= 3;
1820 
1821 	return isolated > inactive;
1822 }
1823 
1824 /*
1825  * This moves pages from @list to corresponding LRU list.
1826  *
1827  * We move them the other way if the page is referenced by one or more
1828  * processes, from rmap.
1829  *
1830  * If the pages are mostly unmapped, the processing is fast and it is
1831  * appropriate to hold zone_lru_lock across the whole operation.  But if
1832  * the pages are mapped, the processing is slow (page_referenced()) so we
1833  * should drop zone_lru_lock around each page.  It's impossible to balance
1834  * this, so instead we remove the pages from the LRU while processing them.
1835  * It is safe to rely on PG_active against the non-LRU pages in here because
1836  * nobody will play with that bit on a non-LRU page.
1837  *
1838  * The downside is that we have to touch page->_refcount against each page.
1839  * But we had to alter page->flags anyway.
1840  *
1841  * Returns the number of pages moved to the given lruvec.
1842  */
1843 
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)1844 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1845 						     struct list_head *list)
1846 {
1847 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1848 	int nr_pages, nr_moved = 0;
1849 	LIST_HEAD(pages_to_free);
1850 	struct page *page;
1851 	enum lru_list lru;
1852 
1853 	while (!list_empty(list)) {
1854 		page = lru_to_page(list);
1855 		VM_BUG_ON_PAGE(PageLRU(page), page);
1856 		if (unlikely(!page_evictable(page))) {
1857 			list_del(&page->lru);
1858 			spin_unlock_irq(&pgdat->lru_lock);
1859 			putback_lru_page(page);
1860 			spin_lock_irq(&pgdat->lru_lock);
1861 			continue;
1862 		}
1863 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1864 
1865 		SetPageLRU(page);
1866 		lru = page_lru(page);
1867 
1868 		nr_pages = thp_nr_pages(page);
1869 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1870 		list_move(&page->lru, &lruvec->lists[lru]);
1871 
1872 		if (put_page_testzero(page)) {
1873 			__ClearPageLRU(page);
1874 			__ClearPageActive(page);
1875 			del_page_from_lru_list(page, lruvec, lru);
1876 
1877 			if (unlikely(PageCompound(page))) {
1878 				spin_unlock_irq(&pgdat->lru_lock);
1879 				destroy_compound_page(page);
1880 				spin_lock_irq(&pgdat->lru_lock);
1881 			} else
1882 				list_add(&page->lru, &pages_to_free);
1883 		} else {
1884 			nr_moved += nr_pages;
1885 			if (PageActive(page))
1886 				workingset_age_nonresident(lruvec, nr_pages);
1887 		}
1888 	}
1889 
1890 	/*
1891 	 * To save our caller's stack, now use input list for pages to free.
1892 	 */
1893 	list_splice(&pages_to_free, list);
1894 
1895 	return nr_moved;
1896 }
1897 
1898 /*
1899  * If a kernel thread (such as nfsd for loop-back mounts) services
1900  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1901  * In that case we should only throttle if the backing device it is
1902  * writing to is congested.  In other cases it is safe to throttle.
1903  */
current_may_throttle(void)1904 static int current_may_throttle(void)
1905 {
1906 	return !(current->flags & PF_LOCAL_THROTTLE) ||
1907 		current->backing_dev_info == NULL ||
1908 		bdi_write_congested(current->backing_dev_info);
1909 }
1910 
1911 /*
1912  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1913  * of reclaimed pages
1914  */
1915 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1916 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1917 		     struct scan_control *sc, enum lru_list lru)
1918 {
1919 	LIST_HEAD(page_list);
1920 	unsigned long nr_scanned;
1921 	unsigned int nr_reclaimed = 0;
1922 	unsigned long nr_taken;
1923 	struct reclaim_stat stat;
1924 	bool file = is_file_lru(lru);
1925 	enum vm_event_item item;
1926 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1927 	bool stalled = false;
1928 
1929 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1930 		if (stalled)
1931 			return 0;
1932 
1933 		/* wait a bit for the reclaimer. */
1934 		msleep(100);
1935 		stalled = true;
1936 
1937 		/* We are about to die and free our memory. Return now. */
1938 		if (fatal_signal_pending(current))
1939 			return SWAP_CLUSTER_MAX;
1940 	}
1941 
1942 	lru_add_drain();
1943 
1944 	spin_lock_irq(&pgdat->lru_lock);
1945 
1946 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1947 				     &nr_scanned, sc, lru);
1948 
1949 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1950 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1951 	if (!cgroup_reclaim(sc))
1952 		__count_vm_events(item, nr_scanned);
1953 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1954 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1955 
1956 	spin_unlock_irq(&pgdat->lru_lock);
1957 
1958 	if (nr_taken == 0)
1959 		return 0;
1960 
1961 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1962 				&stat, false);
1963 
1964 	spin_lock_irq(&pgdat->lru_lock);
1965 
1966 	move_pages_to_lru(lruvec, &page_list);
1967 
1968 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1969 	lru_note_cost(lruvec, file, stat.nr_pageout);
1970 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1971 	if (!cgroup_reclaim(sc))
1972 		__count_vm_events(item, nr_reclaimed);
1973 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1974 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1975 
1976 	spin_unlock_irq(&pgdat->lru_lock);
1977 
1978 	mem_cgroup_uncharge_list(&page_list);
1979 	free_unref_page_list(&page_list);
1980 
1981 	/*
1982 	 * If dirty pages are scanned that are not queued for IO, it
1983 	 * implies that flushers are not doing their job. This can
1984 	 * happen when memory pressure pushes dirty pages to the end of
1985 	 * the LRU before the dirty limits are breached and the dirty
1986 	 * data has expired. It can also happen when the proportion of
1987 	 * dirty pages grows not through writes but through memory
1988 	 * pressure reclaiming all the clean cache. And in some cases,
1989 	 * the flushers simply cannot keep up with the allocation
1990 	 * rate. Nudge the flusher threads in case they are asleep.
1991 	 */
1992 	if (stat.nr_unqueued_dirty == nr_taken)
1993 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1994 
1995 	sc->nr.dirty += stat.nr_dirty;
1996 	sc->nr.congested += stat.nr_congested;
1997 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1998 	sc->nr.writeback += stat.nr_writeback;
1999 	sc->nr.immediate += stat.nr_immediate;
2000 	sc->nr.taken += nr_taken;
2001 	if (file)
2002 		sc->nr.file_taken += nr_taken;
2003 
2004 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2005 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2006 	return nr_reclaimed;
2007 }
2008 
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2009 static void shrink_active_list(unsigned long nr_to_scan,
2010 			       struct lruvec *lruvec,
2011 			       struct scan_control *sc,
2012 			       enum lru_list lru)
2013 {
2014 	unsigned long nr_taken;
2015 	unsigned long nr_scanned;
2016 	unsigned long vm_flags;
2017 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2018 	LIST_HEAD(l_active);
2019 	LIST_HEAD(l_inactive);
2020 	struct page *page;
2021 	unsigned nr_deactivate, nr_activate;
2022 	unsigned nr_rotated = 0;
2023 	int file = is_file_lru(lru);
2024 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2025 
2026 	lru_add_drain();
2027 
2028 	spin_lock_irq(&pgdat->lru_lock);
2029 
2030 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2031 				     &nr_scanned, sc, lru);
2032 
2033 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2034 
2035 	if (!cgroup_reclaim(sc))
2036 		__count_vm_events(PGREFILL, nr_scanned);
2037 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2038 
2039 	spin_unlock_irq(&pgdat->lru_lock);
2040 
2041 	while (!list_empty(&l_hold)) {
2042 		cond_resched();
2043 		page = lru_to_page(&l_hold);
2044 		list_del(&page->lru);
2045 
2046 		if (unlikely(!page_evictable(page))) {
2047 			putback_lru_page(page);
2048 			continue;
2049 		}
2050 
2051 		if (unlikely(buffer_heads_over_limit)) {
2052 			if (page_has_private(page) && trylock_page(page)) {
2053 				if (page_has_private(page))
2054 					try_to_release_page(page, 0);
2055 				unlock_page(page);
2056 			}
2057 		}
2058 
2059 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2060 				    &vm_flags)) {
2061 			/*
2062 			 * Identify referenced, file-backed active pages and
2063 			 * give them one more trip around the active list. So
2064 			 * that executable code get better chances to stay in
2065 			 * memory under moderate memory pressure.  Anon pages
2066 			 * are not likely to be evicted by use-once streaming
2067 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2068 			 * so we ignore them here.
2069 			 */
2070 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2071 				nr_rotated += thp_nr_pages(page);
2072 				list_add(&page->lru, &l_active);
2073 				continue;
2074 			}
2075 		}
2076 
2077 		ClearPageActive(page);	/* we are de-activating */
2078 		SetPageWorkingset(page);
2079 		list_add(&page->lru, &l_inactive);
2080 	}
2081 
2082 	/*
2083 	 * Move pages back to the lru list.
2084 	 */
2085 	spin_lock_irq(&pgdat->lru_lock);
2086 
2087 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2088 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2089 	/* Keep all free pages in l_active list */
2090 	list_splice(&l_inactive, &l_active);
2091 
2092 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2093 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2094 
2095 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2096 	spin_unlock_irq(&pgdat->lru_lock);
2097 
2098 	mem_cgroup_uncharge_list(&l_active);
2099 	free_unref_page_list(&l_active);
2100 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2101 			nr_deactivate, nr_rotated, sc->priority, file);
2102 }
2103 
reclaim_pages(struct list_head * page_list)2104 unsigned long reclaim_pages(struct list_head *page_list)
2105 {
2106 	int nid = NUMA_NO_NODE;
2107 	unsigned int nr_reclaimed = 0;
2108 	LIST_HEAD(node_page_list);
2109 	struct reclaim_stat dummy_stat;
2110 	struct page *page;
2111 	struct scan_control sc = {
2112 		.gfp_mask = GFP_KERNEL,
2113 		.priority = DEF_PRIORITY,
2114 		.may_writepage = 1,
2115 		.may_unmap = 1,
2116 		.may_swap = 1,
2117 	};
2118 
2119 	while (!list_empty(page_list)) {
2120 		page = lru_to_page(page_list);
2121 		if (nid == NUMA_NO_NODE) {
2122 			nid = page_to_nid(page);
2123 			INIT_LIST_HEAD(&node_page_list);
2124 		}
2125 
2126 		if (nid == page_to_nid(page)) {
2127 			ClearPageActive(page);
2128 			list_move(&page->lru, &node_page_list);
2129 			continue;
2130 		}
2131 
2132 		nr_reclaimed += shrink_page_list(&node_page_list,
2133 						NODE_DATA(nid),
2134 						&sc, 0,
2135 						&dummy_stat, false);
2136 		while (!list_empty(&node_page_list)) {
2137 			page = lru_to_page(&node_page_list);
2138 			list_del(&page->lru);
2139 			putback_lru_page(page);
2140 		}
2141 
2142 		nid = NUMA_NO_NODE;
2143 	}
2144 
2145 	if (!list_empty(&node_page_list)) {
2146 		nr_reclaimed += shrink_page_list(&node_page_list,
2147 						NODE_DATA(nid),
2148 						&sc, 0,
2149 						&dummy_stat, false);
2150 		while (!list_empty(&node_page_list)) {
2151 			page = lru_to_page(&node_page_list);
2152 			list_del(&page->lru);
2153 			putback_lru_page(page);
2154 		}
2155 	}
2156 
2157 	return nr_reclaimed;
2158 }
2159 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2160 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2161 				 struct lruvec *lruvec, struct scan_control *sc)
2162 {
2163 	if (is_active_lru(lru)) {
2164 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2165 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2166 		else
2167 			sc->skipped_deactivate = 1;
2168 		return 0;
2169 	}
2170 
2171 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2172 }
2173 
2174 /*
2175  * The inactive anon list should be small enough that the VM never has
2176  * to do too much work.
2177  *
2178  * The inactive file list should be small enough to leave most memory
2179  * to the established workingset on the scan-resistant active list,
2180  * but large enough to avoid thrashing the aggregate readahead window.
2181  *
2182  * Both inactive lists should also be large enough that each inactive
2183  * page has a chance to be referenced again before it is reclaimed.
2184  *
2185  * If that fails and refaulting is observed, the inactive list grows.
2186  *
2187  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2188  * on this LRU, maintained by the pageout code. An inactive_ratio
2189  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2190  *
2191  * total     target    max
2192  * memory    ratio     inactive
2193  * -------------------------------------
2194  *   10MB       1         5MB
2195  *  100MB       1        50MB
2196  *    1GB       3       250MB
2197  *   10GB      10       0.9GB
2198  *  100GB      31         3GB
2199  *    1TB     101        10GB
2200  *   10TB     320        32GB
2201  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2202 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2203 {
2204 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2205 	unsigned long inactive, active;
2206 	unsigned long inactive_ratio;
2207 	unsigned long gb;
2208 
2209 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2210 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2211 
2212 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2213 	if (gb)
2214 		inactive_ratio = int_sqrt(10 * gb);
2215 	else
2216 		inactive_ratio = 1;
2217 
2218 	return inactive * inactive_ratio < active;
2219 }
2220 
2221 enum scan_balance {
2222 	SCAN_EQUAL,
2223 	SCAN_FRACT,
2224 	SCAN_ANON,
2225 	SCAN_FILE,
2226 };
2227 
2228 /*
2229  * Determine how aggressively the anon and file LRU lists should be
2230  * scanned.  The relative value of each set of LRU lists is determined
2231  * by looking at the fraction of the pages scanned we did rotate back
2232  * onto the active list instead of evict.
2233  *
2234  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2235  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2236  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2237 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2238 			   unsigned long *nr)
2239 {
2240 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2241 	unsigned long anon_cost, file_cost, total_cost;
2242 	int swappiness = mem_cgroup_swappiness(memcg);
2243 	u64 fraction[ANON_AND_FILE];
2244 	u64 denominator = 0;	/* gcc */
2245 	enum scan_balance scan_balance;
2246 	unsigned long ap, fp;
2247 	enum lru_list lru;
2248 
2249 	/* If we have no swap space, do not bother scanning anon pages. */
2250 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2251 		scan_balance = SCAN_FILE;
2252 		goto out;
2253 	}
2254 
2255 	/*
2256 	 * Global reclaim will swap to prevent OOM even with no
2257 	 * swappiness, but memcg users want to use this knob to
2258 	 * disable swapping for individual groups completely when
2259 	 * using the memory controller's swap limit feature would be
2260 	 * too expensive.
2261 	 */
2262 	if (cgroup_reclaim(sc) && !swappiness) {
2263 		scan_balance = SCAN_FILE;
2264 		goto out;
2265 	}
2266 
2267 	/*
2268 	 * Do not apply any pressure balancing cleverness when the
2269 	 * system is close to OOM, scan both anon and file equally
2270 	 * (unless the swappiness setting disagrees with swapping).
2271 	 */
2272 	if (!sc->priority && swappiness) {
2273 		scan_balance = SCAN_EQUAL;
2274 		goto out;
2275 	}
2276 
2277 	/*
2278 	 * If the system is almost out of file pages, force-scan anon.
2279 	 */
2280 	if (sc->file_is_tiny) {
2281 		scan_balance = SCAN_ANON;
2282 		goto out;
2283 	}
2284 
2285 	/*
2286 	 * If there is enough inactive page cache, we do not reclaim
2287 	 * anything from the anonymous working right now.
2288 	 */
2289 	if (sc->cache_trim_mode) {
2290 		scan_balance = SCAN_FILE;
2291 		goto out;
2292 	}
2293 
2294 	scan_balance = SCAN_FRACT;
2295 	/*
2296 	 * Calculate the pressure balance between anon and file pages.
2297 	 *
2298 	 * The amount of pressure we put on each LRU is inversely
2299 	 * proportional to the cost of reclaiming each list, as
2300 	 * determined by the share of pages that are refaulting, times
2301 	 * the relative IO cost of bringing back a swapped out
2302 	 * anonymous page vs reloading a filesystem page (swappiness).
2303 	 *
2304 	 * Although we limit that influence to ensure no list gets
2305 	 * left behind completely: at least a third of the pressure is
2306 	 * applied, before swappiness.
2307 	 *
2308 	 * With swappiness at 100, anon and file have equal IO cost.
2309 	 */
2310 	total_cost = sc->anon_cost + sc->file_cost;
2311 	anon_cost = total_cost + sc->anon_cost;
2312 	file_cost = total_cost + sc->file_cost;
2313 	total_cost = anon_cost + file_cost;
2314 
2315 	ap = swappiness * (total_cost + 1);
2316 	ap /= anon_cost + 1;
2317 
2318 	fp = (200 - swappiness) * (total_cost + 1);
2319 	fp /= file_cost + 1;
2320 
2321 	fraction[0] = ap;
2322 	fraction[1] = fp;
2323 	denominator = ap + fp;
2324 out:
2325 	for_each_evictable_lru(lru) {
2326 		int file = is_file_lru(lru);
2327 		unsigned long lruvec_size;
2328 		unsigned long scan;
2329 		unsigned long protection;
2330 
2331 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2332 		protection = mem_cgroup_protection(sc->target_mem_cgroup,
2333 						   memcg,
2334 						   sc->memcg_low_reclaim);
2335 
2336 		if (protection) {
2337 			/*
2338 			 * Scale a cgroup's reclaim pressure by proportioning
2339 			 * its current usage to its memory.low or memory.min
2340 			 * setting.
2341 			 *
2342 			 * This is important, as otherwise scanning aggression
2343 			 * becomes extremely binary -- from nothing as we
2344 			 * approach the memory protection threshold, to totally
2345 			 * nominal as we exceed it.  This results in requiring
2346 			 * setting extremely liberal protection thresholds. It
2347 			 * also means we simply get no protection at all if we
2348 			 * set it too low, which is not ideal.
2349 			 *
2350 			 * If there is any protection in place, we reduce scan
2351 			 * pressure by how much of the total memory used is
2352 			 * within protection thresholds.
2353 			 *
2354 			 * There is one special case: in the first reclaim pass,
2355 			 * we skip over all groups that are within their low
2356 			 * protection. If that fails to reclaim enough pages to
2357 			 * satisfy the reclaim goal, we come back and override
2358 			 * the best-effort low protection. However, we still
2359 			 * ideally want to honor how well-behaved groups are in
2360 			 * that case instead of simply punishing them all
2361 			 * equally. As such, we reclaim them based on how much
2362 			 * memory they are using, reducing the scan pressure
2363 			 * again by how much of the total memory used is under
2364 			 * hard protection.
2365 			 */
2366 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2367 
2368 			/* Avoid TOCTOU with earlier protection check */
2369 			cgroup_size = max(cgroup_size, protection);
2370 
2371 			scan = lruvec_size - lruvec_size * protection /
2372 				cgroup_size;
2373 
2374 			/*
2375 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2376 			 * reclaim moving forwards, avoiding decrementing
2377 			 * sc->priority further than desirable.
2378 			 */
2379 			scan = max(scan, SWAP_CLUSTER_MAX);
2380 		} else {
2381 			scan = lruvec_size;
2382 		}
2383 
2384 		scan >>= sc->priority;
2385 
2386 		/*
2387 		 * If the cgroup's already been deleted, make sure to
2388 		 * scrape out the remaining cache.
2389 		 */
2390 		if (!scan && !mem_cgroup_online(memcg))
2391 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2392 
2393 		switch (scan_balance) {
2394 		case SCAN_EQUAL:
2395 			/* Scan lists relative to size */
2396 			break;
2397 		case SCAN_FRACT:
2398 			/*
2399 			 * Scan types proportional to swappiness and
2400 			 * their relative recent reclaim efficiency.
2401 			 * Make sure we don't miss the last page on
2402 			 * the offlined memory cgroups because of a
2403 			 * round-off error.
2404 			 */
2405 			scan = mem_cgroup_online(memcg) ?
2406 			       div64_u64(scan * fraction[file], denominator) :
2407 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2408 						  denominator);
2409 			break;
2410 		case SCAN_FILE:
2411 		case SCAN_ANON:
2412 			/* Scan one type exclusively */
2413 			if ((scan_balance == SCAN_FILE) != file)
2414 				scan = 0;
2415 			break;
2416 		default:
2417 			/* Look ma, no brain */
2418 			BUG();
2419 		}
2420 
2421 		nr[lru] = scan;
2422 	}
2423 }
2424 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)2425 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2426 {
2427 	unsigned long nr[NR_LRU_LISTS];
2428 	unsigned long targets[NR_LRU_LISTS];
2429 	unsigned long nr_to_scan;
2430 	enum lru_list lru;
2431 	unsigned long nr_reclaimed = 0;
2432 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2433 	struct blk_plug plug;
2434 	bool scan_adjusted;
2435 
2436 	get_scan_count(lruvec, sc, nr);
2437 
2438 	/* Record the original scan target for proportional adjustments later */
2439 	memcpy(targets, nr, sizeof(nr));
2440 
2441 	/*
2442 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2443 	 * event that can occur when there is little memory pressure e.g.
2444 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2445 	 * when the requested number of pages are reclaimed when scanning at
2446 	 * DEF_PRIORITY on the assumption that the fact we are direct
2447 	 * reclaiming implies that kswapd is not keeping up and it is best to
2448 	 * do a batch of work at once. For memcg reclaim one check is made to
2449 	 * abort proportional reclaim if either the file or anon lru has already
2450 	 * dropped to zero at the first pass.
2451 	 */
2452 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2453 			 sc->priority == DEF_PRIORITY);
2454 
2455 	blk_start_plug(&plug);
2456 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2457 					nr[LRU_INACTIVE_FILE]) {
2458 		unsigned long nr_anon, nr_file, percentage;
2459 		unsigned long nr_scanned;
2460 
2461 		for_each_evictable_lru(lru) {
2462 			if (nr[lru]) {
2463 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2464 				nr[lru] -= nr_to_scan;
2465 
2466 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2467 							    lruvec, sc);
2468 			}
2469 		}
2470 
2471 		cond_resched();
2472 
2473 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2474 			continue;
2475 
2476 		/*
2477 		 * For kswapd and memcg, reclaim at least the number of pages
2478 		 * requested. Ensure that the anon and file LRUs are scanned
2479 		 * proportionally what was requested by get_scan_count(). We
2480 		 * stop reclaiming one LRU and reduce the amount scanning
2481 		 * proportional to the original scan target.
2482 		 */
2483 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2484 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2485 
2486 		/*
2487 		 * It's just vindictive to attack the larger once the smaller
2488 		 * has gone to zero.  And given the way we stop scanning the
2489 		 * smaller below, this makes sure that we only make one nudge
2490 		 * towards proportionality once we've got nr_to_reclaim.
2491 		 */
2492 		if (!nr_file || !nr_anon)
2493 			break;
2494 
2495 		if (nr_file > nr_anon) {
2496 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2497 						targets[LRU_ACTIVE_ANON] + 1;
2498 			lru = LRU_BASE;
2499 			percentage = nr_anon * 100 / scan_target;
2500 		} else {
2501 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2502 						targets[LRU_ACTIVE_FILE] + 1;
2503 			lru = LRU_FILE;
2504 			percentage = nr_file * 100 / scan_target;
2505 		}
2506 
2507 		/* Stop scanning the smaller of the LRU */
2508 		nr[lru] = 0;
2509 		nr[lru + LRU_ACTIVE] = 0;
2510 
2511 		/*
2512 		 * Recalculate the other LRU scan count based on its original
2513 		 * scan target and the percentage scanning already complete
2514 		 */
2515 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2516 		nr_scanned = targets[lru] - nr[lru];
2517 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2518 		nr[lru] -= min(nr[lru], nr_scanned);
2519 
2520 		lru += LRU_ACTIVE;
2521 		nr_scanned = targets[lru] - nr[lru];
2522 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2523 		nr[lru] -= min(nr[lru], nr_scanned);
2524 
2525 		scan_adjusted = true;
2526 	}
2527 	blk_finish_plug(&plug);
2528 	sc->nr_reclaimed += nr_reclaimed;
2529 
2530 	/*
2531 	 * Even if we did not try to evict anon pages at all, we want to
2532 	 * rebalance the anon lru active/inactive ratio.
2533 	 */
2534 	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2535 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2536 				   sc, LRU_ACTIVE_ANON);
2537 }
2538 
2539 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2540 static bool in_reclaim_compaction(struct scan_control *sc)
2541 {
2542 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2543 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2544 			 sc->priority < DEF_PRIORITY - 2))
2545 		return true;
2546 
2547 	return false;
2548 }
2549 
2550 /*
2551  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2552  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2553  * true if more pages should be reclaimed such that when the page allocator
2554  * calls try_to_compact_pages() that it will have enough free pages to succeed.
2555  * It will give up earlier than that if there is difficulty reclaiming pages.
2556  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)2557 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2558 					unsigned long nr_reclaimed,
2559 					struct scan_control *sc)
2560 {
2561 	unsigned long pages_for_compaction;
2562 	unsigned long inactive_lru_pages;
2563 	int z;
2564 
2565 	/* If not in reclaim/compaction mode, stop */
2566 	if (!in_reclaim_compaction(sc))
2567 		return false;
2568 
2569 	/*
2570 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2571 	 * number of pages that were scanned. This will return to the caller
2572 	 * with the risk reclaim/compaction and the resulting allocation attempt
2573 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2574 	 * allocations through requiring that the full LRU list has been scanned
2575 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2576 	 * scan, but that approximation was wrong, and there were corner cases
2577 	 * where always a non-zero amount of pages were scanned.
2578 	 */
2579 	if (!nr_reclaimed)
2580 		return false;
2581 
2582 	/* If compaction would go ahead or the allocation would succeed, stop */
2583 	for (z = 0; z <= sc->reclaim_idx; z++) {
2584 		struct zone *zone = &pgdat->node_zones[z];
2585 		if (!managed_zone(zone))
2586 			continue;
2587 
2588 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2589 		case COMPACT_SUCCESS:
2590 		case COMPACT_CONTINUE:
2591 			return false;
2592 		default:
2593 			/* check next zone */
2594 			;
2595 		}
2596 	}
2597 
2598 	/*
2599 	 * If we have not reclaimed enough pages for compaction and the
2600 	 * inactive lists are large enough, continue reclaiming
2601 	 */
2602 	pages_for_compaction = compact_gap(sc->order);
2603 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2604 	if (get_nr_swap_pages() > 0)
2605 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2606 
2607 	return inactive_lru_pages > pages_for_compaction;
2608 }
2609 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)2610 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2611 {
2612 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2613 	struct mem_cgroup *memcg;
2614 
2615 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2616 	do {
2617 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2618 		unsigned long reclaimed;
2619 		unsigned long scanned;
2620 
2621 		/*
2622 		 * This loop can become CPU-bound when target memcgs
2623 		 * aren't eligible for reclaim - either because they
2624 		 * don't have any reclaimable pages, or because their
2625 		 * memory is explicitly protected. Avoid soft lockups.
2626 		 */
2627 		cond_resched();
2628 
2629 		mem_cgroup_calculate_protection(target_memcg, memcg);
2630 
2631 		if (mem_cgroup_below_min(memcg)) {
2632 			/*
2633 			 * Hard protection.
2634 			 * If there is no reclaimable memory, OOM.
2635 			 */
2636 			continue;
2637 		} else if (mem_cgroup_below_low(memcg)) {
2638 			/*
2639 			 * Soft protection.
2640 			 * Respect the protection only as long as
2641 			 * there is an unprotected supply
2642 			 * of reclaimable memory from other cgroups.
2643 			 */
2644 			if (!sc->memcg_low_reclaim) {
2645 				sc->memcg_low_skipped = 1;
2646 				continue;
2647 			}
2648 			memcg_memory_event(memcg, MEMCG_LOW);
2649 		}
2650 
2651 		reclaimed = sc->nr_reclaimed;
2652 		scanned = sc->nr_scanned;
2653 
2654 		shrink_lruvec(lruvec, sc);
2655 
2656 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2657 			    sc->priority);
2658 
2659 		/* Record the group's reclaim efficiency */
2660 		vmpressure(sc->gfp_mask, memcg, false,
2661 			   sc->nr_scanned - scanned,
2662 			   sc->nr_reclaimed - reclaimed);
2663 
2664 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2665 }
2666 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2667 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2668 {
2669 	struct reclaim_state *reclaim_state = current->reclaim_state;
2670 	unsigned long nr_reclaimed, nr_scanned;
2671 	struct lruvec *target_lruvec;
2672 	bool reclaimable = false;
2673 	unsigned long file;
2674 
2675 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2676 
2677 again:
2678 	memset(&sc->nr, 0, sizeof(sc->nr));
2679 
2680 	nr_reclaimed = sc->nr_reclaimed;
2681 	nr_scanned = sc->nr_scanned;
2682 
2683 	/*
2684 	 * Determine the scan balance between anon and file LRUs.
2685 	 */
2686 	spin_lock_irq(&pgdat->lru_lock);
2687 	sc->anon_cost = target_lruvec->anon_cost;
2688 	sc->file_cost = target_lruvec->file_cost;
2689 	spin_unlock_irq(&pgdat->lru_lock);
2690 
2691 	/*
2692 	 * Target desirable inactive:active list ratios for the anon
2693 	 * and file LRU lists.
2694 	 */
2695 	if (!sc->force_deactivate) {
2696 		unsigned long refaults;
2697 
2698 		refaults = lruvec_page_state(target_lruvec,
2699 				WORKINGSET_ACTIVATE_ANON);
2700 		if (refaults != target_lruvec->refaults[0] ||
2701 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2702 			sc->may_deactivate |= DEACTIVATE_ANON;
2703 		else
2704 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2705 
2706 		/*
2707 		 * When refaults are being observed, it means a new
2708 		 * workingset is being established. Deactivate to get
2709 		 * rid of any stale active pages quickly.
2710 		 */
2711 		refaults = lruvec_page_state(target_lruvec,
2712 				WORKINGSET_ACTIVATE_FILE);
2713 		if (refaults != target_lruvec->refaults[1] ||
2714 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2715 			sc->may_deactivate |= DEACTIVATE_FILE;
2716 		else
2717 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2718 	} else
2719 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2720 
2721 	/*
2722 	 * If we have plenty of inactive file pages that aren't
2723 	 * thrashing, try to reclaim those first before touching
2724 	 * anonymous pages.
2725 	 */
2726 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2727 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2728 		sc->cache_trim_mode = 1;
2729 	else
2730 		sc->cache_trim_mode = 0;
2731 
2732 	/*
2733 	 * Prevent the reclaimer from falling into the cache trap: as
2734 	 * cache pages start out inactive, every cache fault will tip
2735 	 * the scan balance towards the file LRU.  And as the file LRU
2736 	 * shrinks, so does the window for rotation from references.
2737 	 * This means we have a runaway feedback loop where a tiny
2738 	 * thrashing file LRU becomes infinitely more attractive than
2739 	 * anon pages.  Try to detect this based on file LRU size.
2740 	 */
2741 	if (!cgroup_reclaim(sc)) {
2742 		unsigned long total_high_wmark = 0;
2743 		unsigned long free, anon;
2744 		int z;
2745 
2746 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2747 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2748 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2749 
2750 		for (z = 0; z < MAX_NR_ZONES; z++) {
2751 			struct zone *zone = &pgdat->node_zones[z];
2752 			if (!managed_zone(zone))
2753 				continue;
2754 
2755 			total_high_wmark += high_wmark_pages(zone);
2756 		}
2757 
2758 		/*
2759 		 * Consider anon: if that's low too, this isn't a
2760 		 * runaway file reclaim problem, but rather just
2761 		 * extreme pressure. Reclaim as per usual then.
2762 		 */
2763 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2764 
2765 		sc->file_is_tiny =
2766 			file + free <= total_high_wmark &&
2767 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2768 			anon >> sc->priority;
2769 	}
2770 
2771 	shrink_node_memcgs(pgdat, sc);
2772 
2773 	if (reclaim_state) {
2774 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2775 		reclaim_state->reclaimed_slab = 0;
2776 	}
2777 
2778 	/* Record the subtree's reclaim efficiency */
2779 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2780 		   sc->nr_scanned - nr_scanned,
2781 		   sc->nr_reclaimed - nr_reclaimed);
2782 
2783 	if (sc->nr_reclaimed - nr_reclaimed)
2784 		reclaimable = true;
2785 
2786 	if (current_is_kswapd()) {
2787 		/*
2788 		 * If reclaim is isolating dirty pages under writeback,
2789 		 * it implies that the long-lived page allocation rate
2790 		 * is exceeding the page laundering rate. Either the
2791 		 * global limits are not being effective at throttling
2792 		 * processes due to the page distribution throughout
2793 		 * zones or there is heavy usage of a slow backing
2794 		 * device. The only option is to throttle from reclaim
2795 		 * context which is not ideal as there is no guarantee
2796 		 * the dirtying process is throttled in the same way
2797 		 * balance_dirty_pages() manages.
2798 		 *
2799 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2800 		 * count the number of pages under pages flagged for
2801 		 * immediate reclaim and stall if any are encountered
2802 		 * in the nr_immediate check below.
2803 		 */
2804 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2805 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2806 
2807 		/* Allow kswapd to start writing pages during reclaim.*/
2808 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2809 			set_bit(PGDAT_DIRTY, &pgdat->flags);
2810 
2811 		/*
2812 		 * If kswapd scans pages marked for immediate
2813 		 * reclaim and under writeback (nr_immediate), it
2814 		 * implies that pages are cycling through the LRU
2815 		 * faster than they are written so also forcibly stall.
2816 		 */
2817 		if (sc->nr.immediate)
2818 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2819 	}
2820 
2821 	/*
2822 	 * Tag a node/memcg as congested if all the dirty pages
2823 	 * scanned were backed by a congested BDI and
2824 	 * wait_iff_congested will stall.
2825 	 *
2826 	 * Legacy memcg will stall in page writeback so avoid forcibly
2827 	 * stalling in wait_iff_congested().
2828 	 */
2829 	if ((current_is_kswapd() ||
2830 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2831 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2832 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2833 
2834 	/*
2835 	 * Stall direct reclaim for IO completions if underlying BDIs
2836 	 * and node is congested. Allow kswapd to continue until it
2837 	 * starts encountering unqueued dirty pages or cycling through
2838 	 * the LRU too quickly.
2839 	 */
2840 	if (!current_is_kswapd() && current_may_throttle() &&
2841 	    !sc->hibernation_mode &&
2842 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2843 		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2844 
2845 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2846 				    sc))
2847 		goto again;
2848 
2849 	/*
2850 	 * Kswapd gives up on balancing particular nodes after too
2851 	 * many failures to reclaim anything from them and goes to
2852 	 * sleep. On reclaim progress, reset the failure counter. A
2853 	 * successful direct reclaim run will revive a dormant kswapd.
2854 	 */
2855 	if (reclaimable)
2856 		pgdat->kswapd_failures = 0;
2857 }
2858 
2859 /*
2860  * Returns true if compaction should go ahead for a costly-order request, or
2861  * the allocation would already succeed without compaction. Return false if we
2862  * should reclaim first.
2863  */
compaction_ready(struct zone * zone,struct scan_control * sc)2864 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2865 {
2866 	unsigned long watermark;
2867 	enum compact_result suitable;
2868 
2869 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2870 	if (suitable == COMPACT_SUCCESS)
2871 		/* Allocation should succeed already. Don't reclaim. */
2872 		return true;
2873 	if (suitable == COMPACT_SKIPPED)
2874 		/* Compaction cannot yet proceed. Do reclaim. */
2875 		return false;
2876 
2877 	/*
2878 	 * Compaction is already possible, but it takes time to run and there
2879 	 * are potentially other callers using the pages just freed. So proceed
2880 	 * with reclaim to make a buffer of free pages available to give
2881 	 * compaction a reasonable chance of completing and allocating the page.
2882 	 * Note that we won't actually reclaim the whole buffer in one attempt
2883 	 * as the target watermark in should_continue_reclaim() is lower. But if
2884 	 * we are already above the high+gap watermark, don't reclaim at all.
2885 	 */
2886 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2887 
2888 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2889 }
2890 
2891 /*
2892  * This is the direct reclaim path, for page-allocating processes.  We only
2893  * try to reclaim pages from zones which will satisfy the caller's allocation
2894  * request.
2895  *
2896  * If a zone is deemed to be full of pinned pages then just give it a light
2897  * scan then give up on it.
2898  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2899 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2900 {
2901 	struct zoneref *z;
2902 	struct zone *zone;
2903 	unsigned long nr_soft_reclaimed;
2904 	unsigned long nr_soft_scanned;
2905 	gfp_t orig_mask;
2906 	pg_data_t *last_pgdat = NULL;
2907 
2908 	/*
2909 	 * If the number of buffer_heads in the machine exceeds the maximum
2910 	 * allowed level, force direct reclaim to scan the highmem zone as
2911 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2912 	 */
2913 	orig_mask = sc->gfp_mask;
2914 	if (buffer_heads_over_limit) {
2915 		sc->gfp_mask |= __GFP_HIGHMEM;
2916 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2917 	}
2918 
2919 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2920 					sc->reclaim_idx, sc->nodemask) {
2921 		/*
2922 		 * Take care memory controller reclaiming has small influence
2923 		 * to global LRU.
2924 		 */
2925 		if (!cgroup_reclaim(sc)) {
2926 			if (!cpuset_zone_allowed(zone,
2927 						 GFP_KERNEL | __GFP_HARDWALL))
2928 				continue;
2929 
2930 			/*
2931 			 * If we already have plenty of memory free for
2932 			 * compaction in this zone, don't free any more.
2933 			 * Even though compaction is invoked for any
2934 			 * non-zero order, only frequent costly order
2935 			 * reclamation is disruptive enough to become a
2936 			 * noticeable problem, like transparent huge
2937 			 * page allocations.
2938 			 */
2939 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2940 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2941 			    compaction_ready(zone, sc)) {
2942 				sc->compaction_ready = true;
2943 				continue;
2944 			}
2945 
2946 			/*
2947 			 * Shrink each node in the zonelist once. If the
2948 			 * zonelist is ordered by zone (not the default) then a
2949 			 * node may be shrunk multiple times but in that case
2950 			 * the user prefers lower zones being preserved.
2951 			 */
2952 			if (zone->zone_pgdat == last_pgdat)
2953 				continue;
2954 
2955 			/*
2956 			 * This steals pages from memory cgroups over softlimit
2957 			 * and returns the number of reclaimed pages and
2958 			 * scanned pages. This works for global memory pressure
2959 			 * and balancing, not for a memcg's limit.
2960 			 */
2961 			nr_soft_scanned = 0;
2962 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2963 						sc->order, sc->gfp_mask,
2964 						&nr_soft_scanned);
2965 			sc->nr_reclaimed += nr_soft_reclaimed;
2966 			sc->nr_scanned += nr_soft_scanned;
2967 			/* need some check for avoid more shrink_zone() */
2968 		}
2969 
2970 		/* See comment about same check for global reclaim above */
2971 		if (zone->zone_pgdat == last_pgdat)
2972 			continue;
2973 		last_pgdat = zone->zone_pgdat;
2974 		shrink_node(zone->zone_pgdat, sc);
2975 	}
2976 
2977 	/*
2978 	 * Restore to original mask to avoid the impact on the caller if we
2979 	 * promoted it to __GFP_HIGHMEM.
2980 	 */
2981 	sc->gfp_mask = orig_mask;
2982 }
2983 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)2984 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2985 {
2986 	struct lruvec *target_lruvec;
2987 	unsigned long refaults;
2988 
2989 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2990 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2991 	target_lruvec->refaults[0] = refaults;
2992 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2993 	target_lruvec->refaults[1] = refaults;
2994 }
2995 
2996 /*
2997  * This is the main entry point to direct page reclaim.
2998  *
2999  * If a full scan of the inactive list fails to free enough memory then we
3000  * are "out of memory" and something needs to be killed.
3001  *
3002  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3003  * high - the zone may be full of dirty or under-writeback pages, which this
3004  * caller can't do much about.  We kick the writeback threads and take explicit
3005  * naps in the hope that some of these pages can be written.  But if the
3006  * allocating task holds filesystem locks which prevent writeout this might not
3007  * work, and the allocation attempt will fail.
3008  *
3009  * returns:	0, if no pages reclaimed
3010  * 		else, the number of pages reclaimed
3011  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3012 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3013 					  struct scan_control *sc)
3014 {
3015 	int initial_priority = sc->priority;
3016 	pg_data_t *last_pgdat;
3017 	struct zoneref *z;
3018 	struct zone *zone;
3019 retry:
3020 	delayacct_freepages_start();
3021 
3022 	if (!cgroup_reclaim(sc))
3023 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3024 
3025 	do {
3026 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3027 				sc->priority);
3028 		sc->nr_scanned = 0;
3029 		shrink_zones(zonelist, sc);
3030 
3031 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3032 			break;
3033 
3034 		if (sc->compaction_ready)
3035 			break;
3036 
3037 		/*
3038 		 * If we're getting trouble reclaiming, start doing
3039 		 * writepage even in laptop mode.
3040 		 */
3041 		if (sc->priority < DEF_PRIORITY - 2)
3042 			sc->may_writepage = 1;
3043 	} while (--sc->priority >= 0);
3044 
3045 	last_pgdat = NULL;
3046 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3047 					sc->nodemask) {
3048 		if (zone->zone_pgdat == last_pgdat)
3049 			continue;
3050 		last_pgdat = zone->zone_pgdat;
3051 
3052 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3053 
3054 		if (cgroup_reclaim(sc)) {
3055 			struct lruvec *lruvec;
3056 
3057 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3058 						   zone->zone_pgdat);
3059 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3060 		}
3061 	}
3062 
3063 	delayacct_freepages_end();
3064 
3065 	if (sc->nr_reclaimed)
3066 		return sc->nr_reclaimed;
3067 
3068 	/* Aborted reclaim to try compaction? don't OOM, then */
3069 	if (sc->compaction_ready)
3070 		return 1;
3071 
3072 	/*
3073 	 * We make inactive:active ratio decisions based on the node's
3074 	 * composition of memory, but a restrictive reclaim_idx or a
3075 	 * memory.low cgroup setting can exempt large amounts of
3076 	 * memory from reclaim. Neither of which are very common, so
3077 	 * instead of doing costly eligibility calculations of the
3078 	 * entire cgroup subtree up front, we assume the estimates are
3079 	 * good, and retry with forcible deactivation if that fails.
3080 	 */
3081 	if (sc->skipped_deactivate) {
3082 		sc->priority = initial_priority;
3083 		sc->force_deactivate = 1;
3084 		sc->skipped_deactivate = 0;
3085 		goto retry;
3086 	}
3087 
3088 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3089 	if (sc->memcg_low_skipped) {
3090 		sc->priority = initial_priority;
3091 		sc->force_deactivate = 0;
3092 		sc->memcg_low_reclaim = 1;
3093 		sc->memcg_low_skipped = 0;
3094 		goto retry;
3095 	}
3096 
3097 	return 0;
3098 }
3099 
allow_direct_reclaim(pg_data_t * pgdat)3100 static bool allow_direct_reclaim(pg_data_t *pgdat)
3101 {
3102 	struct zone *zone;
3103 	unsigned long pfmemalloc_reserve = 0;
3104 	unsigned long free_pages = 0;
3105 	int i;
3106 	bool wmark_ok;
3107 
3108 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3109 		return true;
3110 
3111 	for (i = 0; i <= ZONE_NORMAL; i++) {
3112 		zone = &pgdat->node_zones[i];
3113 		if (!managed_zone(zone))
3114 			continue;
3115 
3116 		if (!zone_reclaimable_pages(zone))
3117 			continue;
3118 
3119 		pfmemalloc_reserve += min_wmark_pages(zone);
3120 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3121 	}
3122 
3123 	/* If there are no reserves (unexpected config) then do not throttle */
3124 	if (!pfmemalloc_reserve)
3125 		return true;
3126 
3127 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3128 
3129 	/* kswapd must be awake if processes are being throttled */
3130 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3131 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3132 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3133 
3134 		wake_up_interruptible(&pgdat->kswapd_wait);
3135 	}
3136 
3137 	return wmark_ok;
3138 }
3139 
3140 /*
3141  * Throttle direct reclaimers if backing storage is backed by the network
3142  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3143  * depleted. kswapd will continue to make progress and wake the processes
3144  * when the low watermark is reached.
3145  *
3146  * Returns true if a fatal signal was delivered during throttling. If this
3147  * happens, the page allocator should not consider triggering the OOM killer.
3148  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3149 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3150 					nodemask_t *nodemask)
3151 {
3152 	struct zoneref *z;
3153 	struct zone *zone;
3154 	pg_data_t *pgdat = NULL;
3155 
3156 	/*
3157 	 * Kernel threads should not be throttled as they may be indirectly
3158 	 * responsible for cleaning pages necessary for reclaim to make forward
3159 	 * progress. kjournald for example may enter direct reclaim while
3160 	 * committing a transaction where throttling it could forcing other
3161 	 * processes to block on log_wait_commit().
3162 	 */
3163 	if (current->flags & PF_KTHREAD)
3164 		goto out;
3165 
3166 	/*
3167 	 * If a fatal signal is pending, this process should not throttle.
3168 	 * It should return quickly so it can exit and free its memory
3169 	 */
3170 	if (fatal_signal_pending(current))
3171 		goto out;
3172 
3173 	/*
3174 	 * Check if the pfmemalloc reserves are ok by finding the first node
3175 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3176 	 * GFP_KERNEL will be required for allocating network buffers when
3177 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3178 	 *
3179 	 * Throttling is based on the first usable node and throttled processes
3180 	 * wait on a queue until kswapd makes progress and wakes them. There
3181 	 * is an affinity then between processes waking up and where reclaim
3182 	 * progress has been made assuming the process wakes on the same node.
3183 	 * More importantly, processes running on remote nodes will not compete
3184 	 * for remote pfmemalloc reserves and processes on different nodes
3185 	 * should make reasonable progress.
3186 	 */
3187 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3188 					gfp_zone(gfp_mask), nodemask) {
3189 		if (zone_idx(zone) > ZONE_NORMAL)
3190 			continue;
3191 
3192 		/* Throttle based on the first usable node */
3193 		pgdat = zone->zone_pgdat;
3194 		if (allow_direct_reclaim(pgdat))
3195 			goto out;
3196 		break;
3197 	}
3198 
3199 	/* If no zone was usable by the allocation flags then do not throttle */
3200 	if (!pgdat)
3201 		goto out;
3202 
3203 	/* Account for the throttling */
3204 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3205 
3206 	/*
3207 	 * If the caller cannot enter the filesystem, it's possible that it
3208 	 * is due to the caller holding an FS lock or performing a journal
3209 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3210 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3211 	 * blocked waiting on the same lock. Instead, throttle for up to a
3212 	 * second before continuing.
3213 	 */
3214 	if (!(gfp_mask & __GFP_FS)) {
3215 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3216 			allow_direct_reclaim(pgdat), HZ);
3217 
3218 		goto check_pending;
3219 	}
3220 
3221 	/* Throttle until kswapd wakes the process */
3222 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3223 		allow_direct_reclaim(pgdat));
3224 
3225 check_pending:
3226 	if (fatal_signal_pending(current))
3227 		return true;
3228 
3229 out:
3230 	return false;
3231 }
3232 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3233 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3234 				gfp_t gfp_mask, nodemask_t *nodemask)
3235 {
3236 	unsigned long nr_reclaimed;
3237 	struct scan_control sc = {
3238 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3239 		.gfp_mask = current_gfp_context(gfp_mask),
3240 		.reclaim_idx = gfp_zone(gfp_mask),
3241 		.order = order,
3242 		.nodemask = nodemask,
3243 		.priority = DEF_PRIORITY,
3244 		.may_writepage = !laptop_mode,
3245 		.may_unmap = 1,
3246 		.may_swap = 1,
3247 	};
3248 
3249 	/*
3250 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3251 	 * Confirm they are large enough for max values.
3252 	 */
3253 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3254 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3255 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3256 
3257 	/*
3258 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3259 	 * 1 is returned so that the page allocator does not OOM kill at this
3260 	 * point.
3261 	 */
3262 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3263 		return 1;
3264 
3265 	set_task_reclaim_state(current, &sc.reclaim_state);
3266 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3267 
3268 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3269 
3270 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3271 	set_task_reclaim_state(current, NULL);
3272 
3273 	return nr_reclaimed;
3274 }
3275 
3276 #ifdef CONFIG_MEMCG
3277 
3278 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3279 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3280 						gfp_t gfp_mask, bool noswap,
3281 						pg_data_t *pgdat,
3282 						unsigned long *nr_scanned)
3283 {
3284 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3285 	struct scan_control sc = {
3286 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3287 		.target_mem_cgroup = memcg,
3288 		.may_writepage = !laptop_mode,
3289 		.may_unmap = 1,
3290 		.reclaim_idx = MAX_NR_ZONES - 1,
3291 		.may_swap = !noswap,
3292 	};
3293 
3294 	WARN_ON_ONCE(!current->reclaim_state);
3295 
3296 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3297 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3298 
3299 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3300 						      sc.gfp_mask);
3301 
3302 	/*
3303 	 * NOTE: Although we can get the priority field, using it
3304 	 * here is not a good idea, since it limits the pages we can scan.
3305 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3306 	 * will pick up pages from other mem cgroup's as well. We hack
3307 	 * the priority and make it zero.
3308 	 */
3309 	shrink_lruvec(lruvec, &sc);
3310 
3311 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3312 
3313 	*nr_scanned = sc.nr_scanned;
3314 
3315 	return sc.nr_reclaimed;
3316 }
3317 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3318 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3319 					   unsigned long nr_pages,
3320 					   gfp_t gfp_mask,
3321 					   bool may_swap)
3322 {
3323 	unsigned long nr_reclaimed;
3324 	unsigned int noreclaim_flag;
3325 	struct scan_control sc = {
3326 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3327 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3328 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3329 		.reclaim_idx = MAX_NR_ZONES - 1,
3330 		.target_mem_cgroup = memcg,
3331 		.priority = DEF_PRIORITY,
3332 		.may_writepage = !laptop_mode,
3333 		.may_unmap = 1,
3334 		.may_swap = may_swap,
3335 	};
3336 	/*
3337 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3338 	 * equal pressure on all the nodes. This is based on the assumption that
3339 	 * the reclaim does not bail out early.
3340 	 */
3341 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3342 
3343 	set_task_reclaim_state(current, &sc.reclaim_state);
3344 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3345 	noreclaim_flag = memalloc_noreclaim_save();
3346 
3347 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3348 
3349 	memalloc_noreclaim_restore(noreclaim_flag);
3350 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3351 	set_task_reclaim_state(current, NULL);
3352 
3353 	return nr_reclaimed;
3354 }
3355 #endif
3356 
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3357 static void age_active_anon(struct pglist_data *pgdat,
3358 				struct scan_control *sc)
3359 {
3360 	struct mem_cgroup *memcg;
3361 	struct lruvec *lruvec;
3362 
3363 	if (!total_swap_pages)
3364 		return;
3365 
3366 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3367 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3368 		return;
3369 
3370 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3371 	do {
3372 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3373 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3374 				   sc, LRU_ACTIVE_ANON);
3375 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3376 	} while (memcg);
3377 }
3378 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)3379 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3380 {
3381 	int i;
3382 	struct zone *zone;
3383 
3384 	/*
3385 	 * Check for watermark boosts top-down as the higher zones
3386 	 * are more likely to be boosted. Both watermarks and boosts
3387 	 * should not be checked at the same time as reclaim would
3388 	 * start prematurely when there is no boosting and a lower
3389 	 * zone is balanced.
3390 	 */
3391 	for (i = highest_zoneidx; i >= 0; i--) {
3392 		zone = pgdat->node_zones + i;
3393 		if (!managed_zone(zone))
3394 			continue;
3395 
3396 		if (zone->watermark_boost)
3397 			return true;
3398 	}
3399 
3400 	return false;
3401 }
3402 
3403 /*
3404  * Returns true if there is an eligible zone balanced for the request order
3405  * and highest_zoneidx
3406  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)3407 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3408 {
3409 	int i;
3410 	unsigned long mark = -1;
3411 	struct zone *zone;
3412 
3413 	/*
3414 	 * Check watermarks bottom-up as lower zones are more likely to
3415 	 * meet watermarks.
3416 	 */
3417 	for (i = 0; i <= highest_zoneidx; i++) {
3418 		zone = pgdat->node_zones + i;
3419 
3420 		if (!managed_zone(zone))
3421 			continue;
3422 
3423 		mark = high_wmark_pages(zone);
3424 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3425 			return true;
3426 	}
3427 
3428 	/*
3429 	 * If a node has no populated zone within highest_zoneidx, it does not
3430 	 * need balancing by definition. This can happen if a zone-restricted
3431 	 * allocation tries to wake a remote kswapd.
3432 	 */
3433 	if (mark == -1)
3434 		return true;
3435 
3436 	return false;
3437 }
3438 
3439 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3440 static void clear_pgdat_congested(pg_data_t *pgdat)
3441 {
3442 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3443 
3444 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3445 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3446 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3447 }
3448 
3449 /*
3450  * Prepare kswapd for sleeping. This verifies that there are no processes
3451  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3452  *
3453  * Returns true if kswapd is ready to sleep
3454  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)3455 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3456 				int highest_zoneidx)
3457 {
3458 	/*
3459 	 * The throttled processes are normally woken up in balance_pgdat() as
3460 	 * soon as allow_direct_reclaim() is true. But there is a potential
3461 	 * race between when kswapd checks the watermarks and a process gets
3462 	 * throttled. There is also a potential race if processes get
3463 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3464 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3465 	 * the wake up checks. If kswapd is going to sleep, no process should
3466 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3467 	 * the wake up is premature, processes will wake kswapd and get
3468 	 * throttled again. The difference from wake ups in balance_pgdat() is
3469 	 * that here we are under prepare_to_wait().
3470 	 */
3471 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3472 		wake_up_all(&pgdat->pfmemalloc_wait);
3473 
3474 	/* Hopeless node, leave it to direct reclaim */
3475 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3476 		return true;
3477 
3478 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3479 		clear_pgdat_congested(pgdat);
3480 		return true;
3481 	}
3482 
3483 	return false;
3484 }
3485 
3486 /*
3487  * kswapd shrinks a node of pages that are at or below the highest usable
3488  * zone that is currently unbalanced.
3489  *
3490  * Returns true if kswapd scanned at least the requested number of pages to
3491  * reclaim or if the lack of progress was due to pages under writeback.
3492  * This is used to determine if the scanning priority needs to be raised.
3493  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3494 static bool kswapd_shrink_node(pg_data_t *pgdat,
3495 			       struct scan_control *sc)
3496 {
3497 	struct zone *zone;
3498 	int z;
3499 
3500 	/* Reclaim a number of pages proportional to the number of zones */
3501 	sc->nr_to_reclaim = 0;
3502 	for (z = 0; z <= sc->reclaim_idx; z++) {
3503 		zone = pgdat->node_zones + z;
3504 		if (!managed_zone(zone))
3505 			continue;
3506 
3507 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3508 	}
3509 
3510 	/*
3511 	 * Historically care was taken to put equal pressure on all zones but
3512 	 * now pressure is applied based on node LRU order.
3513 	 */
3514 	shrink_node(pgdat, sc);
3515 
3516 	/*
3517 	 * Fragmentation may mean that the system cannot be rebalanced for
3518 	 * high-order allocations. If twice the allocation size has been
3519 	 * reclaimed then recheck watermarks only at order-0 to prevent
3520 	 * excessive reclaim. Assume that a process requested a high-order
3521 	 * can direct reclaim/compact.
3522 	 */
3523 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3524 		sc->order = 0;
3525 
3526 	return sc->nr_scanned >= sc->nr_to_reclaim;
3527 }
3528 
3529 /*
3530  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3531  * that are eligible for use by the caller until at least one zone is
3532  * balanced.
3533  *
3534  * Returns the order kswapd finished reclaiming at.
3535  *
3536  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3537  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3538  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3539  * or lower is eligible for reclaim until at least one usable zone is
3540  * balanced.
3541  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)3542 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3543 {
3544 	int i;
3545 	unsigned long nr_soft_reclaimed;
3546 	unsigned long nr_soft_scanned;
3547 	unsigned long pflags;
3548 	unsigned long nr_boost_reclaim;
3549 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3550 	bool boosted;
3551 	struct zone *zone;
3552 	struct scan_control sc = {
3553 		.gfp_mask = GFP_KERNEL,
3554 		.order = order,
3555 		.may_unmap = 1,
3556 	};
3557 
3558 	set_task_reclaim_state(current, &sc.reclaim_state);
3559 	psi_memstall_enter(&pflags);
3560 	__fs_reclaim_acquire();
3561 
3562 	count_vm_event(PAGEOUTRUN);
3563 
3564 	/*
3565 	 * Account for the reclaim boost. Note that the zone boost is left in
3566 	 * place so that parallel allocations that are near the watermark will
3567 	 * stall or direct reclaim until kswapd is finished.
3568 	 */
3569 	nr_boost_reclaim = 0;
3570 	for (i = 0; i <= highest_zoneidx; i++) {
3571 		zone = pgdat->node_zones + i;
3572 		if (!managed_zone(zone))
3573 			continue;
3574 
3575 		nr_boost_reclaim += zone->watermark_boost;
3576 		zone_boosts[i] = zone->watermark_boost;
3577 	}
3578 	boosted = nr_boost_reclaim;
3579 
3580 restart:
3581 	sc.priority = DEF_PRIORITY;
3582 	do {
3583 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3584 		bool raise_priority = true;
3585 		bool balanced;
3586 		bool ret;
3587 
3588 		sc.reclaim_idx = highest_zoneidx;
3589 
3590 		/*
3591 		 * If the number of buffer_heads exceeds the maximum allowed
3592 		 * then consider reclaiming from all zones. This has a dual
3593 		 * purpose -- on 64-bit systems it is expected that
3594 		 * buffer_heads are stripped during active rotation. On 32-bit
3595 		 * systems, highmem pages can pin lowmem memory and shrinking
3596 		 * buffers can relieve lowmem pressure. Reclaim may still not
3597 		 * go ahead if all eligible zones for the original allocation
3598 		 * request are balanced to avoid excessive reclaim from kswapd.
3599 		 */
3600 		if (buffer_heads_over_limit) {
3601 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3602 				zone = pgdat->node_zones + i;
3603 				if (!managed_zone(zone))
3604 					continue;
3605 
3606 				sc.reclaim_idx = i;
3607 				break;
3608 			}
3609 		}
3610 
3611 		/*
3612 		 * If the pgdat is imbalanced then ignore boosting and preserve
3613 		 * the watermarks for a later time and restart. Note that the
3614 		 * zone watermarks will be still reset at the end of balancing
3615 		 * on the grounds that the normal reclaim should be enough to
3616 		 * re-evaluate if boosting is required when kswapd next wakes.
3617 		 */
3618 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3619 		if (!balanced && nr_boost_reclaim) {
3620 			nr_boost_reclaim = 0;
3621 			goto restart;
3622 		}
3623 
3624 		/*
3625 		 * If boosting is not active then only reclaim if there are no
3626 		 * eligible zones. Note that sc.reclaim_idx is not used as
3627 		 * buffer_heads_over_limit may have adjusted it.
3628 		 */
3629 		if (!nr_boost_reclaim && balanced)
3630 			goto out;
3631 
3632 		/* Limit the priority of boosting to avoid reclaim writeback */
3633 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3634 			raise_priority = false;
3635 
3636 		/*
3637 		 * Do not writeback or swap pages for boosted reclaim. The
3638 		 * intent is to relieve pressure not issue sub-optimal IO
3639 		 * from reclaim context. If no pages are reclaimed, the
3640 		 * reclaim will be aborted.
3641 		 */
3642 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3643 		sc.may_swap = !nr_boost_reclaim;
3644 
3645 		/*
3646 		 * Do some background aging of the anon list, to give
3647 		 * pages a chance to be referenced before reclaiming. All
3648 		 * pages are rotated regardless of classzone as this is
3649 		 * about consistent aging.
3650 		 */
3651 		age_active_anon(pgdat, &sc);
3652 
3653 		/*
3654 		 * If we're getting trouble reclaiming, start doing writepage
3655 		 * even in laptop mode.
3656 		 */
3657 		if (sc.priority < DEF_PRIORITY - 2)
3658 			sc.may_writepage = 1;
3659 
3660 		/* Call soft limit reclaim before calling shrink_node. */
3661 		sc.nr_scanned = 0;
3662 		nr_soft_scanned = 0;
3663 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3664 						sc.gfp_mask, &nr_soft_scanned);
3665 		sc.nr_reclaimed += nr_soft_reclaimed;
3666 
3667 		/*
3668 		 * There should be no need to raise the scanning priority if
3669 		 * enough pages are already being scanned that that high
3670 		 * watermark would be met at 100% efficiency.
3671 		 */
3672 		if (kswapd_shrink_node(pgdat, &sc))
3673 			raise_priority = false;
3674 
3675 		/*
3676 		 * If the low watermark is met there is no need for processes
3677 		 * to be throttled on pfmemalloc_wait as they should not be
3678 		 * able to safely make forward progress. Wake them
3679 		 */
3680 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3681 				allow_direct_reclaim(pgdat))
3682 			wake_up_all(&pgdat->pfmemalloc_wait);
3683 
3684 		/* Check if kswapd should be suspending */
3685 		__fs_reclaim_release();
3686 		ret = try_to_freeze();
3687 		__fs_reclaim_acquire();
3688 		if (ret || kthread_should_stop())
3689 			break;
3690 
3691 		/*
3692 		 * Raise priority if scanning rate is too low or there was no
3693 		 * progress in reclaiming pages
3694 		 */
3695 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3696 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3697 
3698 		/*
3699 		 * If reclaim made no progress for a boost, stop reclaim as
3700 		 * IO cannot be queued and it could be an infinite loop in
3701 		 * extreme circumstances.
3702 		 */
3703 		if (nr_boost_reclaim && !nr_reclaimed)
3704 			break;
3705 
3706 		if (raise_priority || !nr_reclaimed)
3707 			sc.priority--;
3708 	} while (sc.priority >= 1);
3709 
3710 	if (!sc.nr_reclaimed)
3711 		pgdat->kswapd_failures++;
3712 
3713 out:
3714 	/* If reclaim was boosted, account for the reclaim done in this pass */
3715 	if (boosted) {
3716 		unsigned long flags;
3717 
3718 		for (i = 0; i <= highest_zoneidx; i++) {
3719 			if (!zone_boosts[i])
3720 				continue;
3721 
3722 			/* Increments are under the zone lock */
3723 			zone = pgdat->node_zones + i;
3724 			spin_lock_irqsave(&zone->lock, flags);
3725 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3726 			spin_unlock_irqrestore(&zone->lock, flags);
3727 		}
3728 
3729 		/*
3730 		 * As there is now likely space, wakeup kcompact to defragment
3731 		 * pageblocks.
3732 		 */
3733 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3734 	}
3735 
3736 	snapshot_refaults(NULL, pgdat);
3737 	__fs_reclaim_release();
3738 	psi_memstall_leave(&pflags);
3739 	set_task_reclaim_state(current, NULL);
3740 
3741 	/*
3742 	 * Return the order kswapd stopped reclaiming at as
3743 	 * prepare_kswapd_sleep() takes it into account. If another caller
3744 	 * entered the allocator slow path while kswapd was awake, order will
3745 	 * remain at the higher level.
3746 	 */
3747 	return sc.order;
3748 }
3749 
3750 /*
3751  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3752  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3753  * not a valid index then either kswapd runs for first time or kswapd couldn't
3754  * sleep after previous reclaim attempt (node is still unbalanced). In that
3755  * case return the zone index of the previous kswapd reclaim cycle.
3756  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)3757 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3758 					   enum zone_type prev_highest_zoneidx)
3759 {
3760 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3761 
3762 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3763 }
3764 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)3765 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3766 				unsigned int highest_zoneidx)
3767 {
3768 	long remaining = 0;
3769 	DEFINE_WAIT(wait);
3770 
3771 	if (freezing(current) || kthread_should_stop())
3772 		return;
3773 
3774 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3775 
3776 	/*
3777 	 * Try to sleep for a short interval. Note that kcompactd will only be
3778 	 * woken if it is possible to sleep for a short interval. This is
3779 	 * deliberate on the assumption that if reclaim cannot keep an
3780 	 * eligible zone balanced that it's also unlikely that compaction will
3781 	 * succeed.
3782 	 */
3783 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3784 		/*
3785 		 * Compaction records what page blocks it recently failed to
3786 		 * isolate pages from and skips them in the future scanning.
3787 		 * When kswapd is going to sleep, it is reasonable to assume
3788 		 * that pages and compaction may succeed so reset the cache.
3789 		 */
3790 		reset_isolation_suitable(pgdat);
3791 
3792 		/*
3793 		 * We have freed the memory, now we should compact it to make
3794 		 * allocation of the requested order possible.
3795 		 */
3796 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3797 
3798 		remaining = schedule_timeout(HZ/10);
3799 
3800 		/*
3801 		 * If woken prematurely then reset kswapd_highest_zoneidx and
3802 		 * order. The values will either be from a wakeup request or
3803 		 * the previous request that slept prematurely.
3804 		 */
3805 		if (remaining) {
3806 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3807 					kswapd_highest_zoneidx(pgdat,
3808 							highest_zoneidx));
3809 
3810 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3811 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3812 		}
3813 
3814 		finish_wait(&pgdat->kswapd_wait, &wait);
3815 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3816 	}
3817 
3818 	/*
3819 	 * After a short sleep, check if it was a premature sleep. If not, then
3820 	 * go fully to sleep until explicitly woken up.
3821 	 */
3822 	if (!remaining &&
3823 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3824 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3825 
3826 		/*
3827 		 * vmstat counters are not perfectly accurate and the estimated
3828 		 * value for counters such as NR_FREE_PAGES can deviate from the
3829 		 * true value by nr_online_cpus * threshold. To avoid the zone
3830 		 * watermarks being breached while under pressure, we reduce the
3831 		 * per-cpu vmstat threshold while kswapd is awake and restore
3832 		 * them before going back to sleep.
3833 		 */
3834 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3835 
3836 		if (!kthread_should_stop())
3837 			schedule();
3838 
3839 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3840 	} else {
3841 		if (remaining)
3842 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3843 		else
3844 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3845 	}
3846 	finish_wait(&pgdat->kswapd_wait, &wait);
3847 }
3848 
3849 /*
3850  * The background pageout daemon, started as a kernel thread
3851  * from the init process.
3852  *
3853  * This basically trickles out pages so that we have _some_
3854  * free memory available even if there is no other activity
3855  * that frees anything up. This is needed for things like routing
3856  * etc, where we otherwise might have all activity going on in
3857  * asynchronous contexts that cannot page things out.
3858  *
3859  * If there are applications that are active memory-allocators
3860  * (most normal use), this basically shouldn't matter.
3861  */
kswapd(void * p)3862 static int kswapd(void *p)
3863 {
3864 	unsigned int alloc_order, reclaim_order;
3865 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3866 	pg_data_t *pgdat = (pg_data_t*)p;
3867 	struct task_struct *tsk = current;
3868 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3869 
3870 	if (!cpumask_empty(cpumask))
3871 		set_cpus_allowed_ptr(tsk, cpumask);
3872 
3873 	/*
3874 	 * Tell the memory management that we're a "memory allocator",
3875 	 * and that if we need more memory we should get access to it
3876 	 * regardless (see "__alloc_pages()"). "kswapd" should
3877 	 * never get caught in the normal page freeing logic.
3878 	 *
3879 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3880 	 * you need a small amount of memory in order to be able to
3881 	 * page out something else, and this flag essentially protects
3882 	 * us from recursively trying to free more memory as we're
3883 	 * trying to free the first piece of memory in the first place).
3884 	 */
3885 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3886 	set_freezable();
3887 
3888 	WRITE_ONCE(pgdat->kswapd_order, 0);
3889 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3890 	for ( ; ; ) {
3891 		bool ret;
3892 
3893 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3894 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3895 							highest_zoneidx);
3896 
3897 kswapd_try_sleep:
3898 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3899 					highest_zoneidx);
3900 
3901 		/* Read the new order and highest_zoneidx */
3902 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3903 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3904 							highest_zoneidx);
3905 		WRITE_ONCE(pgdat->kswapd_order, 0);
3906 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3907 
3908 		ret = try_to_freeze();
3909 		if (kthread_should_stop())
3910 			break;
3911 
3912 		/*
3913 		 * We can speed up thawing tasks if we don't call balance_pgdat
3914 		 * after returning from the refrigerator
3915 		 */
3916 		if (ret)
3917 			continue;
3918 
3919 		/*
3920 		 * Reclaim begins at the requested order but if a high-order
3921 		 * reclaim fails then kswapd falls back to reclaiming for
3922 		 * order-0. If that happens, kswapd will consider sleeping
3923 		 * for the order it finished reclaiming at (reclaim_order)
3924 		 * but kcompactd is woken to compact for the original
3925 		 * request (alloc_order).
3926 		 */
3927 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3928 						alloc_order);
3929 		reclaim_order = balance_pgdat(pgdat, alloc_order,
3930 						highest_zoneidx);
3931 		if (reclaim_order < alloc_order)
3932 			goto kswapd_try_sleep;
3933 	}
3934 
3935 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3936 
3937 	return 0;
3938 }
3939 
3940 /*
3941  * A zone is low on free memory or too fragmented for high-order memory.  If
3942  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3943  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3944  * has failed or is not needed, still wake up kcompactd if only compaction is
3945  * needed.
3946  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)3947 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3948 		   enum zone_type highest_zoneidx)
3949 {
3950 	pg_data_t *pgdat;
3951 	enum zone_type curr_idx;
3952 
3953 	if (!managed_zone(zone))
3954 		return;
3955 
3956 	if (!cpuset_zone_allowed(zone, gfp_flags))
3957 		return;
3958 
3959 	pgdat = zone->zone_pgdat;
3960 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3961 
3962 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3963 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3964 
3965 	if (READ_ONCE(pgdat->kswapd_order) < order)
3966 		WRITE_ONCE(pgdat->kswapd_order, order);
3967 
3968 	if (!waitqueue_active(&pgdat->kswapd_wait))
3969 		return;
3970 
3971 	/* Hopeless node, leave it to direct reclaim if possible */
3972 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3973 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3974 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
3975 		/*
3976 		 * There may be plenty of free memory available, but it's too
3977 		 * fragmented for high-order allocations.  Wake up kcompactd
3978 		 * and rely on compaction_suitable() to determine if it's
3979 		 * needed.  If it fails, it will defer subsequent attempts to
3980 		 * ratelimit its work.
3981 		 */
3982 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3983 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
3984 		return;
3985 	}
3986 
3987 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
3988 				      gfp_flags);
3989 	wake_up_interruptible(&pgdat->kswapd_wait);
3990 }
3991 
3992 #ifdef CONFIG_HIBERNATION
3993 /*
3994  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3995  * freed pages.
3996  *
3997  * Rather than trying to age LRUs the aim is to preserve the overall
3998  * LRU order by reclaiming preferentially
3999  * inactive > active > active referenced > active mapped
4000  */
shrink_all_memory(unsigned long nr_to_reclaim)4001 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4002 {
4003 	struct scan_control sc = {
4004 		.nr_to_reclaim = nr_to_reclaim,
4005 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4006 		.reclaim_idx = MAX_NR_ZONES - 1,
4007 		.priority = DEF_PRIORITY,
4008 		.may_writepage = 1,
4009 		.may_unmap = 1,
4010 		.may_swap = 1,
4011 		.hibernation_mode = 1,
4012 	};
4013 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4014 	unsigned long nr_reclaimed;
4015 	unsigned int noreclaim_flag;
4016 
4017 	fs_reclaim_acquire(sc.gfp_mask);
4018 	noreclaim_flag = memalloc_noreclaim_save();
4019 	set_task_reclaim_state(current, &sc.reclaim_state);
4020 
4021 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4022 
4023 	set_task_reclaim_state(current, NULL);
4024 	memalloc_noreclaim_restore(noreclaim_flag);
4025 	fs_reclaim_release(sc.gfp_mask);
4026 
4027 	return nr_reclaimed;
4028 }
4029 #endif /* CONFIG_HIBERNATION */
4030 
4031 /*
4032  * This kswapd start function will be called by init and node-hot-add.
4033  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4034  */
kswapd_run(int nid)4035 int kswapd_run(int nid)
4036 {
4037 	pg_data_t *pgdat = NODE_DATA(nid);
4038 	int ret = 0;
4039 
4040 	if (pgdat->kswapd)
4041 		return 0;
4042 
4043 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4044 	if (IS_ERR(pgdat->kswapd)) {
4045 		/* failure at boot is fatal */
4046 		BUG_ON(system_state < SYSTEM_RUNNING);
4047 		pr_err("Failed to start kswapd on node %d\n", nid);
4048 		ret = PTR_ERR(pgdat->kswapd);
4049 		pgdat->kswapd = NULL;
4050 	}
4051 	return ret;
4052 }
4053 
4054 /*
4055  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4056  * hold mem_hotplug_begin/end().
4057  */
kswapd_stop(int nid)4058 void kswapd_stop(int nid)
4059 {
4060 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4061 
4062 	if (kswapd) {
4063 		kthread_stop(kswapd);
4064 		NODE_DATA(nid)->kswapd = NULL;
4065 	}
4066 }
4067 
kswapd_init(void)4068 static int __init kswapd_init(void)
4069 {
4070 	int nid;
4071 
4072 	swap_setup();
4073 	for_each_node_state(nid, N_MEMORY)
4074  		kswapd_run(nid);
4075 	return 0;
4076 }
4077 
4078 module_init(kswapd_init)
4079 
4080 #ifdef CONFIG_NUMA
4081 /*
4082  * Node reclaim mode
4083  *
4084  * If non-zero call node_reclaim when the number of free pages falls below
4085  * the watermarks.
4086  */
4087 int node_reclaim_mode __read_mostly;
4088 
4089 #define RECLAIM_WRITE (1<<0)	/* Writeout pages during reclaim */
4090 #define RECLAIM_UNMAP (1<<1)	/* Unmap pages during reclaim */
4091 
4092 /*
4093  * Priority for NODE_RECLAIM. This determines the fraction of pages
4094  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4095  * a zone.
4096  */
4097 #define NODE_RECLAIM_PRIORITY 4
4098 
4099 /*
4100  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4101  * occur.
4102  */
4103 int sysctl_min_unmapped_ratio = 1;
4104 
4105 /*
4106  * If the number of slab pages in a zone grows beyond this percentage then
4107  * slab reclaim needs to occur.
4108  */
4109 int sysctl_min_slab_ratio = 5;
4110 
node_unmapped_file_pages(struct pglist_data * pgdat)4111 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4112 {
4113 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4114 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4115 		node_page_state(pgdat, NR_ACTIVE_FILE);
4116 
4117 	/*
4118 	 * It's possible for there to be more file mapped pages than
4119 	 * accounted for by the pages on the file LRU lists because
4120 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4121 	 */
4122 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4123 }
4124 
4125 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4126 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4127 {
4128 	unsigned long nr_pagecache_reclaimable;
4129 	unsigned long delta = 0;
4130 
4131 	/*
4132 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4133 	 * potentially reclaimable. Otherwise, we have to worry about
4134 	 * pages like swapcache and node_unmapped_file_pages() provides
4135 	 * a better estimate
4136 	 */
4137 	if (node_reclaim_mode & RECLAIM_UNMAP)
4138 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4139 	else
4140 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4141 
4142 	/* If we can't clean pages, remove dirty pages from consideration */
4143 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4144 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4145 
4146 	/* Watch for any possible underflows due to delta */
4147 	if (unlikely(delta > nr_pagecache_reclaimable))
4148 		delta = nr_pagecache_reclaimable;
4149 
4150 	return nr_pagecache_reclaimable - delta;
4151 }
4152 
4153 /*
4154  * Try to free up some pages from this node through reclaim.
4155  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4156 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4157 {
4158 	/* Minimum pages needed in order to stay on node */
4159 	const unsigned long nr_pages = 1 << order;
4160 	struct task_struct *p = current;
4161 	unsigned int noreclaim_flag;
4162 	struct scan_control sc = {
4163 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4164 		.gfp_mask = current_gfp_context(gfp_mask),
4165 		.order = order,
4166 		.priority = NODE_RECLAIM_PRIORITY,
4167 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4168 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4169 		.may_swap = 1,
4170 		.reclaim_idx = gfp_zone(gfp_mask),
4171 	};
4172 
4173 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4174 					   sc.gfp_mask);
4175 
4176 	cond_resched();
4177 	fs_reclaim_acquire(sc.gfp_mask);
4178 	/*
4179 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4180 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4181 	 * and RECLAIM_UNMAP.
4182 	 */
4183 	noreclaim_flag = memalloc_noreclaim_save();
4184 	p->flags |= PF_SWAPWRITE;
4185 	set_task_reclaim_state(p, &sc.reclaim_state);
4186 
4187 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4188 		/*
4189 		 * Free memory by calling shrink node with increasing
4190 		 * priorities until we have enough memory freed.
4191 		 */
4192 		do {
4193 			shrink_node(pgdat, &sc);
4194 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4195 	}
4196 
4197 	set_task_reclaim_state(p, NULL);
4198 	current->flags &= ~PF_SWAPWRITE;
4199 	memalloc_noreclaim_restore(noreclaim_flag);
4200 	fs_reclaim_release(sc.gfp_mask);
4201 
4202 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4203 
4204 	return sc.nr_reclaimed >= nr_pages;
4205 }
4206 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4207 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4208 {
4209 	int ret;
4210 
4211 	/*
4212 	 * Node reclaim reclaims unmapped file backed pages and
4213 	 * slab pages if we are over the defined limits.
4214 	 *
4215 	 * A small portion of unmapped file backed pages is needed for
4216 	 * file I/O otherwise pages read by file I/O will be immediately
4217 	 * thrown out if the node is overallocated. So we do not reclaim
4218 	 * if less than a specified percentage of the node is used by
4219 	 * unmapped file backed pages.
4220 	 */
4221 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4222 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4223 	    pgdat->min_slab_pages)
4224 		return NODE_RECLAIM_FULL;
4225 
4226 	/*
4227 	 * Do not scan if the allocation should not be delayed.
4228 	 */
4229 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4230 		return NODE_RECLAIM_NOSCAN;
4231 
4232 	/*
4233 	 * Only run node reclaim on the local node or on nodes that do not
4234 	 * have associated processors. This will favor the local processor
4235 	 * over remote processors and spread off node memory allocations
4236 	 * as wide as possible.
4237 	 */
4238 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4239 		return NODE_RECLAIM_NOSCAN;
4240 
4241 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4242 		return NODE_RECLAIM_NOSCAN;
4243 
4244 	ret = __node_reclaim(pgdat, gfp_mask, order);
4245 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4246 
4247 	if (!ret)
4248 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4249 
4250 	return ret;
4251 }
4252 #endif
4253 
4254 /**
4255  * check_move_unevictable_pages - check pages for evictability and move to
4256  * appropriate zone lru list
4257  * @pvec: pagevec with lru pages to check
4258  *
4259  * Checks pages for evictability, if an evictable page is in the unevictable
4260  * lru list, moves it to the appropriate evictable lru list. This function
4261  * should be only used for lru pages.
4262  */
check_move_unevictable_pages(struct pagevec * pvec)4263 void check_move_unevictable_pages(struct pagevec *pvec)
4264 {
4265 	struct lruvec *lruvec;
4266 	struct pglist_data *pgdat = NULL;
4267 	int pgscanned = 0;
4268 	int pgrescued = 0;
4269 	int i;
4270 
4271 	for (i = 0; i < pvec->nr; i++) {
4272 		struct page *page = pvec->pages[i];
4273 		struct pglist_data *pagepgdat = page_pgdat(page);
4274 		int nr_pages;
4275 
4276 		if (PageTransTail(page))
4277 			continue;
4278 
4279 		nr_pages = thp_nr_pages(page);
4280 		pgscanned += nr_pages;
4281 
4282 		if (pagepgdat != pgdat) {
4283 			if (pgdat)
4284 				spin_unlock_irq(&pgdat->lru_lock);
4285 			pgdat = pagepgdat;
4286 			spin_lock_irq(&pgdat->lru_lock);
4287 		}
4288 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4289 
4290 		if (!PageLRU(page) || !PageUnevictable(page))
4291 			continue;
4292 
4293 		if (page_evictable(page)) {
4294 			enum lru_list lru = page_lru_base_type(page);
4295 
4296 			VM_BUG_ON_PAGE(PageActive(page), page);
4297 			ClearPageUnevictable(page);
4298 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4299 			add_page_to_lru_list(page, lruvec, lru);
4300 			pgrescued += nr_pages;
4301 		}
4302 	}
4303 
4304 	if (pgdat) {
4305 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4306 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4307 		spin_unlock_irq(&pgdat->lru_lock);
4308 	}
4309 }
4310 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4311