1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Manage cache of swap slots to be used for and returned from
4  * swap.
5  *
6  * Copyright(c) 2016 Intel Corporation.
7  *
8  * Author: Tim Chen <tim.c.chen@linux.intel.com>
9  *
10  * We allocate the swap slots from the global pool and put
11  * it into local per cpu caches.  This has the advantage
12  * of no needing to acquire the swap_info lock every time
13  * we need a new slot.
14  *
15  * There is also opportunity to simply return the slot
16  * to local caches without needing to acquire swap_info
17  * lock.  We do not reuse the returned slots directly but
18  * move them back to the global pool in a batch.  This
19  * allows the slots to coaellesce and reduce fragmentation.
20  *
21  * The swap entry allocated is marked with SWAP_HAS_CACHE
22  * flag in map_count that prevents it from being allocated
23  * again from the global pool.
24  *
25  * The swap slots cache is protected by a mutex instead of
26  * a spin lock as when we search for slots with scan_swap_map,
27  * we can possibly sleep.
28  */
29 
30 #include <linux/swap_slots.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/vmalloc.h>
34 #include <linux/mutex.h>
35 #include <linux/mm.h>
36 
37 static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
38 static bool	swap_slot_cache_active;
39 bool	swap_slot_cache_enabled;
40 static bool	swap_slot_cache_initialized;
41 static DEFINE_MUTEX(swap_slots_cache_mutex);
42 /* Serialize swap slots cache enable/disable operations */
43 static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
44 
45 static void __drain_swap_slots_cache(unsigned int type);
46 static void deactivate_swap_slots_cache(void);
47 static void reactivate_swap_slots_cache(void);
48 
49 #define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled)
50 #define SLOTS_CACHE 0x1
51 #define SLOTS_CACHE_RET 0x2
52 
deactivate_swap_slots_cache(void)53 static void deactivate_swap_slots_cache(void)
54 {
55 	mutex_lock(&swap_slots_cache_mutex);
56 	swap_slot_cache_active = false;
57 	__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
58 	mutex_unlock(&swap_slots_cache_mutex);
59 }
60 
reactivate_swap_slots_cache(void)61 static void reactivate_swap_slots_cache(void)
62 {
63 	mutex_lock(&swap_slots_cache_mutex);
64 	swap_slot_cache_active = true;
65 	mutex_unlock(&swap_slots_cache_mutex);
66 }
67 
68 /* Must not be called with cpu hot plug lock */
disable_swap_slots_cache_lock(void)69 void disable_swap_slots_cache_lock(void)
70 {
71 	mutex_lock(&swap_slots_cache_enable_mutex);
72 	swap_slot_cache_enabled = false;
73 	if (swap_slot_cache_initialized) {
74 		/* serialize with cpu hotplug operations */
75 		get_online_cpus();
76 		__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
77 		put_online_cpus();
78 	}
79 }
80 
__reenable_swap_slots_cache(void)81 static void __reenable_swap_slots_cache(void)
82 {
83 	swap_slot_cache_enabled = has_usable_swap();
84 }
85 
reenable_swap_slots_cache_unlock(void)86 void reenable_swap_slots_cache_unlock(void)
87 {
88 	__reenable_swap_slots_cache();
89 	mutex_unlock(&swap_slots_cache_enable_mutex);
90 }
91 
check_cache_active(void)92 static bool check_cache_active(void)
93 {
94 	long pages;
95 
96 	if (!swap_slot_cache_enabled)
97 		return false;
98 
99 	pages = get_nr_swap_pages();
100 	if (!swap_slot_cache_active) {
101 		if (pages > num_online_cpus() *
102 		    THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
103 			reactivate_swap_slots_cache();
104 		goto out;
105 	}
106 
107 	/* if global pool of slot caches too low, deactivate cache */
108 	if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
109 		deactivate_swap_slots_cache();
110 out:
111 	return swap_slot_cache_active;
112 }
113 
alloc_swap_slot_cache(unsigned int cpu)114 static int alloc_swap_slot_cache(unsigned int cpu)
115 {
116 	struct swap_slots_cache *cache;
117 	swp_entry_t *slots, *slots_ret;
118 
119 	/*
120 	 * Do allocation outside swap_slots_cache_mutex
121 	 * as kvzalloc could trigger reclaim and get_swap_page,
122 	 * which can lock swap_slots_cache_mutex.
123 	 */
124 	slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
125 			 GFP_KERNEL);
126 	if (!slots)
127 		return -ENOMEM;
128 
129 	slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
130 			     GFP_KERNEL);
131 	if (!slots_ret) {
132 		kvfree(slots);
133 		return -ENOMEM;
134 	}
135 
136 	mutex_lock(&swap_slots_cache_mutex);
137 	cache = &per_cpu(swp_slots, cpu);
138 	if (cache->slots || cache->slots_ret) {
139 		/* cache already allocated */
140 		mutex_unlock(&swap_slots_cache_mutex);
141 
142 		kvfree(slots);
143 		kvfree(slots_ret);
144 
145 		return 0;
146 	}
147 
148 	if (!cache->lock_initialized) {
149 		mutex_init(&cache->alloc_lock);
150 		spin_lock_init(&cache->free_lock);
151 		cache->lock_initialized = true;
152 	}
153 	cache->nr = 0;
154 	cache->cur = 0;
155 	cache->n_ret = 0;
156 	/*
157 	 * We initialized alloc_lock and free_lock earlier.  We use
158 	 * !cache->slots or !cache->slots_ret to know if it is safe to acquire
159 	 * the corresponding lock and use the cache.  Memory barrier below
160 	 * ensures the assumption.
161 	 */
162 	mb();
163 	cache->slots = slots;
164 	cache->slots_ret = slots_ret;
165 	mutex_unlock(&swap_slots_cache_mutex);
166 	return 0;
167 }
168 
drain_slots_cache_cpu(unsigned int cpu,unsigned int type,bool free_slots)169 static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
170 				  bool free_slots)
171 {
172 	struct swap_slots_cache *cache;
173 	swp_entry_t *slots = NULL;
174 
175 	cache = &per_cpu(swp_slots, cpu);
176 	if ((type & SLOTS_CACHE) && cache->slots) {
177 		mutex_lock(&cache->alloc_lock);
178 		swapcache_free_entries(cache->slots + cache->cur, cache->nr);
179 		cache->cur = 0;
180 		cache->nr = 0;
181 		if (free_slots && cache->slots) {
182 			kvfree(cache->slots);
183 			cache->slots = NULL;
184 		}
185 		mutex_unlock(&cache->alloc_lock);
186 	}
187 	if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
188 		spin_lock_irq(&cache->free_lock);
189 		swapcache_free_entries(cache->slots_ret, cache->n_ret);
190 		cache->n_ret = 0;
191 		if (free_slots && cache->slots_ret) {
192 			slots = cache->slots_ret;
193 			cache->slots_ret = NULL;
194 		}
195 		spin_unlock_irq(&cache->free_lock);
196 		if (slots)
197 			kvfree(slots);
198 	}
199 }
200 
__drain_swap_slots_cache(unsigned int type)201 static void __drain_swap_slots_cache(unsigned int type)
202 {
203 	unsigned int cpu;
204 
205 	/*
206 	 * This function is called during
207 	 *	1) swapoff, when we have to make sure no
208 	 *	   left over slots are in cache when we remove
209 	 *	   a swap device;
210 	 *      2) disabling of swap slot cache, when we run low
211 	 *	   on swap slots when allocating memory and need
212 	 *	   to return swap slots to global pool.
213 	 *
214 	 * We cannot acquire cpu hot plug lock here as
215 	 * this function can be invoked in the cpu
216 	 * hot plug path:
217 	 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
218 	 *   -> memory allocation -> direct reclaim -> get_swap_page
219 	 *   -> drain_swap_slots_cache
220 	 *
221 	 * Hence the loop over current online cpu below could miss cpu that
222 	 * is being brought online but not yet marked as online.
223 	 * That is okay as we do not schedule and run anything on a
224 	 * cpu before it has been marked online. Hence, we will not
225 	 * fill any swap slots in slots cache of such cpu.
226 	 * There are no slots on such cpu that need to be drained.
227 	 */
228 	for_each_online_cpu(cpu)
229 		drain_slots_cache_cpu(cpu, type, false);
230 }
231 
free_slot_cache(unsigned int cpu)232 static int free_slot_cache(unsigned int cpu)
233 {
234 	mutex_lock(&swap_slots_cache_mutex);
235 	drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
236 	mutex_unlock(&swap_slots_cache_mutex);
237 	return 0;
238 }
239 
enable_swap_slots_cache(void)240 void enable_swap_slots_cache(void)
241 {
242 	mutex_lock(&swap_slots_cache_enable_mutex);
243 	if (!swap_slot_cache_initialized) {
244 		int ret;
245 
246 		ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
247 					alloc_swap_slot_cache, free_slot_cache);
248 		if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
249 				       "without swap slots cache.\n", __func__))
250 			goto out_unlock;
251 
252 		swap_slot_cache_initialized = true;
253 	}
254 
255 	__reenable_swap_slots_cache();
256 out_unlock:
257 	mutex_unlock(&swap_slots_cache_enable_mutex);
258 }
259 
260 /* called with swap slot cache's alloc lock held */
refill_swap_slots_cache(struct swap_slots_cache * cache)261 static int refill_swap_slots_cache(struct swap_slots_cache *cache)
262 {
263 	if (!use_swap_slot_cache || cache->nr)
264 		return 0;
265 
266 	cache->cur = 0;
267 	if (swap_slot_cache_active)
268 		cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
269 					   cache->slots, 1);
270 
271 	return cache->nr;
272 }
273 
free_swap_slot(swp_entry_t entry)274 int free_swap_slot(swp_entry_t entry)
275 {
276 	struct swap_slots_cache *cache;
277 
278 	cache = raw_cpu_ptr(&swp_slots);
279 	if (likely(use_swap_slot_cache && cache->slots_ret)) {
280 		spin_lock_irq(&cache->free_lock);
281 		/* Swap slots cache may be deactivated before acquiring lock */
282 		if (!use_swap_slot_cache || !cache->slots_ret) {
283 			spin_unlock_irq(&cache->free_lock);
284 			goto direct_free;
285 		}
286 		if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
287 			/*
288 			 * Return slots to global pool.
289 			 * The current swap_map value is SWAP_HAS_CACHE.
290 			 * Set it to 0 to indicate it is available for
291 			 * allocation in global pool
292 			 */
293 			swapcache_free_entries(cache->slots_ret, cache->n_ret);
294 			cache->n_ret = 0;
295 		}
296 		cache->slots_ret[cache->n_ret++] = entry;
297 		spin_unlock_irq(&cache->free_lock);
298 	} else {
299 direct_free:
300 		swapcache_free_entries(&entry, 1);
301 	}
302 
303 	return 0;
304 }
305 
get_swap_page(struct page * page)306 swp_entry_t get_swap_page(struct page *page)
307 {
308 	swp_entry_t entry;
309 	struct swap_slots_cache *cache;
310 
311 	entry.val = 0;
312 
313 	if (PageTransHuge(page)) {
314 		if (IS_ENABLED(CONFIG_THP_SWAP))
315 			get_swap_pages(1, &entry, HPAGE_PMD_NR);
316 		goto out;
317 	}
318 
319 	/*
320 	 * Preemption is allowed here, because we may sleep
321 	 * in refill_swap_slots_cache().  But it is safe, because
322 	 * accesses to the per-CPU data structure are protected by the
323 	 * mutex cache->alloc_lock.
324 	 *
325 	 * The alloc path here does not touch cache->slots_ret
326 	 * so cache->free_lock is not taken.
327 	 */
328 	cache = raw_cpu_ptr(&swp_slots);
329 
330 	if (likely(check_cache_active() && cache->slots)) {
331 		mutex_lock(&cache->alloc_lock);
332 		if (cache->slots) {
333 repeat:
334 			if (cache->nr) {
335 				entry = cache->slots[cache->cur];
336 				cache->slots[cache->cur++].val = 0;
337 				cache->nr--;
338 			} else if (refill_swap_slots_cache(cache)) {
339 				goto repeat;
340 			}
341 		}
342 		mutex_unlock(&cache->alloc_lock);
343 		if (entry.val)
344 			goto out;
345 	}
346 
347 	get_swap_pages(1, &entry, 1);
348 out:
349 	if (mem_cgroup_try_charge_swap(page, entry)) {
350 		put_swap_page(page, entry);
351 		entry.val = 0;
352 	}
353 	return entry;
354 }
355