1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Slab allocator functions that are independent of the allocator strategy
4  *
5  * (C) 2012 Christoph Lameter <cl@linux.com>
6  */
7 #include <linux/slab.h>
8 
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/debugfs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
23 #include <asm/page.h>
24 #include <linux/memcontrol.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/kmem.h>
28 
29 #include "internal.h"
30 
31 #include "slab.h"
32 
33 enum slab_state slab_state;
34 LIST_HEAD(slab_caches);
35 DEFINE_MUTEX(slab_mutex);
36 struct kmem_cache *kmem_cache;
37 
38 #ifdef CONFIG_HARDENED_USERCOPY
39 bool usercopy_fallback __ro_after_init =
40 		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
41 module_param(usercopy_fallback, bool, 0400);
42 MODULE_PARM_DESC(usercopy_fallback,
43 		"WARN instead of reject usercopy whitelist violations");
44 #endif
45 
46 static LIST_HEAD(slab_caches_to_rcu_destroy);
47 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
48 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
49 		    slab_caches_to_rcu_destroy_workfn);
50 
51 /*
52  * Set of flags that will prevent slab merging
53  */
54 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
55 		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
56 		SLAB_FAILSLAB | SLAB_KASAN)
57 
58 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
59 			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
60 
61 /*
62  * Merge control. If this is set then no merging of slab caches will occur.
63  */
64 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
65 
setup_slab_nomerge(char * str)66 static int __init setup_slab_nomerge(char *str)
67 {
68 	slab_nomerge = true;
69 	return 1;
70 }
71 
72 #ifdef CONFIG_SLUB
73 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
74 #endif
75 
76 __setup("slab_nomerge", setup_slab_nomerge);
77 
78 /*
79  * Determine the size of a slab object
80  */
kmem_cache_size(struct kmem_cache * s)81 unsigned int kmem_cache_size(struct kmem_cache *s)
82 {
83 	return s->object_size;
84 }
85 EXPORT_SYMBOL(kmem_cache_size);
86 
87 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,unsigned int size)88 static int kmem_cache_sanity_check(const char *name, unsigned int size)
89 {
90 	if (!name || in_interrupt() || size < sizeof(void *) ||
91 		size > KMALLOC_MAX_SIZE) {
92 		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
93 		return -EINVAL;
94 	}
95 
96 	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
97 	return 0;
98 }
99 #else
kmem_cache_sanity_check(const char * name,unsigned int size)100 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
101 {
102 	return 0;
103 }
104 #endif
105 
__kmem_cache_free_bulk(struct kmem_cache * s,size_t nr,void ** p)106 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
107 {
108 	size_t i;
109 
110 	for (i = 0; i < nr; i++) {
111 		if (s)
112 			kmem_cache_free(s, p[i]);
113 		else
114 			kfree(p[i]);
115 	}
116 }
117 
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t nr,void ** p)118 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
119 								void **p)
120 {
121 	size_t i;
122 
123 	for (i = 0; i < nr; i++) {
124 		void *x = p[i] = kmem_cache_alloc(s, flags);
125 		if (!x) {
126 			__kmem_cache_free_bulk(s, i, p);
127 			return 0;
128 		}
129 	}
130 	return i;
131 }
132 
133 /*
134  * Figure out what the alignment of the objects will be given a set of
135  * flags, a user specified alignment and the size of the objects.
136  */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)137 static unsigned int calculate_alignment(slab_flags_t flags,
138 		unsigned int align, unsigned int size)
139 {
140 	/*
141 	 * If the user wants hardware cache aligned objects then follow that
142 	 * suggestion if the object is sufficiently large.
143 	 *
144 	 * The hardware cache alignment cannot override the specified
145 	 * alignment though. If that is greater then use it.
146 	 */
147 	if (flags & SLAB_HWCACHE_ALIGN) {
148 		unsigned int ralign;
149 
150 		ralign = cache_line_size();
151 		while (size <= ralign / 2)
152 			ralign /= 2;
153 		align = max(align, ralign);
154 	}
155 
156 	if (align < ARCH_SLAB_MINALIGN)
157 		align = ARCH_SLAB_MINALIGN;
158 
159 	return ALIGN(align, sizeof(void *));
160 }
161 
162 /*
163  * Find a mergeable slab cache
164  */
slab_unmergeable(struct kmem_cache * s)165 int slab_unmergeable(struct kmem_cache *s)
166 {
167 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
168 		return 1;
169 
170 	if (s->ctor)
171 		return 1;
172 
173 	if (s->usersize)
174 		return 1;
175 
176 	/*
177 	 * We may have set a slab to be unmergeable during bootstrap.
178 	 */
179 	if (s->refcount < 0)
180 		return 1;
181 
182 	return 0;
183 }
184 
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))185 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
186 		slab_flags_t flags, const char *name, void (*ctor)(void *))
187 {
188 	struct kmem_cache *s;
189 
190 	if (slab_nomerge)
191 		return NULL;
192 
193 	if (ctor)
194 		return NULL;
195 
196 	size = ALIGN(size, sizeof(void *));
197 	align = calculate_alignment(flags, align, size);
198 	size = ALIGN(size, align);
199 	flags = kmem_cache_flags(size, flags, name, NULL);
200 
201 	if (flags & SLAB_NEVER_MERGE)
202 		return NULL;
203 
204 	list_for_each_entry_reverse(s, &slab_caches, list) {
205 		if (slab_unmergeable(s))
206 			continue;
207 
208 		if (size > s->size)
209 			continue;
210 
211 		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
212 			continue;
213 		/*
214 		 * Check if alignment is compatible.
215 		 * Courtesy of Adrian Drzewiecki
216 		 */
217 		if ((s->size & ~(align - 1)) != s->size)
218 			continue;
219 
220 		if (s->size - size >= sizeof(void *))
221 			continue;
222 
223 		if (IS_ENABLED(CONFIG_SLAB) && align &&
224 			(align > s->align || s->align % align))
225 			continue;
226 
227 		return s;
228 	}
229 	return NULL;
230 }
231 
create_cache(const char * name,unsigned int object_size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *),struct kmem_cache * root_cache)232 static struct kmem_cache *create_cache(const char *name,
233 		unsigned int object_size, unsigned int align,
234 		slab_flags_t flags, unsigned int useroffset,
235 		unsigned int usersize, void (*ctor)(void *),
236 		struct kmem_cache *root_cache)
237 {
238 	struct kmem_cache *s;
239 	int err;
240 
241 	if (WARN_ON(useroffset + usersize > object_size))
242 		useroffset = usersize = 0;
243 
244 	err = -ENOMEM;
245 	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
246 	if (!s)
247 		goto out;
248 
249 	s->name = name;
250 	s->size = s->object_size = object_size;
251 	s->align = align;
252 	s->ctor = ctor;
253 	s->useroffset = useroffset;
254 	s->usersize = usersize;
255 
256 	err = __kmem_cache_create(s, flags);
257 	if (err)
258 		goto out_free_cache;
259 
260 	s->refcount = 1;
261 	list_add(&s->list, &slab_caches);
262 out:
263 	if (err)
264 		return ERR_PTR(err);
265 	return s;
266 
267 out_free_cache:
268 	kmem_cache_free(kmem_cache, s);
269 	goto out;
270 }
271 
272 /**
273  * kmem_cache_create_usercopy - Create a cache with a region suitable
274  * for copying to userspace
275  * @name: A string which is used in /proc/slabinfo to identify this cache.
276  * @size: The size of objects to be created in this cache.
277  * @align: The required alignment for the objects.
278  * @flags: SLAB flags
279  * @useroffset: Usercopy region offset
280  * @usersize: Usercopy region size
281  * @ctor: A constructor for the objects.
282  *
283  * Cannot be called within a interrupt, but can be interrupted.
284  * The @ctor is run when new pages are allocated by the cache.
285  *
286  * The flags are
287  *
288  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
289  * to catch references to uninitialised memory.
290  *
291  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
292  * for buffer overruns.
293  *
294  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
295  * cacheline.  This can be beneficial if you're counting cycles as closely
296  * as davem.
297  *
298  * Return: a pointer to the cache on success, NULL on failure.
299  */
300 struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))301 kmem_cache_create_usercopy(const char *name,
302 		  unsigned int size, unsigned int align,
303 		  slab_flags_t flags,
304 		  unsigned int useroffset, unsigned int usersize,
305 		  void (*ctor)(void *))
306 {
307 	struct kmem_cache *s = NULL;
308 	const char *cache_name;
309 	int err;
310 
311 	get_online_cpus();
312 	get_online_mems();
313 
314 	mutex_lock(&slab_mutex);
315 
316 	err = kmem_cache_sanity_check(name, size);
317 	if (err) {
318 		goto out_unlock;
319 	}
320 
321 	/* Refuse requests with allocator specific flags */
322 	if (flags & ~SLAB_FLAGS_PERMITTED) {
323 		err = -EINVAL;
324 		goto out_unlock;
325 	}
326 
327 	/*
328 	 * Some allocators will constraint the set of valid flags to a subset
329 	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
330 	 * case, and we'll just provide them with a sanitized version of the
331 	 * passed flags.
332 	 */
333 	flags &= CACHE_CREATE_MASK;
334 
335 	/* Fail closed on bad usersize of useroffset values. */
336 	if (WARN_ON(!usersize && useroffset) ||
337 	    WARN_ON(size < usersize || size - usersize < useroffset))
338 		usersize = useroffset = 0;
339 
340 	if (!usersize)
341 		s = __kmem_cache_alias(name, size, align, flags, ctor);
342 	if (s)
343 		goto out_unlock;
344 
345 	cache_name = kstrdup_const(name, GFP_KERNEL);
346 	if (!cache_name) {
347 		err = -ENOMEM;
348 		goto out_unlock;
349 	}
350 
351 	s = create_cache(cache_name, size,
352 			 calculate_alignment(flags, align, size),
353 			 flags, useroffset, usersize, ctor, NULL);
354 	if (IS_ERR(s)) {
355 		err = PTR_ERR(s);
356 		kfree_const(cache_name);
357 	}
358 
359 out_unlock:
360 	mutex_unlock(&slab_mutex);
361 
362 	put_online_mems();
363 	put_online_cpus();
364 
365 	if (err) {
366 		if (flags & SLAB_PANIC)
367 			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
368 				name, err);
369 		else {
370 			pr_warn("kmem_cache_create(%s) failed with error %d\n",
371 				name, err);
372 			dump_stack();
373 		}
374 		return NULL;
375 	}
376 	return s;
377 }
378 EXPORT_SYMBOL(kmem_cache_create_usercopy);
379 
380 /**
381  * kmem_cache_create - Create a cache.
382  * @name: A string which is used in /proc/slabinfo to identify this cache.
383  * @size: The size of objects to be created in this cache.
384  * @align: The required alignment for the objects.
385  * @flags: SLAB flags
386  * @ctor: A constructor for the objects.
387  *
388  * Cannot be called within a interrupt, but can be interrupted.
389  * The @ctor is run when new pages are allocated by the cache.
390  *
391  * The flags are
392  *
393  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
394  * to catch references to uninitialised memory.
395  *
396  * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
397  * for buffer overruns.
398  *
399  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
400  * cacheline.  This can be beneficial if you're counting cycles as closely
401  * as davem.
402  *
403  * Return: a pointer to the cache on success, NULL on failure.
404  */
405 struct kmem_cache *
kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))406 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
407 		slab_flags_t flags, void (*ctor)(void *))
408 {
409 	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
410 					  ctor);
411 }
412 EXPORT_SYMBOL(kmem_cache_create);
413 
slab_caches_to_rcu_destroy_workfn(struct work_struct * work)414 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
415 {
416 	LIST_HEAD(to_destroy);
417 	struct kmem_cache *s, *s2;
418 
419 	/*
420 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
421 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
422 	 * through RCU and the associated kmem_cache are dereferenced
423 	 * while freeing the pages, so the kmem_caches should be freed only
424 	 * after the pending RCU operations are finished.  As rcu_barrier()
425 	 * is a pretty slow operation, we batch all pending destructions
426 	 * asynchronously.
427 	 */
428 	mutex_lock(&slab_mutex);
429 	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
430 	mutex_unlock(&slab_mutex);
431 
432 	if (list_empty(&to_destroy))
433 		return;
434 
435 	rcu_barrier();
436 
437 	list_for_each_entry_safe(s, s2, &to_destroy, list) {
438 #ifdef SLAB_SUPPORTS_SYSFS
439 		sysfs_slab_release(s);
440 #else
441 		slab_kmem_cache_release(s);
442 #endif
443 	}
444 }
445 
shutdown_cache(struct kmem_cache * s)446 static int shutdown_cache(struct kmem_cache *s)
447 {
448 	/* free asan quarantined objects */
449 	kasan_cache_shutdown(s);
450 
451 	if (__kmem_cache_shutdown(s) != 0)
452 		return -EBUSY;
453 
454 	list_del(&s->list);
455 
456 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
457 #ifdef SLAB_SUPPORTS_SYSFS
458 		sysfs_slab_unlink(s);
459 #endif
460 		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
461 		schedule_work(&slab_caches_to_rcu_destroy_work);
462 	} else {
463 #ifdef SLAB_SUPPORTS_SYSFS
464 		sysfs_slab_unlink(s);
465 		sysfs_slab_release(s);
466 #else
467 		slab_kmem_cache_release(s);
468 #endif
469 	}
470 
471 	return 0;
472 }
473 
slab_kmem_cache_release(struct kmem_cache * s)474 void slab_kmem_cache_release(struct kmem_cache *s)
475 {
476 	__kmem_cache_release(s);
477 	kfree_const(s->name);
478 	kmem_cache_free(kmem_cache, s);
479 }
480 
kmem_cache_destroy(struct kmem_cache * s)481 void kmem_cache_destroy(struct kmem_cache *s)
482 {
483 	int err;
484 
485 	if (unlikely(!s))
486 		return;
487 
488 	get_online_cpus();
489 	get_online_mems();
490 
491 	mutex_lock(&slab_mutex);
492 
493 	s->refcount--;
494 	if (s->refcount)
495 		goto out_unlock;
496 
497 	err = shutdown_cache(s);
498 	if (err) {
499 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
500 		       s->name);
501 		dump_stack();
502 	}
503 out_unlock:
504 	mutex_unlock(&slab_mutex);
505 
506 	put_online_mems();
507 	put_online_cpus();
508 }
509 EXPORT_SYMBOL(kmem_cache_destroy);
510 
511 /**
512  * kmem_cache_shrink - Shrink a cache.
513  * @cachep: The cache to shrink.
514  *
515  * Releases as many slabs as possible for a cache.
516  * To help debugging, a zero exit status indicates all slabs were released.
517  *
518  * Return: %0 if all slabs were released, non-zero otherwise
519  */
kmem_cache_shrink(struct kmem_cache * cachep)520 int kmem_cache_shrink(struct kmem_cache *cachep)
521 {
522 	int ret;
523 
524 	get_online_cpus();
525 	get_online_mems();
526 	kasan_cache_shrink(cachep);
527 	ret = __kmem_cache_shrink(cachep);
528 	put_online_mems();
529 	put_online_cpus();
530 	return ret;
531 }
532 EXPORT_SYMBOL(kmem_cache_shrink);
533 
slab_is_available(void)534 bool slab_is_available(void)
535 {
536 	return slab_state >= UP;
537 }
538 
539 #ifndef CONFIG_SLOB
540 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)541 void __init create_boot_cache(struct kmem_cache *s, const char *name,
542 		unsigned int size, slab_flags_t flags,
543 		unsigned int useroffset, unsigned int usersize)
544 {
545 	int err;
546 	unsigned int align = ARCH_KMALLOC_MINALIGN;
547 
548 	s->name = name;
549 	s->size = s->object_size = size;
550 
551 	/*
552 	 * For power of two sizes, guarantee natural alignment for kmalloc
553 	 * caches, regardless of SL*B debugging options.
554 	 */
555 	if (is_power_of_2(size))
556 		align = max(align, size);
557 	s->align = calculate_alignment(flags, align, size);
558 
559 	s->useroffset = useroffset;
560 	s->usersize = usersize;
561 
562 	err = __kmem_cache_create(s, flags);
563 
564 	if (err)
565 		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
566 					name, size, err);
567 
568 	s->refcount = -1;	/* Exempt from merging for now */
569 }
570 
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)571 struct kmem_cache *__init create_kmalloc_cache(const char *name,
572 		unsigned int size, slab_flags_t flags,
573 		unsigned int useroffset, unsigned int usersize)
574 {
575 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
576 
577 	if (!s)
578 		panic("Out of memory when creating slab %s\n", name);
579 
580 	create_boot_cache(s, name, size, flags, useroffset, usersize);
581 	list_add(&s->list, &slab_caches);
582 	s->refcount = 1;
583 	return s;
584 }
585 
586 struct kmem_cache *
587 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
588 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
589 EXPORT_SYMBOL(kmalloc_caches);
590 
591 /*
592  * Conversion table for small slabs sizes / 8 to the index in the
593  * kmalloc array. This is necessary for slabs < 192 since we have non power
594  * of two cache sizes there. The size of larger slabs can be determined using
595  * fls.
596  */
597 static u8 size_index[24] __ro_after_init = {
598 	3,	/* 8 */
599 	4,	/* 16 */
600 	5,	/* 24 */
601 	5,	/* 32 */
602 	6,	/* 40 */
603 	6,	/* 48 */
604 	6,	/* 56 */
605 	6,	/* 64 */
606 	1,	/* 72 */
607 	1,	/* 80 */
608 	1,	/* 88 */
609 	1,	/* 96 */
610 	7,	/* 104 */
611 	7,	/* 112 */
612 	7,	/* 120 */
613 	7,	/* 128 */
614 	2,	/* 136 */
615 	2,	/* 144 */
616 	2,	/* 152 */
617 	2,	/* 160 */
618 	2,	/* 168 */
619 	2,	/* 176 */
620 	2,	/* 184 */
621 	2	/* 192 */
622 };
623 
size_index_elem(unsigned int bytes)624 static inline unsigned int size_index_elem(unsigned int bytes)
625 {
626 	return (bytes - 1) / 8;
627 }
628 
629 /*
630  * Find the kmem_cache structure that serves a given size of
631  * allocation
632  */
kmalloc_slab(size_t size,gfp_t flags)633 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
634 {
635 	unsigned int index;
636 
637 	if (size <= 192) {
638 		if (!size)
639 			return ZERO_SIZE_PTR;
640 
641 		index = size_index[size_index_elem(size)];
642 	} else {
643 		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
644 			return NULL;
645 		index = fls(size - 1);
646 	}
647 
648 	return kmalloc_caches[kmalloc_type(flags)][index];
649 }
650 
651 #ifdef CONFIG_ZONE_DMA
652 #define INIT_KMALLOC_INFO(__size, __short_size)			\
653 {								\
654 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
655 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
656 	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
657 	.size = __size,						\
658 }
659 #else
660 #define INIT_KMALLOC_INFO(__size, __short_size)			\
661 {								\
662 	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
663 	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
664 	.size = __size,						\
665 }
666 #endif
667 
668 /*
669  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
670  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
671  * kmalloc-67108864.
672  */
673 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
674 	INIT_KMALLOC_INFO(0, 0),
675 	INIT_KMALLOC_INFO(96, 96),
676 	INIT_KMALLOC_INFO(192, 192),
677 	INIT_KMALLOC_INFO(8, 8),
678 	INIT_KMALLOC_INFO(16, 16),
679 	INIT_KMALLOC_INFO(32, 32),
680 	INIT_KMALLOC_INFO(64, 64),
681 	INIT_KMALLOC_INFO(128, 128),
682 	INIT_KMALLOC_INFO(256, 256),
683 	INIT_KMALLOC_INFO(512, 512),
684 	INIT_KMALLOC_INFO(1024, 1k),
685 	INIT_KMALLOC_INFO(2048, 2k),
686 	INIT_KMALLOC_INFO(4096, 4k),
687 	INIT_KMALLOC_INFO(8192, 8k),
688 	INIT_KMALLOC_INFO(16384, 16k),
689 	INIT_KMALLOC_INFO(32768, 32k),
690 	INIT_KMALLOC_INFO(65536, 64k),
691 	INIT_KMALLOC_INFO(131072, 128k),
692 	INIT_KMALLOC_INFO(262144, 256k),
693 	INIT_KMALLOC_INFO(524288, 512k),
694 	INIT_KMALLOC_INFO(1048576, 1M),
695 	INIT_KMALLOC_INFO(2097152, 2M),
696 	INIT_KMALLOC_INFO(4194304, 4M),
697 	INIT_KMALLOC_INFO(8388608, 8M),
698 	INIT_KMALLOC_INFO(16777216, 16M),
699 	INIT_KMALLOC_INFO(33554432, 32M),
700 	INIT_KMALLOC_INFO(67108864, 64M)
701 };
702 
703 /*
704  * Patch up the size_index table if we have strange large alignment
705  * requirements for the kmalloc array. This is only the case for
706  * MIPS it seems. The standard arches will not generate any code here.
707  *
708  * Largest permitted alignment is 256 bytes due to the way we
709  * handle the index determination for the smaller caches.
710  *
711  * Make sure that nothing crazy happens if someone starts tinkering
712  * around with ARCH_KMALLOC_MINALIGN
713  */
setup_kmalloc_cache_index_table(void)714 void __init setup_kmalloc_cache_index_table(void)
715 {
716 	unsigned int i;
717 
718 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
719 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
720 
721 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
722 		unsigned int elem = size_index_elem(i);
723 
724 		if (elem >= ARRAY_SIZE(size_index))
725 			break;
726 		size_index[elem] = KMALLOC_SHIFT_LOW;
727 	}
728 
729 	if (KMALLOC_MIN_SIZE >= 64) {
730 		/*
731 		 * The 96 byte size cache is not used if the alignment
732 		 * is 64 byte.
733 		 */
734 		for (i = 64 + 8; i <= 96; i += 8)
735 			size_index[size_index_elem(i)] = 7;
736 
737 	}
738 
739 	if (KMALLOC_MIN_SIZE >= 128) {
740 		/*
741 		 * The 192 byte sized cache is not used if the alignment
742 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
743 		 * instead.
744 		 */
745 		for (i = 128 + 8; i <= 192; i += 8)
746 			size_index[size_index_elem(i)] = 8;
747 	}
748 }
749 
750 static void __init
new_kmalloc_cache(int idx,enum kmalloc_cache_type type,slab_flags_t flags)751 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
752 {
753 	if (type == KMALLOC_RECLAIM)
754 		flags |= SLAB_RECLAIM_ACCOUNT;
755 
756 	kmalloc_caches[type][idx] = create_kmalloc_cache(
757 					kmalloc_info[idx].name[type],
758 					kmalloc_info[idx].size, flags, 0,
759 					kmalloc_info[idx].size);
760 }
761 
762 /*
763  * Create the kmalloc array. Some of the regular kmalloc arrays
764  * may already have been created because they were needed to
765  * enable allocations for slab creation.
766  */
create_kmalloc_caches(slab_flags_t flags)767 void __init create_kmalloc_caches(slab_flags_t flags)
768 {
769 	int i;
770 	enum kmalloc_cache_type type;
771 
772 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
773 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
774 			if (!kmalloc_caches[type][i])
775 				new_kmalloc_cache(i, type, flags);
776 
777 			/*
778 			 * Caches that are not of the two-to-the-power-of size.
779 			 * These have to be created immediately after the
780 			 * earlier power of two caches
781 			 */
782 			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
783 					!kmalloc_caches[type][1])
784 				new_kmalloc_cache(1, type, flags);
785 			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
786 					!kmalloc_caches[type][2])
787 				new_kmalloc_cache(2, type, flags);
788 		}
789 	}
790 
791 	/* Kmalloc array is now usable */
792 	slab_state = UP;
793 
794 #ifdef CONFIG_ZONE_DMA
795 	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
796 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
797 
798 		if (s) {
799 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
800 				kmalloc_info[i].name[KMALLOC_DMA],
801 				kmalloc_info[i].size,
802 				SLAB_CACHE_DMA | flags, 0,
803 				kmalloc_info[i].size);
804 		}
805 	}
806 #endif
807 }
808 #endif /* !CONFIG_SLOB */
809 
kmalloc_fix_flags(gfp_t flags)810 gfp_t kmalloc_fix_flags(gfp_t flags)
811 {
812 	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
813 
814 	flags &= ~GFP_SLAB_BUG_MASK;
815 	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
816 			invalid_mask, &invalid_mask, flags, &flags);
817 	dump_stack();
818 
819 	return flags;
820 }
821 
822 /*
823  * To avoid unnecessary overhead, we pass through large allocation requests
824  * directly to the page allocator. We use __GFP_COMP, because we will need to
825  * know the allocation order to free the pages properly in kfree.
826  */
kmalloc_order(size_t size,gfp_t flags,unsigned int order)827 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
828 {
829 	void *ret = NULL;
830 	struct page *page;
831 
832 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
833 		flags = kmalloc_fix_flags(flags);
834 
835 	flags |= __GFP_COMP;
836 	page = alloc_pages(flags, order);
837 	if (likely(page)) {
838 		ret = page_address(page);
839 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
840 				    PAGE_SIZE << order);
841 	}
842 	ret = kasan_kmalloc_large(ret, size, flags);
843 	/* As ret might get tagged, call kmemleak hook after KASAN. */
844 	kmemleak_alloc(ret, size, 1, flags);
845 	return ret;
846 }
847 EXPORT_SYMBOL(kmalloc_order);
848 
849 #ifdef CONFIG_TRACING
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)850 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
851 {
852 	void *ret = kmalloc_order(size, flags, order);
853 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
854 	return ret;
855 }
856 EXPORT_SYMBOL(kmalloc_order_trace);
857 #endif
858 
859 #ifdef CONFIG_SLAB_FREELIST_RANDOM
860 /* Randomize a generic freelist */
freelist_randomize(struct rnd_state * state,unsigned int * list,unsigned int count)861 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
862 			       unsigned int count)
863 {
864 	unsigned int rand;
865 	unsigned int i;
866 
867 	for (i = 0; i < count; i++)
868 		list[i] = i;
869 
870 	/* Fisher-Yates shuffle */
871 	for (i = count - 1; i > 0; i--) {
872 		rand = prandom_u32_state(state);
873 		rand %= (i + 1);
874 		swap(list[i], list[rand]);
875 	}
876 }
877 
878 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)879 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
880 				    gfp_t gfp)
881 {
882 	struct rnd_state state;
883 
884 	if (count < 2 || cachep->random_seq)
885 		return 0;
886 
887 	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
888 	if (!cachep->random_seq)
889 		return -ENOMEM;
890 
891 	/* Get best entropy at this stage of boot */
892 	prandom_seed_state(&state, get_random_long());
893 
894 	freelist_randomize(&state, cachep->random_seq, count);
895 	return 0;
896 }
897 
898 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)899 void cache_random_seq_destroy(struct kmem_cache *cachep)
900 {
901 	kfree(cachep->random_seq);
902 	cachep->random_seq = NULL;
903 }
904 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
905 
906 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
907 #ifdef CONFIG_SLAB
908 #define SLABINFO_RIGHTS (0600)
909 #else
910 #define SLABINFO_RIGHTS (0400)
911 #endif
912 
print_slabinfo_header(struct seq_file * m)913 static void print_slabinfo_header(struct seq_file *m)
914 {
915 	/*
916 	 * Output format version, so at least we can change it
917 	 * without _too_ many complaints.
918 	 */
919 #ifdef CONFIG_DEBUG_SLAB
920 	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
921 #else
922 	seq_puts(m, "slabinfo - version: 2.1\n");
923 #endif
924 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
925 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
926 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
927 #ifdef CONFIG_DEBUG_SLAB
928 	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
929 	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
930 #endif
931 	seq_putc(m, '\n');
932 }
933 
slab_start(struct seq_file * m,loff_t * pos)934 void *slab_start(struct seq_file *m, loff_t *pos)
935 {
936 	mutex_lock(&slab_mutex);
937 	return seq_list_start(&slab_caches, *pos);
938 }
939 
slab_next(struct seq_file * m,void * p,loff_t * pos)940 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
941 {
942 	return seq_list_next(p, &slab_caches, pos);
943 }
944 
slab_stop(struct seq_file * m,void * p)945 void slab_stop(struct seq_file *m, void *p)
946 {
947 	mutex_unlock(&slab_mutex);
948 }
949 
cache_show(struct kmem_cache * s,struct seq_file * m)950 static void cache_show(struct kmem_cache *s, struct seq_file *m)
951 {
952 	struct slabinfo sinfo;
953 
954 	memset(&sinfo, 0, sizeof(sinfo));
955 	get_slabinfo(s, &sinfo);
956 
957 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
958 		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
959 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
960 
961 	seq_printf(m, " : tunables %4u %4u %4u",
962 		   sinfo.limit, sinfo.batchcount, sinfo.shared);
963 	seq_printf(m, " : slabdata %6lu %6lu %6lu",
964 		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
965 	slabinfo_show_stats(m, s);
966 	seq_putc(m, '\n');
967 }
968 
slab_show(struct seq_file * m,void * p)969 static int slab_show(struct seq_file *m, void *p)
970 {
971 	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
972 
973 	if (p == slab_caches.next)
974 		print_slabinfo_header(m);
975 	cache_show(s, m);
976 	return 0;
977 }
978 
dump_unreclaimable_slab(void)979 void dump_unreclaimable_slab(void)
980 {
981 	struct kmem_cache *s, *s2;
982 	struct slabinfo sinfo;
983 
984 	/*
985 	 * Here acquiring slab_mutex is risky since we don't prefer to get
986 	 * sleep in oom path. But, without mutex hold, it may introduce a
987 	 * risk of crash.
988 	 * Use mutex_trylock to protect the list traverse, dump nothing
989 	 * without acquiring the mutex.
990 	 */
991 	if (!mutex_trylock(&slab_mutex)) {
992 		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
993 		return;
994 	}
995 
996 	pr_info("Unreclaimable slab info:\n");
997 	pr_info("Name                      Used          Total\n");
998 
999 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
1000 		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1001 			continue;
1002 
1003 		get_slabinfo(s, &sinfo);
1004 
1005 		if (sinfo.num_objs > 0)
1006 			pr_info("%-17s %10luKB %10luKB\n", s->name,
1007 				(sinfo.active_objs * s->size) / 1024,
1008 				(sinfo.num_objs * s->size) / 1024);
1009 	}
1010 	mutex_unlock(&slab_mutex);
1011 }
1012 
1013 #if defined(CONFIG_MEMCG_KMEM)
memcg_slab_show(struct seq_file * m,void * p)1014 int memcg_slab_show(struct seq_file *m, void *p)
1015 {
1016 	/*
1017 	 * Deprecated.
1018 	 * Please, take a look at tools/cgroup/slabinfo.py .
1019 	 */
1020 	return 0;
1021 }
1022 #endif
1023 
1024 /*
1025  * slabinfo_op - iterator that generates /proc/slabinfo
1026  *
1027  * Output layout:
1028  * cache-name
1029  * num-active-objs
1030  * total-objs
1031  * object size
1032  * num-active-slabs
1033  * total-slabs
1034  * num-pages-per-slab
1035  * + further values on SMP and with statistics enabled
1036  */
1037 static const struct seq_operations slabinfo_op = {
1038 	.start = slab_start,
1039 	.next = slab_next,
1040 	.stop = slab_stop,
1041 	.show = slab_show,
1042 };
1043 
slabinfo_open(struct inode * inode,struct file * file)1044 static int slabinfo_open(struct inode *inode, struct file *file)
1045 {
1046 	return seq_open(file, &slabinfo_op);
1047 }
1048 
1049 static const struct proc_ops slabinfo_proc_ops = {
1050 	.proc_flags	= PROC_ENTRY_PERMANENT,
1051 	.proc_open	= slabinfo_open,
1052 	.proc_read	= seq_read,
1053 	.proc_write	= slabinfo_write,
1054 	.proc_lseek	= seq_lseek,
1055 	.proc_release	= seq_release,
1056 };
1057 
slab_proc_init(void)1058 static int __init slab_proc_init(void)
1059 {
1060 	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1061 	return 0;
1062 }
1063 module_init(slab_proc_init);
1064 
1065 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1066 
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1067 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1068 					   gfp_t flags)
1069 {
1070 	void *ret;
1071 	size_t ks;
1072 
1073 	ks = ksize(p);
1074 
1075 	if (ks >= new_size) {
1076 		p = kasan_krealloc((void *)p, new_size, flags);
1077 		return (void *)p;
1078 	}
1079 
1080 	ret = kmalloc_track_caller(new_size, flags);
1081 	if (ret && p)
1082 		memcpy(ret, p, ks);
1083 
1084 	return ret;
1085 }
1086 
1087 /**
1088  * krealloc - reallocate memory. The contents will remain unchanged.
1089  * @p: object to reallocate memory for.
1090  * @new_size: how many bytes of memory are required.
1091  * @flags: the type of memory to allocate.
1092  *
1093  * The contents of the object pointed to are preserved up to the
1094  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1095  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1096  * %NULL pointer, the object pointed to is freed.
1097  *
1098  * Return: pointer to the allocated memory or %NULL in case of error
1099  */
krealloc(const void * p,size_t new_size,gfp_t flags)1100 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1101 {
1102 	void *ret;
1103 
1104 	if (unlikely(!new_size)) {
1105 		kfree(p);
1106 		return ZERO_SIZE_PTR;
1107 	}
1108 
1109 	ret = __do_krealloc(p, new_size, flags);
1110 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1111 		kfree(p);
1112 
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL(krealloc);
1116 
1117 /**
1118  * kfree_sensitive - Clear sensitive information in memory before freeing
1119  * @p: object to free memory of
1120  *
1121  * The memory of the object @p points to is zeroed before freed.
1122  * If @p is %NULL, kfree_sensitive() does nothing.
1123  *
1124  * Note: this function zeroes the whole allocated buffer which can be a good
1125  * deal bigger than the requested buffer size passed to kmalloc(). So be
1126  * careful when using this function in performance sensitive code.
1127  */
kfree_sensitive(const void * p)1128 void kfree_sensitive(const void *p)
1129 {
1130 	size_t ks;
1131 	void *mem = (void *)p;
1132 
1133 	ks = ksize(mem);
1134 	if (ks)
1135 		memzero_explicit(mem, ks);
1136 	kfree(mem);
1137 }
1138 EXPORT_SYMBOL(kfree_sensitive);
1139 
1140 /**
1141  * ksize - get the actual amount of memory allocated for a given object
1142  * @objp: Pointer to the object
1143  *
1144  * kmalloc may internally round up allocations and return more memory
1145  * than requested. ksize() can be used to determine the actual amount of
1146  * memory allocated. The caller may use this additional memory, even though
1147  * a smaller amount of memory was initially specified with the kmalloc call.
1148  * The caller must guarantee that objp points to a valid object previously
1149  * allocated with either kmalloc() or kmem_cache_alloc(). The object
1150  * must not be freed during the duration of the call.
1151  *
1152  * Return: size of the actual memory used by @objp in bytes
1153  */
ksize(const void * objp)1154 size_t ksize(const void *objp)
1155 {
1156 	size_t size;
1157 
1158 	/*
1159 	 * We need to check that the pointed to object is valid, and only then
1160 	 * unpoison the shadow memory below. We use __kasan_check_read(), to
1161 	 * generate a more useful report at the time ksize() is called (rather
1162 	 * than later where behaviour is undefined due to potential
1163 	 * use-after-free or double-free).
1164 	 *
1165 	 * If the pointed to memory is invalid we return 0, to avoid users of
1166 	 * ksize() writing to and potentially corrupting the memory region.
1167 	 *
1168 	 * We want to perform the check before __ksize(), to avoid potentially
1169 	 * crashing in __ksize() due to accessing invalid metadata.
1170 	 */
1171 	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
1172 		return 0;
1173 
1174 	size = __ksize(objp);
1175 	/*
1176 	 * We assume that ksize callers could use whole allocated area,
1177 	 * so we need to unpoison this area.
1178 	 */
1179 	kasan_unpoison_shadow(objp, size);
1180 	return size;
1181 }
1182 EXPORT_SYMBOL(ksize);
1183 
1184 /* Tracepoints definitions. */
1185 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1186 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1187 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1188 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1189 EXPORT_TRACEPOINT_SYMBOL(kfree);
1190 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1191 
should_failslab(struct kmem_cache * s,gfp_t gfpflags)1192 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1193 {
1194 	if (__should_failslab(s, gfpflags))
1195 		return -ENOMEM;
1196 	return 0;
1197 }
1198 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1199