1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39
40 #include "internal.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
44
45 /* How many pages do we try to swap or page in/out together? */
46 int page_cluster;
47
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49 struct lru_rotate {
50 local_lock_t lock;
51 struct pagevec pvec;
52 };
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
55 };
56
57 /*
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
60 */
61 struct lru_pvecs {
62 local_lock_t lock;
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
67 #ifdef CONFIG_SMP
68 struct pagevec activate_page;
69 #endif
70 };
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
73 };
74
75 /*
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
78 */
__page_cache_release(struct page * page)79 static void __page_cache_release(struct page *page)
80 {
81 if (PageLRU(page)) {
82 pg_data_t *pgdat = page_pgdat(page);
83 struct lruvec *lruvec;
84 unsigned long flags;
85
86 spin_lock_irqsave(&pgdat->lru_lock, flags);
87 lruvec = mem_cgroup_page_lruvec(page, pgdat);
88 VM_BUG_ON_PAGE(!PageLRU(page), page);
89 __ClearPageLRU(page);
90 del_page_from_lru_list(page, lruvec, page_off_lru(page));
91 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
92 }
93 __ClearPageWaiters(page);
94 }
95
__put_single_page(struct page * page)96 static void __put_single_page(struct page *page)
97 {
98 __page_cache_release(page);
99 mem_cgroup_uncharge(page);
100 free_unref_page(page);
101 }
102
__put_compound_page(struct page * page)103 static void __put_compound_page(struct page *page)
104 {
105 /*
106 * __page_cache_release() is supposed to be called for thp, not for
107 * hugetlb. This is because hugetlb page does never have PageLRU set
108 * (it's never listed to any LRU lists) and no memcg routines should
109 * be called for hugetlb (it has a separate hugetlb_cgroup.)
110 */
111 if (!PageHuge(page))
112 __page_cache_release(page);
113 destroy_compound_page(page);
114 }
115
__put_page(struct page * page)116 void __put_page(struct page *page)
117 {
118 if (is_zone_device_page(page)) {
119 put_dev_pagemap(page->pgmap);
120
121 /*
122 * The page belongs to the device that created pgmap. Do
123 * not return it to page allocator.
124 */
125 return;
126 }
127
128 if (unlikely(PageCompound(page)))
129 __put_compound_page(page);
130 else
131 __put_single_page(page);
132 }
133 EXPORT_SYMBOL(__put_page);
134
135 /**
136 * put_pages_list() - release a list of pages
137 * @pages: list of pages threaded on page->lru
138 *
139 * Release a list of pages which are strung together on page.lru. Currently
140 * used by read_cache_pages() and related error recovery code.
141 */
put_pages_list(struct list_head * pages)142 void put_pages_list(struct list_head *pages)
143 {
144 while (!list_empty(pages)) {
145 struct page *victim;
146
147 victim = lru_to_page(pages);
148 list_del(&victim->lru);
149 put_page(victim);
150 }
151 }
152 EXPORT_SYMBOL(put_pages_list);
153
154 /*
155 * get_kernel_pages() - pin kernel pages in memory
156 * @kiov: An array of struct kvec structures
157 * @nr_segs: number of segments to pin
158 * @write: pinning for read/write, currently ignored
159 * @pages: array that receives pointers to the pages pinned.
160 * Should be at least nr_segs long.
161 *
162 * Returns number of pages pinned. This may be fewer than the number
163 * requested. If nr_pages is 0 or negative, returns 0. If no pages
164 * were pinned, returns -errno. Each page returned must be released
165 * with a put_page() call when it is finished with.
166 */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)167 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
168 struct page **pages)
169 {
170 int seg;
171
172 for (seg = 0; seg < nr_segs; seg++) {
173 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
174 return seg;
175
176 pages[seg] = kmap_to_page(kiov[seg].iov_base);
177 get_page(pages[seg]);
178 }
179
180 return seg;
181 }
182 EXPORT_SYMBOL_GPL(get_kernel_pages);
183
184 /*
185 * get_kernel_page() - pin a kernel page in memory
186 * @start: starting kernel address
187 * @write: pinning for read/write, currently ignored
188 * @pages: array that receives pointer to the page pinned.
189 * Must be at least nr_segs long.
190 *
191 * Returns 1 if page is pinned. If the page was not pinned, returns
192 * -errno. The page returned must be released with a put_page() call
193 * when it is finished with.
194 */
get_kernel_page(unsigned long start,int write,struct page ** pages)195 int get_kernel_page(unsigned long start, int write, struct page **pages)
196 {
197 const struct kvec kiov = {
198 .iov_base = (void *)start,
199 .iov_len = PAGE_SIZE
200 };
201
202 return get_kernel_pages(&kiov, 1, write, pages);
203 }
204 EXPORT_SYMBOL_GPL(get_kernel_page);
205
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec,void * arg),void * arg)206 static void pagevec_lru_move_fn(struct pagevec *pvec,
207 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
208 void *arg)
209 {
210 int i;
211 struct pglist_data *pgdat = NULL;
212 struct lruvec *lruvec;
213 unsigned long flags = 0;
214
215 for (i = 0; i < pagevec_count(pvec); i++) {
216 struct page *page = pvec->pages[i];
217 struct pglist_data *pagepgdat = page_pgdat(page);
218
219 if (pagepgdat != pgdat) {
220 if (pgdat)
221 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
222 pgdat = pagepgdat;
223 spin_lock_irqsave(&pgdat->lru_lock, flags);
224 }
225
226 lruvec = mem_cgroup_page_lruvec(page, pgdat);
227 (*move_fn)(page, lruvec, arg);
228 }
229 if (pgdat)
230 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
231 release_pages(pvec->pages, pvec->nr);
232 pagevec_reinit(pvec);
233 }
234
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec,void * arg)235 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
236 void *arg)
237 {
238 int *pgmoved = arg;
239
240 if (PageLRU(page) && !PageUnevictable(page)) {
241 del_page_from_lru_list(page, lruvec, page_lru(page));
242 ClearPageActive(page);
243 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
244 (*pgmoved) += thp_nr_pages(page);
245 }
246 }
247
248 /*
249 * pagevec_move_tail() must be called with IRQ disabled.
250 * Otherwise this may cause nasty races.
251 */
pagevec_move_tail(struct pagevec * pvec)252 static void pagevec_move_tail(struct pagevec *pvec)
253 {
254 int pgmoved = 0;
255
256 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
257 __count_vm_events(PGROTATED, pgmoved);
258 }
259
260 /*
261 * Writeback is about to end against a page which has been marked for immediate
262 * reclaim. If it still appears to be reclaimable, move it to the tail of the
263 * inactive list.
264 */
rotate_reclaimable_page(struct page * page)265 void rotate_reclaimable_page(struct page *page)
266 {
267 if (!PageLocked(page) && !PageDirty(page) &&
268 !PageUnevictable(page) && PageLRU(page)) {
269 struct pagevec *pvec;
270 unsigned long flags;
271
272 get_page(page);
273 local_lock_irqsave(&lru_rotate.lock, flags);
274 pvec = this_cpu_ptr(&lru_rotate.pvec);
275 if (!pagevec_add(pvec, page) || PageCompound(page))
276 pagevec_move_tail(pvec);
277 local_unlock_irqrestore(&lru_rotate.lock, flags);
278 }
279 }
280
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_pages)281 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
282 {
283 do {
284 unsigned long lrusize;
285
286 /* Record cost event */
287 if (file)
288 lruvec->file_cost += nr_pages;
289 else
290 lruvec->anon_cost += nr_pages;
291
292 /*
293 * Decay previous events
294 *
295 * Because workloads change over time (and to avoid
296 * overflow) we keep these statistics as a floating
297 * average, which ends up weighing recent refaults
298 * more than old ones.
299 */
300 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
304
305 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 lruvec->file_cost /= 2;
307 lruvec->anon_cost /= 2;
308 }
309 } while ((lruvec = parent_lruvec(lruvec)));
310 }
311
lru_note_cost_page(struct page * page)312 void lru_note_cost_page(struct page *page)
313 {
314 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
315 page_is_file_lru(page), thp_nr_pages(page));
316 }
317
__activate_page(struct page * page,struct lruvec * lruvec,void * arg)318 static void __activate_page(struct page *page, struct lruvec *lruvec,
319 void *arg)
320 {
321 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
322 int lru = page_lru_base_type(page);
323 int nr_pages = thp_nr_pages(page);
324
325 del_page_from_lru_list(page, lruvec, lru);
326 SetPageActive(page);
327 lru += LRU_ACTIVE;
328 add_page_to_lru_list(page, lruvec, lru);
329 trace_mm_lru_activate(page);
330
331 __count_vm_events(PGACTIVATE, nr_pages);
332 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
333 nr_pages);
334 }
335 }
336
337 #ifdef CONFIG_SMP
activate_page_drain(int cpu)338 static void activate_page_drain(int cpu)
339 {
340 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
341
342 if (pagevec_count(pvec))
343 pagevec_lru_move_fn(pvec, __activate_page, NULL);
344 }
345
need_activate_page_drain(int cpu)346 static bool need_activate_page_drain(int cpu)
347 {
348 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
349 }
350
activate_page(struct page * page)351 static void activate_page(struct page *page)
352 {
353 page = compound_head(page);
354 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
355 struct pagevec *pvec;
356
357 local_lock(&lru_pvecs.lock);
358 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
359 get_page(page);
360 if (!pagevec_add(pvec, page) || PageCompound(page))
361 pagevec_lru_move_fn(pvec, __activate_page, NULL);
362 local_unlock(&lru_pvecs.lock);
363 }
364 }
365
366 #else
activate_page_drain(int cpu)367 static inline void activate_page_drain(int cpu)
368 {
369 }
370
activate_page(struct page * page)371 static void activate_page(struct page *page)
372 {
373 pg_data_t *pgdat = page_pgdat(page);
374
375 page = compound_head(page);
376 spin_lock_irq(&pgdat->lru_lock);
377 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
378 spin_unlock_irq(&pgdat->lru_lock);
379 }
380 #endif
381
__lru_cache_activate_page(struct page * page)382 static void __lru_cache_activate_page(struct page *page)
383 {
384 struct pagevec *pvec;
385 int i;
386
387 local_lock(&lru_pvecs.lock);
388 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
389
390 /*
391 * Search backwards on the optimistic assumption that the page being
392 * activated has just been added to this pagevec. Note that only
393 * the local pagevec is examined as a !PageLRU page could be in the
394 * process of being released, reclaimed, migrated or on a remote
395 * pagevec that is currently being drained. Furthermore, marking
396 * a remote pagevec's page PageActive potentially hits a race where
397 * a page is marked PageActive just after it is added to the inactive
398 * list causing accounting errors and BUG_ON checks to trigger.
399 */
400 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
401 struct page *pagevec_page = pvec->pages[i];
402
403 if (pagevec_page == page) {
404 SetPageActive(page);
405 break;
406 }
407 }
408
409 local_unlock(&lru_pvecs.lock);
410 }
411
412 /*
413 * Mark a page as having seen activity.
414 *
415 * inactive,unreferenced -> inactive,referenced
416 * inactive,referenced -> active,unreferenced
417 * active,unreferenced -> active,referenced
418 *
419 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
420 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
421 */
mark_page_accessed(struct page * page)422 void mark_page_accessed(struct page *page)
423 {
424 page = compound_head(page);
425
426 if (!PageReferenced(page)) {
427 SetPageReferenced(page);
428 } else if (PageUnevictable(page)) {
429 /*
430 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
431 * this list is never rotated or maintained, so marking an
432 * evictable page accessed has no effect.
433 */
434 } else if (!PageActive(page)) {
435 /*
436 * If the page is on the LRU, queue it for activation via
437 * lru_pvecs.activate_page. Otherwise, assume the page is on a
438 * pagevec, mark it active and it'll be moved to the active
439 * LRU on the next drain.
440 */
441 if (PageLRU(page))
442 activate_page(page);
443 else
444 __lru_cache_activate_page(page);
445 ClearPageReferenced(page);
446 workingset_activation(page);
447 }
448 if (page_is_idle(page))
449 clear_page_idle(page);
450 }
451 EXPORT_SYMBOL(mark_page_accessed);
452
453 /**
454 * lru_cache_add - add a page to a page list
455 * @page: the page to be added to the LRU.
456 *
457 * Queue the page for addition to the LRU via pagevec. The decision on whether
458 * to add the page to the [in]active [file|anon] list is deferred until the
459 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
460 * have the page added to the active list using mark_page_accessed().
461 */
lru_cache_add(struct page * page)462 void lru_cache_add(struct page *page)
463 {
464 struct pagevec *pvec;
465
466 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
467 VM_BUG_ON_PAGE(PageLRU(page), page);
468
469 get_page(page);
470 local_lock(&lru_pvecs.lock);
471 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
472 if (!pagevec_add(pvec, page) || PageCompound(page))
473 __pagevec_lru_add(pvec);
474 local_unlock(&lru_pvecs.lock);
475 }
476 EXPORT_SYMBOL(lru_cache_add);
477
478 /**
479 * lru_cache_add_inactive_or_unevictable
480 * @page: the page to be added to LRU
481 * @vma: vma in which page is mapped for determining reclaimability
482 *
483 * Place @page on the inactive or unevictable LRU list, depending on its
484 * evictability.
485 */
lru_cache_add_inactive_or_unevictable(struct page * page,struct vm_area_struct * vma)486 void lru_cache_add_inactive_or_unevictable(struct page *page,
487 struct vm_area_struct *vma)
488 {
489 bool unevictable;
490
491 VM_BUG_ON_PAGE(PageLRU(page), page);
492
493 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
494 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
495 int nr_pages = thp_nr_pages(page);
496 /*
497 * We use the irq-unsafe __mod_zone_page_stat because this
498 * counter is not modified from interrupt context, and the pte
499 * lock is held(spinlock), which implies preemption disabled.
500 */
501 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
502 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
503 }
504 lru_cache_add(page);
505 }
506
507 /*
508 * If the page can not be invalidated, it is moved to the
509 * inactive list to speed up its reclaim. It is moved to the
510 * head of the list, rather than the tail, to give the flusher
511 * threads some time to write it out, as this is much more
512 * effective than the single-page writeout from reclaim.
513 *
514 * If the page isn't page_mapped and dirty/writeback, the page
515 * could reclaim asap using PG_reclaim.
516 *
517 * 1. active, mapped page -> none
518 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
519 * 3. inactive, mapped page -> none
520 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
521 * 5. inactive, clean -> inactive, tail
522 * 6. Others -> none
523 *
524 * In 4, why it moves inactive's head, the VM expects the page would
525 * be write it out by flusher threads as this is much more effective
526 * than the single-page writeout from reclaim.
527 */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec,void * arg)528 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
529 void *arg)
530 {
531 int lru;
532 bool active;
533 int nr_pages = thp_nr_pages(page);
534
535 if (!PageLRU(page))
536 return;
537
538 if (PageUnevictable(page))
539 return;
540
541 /* Some processes are using the page */
542 if (page_mapped(page))
543 return;
544
545 active = PageActive(page);
546 lru = page_lru_base_type(page);
547
548 del_page_from_lru_list(page, lruvec, lru + active);
549 ClearPageActive(page);
550 ClearPageReferenced(page);
551
552 if (PageWriteback(page) || PageDirty(page)) {
553 /*
554 * PG_reclaim could be raced with end_page_writeback
555 * It can make readahead confusing. But race window
556 * is _really_ small and it's non-critical problem.
557 */
558 add_page_to_lru_list(page, lruvec, lru);
559 SetPageReclaim(page);
560 } else {
561 /*
562 * The page's writeback ends up during pagevec
563 * We moves tha page into tail of inactive.
564 */
565 add_page_to_lru_list_tail(page, lruvec, lru);
566 __count_vm_events(PGROTATED, nr_pages);
567 }
568
569 if (active) {
570 __count_vm_events(PGDEACTIVATE, nr_pages);
571 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
572 nr_pages);
573 }
574 }
575
lru_deactivate_fn(struct page * page,struct lruvec * lruvec,void * arg)576 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
577 void *arg)
578 {
579 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
580 int lru = page_lru_base_type(page);
581 int nr_pages = thp_nr_pages(page);
582
583 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
584 ClearPageActive(page);
585 ClearPageReferenced(page);
586 add_page_to_lru_list(page, lruvec, lru);
587
588 __count_vm_events(PGDEACTIVATE, nr_pages);
589 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
590 nr_pages);
591 }
592 }
593
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec,void * arg)594 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
595 void *arg)
596 {
597 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
598 !PageSwapCache(page) && !PageUnevictable(page)) {
599 bool active = PageActive(page);
600 int nr_pages = thp_nr_pages(page);
601
602 del_page_from_lru_list(page, lruvec,
603 LRU_INACTIVE_ANON + active);
604 ClearPageActive(page);
605 ClearPageReferenced(page);
606 /*
607 * Lazyfree pages are clean anonymous pages. They have
608 * PG_swapbacked flag cleared, to distinguish them from normal
609 * anonymous pages
610 */
611 ClearPageSwapBacked(page);
612 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
613
614 __count_vm_events(PGLAZYFREE, nr_pages);
615 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
616 nr_pages);
617 }
618 }
619
620 /*
621 * Drain pages out of the cpu's pagevecs.
622 * Either "cpu" is the current CPU, and preemption has already been
623 * disabled; or "cpu" is being hot-unplugged, and is already dead.
624 */
lru_add_drain_cpu(int cpu)625 void lru_add_drain_cpu(int cpu)
626 {
627 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
628
629 if (pagevec_count(pvec))
630 __pagevec_lru_add(pvec);
631
632 pvec = &per_cpu(lru_rotate.pvec, cpu);
633 /* Disabling interrupts below acts as a compiler barrier. */
634 if (data_race(pagevec_count(pvec))) {
635 unsigned long flags;
636
637 /* No harm done if a racing interrupt already did this */
638 local_lock_irqsave(&lru_rotate.lock, flags);
639 pagevec_move_tail(pvec);
640 local_unlock_irqrestore(&lru_rotate.lock, flags);
641 }
642
643 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
644 if (pagevec_count(pvec))
645 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
646
647 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
648 if (pagevec_count(pvec))
649 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
650
651 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
652 if (pagevec_count(pvec))
653 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
654
655 activate_page_drain(cpu);
656 }
657
658 /**
659 * deactivate_file_page - forcefully deactivate a file page
660 * @page: page to deactivate
661 *
662 * This function hints the VM that @page is a good reclaim candidate,
663 * for example if its invalidation fails due to the page being dirty
664 * or under writeback.
665 */
deactivate_file_page(struct page * page)666 void deactivate_file_page(struct page *page)
667 {
668 /*
669 * In a workload with many unevictable page such as mprotect,
670 * unevictable page deactivation for accelerating reclaim is pointless.
671 */
672 if (PageUnevictable(page))
673 return;
674
675 if (likely(get_page_unless_zero(page))) {
676 struct pagevec *pvec;
677
678 local_lock(&lru_pvecs.lock);
679 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
680
681 if (!pagevec_add(pvec, page) || PageCompound(page))
682 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
683 local_unlock(&lru_pvecs.lock);
684 }
685 }
686
687 /*
688 * deactivate_page - deactivate a page
689 * @page: page to deactivate
690 *
691 * deactivate_page() moves @page to the inactive list if @page was on the active
692 * list and was not an unevictable page. This is done to accelerate the reclaim
693 * of @page.
694 */
deactivate_page(struct page * page)695 void deactivate_page(struct page *page)
696 {
697 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
698 struct pagevec *pvec;
699
700 local_lock(&lru_pvecs.lock);
701 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
702 get_page(page);
703 if (!pagevec_add(pvec, page) || PageCompound(page))
704 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
705 local_unlock(&lru_pvecs.lock);
706 }
707 }
708
709 /**
710 * mark_page_lazyfree - make an anon page lazyfree
711 * @page: page to deactivate
712 *
713 * mark_page_lazyfree() moves @page to the inactive file list.
714 * This is done to accelerate the reclaim of @page.
715 */
mark_page_lazyfree(struct page * page)716 void mark_page_lazyfree(struct page *page)
717 {
718 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
719 !PageSwapCache(page) && !PageUnevictable(page)) {
720 struct pagevec *pvec;
721
722 local_lock(&lru_pvecs.lock);
723 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
724 get_page(page);
725 if (!pagevec_add(pvec, page) || PageCompound(page))
726 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
727 local_unlock(&lru_pvecs.lock);
728 }
729 }
730
lru_add_drain(void)731 void lru_add_drain(void)
732 {
733 local_lock(&lru_pvecs.lock);
734 lru_add_drain_cpu(smp_processor_id());
735 local_unlock(&lru_pvecs.lock);
736 }
737
lru_add_drain_cpu_zone(struct zone * zone)738 void lru_add_drain_cpu_zone(struct zone *zone)
739 {
740 local_lock(&lru_pvecs.lock);
741 lru_add_drain_cpu(smp_processor_id());
742 drain_local_pages(zone);
743 local_unlock(&lru_pvecs.lock);
744 }
745
746 #ifdef CONFIG_SMP
747
748 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
749
lru_add_drain_per_cpu(struct work_struct * dummy)750 static void lru_add_drain_per_cpu(struct work_struct *dummy)
751 {
752 lru_add_drain();
753 }
754
755 /*
756 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
757 * kworkers being shut down before our page_alloc_cpu_dead callback is
758 * executed on the offlined cpu.
759 * Calling this function with cpu hotplug locks held can actually lead
760 * to obscure indirect dependencies via WQ context.
761 */
lru_add_drain_all(void)762 void lru_add_drain_all(void)
763 {
764 /*
765 * lru_drain_gen - Global pages generation number
766 *
767 * (A) Definition: global lru_drain_gen = x implies that all generations
768 * 0 < n <= x are already *scheduled* for draining.
769 *
770 * This is an optimization for the highly-contended use case where a
771 * user space workload keeps constantly generating a flow of pages for
772 * each CPU.
773 */
774 static unsigned int lru_drain_gen;
775 static struct cpumask has_work;
776 static DEFINE_MUTEX(lock);
777 unsigned cpu, this_gen;
778
779 /*
780 * Make sure nobody triggers this path before mm_percpu_wq is fully
781 * initialized.
782 */
783 if (WARN_ON(!mm_percpu_wq))
784 return;
785
786 /*
787 * Guarantee pagevec counter stores visible by this CPU are visible to
788 * other CPUs before loading the current drain generation.
789 */
790 smp_mb();
791
792 /*
793 * (B) Locally cache global LRU draining generation number
794 *
795 * The read barrier ensures that the counter is loaded before the mutex
796 * is taken. It pairs with smp_mb() inside the mutex critical section
797 * at (D).
798 */
799 this_gen = smp_load_acquire(&lru_drain_gen);
800
801 mutex_lock(&lock);
802
803 /*
804 * (C) Exit the draining operation if a newer generation, from another
805 * lru_add_drain_all(), was already scheduled for draining. Check (A).
806 */
807 if (unlikely(this_gen != lru_drain_gen))
808 goto done;
809
810 /*
811 * (D) Increment global generation number
812 *
813 * Pairs with smp_load_acquire() at (B), outside of the critical
814 * section. Use a full memory barrier to guarantee that the new global
815 * drain generation number is stored before loading pagevec counters.
816 *
817 * This pairing must be done here, before the for_each_online_cpu loop
818 * below which drains the page vectors.
819 *
820 * Let x, y, and z represent some system CPU numbers, where x < y < z.
821 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
822 * below and has already reached CPU #y's per-cpu data. CPU #x comes
823 * along, adds some pages to its per-cpu vectors, then calls
824 * lru_add_drain_all().
825 *
826 * If the paired barrier is done at any later step, e.g. after the
827 * loop, CPU #x will just exit at (C) and miss flushing out all of its
828 * added pages.
829 */
830 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
831 smp_mb();
832
833 cpumask_clear(&has_work);
834 for_each_online_cpu(cpu) {
835 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
836
837 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
838 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
839 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
840 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
841 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
842 need_activate_page_drain(cpu)) {
843 INIT_WORK(work, lru_add_drain_per_cpu);
844 queue_work_on(cpu, mm_percpu_wq, work);
845 __cpumask_set_cpu(cpu, &has_work);
846 }
847 }
848
849 for_each_cpu(cpu, &has_work)
850 flush_work(&per_cpu(lru_add_drain_work, cpu));
851
852 done:
853 mutex_unlock(&lock);
854 }
855 #else
lru_add_drain_all(void)856 void lru_add_drain_all(void)
857 {
858 lru_add_drain();
859 }
860 #endif /* CONFIG_SMP */
861
862 /**
863 * release_pages - batched put_page()
864 * @pages: array of pages to release
865 * @nr: number of pages
866 *
867 * Decrement the reference count on all the pages in @pages. If it
868 * fell to zero, remove the page from the LRU and free it.
869 */
release_pages(struct page ** pages,int nr)870 void release_pages(struct page **pages, int nr)
871 {
872 int i;
873 LIST_HEAD(pages_to_free);
874 struct pglist_data *locked_pgdat = NULL;
875 struct lruvec *lruvec;
876 unsigned long flags;
877 unsigned int lock_batch;
878
879 for (i = 0; i < nr; i++) {
880 struct page *page = pages[i];
881
882 /*
883 * Make sure the IRQ-safe lock-holding time does not get
884 * excessive with a continuous string of pages from the
885 * same pgdat. The lock is held only if pgdat != NULL.
886 */
887 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
888 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
889 locked_pgdat = NULL;
890 }
891
892 page = compound_head(page);
893 if (is_huge_zero_page(page))
894 continue;
895
896 if (is_zone_device_page(page)) {
897 if (locked_pgdat) {
898 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
899 flags);
900 locked_pgdat = NULL;
901 }
902 /*
903 * ZONE_DEVICE pages that return 'false' from
904 * page_is_devmap_managed() do not require special
905 * processing, and instead, expect a call to
906 * put_page_testzero().
907 */
908 if (page_is_devmap_managed(page)) {
909 put_devmap_managed_page(page);
910 continue;
911 }
912 }
913
914 if (!put_page_testzero(page))
915 continue;
916
917 if (PageCompound(page)) {
918 if (locked_pgdat) {
919 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
920 locked_pgdat = NULL;
921 }
922 __put_compound_page(page);
923 continue;
924 }
925
926 if (PageLRU(page)) {
927 struct pglist_data *pgdat = page_pgdat(page);
928
929 if (pgdat != locked_pgdat) {
930 if (locked_pgdat)
931 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
932 flags);
933 lock_batch = 0;
934 locked_pgdat = pgdat;
935 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
936 }
937
938 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
939 VM_BUG_ON_PAGE(!PageLRU(page), page);
940 __ClearPageLRU(page);
941 del_page_from_lru_list(page, lruvec, page_off_lru(page));
942 }
943
944 __ClearPageWaiters(page);
945
946 list_add(&page->lru, &pages_to_free);
947 }
948 if (locked_pgdat)
949 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
950
951 mem_cgroup_uncharge_list(&pages_to_free);
952 free_unref_page_list(&pages_to_free);
953 }
954 EXPORT_SYMBOL(release_pages);
955
956 /*
957 * The pages which we're about to release may be in the deferred lru-addition
958 * queues. That would prevent them from really being freed right now. That's
959 * OK from a correctness point of view but is inefficient - those pages may be
960 * cache-warm and we want to give them back to the page allocator ASAP.
961 *
962 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
963 * and __pagevec_lru_add_active() call release_pages() directly to avoid
964 * mutual recursion.
965 */
__pagevec_release(struct pagevec * pvec)966 void __pagevec_release(struct pagevec *pvec)
967 {
968 if (!pvec->percpu_pvec_drained) {
969 lru_add_drain();
970 pvec->percpu_pvec_drained = true;
971 }
972 release_pages(pvec->pages, pagevec_count(pvec));
973 pagevec_reinit(pvec);
974 }
975 EXPORT_SYMBOL(__pagevec_release);
976
977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
978 /* used by __split_huge_page_refcount() */
lru_add_page_tail(struct page * page,struct page * page_tail,struct lruvec * lruvec,struct list_head * list)979 void lru_add_page_tail(struct page *page, struct page *page_tail,
980 struct lruvec *lruvec, struct list_head *list)
981 {
982 VM_BUG_ON_PAGE(!PageHead(page), page);
983 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
984 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
985 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
986
987 if (!list)
988 SetPageLRU(page_tail);
989
990 if (likely(PageLRU(page)))
991 list_add_tail(&page_tail->lru, &page->lru);
992 else if (list) {
993 /* page reclaim is reclaiming a huge page */
994 get_page(page_tail);
995 list_add_tail(&page_tail->lru, list);
996 } else {
997 /*
998 * Head page has not yet been counted, as an hpage,
999 * so we must account for each subpage individually.
1000 *
1001 * Put page_tail on the list at the correct position
1002 * so they all end up in order.
1003 */
1004 add_page_to_lru_list_tail(page_tail, lruvec,
1005 page_lru(page_tail));
1006 }
1007 }
1008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1009
__pagevec_lru_add_fn(struct page * page,struct lruvec * lruvec,void * arg)1010 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1011 void *arg)
1012 {
1013 enum lru_list lru;
1014 int was_unevictable = TestClearPageUnevictable(page);
1015 int nr_pages = thp_nr_pages(page);
1016
1017 VM_BUG_ON_PAGE(PageLRU(page), page);
1018
1019 /*
1020 * Page becomes evictable in two ways:
1021 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1022 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1023 * a) do PageLRU check with lock [check_move_unevictable_pages]
1024 * b) do PageLRU check before lock [clear_page_mlock]
1025 *
1026 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1027 * following strict ordering:
1028 *
1029 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1030 *
1031 * SetPageLRU() TestClearPageMlocked()
1032 * smp_mb() // explicit ordering // above provides strict
1033 * // ordering
1034 * PageMlocked() PageLRU()
1035 *
1036 *
1037 * if '#1' does not observe setting of PG_lru by '#0' and fails
1038 * isolation, the explicit barrier will make sure that page_evictable
1039 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1040 * can be reordered after PageMlocked check and can make '#1' to fail
1041 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1042 * looking at the same page) and the evictable page will be stranded
1043 * in an unevictable LRU.
1044 */
1045 SetPageLRU(page);
1046 smp_mb__after_atomic();
1047
1048 if (page_evictable(page)) {
1049 lru = page_lru(page);
1050 if (was_unevictable)
1051 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1052 } else {
1053 lru = LRU_UNEVICTABLE;
1054 ClearPageActive(page);
1055 SetPageUnevictable(page);
1056 if (!was_unevictable)
1057 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1058 }
1059
1060 add_page_to_lru_list(page, lruvec, lru);
1061 trace_mm_lru_insertion(page, lru);
1062 }
1063
1064 /*
1065 * Add the passed pages to the LRU, then drop the caller's refcount
1066 * on them. Reinitialises the caller's pagevec.
1067 */
__pagevec_lru_add(struct pagevec * pvec)1068 void __pagevec_lru_add(struct pagevec *pvec)
1069 {
1070 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1071 }
1072
1073 /**
1074 * pagevec_lookup_entries - gang pagecache lookup
1075 * @pvec: Where the resulting entries are placed
1076 * @mapping: The address_space to search
1077 * @start: The starting entry index
1078 * @nr_entries: The maximum number of pages
1079 * @indices: The cache indices corresponding to the entries in @pvec
1080 *
1081 * pagevec_lookup_entries() will search for and return a group of up
1082 * to @nr_pages pages and shadow entries in the mapping. All
1083 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1084 * reference against actual pages in @pvec.
1085 *
1086 * The search returns a group of mapping-contiguous entries with
1087 * ascending indexes. There may be holes in the indices due to
1088 * not-present entries.
1089 *
1090 * Only one subpage of a Transparent Huge Page is returned in one call:
1091 * allowing truncate_inode_pages_range() to evict the whole THP without
1092 * cycling through a pagevec of extra references.
1093 *
1094 * pagevec_lookup_entries() returns the number of entries which were
1095 * found.
1096 */
pagevec_lookup_entries(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_entries,pgoff_t * indices)1097 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1098 struct address_space *mapping,
1099 pgoff_t start, unsigned nr_entries,
1100 pgoff_t *indices)
1101 {
1102 pvec->nr = find_get_entries(mapping, start, nr_entries,
1103 pvec->pages, indices);
1104 return pagevec_count(pvec);
1105 }
1106
1107 /**
1108 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1109 * @pvec: The pagevec to prune
1110 *
1111 * pagevec_lookup_entries() fills both pages and exceptional radix
1112 * tree entries into the pagevec. This function prunes all
1113 * exceptionals from @pvec without leaving holes, so that it can be
1114 * passed on to page-only pagevec operations.
1115 */
pagevec_remove_exceptionals(struct pagevec * pvec)1116 void pagevec_remove_exceptionals(struct pagevec *pvec)
1117 {
1118 int i, j;
1119
1120 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1121 struct page *page = pvec->pages[i];
1122 if (!xa_is_value(page))
1123 pvec->pages[j++] = page;
1124 }
1125 pvec->nr = j;
1126 }
1127
1128 /**
1129 * pagevec_lookup_range - gang pagecache lookup
1130 * @pvec: Where the resulting pages are placed
1131 * @mapping: The address_space to search
1132 * @start: The starting page index
1133 * @end: The final page index
1134 *
1135 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1136 * pages in the mapping starting from index @start and upto index @end
1137 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1138 * reference against the pages in @pvec.
1139 *
1140 * The search returns a group of mapping-contiguous pages with ascending
1141 * indexes. There may be holes in the indices due to not-present pages. We
1142 * also update @start to index the next page for the traversal.
1143 *
1144 * pagevec_lookup_range() returns the number of pages which were found. If this
1145 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1146 * reached.
1147 */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)1148 unsigned pagevec_lookup_range(struct pagevec *pvec,
1149 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1150 {
1151 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1152 pvec->pages);
1153 return pagevec_count(pvec);
1154 }
1155 EXPORT_SYMBOL(pagevec_lookup_range);
1156
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag)1157 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1158 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1159 xa_mark_t tag)
1160 {
1161 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1162 PAGEVEC_SIZE, pvec->pages);
1163 return pagevec_count(pvec);
1164 }
1165 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1166
pagevec_lookup_range_nr_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag,unsigned max_pages)1167 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1168 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1169 xa_mark_t tag, unsigned max_pages)
1170 {
1171 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1172 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1173 return pagevec_count(pvec);
1174 }
1175 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1176 /*
1177 * Perform any setup for the swap system
1178 */
swap_setup(void)1179 void __init swap_setup(void)
1180 {
1181 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1182
1183 /* Use a smaller cluster for small-memory machines */
1184 if (megs < 16)
1185 page_cluster = 2;
1186 else
1187 page_cluster = 3;
1188 /*
1189 * Right now other parts of the system means that we
1190 * _really_ don't want to cluster much more
1191 */
1192 }
1193
1194 #ifdef CONFIG_DEV_PAGEMAP_OPS
put_devmap_managed_page(struct page * page)1195 void put_devmap_managed_page(struct page *page)
1196 {
1197 int count;
1198
1199 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1200 return;
1201
1202 count = page_ref_dec_return(page);
1203
1204 /*
1205 * devmap page refcounts are 1-based, rather than 0-based: if
1206 * refcount is 1, then the page is free and the refcount is
1207 * stable because nobody holds a reference on the page.
1208 */
1209 if (count == 1)
1210 free_devmap_managed_page(page);
1211 else if (!count)
1212 __put_page(page);
1213 }
1214 EXPORT_SYMBOL(put_devmap_managed_page);
1215 #endif
1216