1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39 
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45 
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54 
55 atomic_long_t mmap_pages_allocated;
56 
57 EXPORT_SYMBOL(mem_map);
58 
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63 
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66 
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
kobjsize(const void * objp)73 unsigned int kobjsize(const void *objp)
74 {
75 	struct page *page;
76 
77 	/*
78 	 * If the object we have should not have ksize performed on it,
79 	 * return size of 0
80 	 */
81 	if (!objp || !virt_addr_valid(objp))
82 		return 0;
83 
84 	page = virt_to_head_page(objp);
85 
86 	/*
87 	 * If the allocator sets PageSlab, we know the pointer came from
88 	 * kmalloc().
89 	 */
90 	if (PageSlab(page))
91 		return ksize(objp);
92 
93 	/*
94 	 * If it's not a compound page, see if we have a matching VMA
95 	 * region. This test is intentionally done in reverse order,
96 	 * so if there's no VMA, we still fall through and hand back
97 	 * PAGE_SIZE for 0-order pages.
98 	 */
99 	if (!PageCompound(page)) {
100 		struct vm_area_struct *vma;
101 
102 		vma = find_vma(current->mm, (unsigned long)objp);
103 		if (vma)
104 			return vma->vm_end - vma->vm_start;
105 	}
106 
107 	/*
108 	 * The ksize() function is only guaranteed to work for pointers
109 	 * returned by kmalloc(). So handle arbitrary pointers here.
110 	 */
111 	return page_size(page);
112 }
113 
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 	unsigned long *pfn)
126 {
127 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 		return -EINVAL;
129 
130 	*pfn = address >> PAGE_SHIFT;
131 	return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134 
135 LIST_HEAD(vmap_area_list);
136 
vfree(const void * addr)137 void vfree(const void *addr)
138 {
139 	kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142 
__vmalloc(unsigned long size,gfp_t gfp_mask)143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145 	/*
146 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 	 * returns only a logical address.
148 	 */
149 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152 
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 		unsigned long start, unsigned long end, gfp_t gfp_mask,
155 		pgprot_t prot, unsigned long vm_flags, int node,
156 		const void *caller)
157 {
158 	return __vmalloc(size, gfp_mask);
159 }
160 
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 		int node, const void *caller)
163 {
164 	return __vmalloc(size, gfp_mask);
165 }
166 
__vmalloc_user_flags(unsigned long size,gfp_t flags)167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169 	void *ret;
170 
171 	ret = __vmalloc(size, flags);
172 	if (ret) {
173 		struct vm_area_struct *vma;
174 
175 		mmap_write_lock(current->mm);
176 		vma = find_vma(current->mm, (unsigned long)ret);
177 		if (vma)
178 			vma->vm_flags |= VM_USERMAP;
179 		mmap_write_unlock(current->mm);
180 	}
181 
182 	return ret;
183 }
184 
vmalloc_user(unsigned long size)185 void *vmalloc_user(unsigned long size)
186 {
187 	return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190 
vmalloc_to_page(const void * addr)191 struct page *vmalloc_to_page(const void *addr)
192 {
193 	return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196 
vmalloc_to_pfn(const void * addr)197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199 	return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202 
vread(char * buf,char * addr,unsigned long count)203 long vread(char *buf, char *addr, unsigned long count)
204 {
205 	/* Don't allow overflow */
206 	if ((unsigned long) buf + count < count)
207 		count = -(unsigned long) buf;
208 
209 	memcpy(buf, addr, count);
210 	return count;
211 }
212 
vwrite(char * buf,char * addr,unsigned long count)213 long vwrite(char *buf, char *addr, unsigned long count)
214 {
215 	/* Don't allow overflow */
216 	if ((unsigned long) addr + count < count)
217 		count = -(unsigned long) addr;
218 
219 	memcpy(addr, buf, count);
220 	return count;
221 }
222 
223 /*
224  *	vmalloc  -  allocate virtually contiguous memory
225  *
226  *	@size:		allocation size
227  *
228  *	Allocate enough pages to cover @size from the page level
229  *	allocator and map them into contiguous kernel virtual space.
230  *
231  *	For tight control over page level allocator and protection flags
232  *	use __vmalloc() instead.
233  */
vmalloc(unsigned long size)234 void *vmalloc(unsigned long size)
235 {
236        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(vmalloc);
239 
240 /*
241  *	vzalloc - allocate virtually contiguous memory with zero fill
242  *
243  *	@size:		allocation size
244  *
245  *	Allocate enough pages to cover @size from the page level
246  *	allocator and map them into contiguous kernel virtual space.
247  *	The memory allocated is set to zero.
248  *
249  *	For tight control over page level allocator and protection flags
250  *	use __vmalloc() instead.
251  */
vzalloc(unsigned long size)252 void *vzalloc(unsigned long size)
253 {
254 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
255 }
256 EXPORT_SYMBOL(vzalloc);
257 
258 /**
259  * vmalloc_node - allocate memory on a specific node
260  * @size:	allocation size
261  * @node:	numa node
262  *
263  * Allocate enough pages to cover @size from the page level
264  * allocator and map them into contiguous kernel virtual space.
265  *
266  * For tight control over page level allocator and protection flags
267  * use __vmalloc() instead.
268  */
vmalloc_node(unsigned long size,int node)269 void *vmalloc_node(unsigned long size, int node)
270 {
271 	return vmalloc(size);
272 }
273 EXPORT_SYMBOL(vmalloc_node);
274 
275 /**
276  * vzalloc_node - allocate memory on a specific node with zero fill
277  * @size:	allocation size
278  * @node:	numa node
279  *
280  * Allocate enough pages to cover @size from the page level
281  * allocator and map them into contiguous kernel virtual space.
282  * The memory allocated is set to zero.
283  *
284  * For tight control over page level allocator and protection flags
285  * use __vmalloc() instead.
286  */
vzalloc_node(unsigned long size,int node)287 void *vzalloc_node(unsigned long size, int node)
288 {
289 	return vzalloc(size);
290 }
291 EXPORT_SYMBOL(vzalloc_node);
292 
293 /**
294  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
295  *	@size:		allocation size
296  *
297  *	Allocate enough 32bit PA addressable pages to cover @size from the
298  *	page level allocator and map them into contiguous kernel virtual space.
299  */
vmalloc_32(unsigned long size)300 void *vmalloc_32(unsigned long size)
301 {
302 	return __vmalloc(size, GFP_KERNEL);
303 }
304 EXPORT_SYMBOL(vmalloc_32);
305 
306 /**
307  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
308  *	@size:		allocation size
309  *
310  * The resulting memory area is 32bit addressable and zeroed so it can be
311  * mapped to userspace without leaking data.
312  *
313  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
314  * remap_vmalloc_range() are permissible.
315  */
vmalloc_32_user(unsigned long size)316 void *vmalloc_32_user(unsigned long size)
317 {
318 	/*
319 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
320 	 * but for now this can simply use vmalloc_user() directly.
321 	 */
322 	return vmalloc_user(size);
323 }
324 EXPORT_SYMBOL(vmalloc_32_user);
325 
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)326 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
327 {
328 	BUG();
329 	return NULL;
330 }
331 EXPORT_SYMBOL(vmap);
332 
vunmap(const void * addr)333 void vunmap(const void *addr)
334 {
335 	BUG();
336 }
337 EXPORT_SYMBOL(vunmap);
338 
vm_map_ram(struct page ** pages,unsigned int count,int node)339 void *vm_map_ram(struct page **pages, unsigned int count, int node)
340 {
341 	BUG();
342 	return NULL;
343 }
344 EXPORT_SYMBOL(vm_map_ram);
345 
vm_unmap_ram(const void * mem,unsigned int count)346 void vm_unmap_ram(const void *mem, unsigned int count)
347 {
348 	BUG();
349 }
350 EXPORT_SYMBOL(vm_unmap_ram);
351 
vm_unmap_aliases(void)352 void vm_unmap_aliases(void)
353 {
354 }
355 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
356 
free_vm_area(struct vm_struct * area)357 void free_vm_area(struct vm_struct *area)
358 {
359 	BUG();
360 }
361 EXPORT_SYMBOL_GPL(free_vm_area);
362 
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)363 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
364 		   struct page *page)
365 {
366 	return -EINVAL;
367 }
368 EXPORT_SYMBOL(vm_insert_page);
369 
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)370 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
371 			unsigned long num)
372 {
373 	return -EINVAL;
374 }
375 EXPORT_SYMBOL(vm_map_pages);
376 
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)377 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
378 				unsigned long num)
379 {
380 	return -EINVAL;
381 }
382 EXPORT_SYMBOL(vm_map_pages_zero);
383 
384 /*
385  *  sys_brk() for the most part doesn't need the global kernel
386  *  lock, except when an application is doing something nasty
387  *  like trying to un-brk an area that has already been mapped
388  *  to a regular file.  in this case, the unmapping will need
389  *  to invoke file system routines that need the global lock.
390  */
SYSCALL_DEFINE1(brk,unsigned long,brk)391 SYSCALL_DEFINE1(brk, unsigned long, brk)
392 {
393 	struct mm_struct *mm = current->mm;
394 
395 	if (brk < mm->start_brk || brk > mm->context.end_brk)
396 		return mm->brk;
397 
398 	if (mm->brk == brk)
399 		return mm->brk;
400 
401 	/*
402 	 * Always allow shrinking brk
403 	 */
404 	if (brk <= mm->brk) {
405 		mm->brk = brk;
406 		return brk;
407 	}
408 
409 	/*
410 	 * Ok, looks good - let it rip.
411 	 */
412 	flush_icache_user_range(mm->brk, brk);
413 	return mm->brk = brk;
414 }
415 
416 /*
417  * initialise the percpu counter for VM and region record slabs
418  */
mmap_init(void)419 void __init mmap_init(void)
420 {
421 	int ret;
422 
423 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
424 	VM_BUG_ON(ret);
425 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
426 }
427 
428 /*
429  * validate the region tree
430  * - the caller must hold the region lock
431  */
432 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)433 static noinline void validate_nommu_regions(void)
434 {
435 	struct vm_region *region, *last;
436 	struct rb_node *p, *lastp;
437 
438 	lastp = rb_first(&nommu_region_tree);
439 	if (!lastp)
440 		return;
441 
442 	last = rb_entry(lastp, struct vm_region, vm_rb);
443 	BUG_ON(last->vm_end <= last->vm_start);
444 	BUG_ON(last->vm_top < last->vm_end);
445 
446 	while ((p = rb_next(lastp))) {
447 		region = rb_entry(p, struct vm_region, vm_rb);
448 		last = rb_entry(lastp, struct vm_region, vm_rb);
449 
450 		BUG_ON(region->vm_end <= region->vm_start);
451 		BUG_ON(region->vm_top < region->vm_end);
452 		BUG_ON(region->vm_start < last->vm_top);
453 
454 		lastp = p;
455 	}
456 }
457 #else
validate_nommu_regions(void)458 static void validate_nommu_regions(void)
459 {
460 }
461 #endif
462 
463 /*
464  * add a region into the global tree
465  */
add_nommu_region(struct vm_region * region)466 static void add_nommu_region(struct vm_region *region)
467 {
468 	struct vm_region *pregion;
469 	struct rb_node **p, *parent;
470 
471 	validate_nommu_regions();
472 
473 	parent = NULL;
474 	p = &nommu_region_tree.rb_node;
475 	while (*p) {
476 		parent = *p;
477 		pregion = rb_entry(parent, struct vm_region, vm_rb);
478 		if (region->vm_start < pregion->vm_start)
479 			p = &(*p)->rb_left;
480 		else if (region->vm_start > pregion->vm_start)
481 			p = &(*p)->rb_right;
482 		else if (pregion == region)
483 			return;
484 		else
485 			BUG();
486 	}
487 
488 	rb_link_node(&region->vm_rb, parent, p);
489 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
490 
491 	validate_nommu_regions();
492 }
493 
494 /*
495  * delete a region from the global tree
496  */
delete_nommu_region(struct vm_region * region)497 static void delete_nommu_region(struct vm_region *region)
498 {
499 	BUG_ON(!nommu_region_tree.rb_node);
500 
501 	validate_nommu_regions();
502 	rb_erase(&region->vm_rb, &nommu_region_tree);
503 	validate_nommu_regions();
504 }
505 
506 /*
507  * free a contiguous series of pages
508  */
free_page_series(unsigned long from,unsigned long to)509 static void free_page_series(unsigned long from, unsigned long to)
510 {
511 	for (; from < to; from += PAGE_SIZE) {
512 		struct page *page = virt_to_page(from);
513 
514 		atomic_long_dec(&mmap_pages_allocated);
515 		put_page(page);
516 	}
517 }
518 
519 /*
520  * release a reference to a region
521  * - the caller must hold the region semaphore for writing, which this releases
522  * - the region may not have been added to the tree yet, in which case vm_top
523  *   will equal vm_start
524  */
__put_nommu_region(struct vm_region * region)525 static void __put_nommu_region(struct vm_region *region)
526 	__releases(nommu_region_sem)
527 {
528 	BUG_ON(!nommu_region_tree.rb_node);
529 
530 	if (--region->vm_usage == 0) {
531 		if (region->vm_top > region->vm_start)
532 			delete_nommu_region(region);
533 		up_write(&nommu_region_sem);
534 
535 		if (region->vm_file)
536 			fput(region->vm_file);
537 
538 		/* IO memory and memory shared directly out of the pagecache
539 		 * from ramfs/tmpfs mustn't be released here */
540 		if (region->vm_flags & VM_MAPPED_COPY)
541 			free_page_series(region->vm_start, region->vm_top);
542 		kmem_cache_free(vm_region_jar, region);
543 	} else {
544 		up_write(&nommu_region_sem);
545 	}
546 }
547 
548 /*
549  * release a reference to a region
550  */
put_nommu_region(struct vm_region * region)551 static void put_nommu_region(struct vm_region *region)
552 {
553 	down_write(&nommu_region_sem);
554 	__put_nommu_region(region);
555 }
556 
557 /*
558  * add a VMA into a process's mm_struct in the appropriate place in the list
559  * and tree and add to the address space's page tree also if not an anonymous
560  * page
561  * - should be called with mm->mmap_lock held writelocked
562  */
add_vma_to_mm(struct mm_struct * mm,struct vm_area_struct * vma)563 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
564 {
565 	struct vm_area_struct *pvma, *prev;
566 	struct address_space *mapping;
567 	struct rb_node **p, *parent, *rb_prev;
568 
569 	BUG_ON(!vma->vm_region);
570 
571 	mm->map_count++;
572 	vma->vm_mm = mm;
573 
574 	/* add the VMA to the mapping */
575 	if (vma->vm_file) {
576 		mapping = vma->vm_file->f_mapping;
577 
578 		i_mmap_lock_write(mapping);
579 		flush_dcache_mmap_lock(mapping);
580 		vma_interval_tree_insert(vma, &mapping->i_mmap);
581 		flush_dcache_mmap_unlock(mapping);
582 		i_mmap_unlock_write(mapping);
583 	}
584 
585 	/* add the VMA to the tree */
586 	parent = rb_prev = NULL;
587 	p = &mm->mm_rb.rb_node;
588 	while (*p) {
589 		parent = *p;
590 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
591 
592 		/* sort by: start addr, end addr, VMA struct addr in that order
593 		 * (the latter is necessary as we may get identical VMAs) */
594 		if (vma->vm_start < pvma->vm_start)
595 			p = &(*p)->rb_left;
596 		else if (vma->vm_start > pvma->vm_start) {
597 			rb_prev = parent;
598 			p = &(*p)->rb_right;
599 		} else if (vma->vm_end < pvma->vm_end)
600 			p = &(*p)->rb_left;
601 		else if (vma->vm_end > pvma->vm_end) {
602 			rb_prev = parent;
603 			p = &(*p)->rb_right;
604 		} else if (vma < pvma)
605 			p = &(*p)->rb_left;
606 		else if (vma > pvma) {
607 			rb_prev = parent;
608 			p = &(*p)->rb_right;
609 		} else
610 			BUG();
611 	}
612 
613 	rb_link_node(&vma->vm_rb, parent, p);
614 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
615 
616 	/* add VMA to the VMA list also */
617 	prev = NULL;
618 	if (rb_prev)
619 		prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
620 
621 	__vma_link_list(mm, vma, prev);
622 }
623 
624 /*
625  * delete a VMA from its owning mm_struct and address space
626  */
delete_vma_from_mm(struct vm_area_struct * vma)627 static void delete_vma_from_mm(struct vm_area_struct *vma)
628 {
629 	int i;
630 	struct address_space *mapping;
631 	struct mm_struct *mm = vma->vm_mm;
632 	struct task_struct *curr = current;
633 
634 	mm->map_count--;
635 	for (i = 0; i < VMACACHE_SIZE; i++) {
636 		/* if the vma is cached, invalidate the entire cache */
637 		if (curr->vmacache.vmas[i] == vma) {
638 			vmacache_invalidate(mm);
639 			break;
640 		}
641 	}
642 
643 	/* remove the VMA from the mapping */
644 	if (vma->vm_file) {
645 		mapping = vma->vm_file->f_mapping;
646 
647 		i_mmap_lock_write(mapping);
648 		flush_dcache_mmap_lock(mapping);
649 		vma_interval_tree_remove(vma, &mapping->i_mmap);
650 		flush_dcache_mmap_unlock(mapping);
651 		i_mmap_unlock_write(mapping);
652 	}
653 
654 	/* remove from the MM's tree and list */
655 	rb_erase(&vma->vm_rb, &mm->mm_rb);
656 
657 	__vma_unlink_list(mm, vma);
658 }
659 
660 /*
661  * destroy a VMA record
662  */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)663 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665 	if (vma->vm_ops && vma->vm_ops->close)
666 		vma->vm_ops->close(vma);
667 	if (vma->vm_file)
668 		fput(vma->vm_file);
669 	put_nommu_region(vma->vm_region);
670 	vm_area_free(vma);
671 }
672 
673 /*
674  * look up the first VMA in which addr resides, NULL if none
675  * - should be called with mm->mmap_lock at least held readlocked
676  */
find_vma(struct mm_struct * mm,unsigned long addr)677 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
678 {
679 	struct vm_area_struct *vma;
680 
681 	/* check the cache first */
682 	vma = vmacache_find(mm, addr);
683 	if (likely(vma))
684 		return vma;
685 
686 	/* trawl the list (there may be multiple mappings in which addr
687 	 * resides) */
688 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
689 		if (vma->vm_start > addr)
690 			return NULL;
691 		if (vma->vm_end > addr) {
692 			vmacache_update(addr, vma);
693 			return vma;
694 		}
695 	}
696 
697 	return NULL;
698 }
699 EXPORT_SYMBOL(find_vma);
700 
701 /*
702  * find a VMA
703  * - we don't extend stack VMAs under NOMMU conditions
704  */
find_extend_vma(struct mm_struct * mm,unsigned long addr)705 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
706 {
707 	return find_vma(mm, addr);
708 }
709 
710 /*
711  * expand a stack to a given address
712  * - not supported under NOMMU conditions
713  */
expand_stack(struct vm_area_struct * vma,unsigned long address)714 int expand_stack(struct vm_area_struct *vma, unsigned long address)
715 {
716 	return -ENOMEM;
717 }
718 
719 /*
720  * look up the first VMA exactly that exactly matches addr
721  * - should be called with mm->mmap_lock at least held readlocked
722  */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)723 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
724 					     unsigned long addr,
725 					     unsigned long len)
726 {
727 	struct vm_area_struct *vma;
728 	unsigned long end = addr + len;
729 
730 	/* check the cache first */
731 	vma = vmacache_find_exact(mm, addr, end);
732 	if (vma)
733 		return vma;
734 
735 	/* trawl the list (there may be multiple mappings in which addr
736 	 * resides) */
737 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
738 		if (vma->vm_start < addr)
739 			continue;
740 		if (vma->vm_start > addr)
741 			return NULL;
742 		if (vma->vm_end == end) {
743 			vmacache_update(addr, vma);
744 			return vma;
745 		}
746 	}
747 
748 	return NULL;
749 }
750 
751 /*
752  * determine whether a mapping should be permitted and, if so, what sort of
753  * mapping we're capable of supporting
754  */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)755 static int validate_mmap_request(struct file *file,
756 				 unsigned long addr,
757 				 unsigned long len,
758 				 unsigned long prot,
759 				 unsigned long flags,
760 				 unsigned long pgoff,
761 				 unsigned long *_capabilities)
762 {
763 	unsigned long capabilities, rlen;
764 	int ret;
765 
766 	/* do the simple checks first */
767 	if (flags & MAP_FIXED)
768 		return -EINVAL;
769 
770 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
771 	    (flags & MAP_TYPE) != MAP_SHARED)
772 		return -EINVAL;
773 
774 	if (!len)
775 		return -EINVAL;
776 
777 	/* Careful about overflows.. */
778 	rlen = PAGE_ALIGN(len);
779 	if (!rlen || rlen > TASK_SIZE)
780 		return -ENOMEM;
781 
782 	/* offset overflow? */
783 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
784 		return -EOVERFLOW;
785 
786 	if (file) {
787 		/* files must support mmap */
788 		if (!file->f_op->mmap)
789 			return -ENODEV;
790 
791 		/* work out if what we've got could possibly be shared
792 		 * - we support chardevs that provide their own "memory"
793 		 * - we support files/blockdevs that are memory backed
794 		 */
795 		if (file->f_op->mmap_capabilities) {
796 			capabilities = file->f_op->mmap_capabilities(file);
797 		} else {
798 			/* no explicit capabilities set, so assume some
799 			 * defaults */
800 			switch (file_inode(file)->i_mode & S_IFMT) {
801 			case S_IFREG:
802 			case S_IFBLK:
803 				capabilities = NOMMU_MAP_COPY;
804 				break;
805 
806 			case S_IFCHR:
807 				capabilities =
808 					NOMMU_MAP_DIRECT |
809 					NOMMU_MAP_READ |
810 					NOMMU_MAP_WRITE;
811 				break;
812 
813 			default:
814 				return -EINVAL;
815 			}
816 		}
817 
818 		/* eliminate any capabilities that we can't support on this
819 		 * device */
820 		if (!file->f_op->get_unmapped_area)
821 			capabilities &= ~NOMMU_MAP_DIRECT;
822 		if (!(file->f_mode & FMODE_CAN_READ))
823 			capabilities &= ~NOMMU_MAP_COPY;
824 
825 		/* The file shall have been opened with read permission. */
826 		if (!(file->f_mode & FMODE_READ))
827 			return -EACCES;
828 
829 		if (flags & MAP_SHARED) {
830 			/* do checks for writing, appending and locking */
831 			if ((prot & PROT_WRITE) &&
832 			    !(file->f_mode & FMODE_WRITE))
833 				return -EACCES;
834 
835 			if (IS_APPEND(file_inode(file)) &&
836 			    (file->f_mode & FMODE_WRITE))
837 				return -EACCES;
838 
839 			if (locks_verify_locked(file))
840 				return -EAGAIN;
841 
842 			if (!(capabilities & NOMMU_MAP_DIRECT))
843 				return -ENODEV;
844 
845 			/* we mustn't privatise shared mappings */
846 			capabilities &= ~NOMMU_MAP_COPY;
847 		} else {
848 			/* we're going to read the file into private memory we
849 			 * allocate */
850 			if (!(capabilities & NOMMU_MAP_COPY))
851 				return -ENODEV;
852 
853 			/* we don't permit a private writable mapping to be
854 			 * shared with the backing device */
855 			if (prot & PROT_WRITE)
856 				capabilities &= ~NOMMU_MAP_DIRECT;
857 		}
858 
859 		if (capabilities & NOMMU_MAP_DIRECT) {
860 			if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
861 			    ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
862 			    ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
863 			    ) {
864 				capabilities &= ~NOMMU_MAP_DIRECT;
865 				if (flags & MAP_SHARED) {
866 					pr_warn("MAP_SHARED not completely supported on !MMU\n");
867 					return -EINVAL;
868 				}
869 			}
870 		}
871 
872 		/* handle executable mappings and implied executable
873 		 * mappings */
874 		if (path_noexec(&file->f_path)) {
875 			if (prot & PROT_EXEC)
876 				return -EPERM;
877 		} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
878 			/* handle implication of PROT_EXEC by PROT_READ */
879 			if (current->personality & READ_IMPLIES_EXEC) {
880 				if (capabilities & NOMMU_MAP_EXEC)
881 					prot |= PROT_EXEC;
882 			}
883 		} else if ((prot & PROT_READ) &&
884 			 (prot & PROT_EXEC) &&
885 			 !(capabilities & NOMMU_MAP_EXEC)
886 			 ) {
887 			/* backing file is not executable, try to copy */
888 			capabilities &= ~NOMMU_MAP_DIRECT;
889 		}
890 	} else {
891 		/* anonymous mappings are always memory backed and can be
892 		 * privately mapped
893 		 */
894 		capabilities = NOMMU_MAP_COPY;
895 
896 		/* handle PROT_EXEC implication by PROT_READ */
897 		if ((prot & PROT_READ) &&
898 		    (current->personality & READ_IMPLIES_EXEC))
899 			prot |= PROT_EXEC;
900 	}
901 
902 	/* allow the security API to have its say */
903 	ret = security_mmap_addr(addr);
904 	if (ret < 0)
905 		return ret;
906 
907 	/* looks okay */
908 	*_capabilities = capabilities;
909 	return 0;
910 }
911 
912 /*
913  * we've determined that we can make the mapping, now translate what we
914  * now know into VMA flags
915  */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)916 static unsigned long determine_vm_flags(struct file *file,
917 					unsigned long prot,
918 					unsigned long flags,
919 					unsigned long capabilities)
920 {
921 	unsigned long vm_flags;
922 
923 	vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
924 	/* vm_flags |= mm->def_flags; */
925 
926 	if (!(capabilities & NOMMU_MAP_DIRECT)) {
927 		/* attempt to share read-only copies of mapped file chunks */
928 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
929 		if (file && !(prot & PROT_WRITE))
930 			vm_flags |= VM_MAYSHARE;
931 	} else {
932 		/* overlay a shareable mapping on the backing device or inode
933 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
934 		 * romfs/cramfs */
935 		vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
936 		if (flags & MAP_SHARED)
937 			vm_flags |= VM_SHARED;
938 	}
939 
940 	/* refuse to let anyone share private mappings with this process if
941 	 * it's being traced - otherwise breakpoints set in it may interfere
942 	 * with another untraced process
943 	 */
944 	if ((flags & MAP_PRIVATE) && current->ptrace)
945 		vm_flags &= ~VM_MAYSHARE;
946 
947 	return vm_flags;
948 }
949 
950 /*
951  * set up a shared mapping on a file (the driver or filesystem provides and
952  * pins the storage)
953  */
do_mmap_shared_file(struct vm_area_struct * vma)954 static int do_mmap_shared_file(struct vm_area_struct *vma)
955 {
956 	int ret;
957 
958 	ret = call_mmap(vma->vm_file, vma);
959 	if (ret == 0) {
960 		vma->vm_region->vm_top = vma->vm_region->vm_end;
961 		return 0;
962 	}
963 	if (ret != -ENOSYS)
964 		return ret;
965 
966 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
967 	 * opposed to tried but failed) so we can only give a suitable error as
968 	 * it's not possible to make a private copy if MAP_SHARED was given */
969 	return -ENODEV;
970 }
971 
972 /*
973  * set up a private mapping or an anonymous shared mapping
974  */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)975 static int do_mmap_private(struct vm_area_struct *vma,
976 			   struct vm_region *region,
977 			   unsigned long len,
978 			   unsigned long capabilities)
979 {
980 	unsigned long total, point;
981 	void *base;
982 	int ret, order;
983 
984 	/* invoke the file's mapping function so that it can keep track of
985 	 * shared mappings on devices or memory
986 	 * - VM_MAYSHARE will be set if it may attempt to share
987 	 */
988 	if (capabilities & NOMMU_MAP_DIRECT) {
989 		ret = call_mmap(vma->vm_file, vma);
990 		if (ret == 0) {
991 			/* shouldn't return success if we're not sharing */
992 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
993 			vma->vm_region->vm_top = vma->vm_region->vm_end;
994 			return 0;
995 		}
996 		if (ret != -ENOSYS)
997 			return ret;
998 
999 		/* getting an ENOSYS error indicates that direct mmap isn't
1000 		 * possible (as opposed to tried but failed) so we'll try to
1001 		 * make a private copy of the data and map that instead */
1002 	}
1003 
1004 
1005 	/* allocate some memory to hold the mapping
1006 	 * - note that this may not return a page-aligned address if the object
1007 	 *   we're allocating is smaller than a page
1008 	 */
1009 	order = get_order(len);
1010 	total = 1 << order;
1011 	point = len >> PAGE_SHIFT;
1012 
1013 	/* we don't want to allocate a power-of-2 sized page set */
1014 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1015 		total = point;
1016 
1017 	base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1018 	if (!base)
1019 		goto enomem;
1020 
1021 	atomic_long_add(total, &mmap_pages_allocated);
1022 
1023 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1024 	region->vm_start = (unsigned long) base;
1025 	region->vm_end   = region->vm_start + len;
1026 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1027 
1028 	vma->vm_start = region->vm_start;
1029 	vma->vm_end   = region->vm_start + len;
1030 
1031 	if (vma->vm_file) {
1032 		/* read the contents of a file into the copy */
1033 		loff_t fpos;
1034 
1035 		fpos = vma->vm_pgoff;
1036 		fpos <<= PAGE_SHIFT;
1037 
1038 		ret = kernel_read(vma->vm_file, base, len, &fpos);
1039 		if (ret < 0)
1040 			goto error_free;
1041 
1042 		/* clear the last little bit */
1043 		if (ret < len)
1044 			memset(base + ret, 0, len - ret);
1045 
1046 	} else {
1047 		vma_set_anonymous(vma);
1048 	}
1049 
1050 	return 0;
1051 
1052 error_free:
1053 	free_page_series(region->vm_start, region->vm_top);
1054 	region->vm_start = vma->vm_start = 0;
1055 	region->vm_end   = vma->vm_end = 0;
1056 	region->vm_top   = 0;
1057 	return ret;
1058 
1059 enomem:
1060 	pr_err("Allocation of length %lu from process %d (%s) failed\n",
1061 	       len, current->pid, current->comm);
1062 	show_free_areas(0, NULL);
1063 	return -ENOMEM;
1064 }
1065 
1066 /*
1067  * handle mapping creation for uClinux
1068  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1069 unsigned long do_mmap(struct file *file,
1070 			unsigned long addr,
1071 			unsigned long len,
1072 			unsigned long prot,
1073 			unsigned long flags,
1074 			unsigned long pgoff,
1075 			unsigned long *populate,
1076 			struct list_head *uf)
1077 {
1078 	struct vm_area_struct *vma;
1079 	struct vm_region *region;
1080 	struct rb_node *rb;
1081 	vm_flags_t vm_flags;
1082 	unsigned long capabilities, result;
1083 	int ret;
1084 
1085 	*populate = 0;
1086 
1087 	/* decide whether we should attempt the mapping, and if so what sort of
1088 	 * mapping */
1089 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1090 				    &capabilities);
1091 	if (ret < 0)
1092 		return ret;
1093 
1094 	/* we ignore the address hint */
1095 	addr = 0;
1096 	len = PAGE_ALIGN(len);
1097 
1098 	/* we've determined that we can make the mapping, now translate what we
1099 	 * now know into VMA flags */
1100 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1101 
1102 	/* we're going to need to record the mapping */
1103 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1104 	if (!region)
1105 		goto error_getting_region;
1106 
1107 	vma = vm_area_alloc(current->mm);
1108 	if (!vma)
1109 		goto error_getting_vma;
1110 
1111 	region->vm_usage = 1;
1112 	region->vm_flags = vm_flags;
1113 	region->vm_pgoff = pgoff;
1114 
1115 	vma->vm_flags = vm_flags;
1116 	vma->vm_pgoff = pgoff;
1117 
1118 	if (file) {
1119 		region->vm_file = get_file(file);
1120 		vma->vm_file = get_file(file);
1121 	}
1122 
1123 	down_write(&nommu_region_sem);
1124 
1125 	/* if we want to share, we need to check for regions created by other
1126 	 * mmap() calls that overlap with our proposed mapping
1127 	 * - we can only share with a superset match on most regular files
1128 	 * - shared mappings on character devices and memory backed files are
1129 	 *   permitted to overlap inexactly as far as we are concerned for in
1130 	 *   these cases, sharing is handled in the driver or filesystem rather
1131 	 *   than here
1132 	 */
1133 	if (vm_flags & VM_MAYSHARE) {
1134 		struct vm_region *pregion;
1135 		unsigned long pglen, rpglen, pgend, rpgend, start;
1136 
1137 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1138 		pgend = pgoff + pglen;
1139 
1140 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1141 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1142 
1143 			if (!(pregion->vm_flags & VM_MAYSHARE))
1144 				continue;
1145 
1146 			/* search for overlapping mappings on the same file */
1147 			if (file_inode(pregion->vm_file) !=
1148 			    file_inode(file))
1149 				continue;
1150 
1151 			if (pregion->vm_pgoff >= pgend)
1152 				continue;
1153 
1154 			rpglen = pregion->vm_end - pregion->vm_start;
1155 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1156 			rpgend = pregion->vm_pgoff + rpglen;
1157 			if (pgoff >= rpgend)
1158 				continue;
1159 
1160 			/* handle inexactly overlapping matches between
1161 			 * mappings */
1162 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1163 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1164 				/* new mapping is not a subset of the region */
1165 				if (!(capabilities & NOMMU_MAP_DIRECT))
1166 					goto sharing_violation;
1167 				continue;
1168 			}
1169 
1170 			/* we've found a region we can share */
1171 			pregion->vm_usage++;
1172 			vma->vm_region = pregion;
1173 			start = pregion->vm_start;
1174 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1175 			vma->vm_start = start;
1176 			vma->vm_end = start + len;
1177 
1178 			if (pregion->vm_flags & VM_MAPPED_COPY)
1179 				vma->vm_flags |= VM_MAPPED_COPY;
1180 			else {
1181 				ret = do_mmap_shared_file(vma);
1182 				if (ret < 0) {
1183 					vma->vm_region = NULL;
1184 					vma->vm_start = 0;
1185 					vma->vm_end = 0;
1186 					pregion->vm_usage--;
1187 					pregion = NULL;
1188 					goto error_just_free;
1189 				}
1190 			}
1191 			fput(region->vm_file);
1192 			kmem_cache_free(vm_region_jar, region);
1193 			region = pregion;
1194 			result = start;
1195 			goto share;
1196 		}
1197 
1198 		/* obtain the address at which to make a shared mapping
1199 		 * - this is the hook for quasi-memory character devices to
1200 		 *   tell us the location of a shared mapping
1201 		 */
1202 		if (capabilities & NOMMU_MAP_DIRECT) {
1203 			addr = file->f_op->get_unmapped_area(file, addr, len,
1204 							     pgoff, flags);
1205 			if (IS_ERR_VALUE(addr)) {
1206 				ret = addr;
1207 				if (ret != -ENOSYS)
1208 					goto error_just_free;
1209 
1210 				/* the driver refused to tell us where to site
1211 				 * the mapping so we'll have to attempt to copy
1212 				 * it */
1213 				ret = -ENODEV;
1214 				if (!(capabilities & NOMMU_MAP_COPY))
1215 					goto error_just_free;
1216 
1217 				capabilities &= ~NOMMU_MAP_DIRECT;
1218 			} else {
1219 				vma->vm_start = region->vm_start = addr;
1220 				vma->vm_end = region->vm_end = addr + len;
1221 			}
1222 		}
1223 	}
1224 
1225 	vma->vm_region = region;
1226 
1227 	/* set up the mapping
1228 	 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1229 	 */
1230 	if (file && vma->vm_flags & VM_SHARED)
1231 		ret = do_mmap_shared_file(vma);
1232 	else
1233 		ret = do_mmap_private(vma, region, len, capabilities);
1234 	if (ret < 0)
1235 		goto error_just_free;
1236 	add_nommu_region(region);
1237 
1238 	/* clear anonymous mappings that don't ask for uninitialized data */
1239 	if (!vma->vm_file &&
1240 	    (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1241 	     !(flags & MAP_UNINITIALIZED)))
1242 		memset((void *)region->vm_start, 0,
1243 		       region->vm_end - region->vm_start);
1244 
1245 	/* okay... we have a mapping; now we have to register it */
1246 	result = vma->vm_start;
1247 
1248 	current->mm->total_vm += len >> PAGE_SHIFT;
1249 
1250 share:
1251 	add_vma_to_mm(current->mm, vma);
1252 
1253 	/* we flush the region from the icache only when the first executable
1254 	 * mapping of it is made  */
1255 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1256 		flush_icache_user_range(region->vm_start, region->vm_end);
1257 		region->vm_icache_flushed = true;
1258 	}
1259 
1260 	up_write(&nommu_region_sem);
1261 
1262 	return result;
1263 
1264 error_just_free:
1265 	up_write(&nommu_region_sem);
1266 error:
1267 	if (region->vm_file)
1268 		fput(region->vm_file);
1269 	kmem_cache_free(vm_region_jar, region);
1270 	if (vma->vm_file)
1271 		fput(vma->vm_file);
1272 	vm_area_free(vma);
1273 	return ret;
1274 
1275 sharing_violation:
1276 	up_write(&nommu_region_sem);
1277 	pr_warn("Attempt to share mismatched mappings\n");
1278 	ret = -EINVAL;
1279 	goto error;
1280 
1281 error_getting_vma:
1282 	kmem_cache_free(vm_region_jar, region);
1283 	pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1284 			len, current->pid);
1285 	show_free_areas(0, NULL);
1286 	return -ENOMEM;
1287 
1288 error_getting_region:
1289 	pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1290 			len, current->pid);
1291 	show_free_areas(0, NULL);
1292 	return -ENOMEM;
1293 }
1294 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1295 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1296 			      unsigned long prot, unsigned long flags,
1297 			      unsigned long fd, unsigned long pgoff)
1298 {
1299 	struct file *file = NULL;
1300 	unsigned long retval = -EBADF;
1301 
1302 	audit_mmap_fd(fd, flags);
1303 	if (!(flags & MAP_ANONYMOUS)) {
1304 		file = fget(fd);
1305 		if (!file)
1306 			goto out;
1307 	}
1308 
1309 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1310 
1311 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1312 
1313 	if (file)
1314 		fput(file);
1315 out:
1316 	return retval;
1317 }
1318 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1319 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1320 		unsigned long, prot, unsigned long, flags,
1321 		unsigned long, fd, unsigned long, pgoff)
1322 {
1323 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1324 }
1325 
1326 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1327 struct mmap_arg_struct {
1328 	unsigned long addr;
1329 	unsigned long len;
1330 	unsigned long prot;
1331 	unsigned long flags;
1332 	unsigned long fd;
1333 	unsigned long offset;
1334 };
1335 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1336 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1337 {
1338 	struct mmap_arg_struct a;
1339 
1340 	if (copy_from_user(&a, arg, sizeof(a)))
1341 		return -EFAULT;
1342 	if (offset_in_page(a.offset))
1343 		return -EINVAL;
1344 
1345 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1346 			       a.offset >> PAGE_SHIFT);
1347 }
1348 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1349 
1350 /*
1351  * split a vma into two pieces at address 'addr', a new vma is allocated either
1352  * for the first part or the tail.
1353  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1354 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1355 	      unsigned long addr, int new_below)
1356 {
1357 	struct vm_area_struct *new;
1358 	struct vm_region *region;
1359 	unsigned long npages;
1360 
1361 	/* we're only permitted to split anonymous regions (these should have
1362 	 * only a single usage on the region) */
1363 	if (vma->vm_file)
1364 		return -ENOMEM;
1365 
1366 	if (mm->map_count >= sysctl_max_map_count)
1367 		return -ENOMEM;
1368 
1369 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1370 	if (!region)
1371 		return -ENOMEM;
1372 
1373 	new = vm_area_dup(vma);
1374 	if (!new) {
1375 		kmem_cache_free(vm_region_jar, region);
1376 		return -ENOMEM;
1377 	}
1378 
1379 	/* most fields are the same, copy all, and then fixup */
1380 	*region = *vma->vm_region;
1381 	new->vm_region = region;
1382 
1383 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1384 
1385 	if (new_below) {
1386 		region->vm_top = region->vm_end = new->vm_end = addr;
1387 	} else {
1388 		region->vm_start = new->vm_start = addr;
1389 		region->vm_pgoff = new->vm_pgoff += npages;
1390 	}
1391 
1392 	if (new->vm_ops && new->vm_ops->open)
1393 		new->vm_ops->open(new);
1394 
1395 	delete_vma_from_mm(vma);
1396 	down_write(&nommu_region_sem);
1397 	delete_nommu_region(vma->vm_region);
1398 	if (new_below) {
1399 		vma->vm_region->vm_start = vma->vm_start = addr;
1400 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1401 	} else {
1402 		vma->vm_region->vm_end = vma->vm_end = addr;
1403 		vma->vm_region->vm_top = addr;
1404 	}
1405 	add_nommu_region(vma->vm_region);
1406 	add_nommu_region(new->vm_region);
1407 	up_write(&nommu_region_sem);
1408 	add_vma_to_mm(mm, vma);
1409 	add_vma_to_mm(mm, new);
1410 	return 0;
1411 }
1412 
1413 /*
1414  * shrink a VMA by removing the specified chunk from either the beginning or
1415  * the end
1416  */
shrink_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long from,unsigned long to)1417 static int shrink_vma(struct mm_struct *mm,
1418 		      struct vm_area_struct *vma,
1419 		      unsigned long from, unsigned long to)
1420 {
1421 	struct vm_region *region;
1422 
1423 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1424 	 * and list */
1425 	delete_vma_from_mm(vma);
1426 	if (from > vma->vm_start)
1427 		vma->vm_end = from;
1428 	else
1429 		vma->vm_start = to;
1430 	add_vma_to_mm(mm, vma);
1431 
1432 	/* cut the backing region down to size */
1433 	region = vma->vm_region;
1434 	BUG_ON(region->vm_usage != 1);
1435 
1436 	down_write(&nommu_region_sem);
1437 	delete_nommu_region(region);
1438 	if (from > region->vm_start) {
1439 		to = region->vm_top;
1440 		region->vm_top = region->vm_end = from;
1441 	} else {
1442 		region->vm_start = to;
1443 	}
1444 	add_nommu_region(region);
1445 	up_write(&nommu_region_sem);
1446 
1447 	free_page_series(from, to);
1448 	return 0;
1449 }
1450 
1451 /*
1452  * release a mapping
1453  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1454  *   VMA, though it need not cover the whole VMA
1455  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)1456 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1457 {
1458 	struct vm_area_struct *vma;
1459 	unsigned long end;
1460 	int ret;
1461 
1462 	len = PAGE_ALIGN(len);
1463 	if (len == 0)
1464 		return -EINVAL;
1465 
1466 	end = start + len;
1467 
1468 	/* find the first potentially overlapping VMA */
1469 	vma = find_vma(mm, start);
1470 	if (!vma) {
1471 		static int limit;
1472 		if (limit < 5) {
1473 			pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1474 					current->pid, current->comm,
1475 					start, start + len - 1);
1476 			limit++;
1477 		}
1478 		return -EINVAL;
1479 	}
1480 
1481 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1482 	if (vma->vm_file) {
1483 		do {
1484 			if (start > vma->vm_start)
1485 				return -EINVAL;
1486 			if (end == vma->vm_end)
1487 				goto erase_whole_vma;
1488 			vma = vma->vm_next;
1489 		} while (vma);
1490 		return -EINVAL;
1491 	} else {
1492 		/* the chunk must be a subset of the VMA found */
1493 		if (start == vma->vm_start && end == vma->vm_end)
1494 			goto erase_whole_vma;
1495 		if (start < vma->vm_start || end > vma->vm_end)
1496 			return -EINVAL;
1497 		if (offset_in_page(start))
1498 			return -EINVAL;
1499 		if (end != vma->vm_end && offset_in_page(end))
1500 			return -EINVAL;
1501 		if (start != vma->vm_start && end != vma->vm_end) {
1502 			ret = split_vma(mm, vma, start, 1);
1503 			if (ret < 0)
1504 				return ret;
1505 		}
1506 		return shrink_vma(mm, vma, start, end);
1507 	}
1508 
1509 erase_whole_vma:
1510 	delete_vma_from_mm(vma);
1511 	delete_vma(mm, vma);
1512 	return 0;
1513 }
1514 EXPORT_SYMBOL(do_munmap);
1515 
vm_munmap(unsigned long addr,size_t len)1516 int vm_munmap(unsigned long addr, size_t len)
1517 {
1518 	struct mm_struct *mm = current->mm;
1519 	int ret;
1520 
1521 	mmap_write_lock(mm);
1522 	ret = do_munmap(mm, addr, len, NULL);
1523 	mmap_write_unlock(mm);
1524 	return ret;
1525 }
1526 EXPORT_SYMBOL(vm_munmap);
1527 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1528 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1529 {
1530 	return vm_munmap(addr, len);
1531 }
1532 
1533 /*
1534  * release all the mappings made in a process's VM space
1535  */
exit_mmap(struct mm_struct * mm)1536 void exit_mmap(struct mm_struct *mm)
1537 {
1538 	struct vm_area_struct *vma;
1539 
1540 	if (!mm)
1541 		return;
1542 
1543 	mm->total_vm = 0;
1544 
1545 	while ((vma = mm->mmap)) {
1546 		mm->mmap = vma->vm_next;
1547 		delete_vma_from_mm(vma);
1548 		delete_vma(mm, vma);
1549 		cond_resched();
1550 	}
1551 }
1552 
vm_brk(unsigned long addr,unsigned long len)1553 int vm_brk(unsigned long addr, unsigned long len)
1554 {
1555 	return -ENOMEM;
1556 }
1557 
1558 /*
1559  * expand (or shrink) an existing mapping, potentially moving it at the same
1560  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1561  *
1562  * under NOMMU conditions, we only permit changing a mapping's size, and only
1563  * as long as it stays within the region allocated by do_mmap_private() and the
1564  * block is not shareable
1565  *
1566  * MREMAP_FIXED is not supported under NOMMU conditions
1567  */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1568 static unsigned long do_mremap(unsigned long addr,
1569 			unsigned long old_len, unsigned long new_len,
1570 			unsigned long flags, unsigned long new_addr)
1571 {
1572 	struct vm_area_struct *vma;
1573 
1574 	/* insanity checks first */
1575 	old_len = PAGE_ALIGN(old_len);
1576 	new_len = PAGE_ALIGN(new_len);
1577 	if (old_len == 0 || new_len == 0)
1578 		return (unsigned long) -EINVAL;
1579 
1580 	if (offset_in_page(addr))
1581 		return -EINVAL;
1582 
1583 	if (flags & MREMAP_FIXED && new_addr != addr)
1584 		return (unsigned long) -EINVAL;
1585 
1586 	vma = find_vma_exact(current->mm, addr, old_len);
1587 	if (!vma)
1588 		return (unsigned long) -EINVAL;
1589 
1590 	if (vma->vm_end != vma->vm_start + old_len)
1591 		return (unsigned long) -EFAULT;
1592 
1593 	if (vma->vm_flags & VM_MAYSHARE)
1594 		return (unsigned long) -EPERM;
1595 
1596 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1597 		return (unsigned long) -ENOMEM;
1598 
1599 	/* all checks complete - do it */
1600 	vma->vm_end = vma->vm_start + new_len;
1601 	return vma->vm_start;
1602 }
1603 
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1604 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1605 		unsigned long, new_len, unsigned long, flags,
1606 		unsigned long, new_addr)
1607 {
1608 	unsigned long ret;
1609 
1610 	mmap_write_lock(current->mm);
1611 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1612 	mmap_write_unlock(current->mm);
1613 	return ret;
1614 }
1615 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1616 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1617 			 unsigned int foll_flags)
1618 {
1619 	return NULL;
1620 }
1621 
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1622 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1623 		unsigned long pfn, unsigned long size, pgprot_t prot)
1624 {
1625 	if (addr != (pfn << PAGE_SHIFT))
1626 		return -EINVAL;
1627 
1628 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL(remap_pfn_range);
1632 
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)1633 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1634 {
1635 	unsigned long pfn = start >> PAGE_SHIFT;
1636 	unsigned long vm_len = vma->vm_end - vma->vm_start;
1637 
1638 	pfn += vma->vm_pgoff;
1639 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1640 }
1641 EXPORT_SYMBOL(vm_iomap_memory);
1642 
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1643 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1644 			unsigned long pgoff)
1645 {
1646 	unsigned int size = vma->vm_end - vma->vm_start;
1647 
1648 	if (!(vma->vm_flags & VM_USERMAP))
1649 		return -EINVAL;
1650 
1651 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1652 	vma->vm_end = vma->vm_start + size;
1653 
1654 	return 0;
1655 }
1656 EXPORT_SYMBOL(remap_vmalloc_range);
1657 
arch_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1658 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1659 	unsigned long len, unsigned long pgoff, unsigned long flags)
1660 {
1661 	return -ENOMEM;
1662 }
1663 
filemap_fault(struct vm_fault * vmf)1664 vm_fault_t filemap_fault(struct vm_fault *vmf)
1665 {
1666 	BUG();
1667 	return 0;
1668 }
1669 EXPORT_SYMBOL(filemap_fault);
1670 
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1671 void filemap_map_pages(struct vm_fault *vmf,
1672 		pgoff_t start_pgoff, pgoff_t end_pgoff)
1673 {
1674 	BUG();
1675 }
1676 EXPORT_SYMBOL(filemap_map_pages);
1677 
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1678 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1679 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
1680 {
1681 	struct vm_area_struct *vma;
1682 	int write = gup_flags & FOLL_WRITE;
1683 
1684 	if (mmap_read_lock_killable(mm))
1685 		return 0;
1686 
1687 	/* the access must start within one of the target process's mappings */
1688 	vma = find_vma(mm, addr);
1689 	if (vma) {
1690 		/* don't overrun this mapping */
1691 		if (addr + len >= vma->vm_end)
1692 			len = vma->vm_end - addr;
1693 
1694 		/* only read or write mappings where it is permitted */
1695 		if (write && vma->vm_flags & VM_MAYWRITE)
1696 			copy_to_user_page(vma, NULL, addr,
1697 					 (void *) addr, buf, len);
1698 		else if (!write && vma->vm_flags & VM_MAYREAD)
1699 			copy_from_user_page(vma, NULL, addr,
1700 					    buf, (void *) addr, len);
1701 		else
1702 			len = 0;
1703 	} else {
1704 		len = 0;
1705 	}
1706 
1707 	mmap_read_unlock(mm);
1708 
1709 	return len;
1710 }
1711 
1712 /**
1713  * access_remote_vm - access another process' address space
1714  * @mm:		the mm_struct of the target address space
1715  * @addr:	start address to access
1716  * @buf:	source or destination buffer
1717  * @len:	number of bytes to transfer
1718  * @gup_flags:	flags modifying lookup behaviour
1719  *
1720  * The caller must hold a reference on @mm.
1721  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)1722 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1723 		void *buf, int len, unsigned int gup_flags)
1724 {
1725 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1726 }
1727 
1728 /*
1729  * Access another process' address space.
1730  * - source/target buffer must be kernel space
1731  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)1732 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1733 		unsigned int gup_flags)
1734 {
1735 	struct mm_struct *mm;
1736 
1737 	if (addr + len < addr)
1738 		return 0;
1739 
1740 	mm = get_task_mm(tsk);
1741 	if (!mm)
1742 		return 0;
1743 
1744 	len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1745 
1746 	mmput(mm);
1747 	return len;
1748 }
1749 EXPORT_SYMBOL_GPL(access_process_vm);
1750 
1751 /**
1752  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1753  * @inode: The inode to check
1754  * @size: The current filesize of the inode
1755  * @newsize: The proposed filesize of the inode
1756  *
1757  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1758  * make sure that any outstanding VMAs aren't broken and then shrink the
1759  * vm_regions that extend beyond so that do_mmap() doesn't
1760  * automatically grant mappings that are too large.
1761  */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)1762 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1763 				size_t newsize)
1764 {
1765 	struct vm_area_struct *vma;
1766 	struct vm_region *region;
1767 	pgoff_t low, high;
1768 	size_t r_size, r_top;
1769 
1770 	low = newsize >> PAGE_SHIFT;
1771 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1772 
1773 	down_write(&nommu_region_sem);
1774 	i_mmap_lock_read(inode->i_mapping);
1775 
1776 	/* search for VMAs that fall within the dead zone */
1777 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1778 		/* found one - only interested if it's shared out of the page
1779 		 * cache */
1780 		if (vma->vm_flags & VM_SHARED) {
1781 			i_mmap_unlock_read(inode->i_mapping);
1782 			up_write(&nommu_region_sem);
1783 			return -ETXTBSY; /* not quite true, but near enough */
1784 		}
1785 	}
1786 
1787 	/* reduce any regions that overlap the dead zone - if in existence,
1788 	 * these will be pointed to by VMAs that don't overlap the dead zone
1789 	 *
1790 	 * we don't check for any regions that start beyond the EOF as there
1791 	 * shouldn't be any
1792 	 */
1793 	vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1794 		if (!(vma->vm_flags & VM_SHARED))
1795 			continue;
1796 
1797 		region = vma->vm_region;
1798 		r_size = region->vm_top - region->vm_start;
1799 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1800 
1801 		if (r_top > newsize) {
1802 			region->vm_top -= r_top - newsize;
1803 			if (region->vm_end > region->vm_top)
1804 				region->vm_end = region->vm_top;
1805 		}
1806 	}
1807 
1808 	i_mmap_unlock_read(inode->i_mapping);
1809 	up_write(&nommu_region_sem);
1810 	return 0;
1811 }
1812 
1813 /*
1814  * Initialise sysctl_user_reserve_kbytes.
1815  *
1816  * This is intended to prevent a user from starting a single memory hogging
1817  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1818  * mode.
1819  *
1820  * The default value is min(3% of free memory, 128MB)
1821  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1822  */
init_user_reserve(void)1823 static int __meminit init_user_reserve(void)
1824 {
1825 	unsigned long free_kbytes;
1826 
1827 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1828 
1829 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1830 	return 0;
1831 }
1832 subsys_initcall(init_user_reserve);
1833 
1834 /*
1835  * Initialise sysctl_admin_reserve_kbytes.
1836  *
1837  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1838  * to log in and kill a memory hogging process.
1839  *
1840  * Systems with more than 256MB will reserve 8MB, enough to recover
1841  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1842  * only reserve 3% of free pages by default.
1843  */
init_admin_reserve(void)1844 static int __meminit init_admin_reserve(void)
1845 {
1846 	unsigned long free_kbytes;
1847 
1848 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1849 
1850 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1851 	return 0;
1852 }
1853 subsys_initcall(init_admin_reserve);
1854